Abstract

Aims

To evaluate whether plasma high molecular weight (HMW) adiponectin provides prognostic information in addition to that obtained from clinical, haemodynamic, and biochemical variables previously known to be associated with a high mortality in chronic heart failure (CHF) patients.

Methods and results

We measured the plasma levels of total and HMW adiponectin, atrial natriuretic peptide, brain natriuretic peptide (BNP), and N-terminal-proBNP (NT-proBNP), and haemodynamic parameters in 449 consecutive CHF patients. Based on body mass index (BMI), patients were classified into three groups: low (<21 kg/m2, n = 133), normal (21–25 kg/m2, n = 205), and high (>25 kg/m2, n = 111). After adjustment for clinical variables associated with CHF including haemodynamics, plasma total adiponectin level was an independent prognostic predictor but HMW adiponectin was not in the overall patient group. On subgroup analyses, in patients with abnormal BMI, plasma total adiponectin level was not an independent prognostic predictor, but in patients with normal BMI, plasma levels of log NT-proBNP (P = 0.017) and log total adiponectin (P = 0.003) were independent prognostic predictors.

Conclusion

These findings indicate that total adiponectin is more useful for assessing mortality risk than HMW adiponectin and a high plasma total adiponectin is an independent prognostic predictor especially in CHF patients with normal BMI.

Introduction

Chronic heart failure (CHF) is characterized by a complex syndrome of haemodynamic, neurohormonal, and metabolic abnormalities with high mortality. Although population studies have found obesity to be a risk factor for cardiovascular disease and for the development of CHF,1 recent data suggest that a high body mass index (BMI) is associated with a more favourable prognosis in patients with established CHF.2–4 Moreover, CHF patients with cachexia have shown a poor prognosis.5,6

Adiponectin, which is an adipocyte-specific cytokine, is abundant in plasma and has important metabolic effects7 and may predict cardiovascular events. In healthy patients and in patients with atherosclerosis, low plasma adiponectin levels have been associated with metabolic disorders and an increased risk of cardiovascular events,8–10 recently a high plasma adiponectin level has been demonstrated to be a predictor of mortality in established CHF patients.11,12 The mechanisms underlying these findings remained unexplained, but cachexia or obesity, which is an independent risk factor for mortality,2–5 may influence the plasma adiponectin in patients with the CHF. Adiponectin circulates in plasma as a trimer, a hexamer, and in a high molecular weight (HMW) form.13,14 Recent studies suggest that HMW adiponectin is an active form of this protein and that HMW adiponectin is superior to total adiponectin as a predictor of metabolic abnormalities.15,16 However, it has not been elucidated whether plasma HMW adiponectin is a more useful prognostic predictor than total adiponectin in CHF the patients.

Plasma levels of cardiac natriuretic peptides such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and N-terminal-proBNP (NT-proBNP) are well-established powerful risk markers in CHF17–20 and are positively correlated with a left ventricular filling pressure21,22 and inversely correlated with BMI.11,23 Recent studies suggest a positive correlation between the plasma NT-proBNP and adiponectin in patients with coronary artery disease24 and in patients with CHF,11 and that cardiac natriuretic peptides have a novel lipolytic and potential lipid-mobilization effect, which is mediated by a specific adipocyte plasma membrane receptor.25–27 However, there are no data that directly compare plasma adiponectin with physiologically active natriuretic peptides such as ANP and BNP, and haemodynamic parameters.

The present study (i) evaluated whether haemodynamic abnormalities directly contribute to the elevated total adiponectin in CHF patients, (ii) whether measuring plasma total or HMW adiponectin provides prognostic information that is additional to that obtained from clinical, haemodynamic, and biochemical variables previously known to be associated with a high mortality in CHF patients, and (iii) which CHF patients would benefit from evaluation of the plasma adiponectin to predict mortality risk.

Methods

Patients

The study population was drawn from 712 consecutive symptomatic CHF patients admitted to our institute between 2000 and 2005 for management of CHF. Among these patients, the study population consisted of 449 consecutive patients with systolic CHF, which was defined as a left ventricular ejection fraction (LVEF) <45% on right-sided cardiac catheterization. All patients could be followed. LVEF was measured by two-dimensional echocardiography or ventriculography using contrast medium or radioisotope before the study. Aetiology of systolic CHF was ischaemic cardiomyopathy, dilated cardiomyopathy, or hypertensive heart disease. Patients with acute myocardial infarction, congenital heart disease, valvular heart disease, malignancy, or renal failure (serum creatinine >2.0 mg/dL) were excluded. NYHA functional class was evaluated on the day of cardiac catheterization. Informed consent was obtained from all patients for participation in the study, according to a protocol approved by the Committee on Human Investigation at our institution.

Study protocol

All patients were pre-medicated with an oral dose of diazepam (5 mg) and rested in bed in a supine position for at least 20 min. Right-sided cardiac catheterization was performed by a 6 F Swan–Ganz catheter. Blood samples for measuring plasma levels of total and HMW adiponectin, ANP, BNP, and NT-proBNP were collected from the pulmonary artery. Samples for the assay of plasma adiponectin, ANP, BNP, and NT-proBNP concentrations were transferred to chilled disposable tubes containing aprotinin (500 kallikrein inactivator units/mL). The blood samples were immediately placed on ice and centrifuged at 4°C, and the plasma was frozen in aliquots and stored at −30°C until assay.

Plasma total adiponectin level was measured by a sandwich ELISA system (adiponectin ELISA kit, Otsuka Pharmaceutical Corp. Ltd).28 Plasma HMW adiponectin concentration was measured using a sandwich ELISA based on a monoclonal antibody to human HMW adiponectin (Fujirebio ELISA kit, Tokyo, Japan).16 Plasma concentrations of ANP and BNP were measured with a specific immunoradiometric assay for human ANP and BNP using a commercial kit (Shionogi, Osaka, Japan), as previously reported.17 Plasma levels of NT-proBNP concentrations were measured using Elecsys proBNP sandwich immunoassay (Roche Diagnostics, Mannheim, Germany). Renal function was represented by the estimated glomerular filtration rate according to the Cockcroft–Gault equation.

The subjects were 365 men and 84 women ranging in age from 17 to 85 years (mean 62.2 ± 12.3); 291 patients had ischaemic heart disease; 117 had dilated cardiomyopathy; 41 had hypertensive heart disease. As the recommendation criteria for obesity in our country,29 patients were divided into three groups: low BMI (<21 kg/m2, n = 133), normal BMI (21–25 kg/m2, n = 205, and high BMI (>25 kg/m2, n = 111). At entry to the study, 381 patients (85%) were treated with angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers, 266 (60%) with β-blockers, 124 (28%) with spironolactone. All drugs were administered for over 3 months prior to entry in most patients.

Statistical analysis

All results are expressed as the mean ± SD. Univariate analyses were performed between two groups using Student's t-test. Patients were divided into three groups according to BMI categories [low BMI (< 21 kg/m2), normal BMI (21–25 kg/m2), and high BMI (> 25 kg/m2)]. Comparisons between the groups were performed by 1-way ANOVA or Kruskal–Wallis test for continuous variables. A χ2 test was used to determine differences between groups. Because plasma levels of total and HMW adiponectin, ANP, BNP, and NT-proBNP were not normally distributed, log total adiponectin, log HMW adiponectin, log ANP, log BNP, and log NT-proBNP were used to determine correlations and regression models. Multivariable linear regression analyses, examining the correlates of log-transformed adiponectin levels, include baseline variables that were associated with adiponectin at the P < 0.10 level on univariate analyses.

In multivariable Cox proportional hazard analyses, the main models were adjusted for variables considered to reflect the severity of CHF at baseline and those were associated with mortality on univariate analyses at the P < 0.10 level. Multivariable Cox proportional hazard analyses were performed as stepwise regressions with backward elimination in the overall patient groups and in three groups divided according to BMI categories.

The sensitivity and specificity of adiponectin and NT-proBNP for predicting mortality were determined, and receiver-operating characteristic curves were constructed. Kaplan–Meier analysis was performed on the cumulative rates of survival in patients with HF stratified into subgroups based on cut-off levels of adiponectin and NT-proBNP in patients with normal BMI, and the differences between survival curves were analysed by log-rank test. A two-tailed probability value of <0.05 was considered as significant.

Results

Comparison of plasma adiponectin and haemodynamic parameters and neurohumoral factors in chronic heart failure

Plasma total and HMW adiponectin level increased with the severity of NYHA functional class (Figure 1). There was a close correlation between plasma log total adiponectin and plasma log HMW adiponectin (r = 0.920, P < 0.0001). There was no significant correlation between plasma log total adiponectin and pulmonary capillary wedge pressure (r = 0.051, P = 0.278), and there were correlations between plasma log total adiponectin and other haemodynamic parameters (Table 1). There were significant correlations between plasma log total adiponectin and log ANP (r = 0.312, P < 0.0001), log BNP (r = 0.358, P < 0.0001), log NT-proBNP (r = 0.373, P < 0.0001), and BMI (r = −0.391, P < 0.0001) (Figure 2). On stepwise multivariable analyses, four parameters, low BMI (P < 0.0001), high plasma BNP level (P < 0.0001), female gender (P < 0.0001), and non-diabetes mellitus (P = 0.0126), were significant independent predictors of high plasma log total adiponectin (Table 1). Just like total adiponectin, four parameters, low BMI (P < 0.0001), high plasma BNP level (P < 0.0001), female gender (P < 0.0001), and non-diabetes mellitus (P = 0.0193), were significant independent predictors of high plasma log HMW adiponectin. There were no haemodynamic parameters that were independently associated with either elevated total or HMW adiponectin.

Figure 1

Plasma total and high molecular weight adiponectin concentrations in patients with chronic heart failure. The white box indicates the value of plasma total adiponectin and the black box indicates plasma high molecular weight adiponectin. The box defines the inter-quartile range with the median indicated by the crossbar, and differences among groups were analysed using Kruskal–Wallis testing. NYHA, New York Heart Association functional class.

Figure 2

Correlations between log total adiponection and body mass index and plasma levels of atrial natriuretic peptide, brain natriuretic peptide, and N-terminal-proBNP.

Table 1

Univariate and multivariable linear model of plasma log total adiponectin

VariablesUnivariate correlation coefficientP-valueMultivariate beta-coefficient (SE)P-value
Gender (male = 1, female = 0) −0.245 <0.0001 −0.117 (0.030) <0.0001 
NYHA class (III/IV = 1, I/II = 0) 0.180 0.0001   
BMI (Kg/m2−0.391 <0.0001 −0.022 (0.004) <0.0001 
Hyperlipidaemia (yes = 1) −0.198 <0.0001   
Diabetes mellitus (yes = 1) −0.140 0.0029 −0.062 (0.025) 0.0126 
eGFR (mL/min) −0.307 <0.0001   
Log ANP (pg/mL) 0.312 0.0069   
Log BNP (pg/mL) 0.358 <0.0001 0.098 (0.022) <0.0001 
Log NT-proBNP (pg/mL) 0.373 <0.0001   
CI (mL/min/m2−0.102 0.0302   
Mean PA (mmHg) 0.170 0.003   
RA (mmHg) 0.111 0.018   
LVEF (%) −0.168 0.0003   
VariablesUnivariate correlation coefficientP-valueMultivariate beta-coefficient (SE)P-value
Gender (male = 1, female = 0) −0.245 <0.0001 −0.117 (0.030) <0.0001 
NYHA class (III/IV = 1, I/II = 0) 0.180 0.0001   
BMI (Kg/m2−0.391 <0.0001 −0.022 (0.004) <0.0001 
Hyperlipidaemia (yes = 1) −0.198 <0.0001   
Diabetes mellitus (yes = 1) −0.140 0.0029 −0.062 (0.025) 0.0126 
eGFR (mL/min) −0.307 <0.0001   
Log ANP (pg/mL) 0.312 0.0069   
Log BNP (pg/mL) 0.358 <0.0001 0.098 (0.022) <0.0001 
Log NT-proBNP (pg/mL) 0.373 <0.0001   
CI (mL/min/m2−0.102 0.0302   
Mean PA (mmHg) 0.170 0.003   
RA (mmHg) 0.111 0.018   
LVEF (%) −0.168 0.0003   

NYHA, New York Heart Association; BMI, body mass index; eGFR, estimated glomerular filtration rate; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; NT-proBNP, N-terminal-proBNP; CI, cardiac index; mean PA, mean pulmonary arterial pressure; RA, right atrial pressure; LVEF, left ventricular ejection fraction.

Table 1

Univariate and multivariable linear model of plasma log total adiponectin

VariablesUnivariate correlation coefficientP-valueMultivariate beta-coefficient (SE)P-value
Gender (male = 1, female = 0) −0.245 <0.0001 −0.117 (0.030) <0.0001 
NYHA class (III/IV = 1, I/II = 0) 0.180 0.0001   
BMI (Kg/m2−0.391 <0.0001 −0.022 (0.004) <0.0001 
Hyperlipidaemia (yes = 1) −0.198 <0.0001   
Diabetes mellitus (yes = 1) −0.140 0.0029 −0.062 (0.025) 0.0126 
eGFR (mL/min) −0.307 <0.0001   
Log ANP (pg/mL) 0.312 0.0069   
Log BNP (pg/mL) 0.358 <0.0001 0.098 (0.022) <0.0001 
Log NT-proBNP (pg/mL) 0.373 <0.0001   
CI (mL/min/m2−0.102 0.0302   
Mean PA (mmHg) 0.170 0.003   
RA (mmHg) 0.111 0.018   
LVEF (%) −0.168 0.0003   
VariablesUnivariate correlation coefficientP-valueMultivariate beta-coefficient (SE)P-value
Gender (male = 1, female = 0) −0.245 <0.0001 −0.117 (0.030) <0.0001 
NYHA class (III/IV = 1, I/II = 0) 0.180 0.0001   
BMI (Kg/m2−0.391 <0.0001 −0.022 (0.004) <0.0001 
Hyperlipidaemia (yes = 1) −0.198 <0.0001   
Diabetes mellitus (yes = 1) −0.140 0.0029 −0.062 (0.025) 0.0126 
eGFR (mL/min) −0.307 <0.0001   
Log ANP (pg/mL) 0.312 0.0069   
Log BNP (pg/mL) 0.358 <0.0001 0.098 (0.022) <0.0001 
Log NT-proBNP (pg/mL) 0.373 <0.0001   
CI (mL/min/m2−0.102 0.0302   
Mean PA (mmHg) 0.170 0.003   
RA (mmHg) 0.111 0.018   
LVEF (%) −0.168 0.0003   

NYHA, New York Heart Association; BMI, body mass index; eGFR, estimated glomerular filtration rate; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; NT-proBNP, N-terminal-proBNP; CI, cardiac index; mean PA, mean pulmonary arterial pressure; RA, right atrial pressure; LVEF, left ventricular ejection fraction.

Total and high molecular weight adiponectin as a prognostic predictor in chronic heart failure

Table 2 summarizes the patient characteristics according to BMI categories. Forty-seven patients died during a median follow-up period of 2.7 years (inter-quartile range: 1.27–3.91 years). Mortality rate and plasma levels of ANP, BNP, NT-proBNP, total and HMW adiponectin, and HMW-to-total adiponectin ratio were higher in patients with lower BMI. HMW-to-total adiponectin ratio was significantly lower in patients with diabetes mellitus, hyperlipidaemia, and ischaemic cardiomyopathy (Figure 3). Thirteen clinical, neurohumoral, and haemodynamic variables were analysed using univariate and stepwise multivariable Cox proportional hazards regression analyses (Table 3). On stepwise multivariable analyses, high levels of plasma log NT-proBNP (P < 0.0001) and log total adiponectin (P = 0.008), cardiac index (P = 0.023), and LVEF (P = 0.01) were significant independent predictors of mortality in the overall patient group (Table 3).

Figure 3

Comparisons of plasma high molecular weight-to-total adiponectin ratios. IHD, ischaemic heart disease, DM, diabetes mellitus. * = P < 0.05, ** = P < 0.01.

Table 2

Patient characteristics according to body mass index

Total groupBMI < 21 (kg/m2)21 ≤ BMI ≤ 25 (kg/m2)25 < BMI (kg/m2)P-value
Characteristics (n = 449) (n = 133) (n = 205) (n = 111)  
Age (year) 62.2 ± 12.3 63.7 ± 12.5 63.1 ± 11.3 58.7 ± 13.3 0.0025 
Male, n (%) 365 (81) 96 (72) 173 (84) 96 (86) 0.0021 
BMI (kg/m223.1 ± 3.6 19.2 ± 1.4 23.0 ± 1.1 27.9 ± 2.6 <0.0001 
NYHA class III/IV, n (%) 108 (24) 42 (32) 38 (19) 28 (25) 0.022 
Death, n (%) 47 (10) 21 (16) 20 (10) 6 (5) 0.0264 
Aetiology of heart failure      
Ischemic cardiomyopathy 291 (65) 80 (60) 131 (64) 79 (71) 0.230 
Dilated cardiomyopathy 117 (26) 38 (29) 56 (27) 23 (21) 0.325 
Hypertensive heart disease 41 (9) 15 (11) 18 (9) 9 (8) 0.785 
Hypertension, n (%) 205 (46) 44 (33) 95 (46) 66 (59) 0.0002 
Diabetes Mellitus, n (%) 141 (31) 32 (24) 68 (33) 41 (40) 0.074 
Hyperlipidaemia, n (%) 205 (46) 50 (38) 89 (43) 66 (59) 0.002 
Heart rate (beats/min) 71.2 ± 15.4 70.5 ± 15 70.8 ± 15 72.8 ± 15 0.449 
Mean blood pressure (mmHg) 86.7 ± 15.5 83.8 ± 15.6 85.7 ± 14.7 91.5 ± 15.9 0.003 
LVEF (%) 31.2 ± 8.4 29.4 ± 8.4 31.7 ± 8.3 32.3 ± 8.4 0.01 
PCWP (mmHg) 12.1 ± 6.5 12.3 ± 6.8 11.4 ± 6.4 12.8 ± 6.2 0.154 
RA (mmHg) 3.7 ± 3.1 3.4 ± 3.0 3.4 ± 3.0 4.6 ± 3.1 0.0015 
Mean PA (mmHg) 16.1 ± 7.0 16.5 ± 7.7 15.5 ± 6.9 16.7 ± 6.3 0.258 
CI (L/min/m22.17 ± 0.49 2.13 ± 0.5 2.18 ± 0.48 2.2 ± 0.5 0.464 
ANP (pg/mL) 89.2 ± 90 107.9 ± 97 80 ± 89 82.5 ± 79 0.005 
Median value 59 78.9 53 54  
BNP (pg/mL) 183.2 ± 265 262 ± 335 167 ± 251 119 ± 148 <0.0001 
Median value 95 170 80 69.9  
NT-pro-BNP (pg/mL) 1125.1 ± 3099 1908 ± 5230 952 ± 1953 506 ± 636 <0.0001 
Median value 429.5 736.8 350 293  
Total adiponectin (μg/mL) 9.46 ± 6.7 13.3 ± 7.9 8.5 ± 5.8 6.7 ± 4.3 <0.0001 
Median value 7.6 12 6.2  
HMW adiponectin (μg/mL) 5.69 ± 5.5 8.42 ± 6.7 5.1 ± 4.9 3.49 ± 3.1 <0.0001 
Median value 4.0 3.6 2.6  
HMW to total adiponectin ratio 0.547 ± 0.21 0.60 ± 0.21 0.55 ± 0.2 0.49 ± 0.2 0.0001 
Haemoglobin (g/dL) 12.8 ± 1.8 12.0 ± 1.8 12.9 ± 1.7 13.6 ± 1.8 <0.0001 
Creatinine (mg/dL) 0.94 ± 0.28 0.91 ± 0.30 0.97 ± 0.28 0.92 ± 0.25 0.121 
eGFR (mL/min) 75.9 ± 33 61.9 ± 21 71.9 ± 26 100 ± 43 <0.0001 
Treatments      
Spironolactone, n (%) 124 (28) 45 (34) 52 (25) 27 (24) 0.157 
ACE-I or ARB, n (%) 381 (85) 111 (83) 176 (86) 94 (85) 0.883 
β blockers, n (%) 266 (60) 82 (62) 118 (58) 66 (59) 0.754 
Total groupBMI < 21 (kg/m2)21 ≤ BMI ≤ 25 (kg/m2)25 < BMI (kg/m2)P-value
Characteristics (n = 449) (n = 133) (n = 205) (n = 111)  
Age (year) 62.2 ± 12.3 63.7 ± 12.5 63.1 ± 11.3 58.7 ± 13.3 0.0025 
Male, n (%) 365 (81) 96 (72) 173 (84) 96 (86) 0.0021 
BMI (kg/m223.1 ± 3.6 19.2 ± 1.4 23.0 ± 1.1 27.9 ± 2.6 <0.0001 
NYHA class III/IV, n (%) 108 (24) 42 (32) 38 (19) 28 (25) 0.022 
Death, n (%) 47 (10) 21 (16) 20 (10) 6 (5) 0.0264 
Aetiology of heart failure      
Ischemic cardiomyopathy 291 (65) 80 (60) 131 (64) 79 (71) 0.230 
Dilated cardiomyopathy 117 (26) 38 (29) 56 (27) 23 (21) 0.325 
Hypertensive heart disease 41 (9) 15 (11) 18 (9) 9 (8) 0.785 
Hypertension, n (%) 205 (46) 44 (33) 95 (46) 66 (59) 0.0002 
Diabetes Mellitus, n (%) 141 (31) 32 (24) 68 (33) 41 (40) 0.074 
Hyperlipidaemia, n (%) 205 (46) 50 (38) 89 (43) 66 (59) 0.002 
Heart rate (beats/min) 71.2 ± 15.4 70.5 ± 15 70.8 ± 15 72.8 ± 15 0.449 
Mean blood pressure (mmHg) 86.7 ± 15.5 83.8 ± 15.6 85.7 ± 14.7 91.5 ± 15.9 0.003 
LVEF (%) 31.2 ± 8.4 29.4 ± 8.4 31.7 ± 8.3 32.3 ± 8.4 0.01 
PCWP (mmHg) 12.1 ± 6.5 12.3 ± 6.8 11.4 ± 6.4 12.8 ± 6.2 0.154 
RA (mmHg) 3.7 ± 3.1 3.4 ± 3.0 3.4 ± 3.0 4.6 ± 3.1 0.0015 
Mean PA (mmHg) 16.1 ± 7.0 16.5 ± 7.7 15.5 ± 6.9 16.7 ± 6.3 0.258 
CI (L/min/m22.17 ± 0.49 2.13 ± 0.5 2.18 ± 0.48 2.2 ± 0.5 0.464 
ANP (pg/mL) 89.2 ± 90 107.9 ± 97 80 ± 89 82.5 ± 79 0.005 
Median value 59 78.9 53 54  
BNP (pg/mL) 183.2 ± 265 262 ± 335 167 ± 251 119 ± 148 <0.0001 
Median value 95 170 80 69.9  
NT-pro-BNP (pg/mL) 1125.1 ± 3099 1908 ± 5230 952 ± 1953 506 ± 636 <0.0001 
Median value 429.5 736.8 350 293  
Total adiponectin (μg/mL) 9.46 ± 6.7 13.3 ± 7.9 8.5 ± 5.8 6.7 ± 4.3 <0.0001 
Median value 7.6 12 6.2  
HMW adiponectin (μg/mL) 5.69 ± 5.5 8.42 ± 6.7 5.1 ± 4.9 3.49 ± 3.1 <0.0001 
Median value 4.0 3.6 2.6  
HMW to total adiponectin ratio 0.547 ± 0.21 0.60 ± 0.21 0.55 ± 0.2 0.49 ± 0.2 0.0001 
Haemoglobin (g/dL) 12.8 ± 1.8 12.0 ± 1.8 12.9 ± 1.7 13.6 ± 1.8 <0.0001 
Creatinine (mg/dL) 0.94 ± 0.28 0.91 ± 0.30 0.97 ± 0.28 0.92 ± 0.25 0.121 
eGFR (mL/min) 75.9 ± 33 61.9 ± 21 71.9 ± 26 100 ± 43 <0.0001 
Treatments      
Spironolactone, n (%) 124 (28) 45 (34) 52 (25) 27 (24) 0.157 
ACE-I or ARB, n (%) 381 (85) 111 (83) 176 (86) 94 (85) 0.883 
β blockers, n (%) 266 (60) 82 (62) 118 (58) 66 (59) 0.754 

BMI, body mass index; LVEF, left ventricular ejection fraction; PCWP, pulmonary capillary wedge pressure; RA, right atrial pressure; PA, pulmonary arterial pressure; CI, cardiac index; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; NT-proBNP, N-terminal-proBNP; HMW, high molecular weight; eGFR, estimated glomerular filtration rate; ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.

Table 2

Patient characteristics according to body mass index

Total groupBMI < 21 (kg/m2)21 ≤ BMI ≤ 25 (kg/m2)25 < BMI (kg/m2)P-value
Characteristics (n = 449) (n = 133) (n = 205) (n = 111)  
Age (year) 62.2 ± 12.3 63.7 ± 12.5 63.1 ± 11.3 58.7 ± 13.3 0.0025 
Male, n (%) 365 (81) 96 (72) 173 (84) 96 (86) 0.0021 
BMI (kg/m223.1 ± 3.6 19.2 ± 1.4 23.0 ± 1.1 27.9 ± 2.6 <0.0001 
NYHA class III/IV, n (%) 108 (24) 42 (32) 38 (19) 28 (25) 0.022 
Death, n (%) 47 (10) 21 (16) 20 (10) 6 (5) 0.0264 
Aetiology of heart failure      
Ischemic cardiomyopathy 291 (65) 80 (60) 131 (64) 79 (71) 0.230 
Dilated cardiomyopathy 117 (26) 38 (29) 56 (27) 23 (21) 0.325 
Hypertensive heart disease 41 (9) 15 (11) 18 (9) 9 (8) 0.785 
Hypertension, n (%) 205 (46) 44 (33) 95 (46) 66 (59) 0.0002 
Diabetes Mellitus, n (%) 141 (31) 32 (24) 68 (33) 41 (40) 0.074 
Hyperlipidaemia, n (%) 205 (46) 50 (38) 89 (43) 66 (59) 0.002 
Heart rate (beats/min) 71.2 ± 15.4 70.5 ± 15 70.8 ± 15 72.8 ± 15 0.449 
Mean blood pressure (mmHg) 86.7 ± 15.5 83.8 ± 15.6 85.7 ± 14.7 91.5 ± 15.9 0.003 
LVEF (%) 31.2 ± 8.4 29.4 ± 8.4 31.7 ± 8.3 32.3 ± 8.4 0.01 
PCWP (mmHg) 12.1 ± 6.5 12.3 ± 6.8 11.4 ± 6.4 12.8 ± 6.2 0.154 
RA (mmHg) 3.7 ± 3.1 3.4 ± 3.0 3.4 ± 3.0 4.6 ± 3.1 0.0015 
Mean PA (mmHg) 16.1 ± 7.0 16.5 ± 7.7 15.5 ± 6.9 16.7 ± 6.3 0.258 
CI (L/min/m22.17 ± 0.49 2.13 ± 0.5 2.18 ± 0.48 2.2 ± 0.5 0.464 
ANP (pg/mL) 89.2 ± 90 107.9 ± 97 80 ± 89 82.5 ± 79 0.005 
Median value 59 78.9 53 54  
BNP (pg/mL) 183.2 ± 265 262 ± 335 167 ± 251 119 ± 148 <0.0001 
Median value 95 170 80 69.9  
NT-pro-BNP (pg/mL) 1125.1 ± 3099 1908 ± 5230 952 ± 1953 506 ± 636 <0.0001 
Median value 429.5 736.8 350 293  
Total adiponectin (μg/mL) 9.46 ± 6.7 13.3 ± 7.9 8.5 ± 5.8 6.7 ± 4.3 <0.0001 
Median value 7.6 12 6.2  
HMW adiponectin (μg/mL) 5.69 ± 5.5 8.42 ± 6.7 5.1 ± 4.9 3.49 ± 3.1 <0.0001 
Median value 4.0 3.6 2.6  
HMW to total adiponectin ratio 0.547 ± 0.21 0.60 ± 0.21 0.55 ± 0.2 0.49 ± 0.2 0.0001 
Haemoglobin (g/dL) 12.8 ± 1.8 12.0 ± 1.8 12.9 ± 1.7 13.6 ± 1.8 <0.0001 
Creatinine (mg/dL) 0.94 ± 0.28 0.91 ± 0.30 0.97 ± 0.28 0.92 ± 0.25 0.121 
eGFR (mL/min) 75.9 ± 33 61.9 ± 21 71.9 ± 26 100 ± 43 <0.0001 
Treatments      
Spironolactone, n (%) 124 (28) 45 (34) 52 (25) 27 (24) 0.157 
ACE-I or ARB, n (%) 381 (85) 111 (83) 176 (86) 94 (85) 0.883 
β blockers, n (%) 266 (60) 82 (62) 118 (58) 66 (59) 0.754 
Total groupBMI < 21 (kg/m2)21 ≤ BMI ≤ 25 (kg/m2)25 < BMI (kg/m2)P-value
Characteristics (n = 449) (n = 133) (n = 205) (n = 111)  
Age (year) 62.2 ± 12.3 63.7 ± 12.5 63.1 ± 11.3 58.7 ± 13.3 0.0025 
Male, n (%) 365 (81) 96 (72) 173 (84) 96 (86) 0.0021 
BMI (kg/m223.1 ± 3.6 19.2 ± 1.4 23.0 ± 1.1 27.9 ± 2.6 <0.0001 
NYHA class III/IV, n (%) 108 (24) 42 (32) 38 (19) 28 (25) 0.022 
Death, n (%) 47 (10) 21 (16) 20 (10) 6 (5) 0.0264 
Aetiology of heart failure      
Ischemic cardiomyopathy 291 (65) 80 (60) 131 (64) 79 (71) 0.230 
Dilated cardiomyopathy 117 (26) 38 (29) 56 (27) 23 (21) 0.325 
Hypertensive heart disease 41 (9) 15 (11) 18 (9) 9 (8) 0.785 
Hypertension, n (%) 205 (46) 44 (33) 95 (46) 66 (59) 0.0002 
Diabetes Mellitus, n (%) 141 (31) 32 (24) 68 (33) 41 (40) 0.074 
Hyperlipidaemia, n (%) 205 (46) 50 (38) 89 (43) 66 (59) 0.002 
Heart rate (beats/min) 71.2 ± 15.4 70.5 ± 15 70.8 ± 15 72.8 ± 15 0.449 
Mean blood pressure (mmHg) 86.7 ± 15.5 83.8 ± 15.6 85.7 ± 14.7 91.5 ± 15.9 0.003 
LVEF (%) 31.2 ± 8.4 29.4 ± 8.4 31.7 ± 8.3 32.3 ± 8.4 0.01 
PCWP (mmHg) 12.1 ± 6.5 12.3 ± 6.8 11.4 ± 6.4 12.8 ± 6.2 0.154 
RA (mmHg) 3.7 ± 3.1 3.4 ± 3.0 3.4 ± 3.0 4.6 ± 3.1 0.0015 
Mean PA (mmHg) 16.1 ± 7.0 16.5 ± 7.7 15.5 ± 6.9 16.7 ± 6.3 0.258 
CI (L/min/m22.17 ± 0.49 2.13 ± 0.5 2.18 ± 0.48 2.2 ± 0.5 0.464 
ANP (pg/mL) 89.2 ± 90 107.9 ± 97 80 ± 89 82.5 ± 79 0.005 
Median value 59 78.9 53 54  
BNP (pg/mL) 183.2 ± 265 262 ± 335 167 ± 251 119 ± 148 <0.0001 
Median value 95 170 80 69.9  
NT-pro-BNP (pg/mL) 1125.1 ± 3099 1908 ± 5230 952 ± 1953 506 ± 636 <0.0001 
Median value 429.5 736.8 350 293  
Total adiponectin (μg/mL) 9.46 ± 6.7 13.3 ± 7.9 8.5 ± 5.8 6.7 ± 4.3 <0.0001 
Median value 7.6 12 6.2  
HMW adiponectin (μg/mL) 5.69 ± 5.5 8.42 ± 6.7 5.1 ± 4.9 3.49 ± 3.1 <0.0001 
Median value 4.0 3.6 2.6  
HMW to total adiponectin ratio 0.547 ± 0.21 0.60 ± 0.21 0.55 ± 0.2 0.49 ± 0.2 0.0001 
Haemoglobin (g/dL) 12.8 ± 1.8 12.0 ± 1.8 12.9 ± 1.7 13.6 ± 1.8 <0.0001 
Creatinine (mg/dL) 0.94 ± 0.28 0.91 ± 0.30 0.97 ± 0.28 0.92 ± 0.25 0.121 
eGFR (mL/min) 75.9 ± 33 61.9 ± 21 71.9 ± 26 100 ± 43 <0.0001 
Treatments      
Spironolactone, n (%) 124 (28) 45 (34) 52 (25) 27 (24) 0.157 
ACE-I or ARB, n (%) 381 (85) 111 (83) 176 (86) 94 (85) 0.883 
β blockers, n (%) 266 (60) 82 (62) 118 (58) 66 (59) 0.754 

BMI, body mass index; LVEF, left ventricular ejection fraction; PCWP, pulmonary capillary wedge pressure; RA, right atrial pressure; PA, pulmonary arterial pressure; CI, cardiac index; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; NT-proBNP, N-terminal-proBNP; HMW, high molecular weight; eGFR, estimated glomerular filtration rate; ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.

Table 3

Univariate and multivariable predictors of mortality in 449 patients with chronic heart failure

VariablesUnivariate χ2P-valueMultivariate χ2P-value
NYHA class (III/IV = 1, I/II = 0) 13.10 0.003   
Ischemic aetiology (yes = 1, no = 0) 21.427 <0.0001   
BMI (Kg/m210.327 0.0013   
RA (mmHg) 5.594 0.018   
CI (L/min/m211.894 0.0006 5.169 0.023 
Mean PA (mmHg) 28.039 <0.0001   
PCWP (mmHg) 10.891 0.0010   
LVEF (%) 28.405 <0.0001 6.477 0.0109 
Log ANP (pg/mL) 21.996 <0.0001   
Log BNP (pg/mL) 37.058 <0.0001 18.322 <0.0001 
Log NT-proBNP (pg/mL) 45.404 <0.0001   
Log adiponectin (μg/mL) 27.108 <0.0001 6.888 0.0087 
Log HMW Adiponectin (μg/mL) 21.994 <0.0001   
VariablesUnivariate χ2P-valueMultivariate χ2P-value
NYHA class (III/IV = 1, I/II = 0) 13.10 0.003   
Ischemic aetiology (yes = 1, no = 0) 21.427 <0.0001   
BMI (Kg/m210.327 0.0013   
RA (mmHg) 5.594 0.018   
CI (L/min/m211.894 0.0006 5.169 0.023 
Mean PA (mmHg) 28.039 <0.0001   
PCWP (mmHg) 10.891 0.0010   
LVEF (%) 28.405 <0.0001 6.477 0.0109 
Log ANP (pg/mL) 21.996 <0.0001   
Log BNP (pg/mL) 37.058 <0.0001 18.322 <0.0001 
Log NT-proBNP (pg/mL) 45.404 <0.0001   
Log adiponectin (μg/mL) 27.108 <0.0001 6.888 0.0087 
Log HMW Adiponectin (μg/mL) 21.994 <0.0001   

Abbreviations are listed in Table 1.

Table 3

Univariate and multivariable predictors of mortality in 449 patients with chronic heart failure

VariablesUnivariate χ2P-valueMultivariate χ2P-value
NYHA class (III/IV = 1, I/II = 0) 13.10 0.003   
Ischemic aetiology (yes = 1, no = 0) 21.427 <0.0001   
BMI (Kg/m210.327 0.0013   
RA (mmHg) 5.594 0.018   
CI (L/min/m211.894 0.0006 5.169 0.023 
Mean PA (mmHg) 28.039 <0.0001   
PCWP (mmHg) 10.891 0.0010   
LVEF (%) 28.405 <0.0001 6.477 0.0109 
Log ANP (pg/mL) 21.996 <0.0001   
Log BNP (pg/mL) 37.058 <0.0001 18.322 <0.0001 
Log NT-proBNP (pg/mL) 45.404 <0.0001   
Log adiponectin (μg/mL) 27.108 <0.0001 6.888 0.0087 
Log HMW Adiponectin (μg/mL) 21.994 <0.0001   
VariablesUnivariate χ2P-valueMultivariate χ2P-value
NYHA class (III/IV = 1, I/II = 0) 13.10 0.003   
Ischemic aetiology (yes = 1, no = 0) 21.427 <0.0001   
BMI (Kg/m210.327 0.0013   
RA (mmHg) 5.594 0.018   
CI (L/min/m211.894 0.0006 5.169 0.023 
Mean PA (mmHg) 28.039 <0.0001   
PCWP (mmHg) 10.891 0.0010   
LVEF (%) 28.405 <0.0001 6.477 0.0109 
Log ANP (pg/mL) 21.996 <0.0001   
Log BNP (pg/mL) 37.058 <0.0001 18.322 <0.0001 
Log NT-proBNP (pg/mL) 45.404 <0.0001   
Log adiponectin (μg/mL) 27.108 <0.0001 6.888 0.0087 
Log HMW Adiponectin (μg/mL) 21.994 <0.0001   

Abbreviations are listed in Table 1.

On subgroup analyses, a high plasma log total adiponectin level was not an independent predictor in patients with abnormal BMI (<21 or >25 kg/m2), a high plasma log NT-proBNP level (P = 0.008) and low cardiac index (P = 0.004) were independent predictors in low BMI patients, and only a low BMI was an independent predictor in high BMI patients (P = 0.03). In patients with normal BMI (21–25), plasma levels of log NT-proBNP (P = 0.017) and log total adiponectin (P = 0.003), and low LVEF (P = 0.002) were independent prognostic predictors. Receiver operating characteristic curves of total and HMW adiponectin and BNP and NT-proBNP demonstrating mortality risks in patients with normal BMI are shown in Figure 4. The cut-off level for total adiponectin was determined as 8.8 µg/mL (95% CI: 7.1–13.4), giving a sensitivity of 86% (95% CI: 63.7–96.9) and specificity of 69% (95% CI: 61.4–75.3). The cut-off level of NT-proBNP was determined as 633 pg/mL (95% CI: 604–1645), giving a sensitivity of 86% (95% CI: 63.7–96.9) and specificity of 70% (95% CI: 63.1–76.7).

Figure 4

(A) Receiver operating characteristic curves for the ability of brain natriuretic peptide and N-terminal-proBNP to detect mortality in chronic heart failure patients with normal body mass index. (B) Receiver operating characteristic curves for the ability of total adiponectin and high molecular weight adiponectin to detect mortality in CHF patients with normal body mass index. AUC, area under the curve.

Kaplan–Meier lifetime analysis

Patients were divided in two groups based on cut-off levels for total adiponectin and NT-proBNP, and Kaplan–Meier survival curves were constructed (Figure 5). The CHF patients with normal BMI were stratified into four groups based on the cut-off levels of plasma concentrations of total adiponectin and NT-proBNP and cumulative survival curves were constructed by Kaplan–Meier survival methods (Figure 6). The hazard ratio of patients with plasma NT-proBNP > 633 pg/mL and total adiponectin > 8.8 µg/mL was 17.76 (95% CI: 6.4–49.1) compared to those with plasma BNP < 633 pg/mL or total adiponectin < 8.8 µg/mL for mortality (P < 0.0001).

Figure 5

Kaplan–Meier survival curves according to the cut-off level of plasma concentrations of total adiponectin and N-terminal-proBNP. (A) Patients with low body mass index (BMI < 21 kg/m2, n = 133). (B) Patients with normal BMI (21–25 kg/m2, n = 205). (C) Patients with high BMI (BMI > 25 kg/m2, n = 111).

Figure 6

Kaplan–Meier survival curves stratified into four groups based on the cut-off level of plasma concentrations of total adiponectin and NT-proBNP in chronic hear failure patients with normal body mass index.

Discussion

Plasma total adiponectin level has been reported to be an independent prognostic predictor in patients with CHF.11,12 The present study for the first time evaluated the prognostic role of HMW adiponectin, which may be a more sensitive marker of metabolic abnormality than total adiponectin.15,16 On multivariable Cox proportional hazard analyses, high levels of plasma log total adiponectin (P = 0.008) and log NT-proBNP (P < 0.0001) were significant independent predictors, suggesting that total adiponectin is more useful for assessing mortality risk than HMW adiponectin in our cohort patients. The reason HMW adiponectin, an active form, was a less useful prognostic predictor than total adiponectin is not be easily explained; a high HMW adiponectin might have a cardioprotective effect and an increased total adiponectin might reflect the severity of CHF.

Which CHF patients would benefit from evaluation of the plasma adiponectin to predict mortality is a clinically important issue because the increase in plasma adiponectin level is smaller than those of cardiac natriuretic peptides, established markers of prognosis.17–20 Therefore, we performed sub analysis in three groups divided by BMI. Our findings may indicate that a high plasma total adiponectin level is an independent and useful prognostic predictor in CHF patients especially in patients with normal BMI and that the prognostic power of plasma adiponectin is attenuated in CHF patients with abnormal BMI. The prevalence of obesity, defined by the World Health Organization as BMI > 30 is not more than 2–3% in the Japanese population, in contrast to the 10–20% in Europe and the USA.30 In the present study, patients were divided into three groups: low BMI (<21 kg/m2), normal BMI (21–25 kg/m2), and high BMI (>25 kg/m2) as the recommendation of criteria for obesity disease in Japan.29 However, further studies in Europe and the USA are needed to confirm our findings.

We also evaluated whether haemodynamic abnormalities directly contribute to elevated adiponectin in CHF patients. Plasma total and HMW adiponectin level did not correlate with pulmonary capillary wedge pressure, but positively correlated with plasma cardiac natriuretic peptides. Among the clinical parameters including haemodynamic and neurohumoral factors, metabolic parameters such as high BMI and diabetes mellitus were independently associated with decreased adiponectin, which is consistent with previous studies.11,24 The present study suggested that the increase in plasma adiponectin is associated with the physiologically active BNP rather than inactive NT-proBNP and that any haemodynamic parameter is not independently associated with increased adiponectin in CHF patients. A recent study31 showing that BNP increases adiponectin mRNA in cultured adipocytes via a functional GC-A receptor may support our findings.

Plasma cardiac natriuretic peptides such as ANP, BNP, and NT-proBNP have been established as a risk factor not only in patients with CHF17–20 and coronary artery disease but also in the general population. There was a significant correlation between plasma NT-proBNP and adiponectin in CHF patients11 and coronary heart disease.24 Plasma levels of BNP, NT-proBNP, and adiponectin were inversely correlated with BMI.11,22,24 The prognostic value of a high NT-proBNP has been documented in CHF regardless of the low BMI or high BMI;32 however, just like the ‘obesity paradox’,4 subjects with a high adiponectin level had lower risk for myocardial infarction,9 whereas established CHF patients with a high adiponectin level had poor prognosis,11,12 suggesting an association between the ‘obesity paradox’ and ‘adiponectin paradox’. The mechanisms underlying these findings remained unexplained, these findings suggest that the prognostic significance of adiponectin is affected by BMI in CHF. Taking ethnic differences into account, the increased energy expenditure may be more important than the actual BMI level in relation to prognosis. As weight loss increases the plasma adiponectin level, high adiponectin levels in CHF patients could be a marker of the wasting process, which may be one explanation of the association between high adiponectin levels and increased mortality risk in the present CHF population. We did not measure changes in weight in the present study, future studies are needed to address this issue. The low number of patients and events for subgroup analyses were the limitations of the study.

In conclusion, the increase in plasma total and HMW adiponectin in CHF patients is not independently associated with haemodynamic abnormalities but is mainly associated with BMI and cardiac natriuretic peptides. Furthermore, total adiponectin is more useful to assess mortality risk than HMW adiponectin and a high plasma total adiponectin is an independent prognostic predictor especially in CHF patients with normal BMI.

Acknowledgements

We wish to thank Aoi Murata for excellent technical assistance. We also express thanks to Mr Daniel Mrozek for assistance in preparing the manuscript. This study was supported by a Grant-in-Aid for Scientific Research in Japan.

Conflict of interest: none declared.

References

1
Kenchaiah
S
Evans
JC
Levy
D
Wilson
PW
Benjamin
EJ
Larson
MG
Kannel
WB
Vasan
RS
Obesity and the risk of heart failure
N Engl J Med
2002
, vol. 
347
 (pg. 
305
-
313
)
2
Horwich
TB
Fonarow
GC
Hamilton
MA
MacLellan
WR
Woo
MA
Tillisch
JH
The relationship between obesity and mortality in patients with heart failure
J Am Coll Cardiol
2001
, vol. 
38
 (pg. 
789
-
795
)
3
Kalantar-Zadeh
K
Block
G
Horwich
T
Fonarow
GC
Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure
J Am Coll Cardiol
2004
, vol. 
43
 (pg. 
1439
-
1444
)
4
Lavie
CJ
Mehra
MR
Milani
RV
Obesity and heart failure prognosis: paradox or reverse epidemiology?
Eur Heart J
2005
, vol. 
26
 (pg. 
5
-
7
)
5
Anker
SD
Ponikowski
P
Varney
S
Chua
TP
Clark
AL
Webb-Peploe
KM
Harrington
D
Kox
WJ
Poole-Wilson
PA
Coats
AJ
Wasting as independent risk factor for mortality in chronic heart failure
Lancet
1997
, vol. 
349
 (pg. 
1050
-
1053
)
6
Anker
SD
Negassa
A
Coats
AJ
Afzal
R
Poole-Wilson
PA
Cohn
JN
Yusuf
S
Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study
Lancet
2003
, vol. 
361
 (pg. 
1077
-
1083
)
7
Matsuzawa
Y
Funahashi
T
Nakamura
T
Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances
Ann N Y Acad Sci
1999
, vol. 
892
 (pg. 
146
-
154
)
8
Kumada
M
Kihara
S
Sumitsuji
S
Kawamoto
T
Matsumoto
S
Ouchi
N
Arita
Y
Okamoto
Y
Shimomura
I
Hiraoka
H
Nakamura
T
Funahashi
T
Matsuzawa
Y
Association of hypoadiponectinemia with coronary artery disease in men
Arterioscler Thromb Vasc Biol
2003
, vol. 
23
 (pg. 
85
-
89
)
9
Pischon
T
Girman
CJ
Hotamisligil
GS
Rifai
N
Hu
FB
Rimm
EB
Plasma adiponectin levels and risk of myocardial infarction in men
JAMA
2004
, vol. 
291
 (pg. 
1730
-
1737
)
10
Efstathiou
SP
Tsioulos
DI
Tsiakou
AG
Gratsias
YE
Pefanis
AV
Mountokalakis
TD
Plasma adiponectin levels and five-year survival after first-ever ischemic stroke
Stroke
2005
, vol. 
36
 (pg. 
1915
-
1919
)
11
Kistorp
C
Faber
J
Galatius
S
Gustafsson
F
Frystyk
J
Flyvbjerg
A
Hildebrandt
P
Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure
Circulation
2005
, vol. 
112
 (pg. 
1756
-
1762
)
12
George
J
Patal
S
Wexler
D
Sharabi
Y
Peleg
E
Kamari
Y
Grossman
E
Sheps
D
Keren
G
Roth
A
Circulating adiponectin concentrations in patients with congestive heart failure
Heart
2006
, vol. 
92
 (pg. 
1420
-
1424
)
13
Tsao
TS
Tomas
E
Murrey
HE
Hug
C
Lee
DH
Ruderman
NB
Heuser
JE
Lodish
HF
Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways
J Biol Chem
2003
, vol. 
278
 (pg. 
50810
-
50817
)
14
Waki
H
Yamauchi
T
Kamon
J
Ito
Y
Uchida
S
Kita
S
Hara
K
Hada
Y
Vasseur
F
Froguel
P
Kimura
S
Nagai
R
Kadowaki
T
Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin
J Biol Chem
2003
, vol. 
278
 (pg. 
40352
-
40363
)
15
Pajvani
UB
Hawkins
M
Combs
TP
Rajala
MW
Doebber
T
Berger
JP
Wagner
JA
Wu
M
Knopps
A
Xiang
AH
Utzschneider
KM
Kahn
SE
Olefsky
JM
Buchanan
TA
Scherer
PE
Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity
J Biol Chem
2004
, vol. 
279
 (pg. 
12152
-
12162
)
16
Aso
Y
Yamamoto
R
Wakabayashi
S
Uchida
T
Takayanagi
K
Takebayashi
K
Okuno
T
Inoue
T
Node
K
Tobe
T
Inukai
T
Nakano
Y
Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin
Diabetes
2006
, vol. 
55
 (pg. 
1954
-
1960
)
17
Tsutamoto
T
Wada
A
Maeda
K
Hisanaga
T
Maeda
Y
Fukai
D
Ohnishi
M
Sugimoto
Y
Kinoshita
M
Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction
Circulation
1997
, vol. 
96
 (pg. 
509
-
516
)
18
Latini
R
Masson
S
Anand
I
Salio
M
Hester
A
Judd
D
Barlera
S
Maggioni
AP
Tognoni
G
Cohn
JN
The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT
Eur Heart J
2004
, vol. 
25
 (pg. 
292
-
299
)
19
Richards
AM
Doughty
R
Nicholls
MG
MacMahon
S
Sharpe
N
Murphy
J
Espiner
EA
Frampton
C
Yandle
TG
Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group
J Am Coll Cardiol
2001
, vol. 
37
 (pg. 
1781
-
1787
)
20
Masson
S
Latini
R
Anand
IS
Vago
T
Angelici
L
Barlera
S
Missov
ED
Clerico
A
Tognoni
G
Cohn
JN
Direct comparison of B-type natriuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: the Valsartan Heart Failure (Val-HeFT) data
Clin Chem
2006
, vol. 
52
 (pg. 
1528
-
1538
)
21
Maeda
K
Tsutamoto
T
Wada
A
Hisanaga
T
Kinoshita
M
Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction
Am Heart J
1998
, vol. 
135
 (pg. 
825
-
832
)
22
Tsutamoto
T
Wada
A
Sakai
H
Ishikawa
C
Tanaka
T
Hayashi
M
Fujii
M
Yamamoto
T
Dohke
T
Ohnishi
M
Takashima
H
Kinoshita
M
Horie
M
Relationship between renal function and plasma brain natriuretic peptide in patients with heart failure
J Am Coll Cardiol
2006
, vol. 
47
 (pg. 
582
-
586
)
23
Mehra
MR
Uber
PA
Park
MH
Scott
RL
Ventura
HO
Harris
BC
Frohlich
ED
Obesity and suppressed B-type natriuretic peptide levels in heart failure
J Am Coll Cardiol
2004
, vol. 
43
 (pg. 
1590
-
1595
)
24
von Eynatten
M
Hamann
A
Twardella
D
Nawroth
PP
Brenner
H
Rothenbacher
D
Relationship of adiponectin with markers of systemic inflammation, atherogenic dyslipidemia, and heart failure in patients with coronary heart disease
Clin Chem
2006
, vol. 
52
 (pg. 
853
-
859
)
25
Sengenes
C
Zakaroff-Girard
A
Moulin
A
Berlan
M
Bouloumie
A
Lafontan
M
Galitzky
J
Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity
Am J Physiol Regul Integr Comp Physiol
2002
, vol. 
283
 (pg. 
R257
-
R265
)
26
Sengenes
C
Bouloumie
A
Hauner
H
Berlan
M
Busse
R
Lafontan
M
Galitzky
J
Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes
J Biol Chem
2003
, vol. 
278
 (pg. 
48617
-
48626
)
27
Moro
C
Crampes
F
Sengenes
C
De Glisezinski
I
Galitzky
J
Thalamas
C
Lafontan
M
Berlan
M
Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans
FASEB J
2004
, vol. 
18
 (pg. 
908
-
910
)
28
Arita
Y
Kihara
S
Ouchi
N
Takahashi
M
Maeda
K
Miyagawa
J
Hotta
K
Shimomura
I
Nakamura
T
Miyaoka
K
Kuriyama
H
Nishida
M
Yamashita
S
Okubo
K
Matsubara
K
Muraguchi
M
Ohmoto
Y
Funahashi
T
Matsuzawa
Y
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity
Biochem Biophys Res Commun
1999
, vol. 
257
 (pg. 
79
-
83
)
29
New criteria for ‘obesity disease’ in Japan
Circ J
2002
, vol. 
66
 (pg. 
987
-
992
)
30
Yoshiike
N
Matsumura
Y
Zaman
MM
Yamaguchi
M
Descriptive epidemiology of body mass index in Japanese adults in a representative sample from the National Nutrition Survey 1990–1994
Int J Obes Relat Metab Disord
1998
, vol. 
22
 (pg. 
684
-
687
)
31
Tsukamoto
O
Asakura
M
Minamino
T
Kim
J
Asanuma
H
Kishinoto
I
Kitakaze
M
Brain natriuretic peptide enhances adiponectine production in adipocytes
Circulation
2006
, vol. 
114
 (pg. 
II
-
486
)
32
Horwich
TB
Hamilton
MA
Fonarow
GC
B-type natriuretic peptide levels in obese patients with advanced heart failure
J Am Coll Cardiol
2006
, vol. 
47
 (pg. 
85
-
90
)