Abstract

Aims

Observational data suggest that the use of bilateral internal mammary arteries (BIMA) during coronary artery bypass graft surgery provides superior revascularization to a single internal mammary artery (SIMA), but concerns about safety have prevented the widespread use of BIMA. The Arterial Revascularisation Trial (ART) is a randomized trial of BIMA vs. SIMA, with a primary outcome of survival at 10 years. This paper reports mortality, morbidity, and resource use data at 1 year.

Methods and results

Coronary artery bypass graft patients were enrolled in 28 hospitals in seven countries. Three thousand one hundred and two patients were randomly assigned to SIMA (n = 1554) or BIMA (n = 1548). The mean number of grafts was 3 for both groups. Forty per cent of the SIMA procedures and 42% of the BIMA were performed off-pump. Mortality at 30 days was 18 of 1548 (1.2%) for SIMA and 19 of 1537 (1.2%) for BIMA, and at 1 year was 36 of 1540 (2.3%) and 38 of 1529 (2.5%), respectively. The rates of stroke, myocardial infarction, and repeat revascularization were all ≤2% at 1 year and similar between the two groups. Sternal wound reconstruction was required in 0.6 and 1.9% of the SIMA and BIMA groups, respectively.

Conclusion

Data from ART demonstrate similar clinical outcomes for SIMA and BIMA at 1 year but BIMA grafts are associated with a small absolute increase (1.3%) in the need for sternal wound reconstruction. The results suggest that the use of BIMA grafts is feasible on a routine basis. The 10-year results of the ART will confirm whether BIMA grafting results in lower mortality and the need for repeat intervention.

Trial registration: Controlled-trials.com (ISRCTN46552265).

See page 2444 for the editorial comment on this article (doi:10.1093/eurheartj/ehq341)

Introduction

Despite advances in percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) surgery remains the best therapy, prognostically and symptomatically, for severe multivessel ischaemic heart disease.1–3 Consequently, CABG remains one of the most commonly performed operations worldwide.

Most CABG patients require three bypass grafts (one to each of the major coronary arteries), and from the inception of CABG in the 1960s, the most commonly used conduit was saphenous vein. In 1986, however, when the Cleveland Clinic group reported4 that a single internal mammary artery (SIMA) rather than vein graft to the left anterior descending (LAD) coronary artery (anatomically, the most important coronary artery) improved 10-year survival and freedom from recurrent angina, myocardial infarction, and the need for repeat intervention, the use of a SIMA graft rapidly became the ‘gold standard’. Indeed, more than 95% of the CABG patients currently receive a SIMA graft and its benefits of excellent long-term patency in comparison with vein grafts are now known to extend into the second and third decade of follow-up.5,6 That superior clinical outcome is largely due to the excellent long-term patency of a SIMA graft, with rates in excess of 90% up to a decade after CABG, in contrast to vein grafts where, due to atherosclerosis, around half are occluded and half of the remainder are severely diseased.7–9

The superior clinical outcome associated with a SIMA graft encouraged several groups to investigate the use of bilateral internal mammary arteries (BIMA) with reports of even better clinical outcomes.10–14 Angiographic studies demonstrate markedly superior patency of BIMA grafts compared with vein grafts, with patency rates of BIMA grafts being as high as 98% at 7 days15 and 95% at 216 and 7 years.17 A systematic review of observational studies including 15 962 patients (comprising 11 269 SIMA and 4693 BIMA patients either matched or adjusted for age, sex, ventricular function, and diabetes) reported a survival advantage for BIMA grafts [hazard ratio for death = 0.81, 95% confidence intervals (CI): 0.70–0.94].12

Although BIMA grafting appears to offer superior revascularization to SIMA, it is technically more challenging, and concerns that it leads to a longer operation and increases the risk of early mortality and major morbidity, in particular impaired wound healing,6,12,13 have prevented widespread use. Indeed, BIMA grafting is only used routinely in around 10% of the CABG patients in Europe18 and 4% of the CABG patients in the USA.19

The primary objective of the Arterial Revascularisation Trial (ART) is to assess whether the use of BIMA grafts during CABG improves 10-year survival and reduces the need for further interventions compared with a SIMA graft. The secondary outcome measures include clinical events and quality of life (QoL) and health economic assessments. However, because of concerns over the ‘safety’ of the routine use of BIMA grafts,6,12,13,20,21 the results presented in this paper describe the mortality and morbidity data up to 1-year post-randomization.

Methods

Trial design

The protocol for ART has been published.22 Briefly, ART is a two-arm, randomized multicentre trial, conducted in 28 hospitals in seven countries, with patients being randomized equally to SIMA or BIMA grafts. All eligible patients requiring CABG were considered for entry into the study. Eligible patients were those with multivessel coronary artery disease (including urgent patients but not evolving myocardial infarction) undergoing CABG, whereas those requiring single grafts or redo CABG were excluded.

The ART study complied with the Declaration of Helsinki. The trial commenced after ethical approval was obtained in participating centres and each patient was required to provide written informed consent. Central co-ordination for the study was provided by the Clinical Trials and Evaluation Unit (CTEU) at the Royal Brompton and Harefield NHS Foundation Trust in London and the study was sponsored by the University of Oxford.

The randomization sequence was generated with randomly varying block sizes and stratified by centre,23 to provide equal numbers in each group. Patients were enrolled and randomized by telephone call to the co-ordinating centre. To reduce the possibility of outcome events occurring between randomization and revascularization, it was recommended that surgery be performed within 6 weeks of randomization.

Surgical procedure

The SIMA group received a SIMA graft to the LAD plus supplemental vein or radial artery graft to other coronary arteries, whereas the BIMA group received BIMA grafts to the two most important left-sided coronary arteries with supplemental vein or radial artery to other coronary arteries. In the BIMA group, the internal mammary artery (IMA) grafts could be used as composite grafts to each other, as long as one remained in situ. Anastomosis of an IMA graft to the right coronary artery was not permitted because of concerns of inferior long-term patency. Only surgeons with experience of >50 BIMA operations were able to undertake BIMA procedures in the trial and standard methods for anaesthesia and myocardial protection were used according to local practice.

Outcome measures

The primary outcome of ART is a comparison of all-cause mortality at 10 years of follow-up between patients randomized to the SIMA or BIMA procedure. The main outcomes in this analysis were clinical outcomes at 30 days and 1 year (all-cause mortality, myocardial infarction, stroke, and repeat revascularization) and safety outcomes including sternal wound reconstruction. Data were censored as of 1 July 2010. Serious adverse events were reported by the investigators on specific forms. Two members of the Clinical Event Review Committee (membership given in Appendix) then adjudicated each event (death, myocardial infarction, stroke, and re-intervention) in a blinded fashion to ensure that the events met the definitions given. If the two adjudicators did not concur, then the event was adjudicated by a third adjudicator. All other adverse events requiring or prolonging hospitalization were adjudicated by one member of the Committee.

Patient's QoL was assessed using the shortened WHO Rose angina questionnaire24 and the EuroQol EQ-5D questionnaire.25

Trial size

To detect a true absolute 5% reduction in 10-year mortality (i.e. from 25–20%), with 90% power at 5% significance level required 2928 patients. The aim was to enrol at least 3000 patients (1500 in each arm) over a 2- to 3-year recruitment period.

Statistical analysis

The trial data were analysed by intention-to-treat, irrespective of actual management and events. The Kaplan–Meier method was used to analyse time to death. The number and percentage of events at 30 days and 1 year were calculated by treatment groups. We calculated the relative risks and corresponding 95% CI to describe the direction and magnitude of the treatment effect. All analyses were performed using Stata software version 11 (StataCorp). Health resource use data were presented as medians and also as mean values in accordance with the recent NICE guidance: ‘For continuous variables, mean values should be presented and used in the analyses. For all variables, measures of precision should be detailed’.26

Results

We enrolled 3102 patients into ART between 30 June 2004 and 20 December 2007 in 28 cardiac surgery centres in seven countries (details of the participating centres and investigators are given in the Appendix). Figure 1 shows the flow of participants through the trial. Screening logs completed by each centre showed that ∼28% of the patients who met the eligibility criteria were actually randomized into the study.

Figure 1

Participant flow chart. aPatient consent for data collection (SIMA = 2, BIMA = 7). bIncluding participants who died before 1-year follow-up (SIMA = 36, BIMA = 38).

Figure 1

Participant flow chart. aPatient consent for data collection (SIMA = 2, BIMA = 7). bIncluding participants who died before 1-year follow-up (SIMA = 36, BIMA = 38).

One thousand five hundred and fifty-four patients were randomized to SIMA and 1548 to BIMA. The groups were well matched with respect to age, gender, ethnic origin, body mass index, systolic and diastolic blood pressure, and smoking status (Table 1). The groups were also well matched for co-morbidities including diabetes (∼6% insulin-dependent and 18% non-insulin-dependent), previous stroke or transient ischaemic attacks, and peripheral vascular disease. Both groups had similar severities of angina and breathlessness and a similar incidence of previous myocardial infarction and/or PCI with stenting. Approximately 8% of the patients had unstable angina.

Table 1

Baseline demographic and clinical characteristics by randomized group

 SIMA (n = 1554) BIMA (n = 1548) Overall (n = 3102) 
Male [n (%)] 1338 (86.1) 1318 (85.1) 2656 (85.6) 
Mean (SD) age at randomization (years) 63.5 (9.1) 63.7 (8.7) 63.6 (8.9) 
Smoking status [n (%)] 
 Current smoker 214 (13.8) 237 (15.3) 451 (14.5) 
 Ex-smoker 898 (57.8) 834 (53.9) 1732 (55.8) 
 Never smoked 442 (28.4) 477 (30.8) 919 (29.6) 
Ethnic origin [n (%)] 
 Caucasian 1431 (92.1) 1418 (91.6) 2849 (91.8) 
 East Asian 1 (0.1) 5 (0.3) 6 (0.2) 
 South Asian 76 (4.9) 74 (4.8) 150 (4.8) 
 Afro-Caribbean 2 (0.1) 2 (0.1) 
 African 1 (0.1) 4 (0.3) 5 (0.2) 
 Other 42 (2.7) 47 (3.0) 89 (2.9) 
 Missing 
Mean (SD) height (cm) 170.4 (8.4) 170.0 (8.5) 170.2 (8.5) 
 Missing 
Mean (SD) weight (kg) 81.9 (14.2) 82.0 (13.5) 81.9 (13.9) 
 Missing 
Mean (SD) body mass index 28.1 (4.1) 28.3 (4.0) 28.2 (4.0) 
 Missing 
Mean (SD) systolic blood pressure (mmHg) 131.8 (18.5) 131.7 (18.0) 131.7 (18.2) 
 Missing 
Mean (SD) diastolic blood pressure (mmHg) 74.8 (11.1) 75.0 (11.0) 74.9 (11.1) 
 Missing 
Diabetes [n (%)] 
 No history 1191 (76.6) 1177 (76.0) 2368 (76.3) 
 Insulin-dependent diabetes 79 (5.1) 95 (6.1) 174 (5.6) 
 Non-insulin-dependent diabetes 284 (18.3) 276 (17.8) 560 (18.1) 
Hypertension treated with drugs [n (%)] 1217 (78.3) 1193 (77.1) 2410 (77.7) 
Hyperlipidaemia treated with drugs [n (%)] 1448 (93.2) 1457 (94.1) 2905 (93.7) 
 Missing 
Documented peripheral arterial disease [n (%)] 118 (7.6) 103 (6.6) 221 (7.1) 
Documented transient ischaemic attack [n (%)] 57 (3.7) 53 (3.4) 110 (3.6) 
 Missing 
Prior CVA [n (%)] 48 (3.1) 42 (2.7) 90 (2.9) 
 Missing 
Prior MI [n (%)] 681 (43.8) 619 (40.0) 1300 (41.9) 
 Missing 
Prior PCI ± stent [n (%)] 248 (16.0) 242 (15.6) 490 (15.8) 
 Missing 
NYHA class [n (%)] 
 I 481 (31.0) 481 (31.1) 962 (31.0) 
 II 747 (48.1) 722 (46.6) 1469 (47.4) 
 III 263 (16.9) 279 (18.0) 542 (17.5) 
 IV 61 (3.9) 66 (4.3) 127 (4.1) 
 Missing 
CCS class [n (%)] 
 0 128 (8.2) 132 (8.5) 260 (8.4) 
 I 355 (22.8) 348 (22.5) 703 (22.7) 
 II 598 (38.5) 582 (37.6) 1180 (38.0) 
 III 351 (22.6) 368 (23.8) 719 (23.2) 
 IV 122 (7.9) 118 (7.6) 240 (7.7) 
 SIMA (n = 1554) BIMA (n = 1548) Overall (n = 3102) 
Male [n (%)] 1338 (86.1) 1318 (85.1) 2656 (85.6) 
Mean (SD) age at randomization (years) 63.5 (9.1) 63.7 (8.7) 63.6 (8.9) 
Smoking status [n (%)] 
 Current smoker 214 (13.8) 237 (15.3) 451 (14.5) 
 Ex-smoker 898 (57.8) 834 (53.9) 1732 (55.8) 
 Never smoked 442 (28.4) 477 (30.8) 919 (29.6) 
Ethnic origin [n (%)] 
 Caucasian 1431 (92.1) 1418 (91.6) 2849 (91.8) 
 East Asian 1 (0.1) 5 (0.3) 6 (0.2) 
 South Asian 76 (4.9) 74 (4.8) 150 (4.8) 
 Afro-Caribbean 2 (0.1) 2 (0.1) 
 African 1 (0.1) 4 (0.3) 5 (0.2) 
 Other 42 (2.7) 47 (3.0) 89 (2.9) 
 Missing 
Mean (SD) height (cm) 170.4 (8.4) 170.0 (8.5) 170.2 (8.5) 
 Missing 
Mean (SD) weight (kg) 81.9 (14.2) 82.0 (13.5) 81.9 (13.9) 
 Missing 
Mean (SD) body mass index 28.1 (4.1) 28.3 (4.0) 28.2 (4.0) 
 Missing 
Mean (SD) systolic blood pressure (mmHg) 131.8 (18.5) 131.7 (18.0) 131.7 (18.2) 
 Missing 
Mean (SD) diastolic blood pressure (mmHg) 74.8 (11.1) 75.0 (11.0) 74.9 (11.1) 
 Missing 
Diabetes [n (%)] 
 No history 1191 (76.6) 1177 (76.0) 2368 (76.3) 
 Insulin-dependent diabetes 79 (5.1) 95 (6.1) 174 (5.6) 
 Non-insulin-dependent diabetes 284 (18.3) 276 (17.8) 560 (18.1) 
Hypertension treated with drugs [n (%)] 1217 (78.3) 1193 (77.1) 2410 (77.7) 
Hyperlipidaemia treated with drugs [n (%)] 1448 (93.2) 1457 (94.1) 2905 (93.7) 
 Missing 
Documented peripheral arterial disease [n (%)] 118 (7.6) 103 (6.6) 221 (7.1) 
Documented transient ischaemic attack [n (%)] 57 (3.7) 53 (3.4) 110 (3.6) 
 Missing 
Prior CVA [n (%)] 48 (3.1) 42 (2.7) 90 (2.9) 
 Missing 
Prior MI [n (%)] 681 (43.8) 619 (40.0) 1300 (41.9) 
 Missing 
Prior PCI ± stent [n (%)] 248 (16.0) 242 (15.6) 490 (15.8) 
 Missing 
NYHA class [n (%)] 
 I 481 (31.0) 481 (31.1) 962 (31.0) 
 II 747 (48.1) 722 (46.6) 1469 (47.4) 
 III 263 (16.9) 279 (18.0) 542 (17.5) 
 IV 61 (3.9) 66 (4.3) 127 (4.1) 
 Missing 
CCS class [n (%)] 
 0 128 (8.2) 132 (8.5) 260 (8.4) 
 I 355 (22.8) 348 (22.5) 703 (22.7) 
 II 598 (38.5) 582 (37.6) 1180 (38.0) 
 III 351 (22.6) 368 (23.8) 719 (23.2) 
 IV 122 (7.9) 118 (7.6) 240 (7.7) 

CVA, cerebrovascular accident; MI, myocardial infarction; PCI, percutaneous coronary intervention; NYHA, New York Heart Association; CCS, Canadian Cardiovascular Score.

Table 2 shows the surgical details for each group. Approximately 97% of the patients in each group had their surgery within 6 weeks of randomization. The mean number of grafts in both groups was 3. In the SIMA group, 96.6% received a SIMA graft, whereas 3.4% did not. In the BIMA group, 84.5% received BIMA grafts, whereas 15.5% did not.

Table 2

Details of surgical procedure by randomized group

Procedures SIMA (n = 1552) BIMA (n = 1542) 
Details of operation (n = 1546) (n = 1532) 
 On-pump 928 (60.0%) 890 (58.1%) 
 Off-pump 618 (40.0%) 641 (41.8%) 
 Unknown 
Intra-operative conversions to bypass 13/618 (2.1%) 15/641 (2.3%) 
Mean (SD) duration of operation (min) 199 (58) 222 (61) 
 Median (IQR) 190 (160–250) 215 (185–250) 
Number of vessels grafted (n = 1546) (n = 1530) 
 1 11 (0.7%) 8 (0.5%) 
 2 273 (17.7%) 272 (17.8%) 
 3 749 (48.54%) 771 (50.4%) 
 4+ 513 (33.2%) 479 (31.3%) 
Blood products used during surgery 
 Aprotinin started during surgery 372 (24.0%) 368 (23.9%) 
 Aprotinin given after surgery 89 (5.7%) 98 (6.4%) 
 Blood transfusion 184/1515 (12.2%) 179/1492 (12.0%) 
 Median (IQR) blood (red cells) 500 (300–600) 500 (300–600) 
 Platelets 35/1512 (2.3%) 46/1494 (3.1%) 
 Fresh frozen plasma 53/1513 (3.5%) 66/1493 (4.4%) 
 Cell saver 474/1500 (31.6%) 461/1479 (31.2%) 
Immediate post-operative period 
 Return to theatre and reason 54 (3.5%) 66 (4.3%) 
  Bleeding 44 51 
  Tamponade 
  Other 
  Unknown 
 Intra-aortic balloon pump used 57 (3.7%) 68 (4.4%) 
 Renal support therapy 68 (4.4%) 91 (5.9%) 
 (n = 1539) (n = 1524) 
 Mean (SD) duration of ventilation (minutes) 863 (3293) 968 (3029) 
 Median (IQR) 580 (335–830) 598 (360–890) 
Pre-discharge details (n = 1448) (n = 1433) 
 ITU admissions 
  0 8 (0.6%) 8 (0.6%) 
  1 1390 (96.1%) 1362 (95.3%) 
  2 or more 49 (3.4%) 59 (4.1%) 
  Missing 
 Mean (SD) ITU length of stay (h) 38 (106) 41 (94) 
 Median (IQR) 22 (16–43) 22 (15–45) 
 Mean (SD) HDU length of stay (days) 2 (3.7) 2 (3.8) 
 Median (IQR) 1 (1–2) 1 (1–2) 
 Mean (SD) post-operative total hospital stay (days) 7.5 (7.6) 8.0 (7.4) 
 Median (IQR) 6 (5–8) 6.5 (5–8) 
Procedures SIMA (n = 1552) BIMA (n = 1542) 
Details of operation (n = 1546) (n = 1532) 
 On-pump 928 (60.0%) 890 (58.1%) 
 Off-pump 618 (40.0%) 641 (41.8%) 
 Unknown 
Intra-operative conversions to bypass 13/618 (2.1%) 15/641 (2.3%) 
Mean (SD) duration of operation (min) 199 (58) 222 (61) 
 Median (IQR) 190 (160–250) 215 (185–250) 
Number of vessels grafted (n = 1546) (n = 1530) 
 1 11 (0.7%) 8 (0.5%) 
 2 273 (17.7%) 272 (17.8%) 
 3 749 (48.54%) 771 (50.4%) 
 4+ 513 (33.2%) 479 (31.3%) 
Blood products used during surgery 
 Aprotinin started during surgery 372 (24.0%) 368 (23.9%) 
 Aprotinin given after surgery 89 (5.7%) 98 (6.4%) 
 Blood transfusion 184/1515 (12.2%) 179/1492 (12.0%) 
 Median (IQR) blood (red cells) 500 (300–600) 500 (300–600) 
 Platelets 35/1512 (2.3%) 46/1494 (3.1%) 
 Fresh frozen plasma 53/1513 (3.5%) 66/1493 (4.4%) 
 Cell saver 474/1500 (31.6%) 461/1479 (31.2%) 
Immediate post-operative period 
 Return to theatre and reason 54 (3.5%) 66 (4.3%) 
  Bleeding 44 51 
  Tamponade 
  Other 
  Unknown 
 Intra-aortic balloon pump used 57 (3.7%) 68 (4.4%) 
 Renal support therapy 68 (4.4%) 91 (5.9%) 
 (n = 1539) (n = 1524) 
 Mean (SD) duration of ventilation (minutes) 863 (3293) 968 (3029) 
 Median (IQR) 580 (335–830) 598 (360–890) 
Pre-discharge details (n = 1448) (n = 1433) 
 ITU admissions 
  0 8 (0.6%) 8 (0.6%) 
  1 1390 (96.1%) 1362 (95.3%) 
  2 or more 49 (3.4%) 59 (4.1%) 
  Missing 
 Mean (SD) ITU length of stay (h) 38 (106) 41 (94) 
 Median (IQR) 22 (16–43) 22 (15–45) 
 Mean (SD) HDU length of stay (days) 2 (3.7) 2 (3.8) 
 Median (IQR) 1 (1–2) 1 (1–2) 
 Mean (SD) post-operative total hospital stay (days) 7.5 (7.6) 8.0 (7.4) 
 Median (IQR) 6 (5–8) 6.5 (5–8) 

ITU, intensive therapy unit; HDU, high dependency unit, IQR, inter-quartile range.

The reasons reported by the investigator for the patient not having the allocated procedure at surgery were: for patients allocated SIMA: vessel unsuitable due to size or condition (n = 15, 29%), patient status (n = 5, 10%), surgeon preference (n = 16, 31%), unsuitable coronary anatomy (n = 12, 23%), or other reason (n = 4, 7%); and for patients allocated BIMA: vessel unsuitable due to size or condition (n = 72, 30%), patient status (n = 60, 25%), surgeon preference (n = 54, 23%), unsuitable coronary anatomy (n = 42, 18%), or other reason (n = 9, 4%).

Forty per cent of procedures in the SIMA group and 42% in the BIMA group were done off-pump. The mean (SD) operation time was 199 min (58) for SIMA and 222 min (61) for BIMA (mean difference 23 min, 95% CI: 19–27). In the immediate post-operative period, ∼4% of the patients were returned to the operating room predominantly because of bleeding. The use of blood products was similar in both groups. Approximately 4% of the patients required an intra-aortic balloon pump and the respective use of renal support was 4.4 and 5.9%. The mean duration of ventilation was 863 min in the SIMA group and an additional 105 min in the BIMA group. For patients admitted to ITU following surgery, the mean (SD) length of stay was 38 h (106) in the SIMA group and 41 h (94) in the BIMA group (mean difference 3 h, 95% CI: −5 to 10). The mean (SD) total post-operative hospital stay was 7.5 (7.6) and 8.0 (7.4) days in the SIMA and BIMA groups, respectively (mean difference 0.5 days, 95% CI: −0.03 to 1.03 days).

Table 3 shows the adverse events for each group and Figure 2 shows the time from randomization to death by the randomized group (cut-off at 12 months). For SIMA and BIMA, 30-day mortalities were 1.2 and 1.2% in each group and respective 1-year mortalities were 2.3 and 2.5% (Table 4). The rates of stroke and myocardial infarction and repeat revascularization were similar at 30 days and 1 year.

Table 3

Adverse event data by randomized group

Safety SIMA (n = 1552)a BIMA (n = 1542)a Relative risk (95% CI)b 
Sternal wound reconstructionc 9 (0.6%) 29 (1.9%) 3.24 (1.54–6.83) 
 No history of diabetes 15  
 Insulin-dependent diabetes  
 Non-insulin-dependent diabetes  
MI event at 30 days 23 (1.5%) 22 (1.4%) 0.96 (0.54–1.72) 
CVA event at 30 days 19 (1.2%) 15 (1.0%) 0.79 (0.40–1.56) 
Revascularization at 30 daysd 6 (0.4%) 11 (0.7%) 1.85 (0.68–4.98) 
 (n = 1540) (n = 1529)  
MI event at 1 year 31 (2.0%) 30 (2.0%) 0.97 (0.59–1.60) 
CVA event at 1 year 28 (1.8%) 23 (1.5%) 0.83 (0.48–1.43) 
Revascularization at 1 yeard 20 (1.3%) 27 (1.8%) 1.36 (0.77–2.41) 
Safety SIMA (n = 1552)a BIMA (n = 1542)a Relative risk (95% CI)b 
Sternal wound reconstructionc 9 (0.6%) 29 (1.9%) 3.24 (1.54–6.83) 
 No history of diabetes 15  
 Insulin-dependent diabetes  
 Non-insulin-dependent diabetes  
MI event at 30 days 23 (1.5%) 22 (1.4%) 0.96 (0.54–1.72) 
CVA event at 30 days 19 (1.2%) 15 (1.0%) 0.79 (0.40–1.56) 
Revascularization at 30 daysd 6 (0.4%) 11 (0.7%) 1.85 (0.68–4.98) 
 (n = 1540) (n = 1529)  
MI event at 1 year 31 (2.0%) 30 (2.0%) 0.97 (0.59–1.60) 
CVA event at 1 year 28 (1.8%) 23 (1.5%) 0.83 (0.48–1.43) 
Revascularization at 1 yeard 20 (1.3%) 27 (1.8%) 1.36 (0.77–2.41) 

aParticipants with in-hospital or 6-week follow-up details available.

bBIMA vs. SIMA.

cTo 6 weeks from randomization.

dIncluding any repeat CABG or PCI.

Figure 2

Survival to 1 year.

Figure 2

Survival to 1 year.

Table 4

Mortality details by randomized group

 SIMA BIMA Relative risk (95% CI)a 
 (n = 1548) (n = 1537)  
All-cause mortality at 30 days [n (%)] 18 (1.2) 19 (1.2) 1.06 (0.56–2.02) 
 Cardiac 12  
 Other vascular  
 Non-cardiovascular  
 (n = 1540) (n = 1529)  
All-cause mortality at 1 year [n (%)] 36 (2.3) 38 (2.5) 1.06 (0.68–1.67) 
 Cardiac 18 18  
 Other vascular  
 Non-cardiovascular 10 13  
 SIMA BIMA Relative risk (95% CI)a 
 (n = 1548) (n = 1537)  
All-cause mortality at 30 days [n (%)] 18 (1.2) 19 (1.2) 1.06 (0.56–2.02) 
 Cardiac 12  
 Other vascular  
 Non-cardiovascular  
 (n = 1540) (n = 1529)  
All-cause mortality at 1 year [n (%)] 36 (2.3) 38 (2.5) 1.06 (0.68–1.67) 
 Cardiac 18 18  
 Other vascular  
 Non-cardiovascular 10 13  

aBIMA vs. SIMA.

The incidence of sternal wound reconstruction was 0.6% for SIMA and 1.9% for BIMA, and in both groups, around half of these patients had a history of diabetes in comparison with around one-quarter of all patients in the whole trial. There was little difference between the BIMA and SIMA groups in QoL at 12 months as measured using the shortened WHO Rose angina questionnaire or the EuroQol EQ-5D (Table 5).

Table 5

Health-related quality of life assessed at 12 months

Measure SIMA (n = 1504) BIMA (n = 1491) 
Shortened WHO Rose angina questionnaire: 
(1) Do you ever have any pain or discomfort in your chest? 
 Yes (%) 430 (28.4) 460 (30.7) 
 No (%) 994 (71.6) 939 (69.3) 
 Missing 80 92 
(2) When you walk at an ordinary pace on the level does this produce the pain?a 
 Yes (%) 43 (10.2) 57 (12.7) 
 No (%) 375 (89.3) 389 (86.6) 
 Unable (%) 2 (0.5) 3 (0.7) 
 Missing 10 11 
(3) When you walk uphill or hurry does this produce the pain?a 
 Yes (%) 181 (43.5) 199 (44.7) 
 No (%) 229 (55.0) 238 (53.5) 
 Unable (%) 6 (1.5) 8 (1.8) 
 Missing 14 15 
EQ-5D n = 1399 n = 1375 
Mean (SD) tariff value (1 = full health, 0 = dead) 0.858 (0.204) 0.863 (0.195) 
Measure SIMA (n = 1504) BIMA (n = 1491) 
Shortened WHO Rose angina questionnaire: 
(1) Do you ever have any pain or discomfort in your chest? 
 Yes (%) 430 (28.4) 460 (30.7) 
 No (%) 994 (71.6) 939 (69.3) 
 Missing 80 92 
(2) When you walk at an ordinary pace on the level does this produce the pain?a 
 Yes (%) 43 (10.2) 57 (12.7) 
 No (%) 375 (89.3) 389 (86.6) 
 Unable (%) 2 (0.5) 3 (0.7) 
 Missing 10 11 
(3) When you walk uphill or hurry does this produce the pain?a 
 Yes (%) 181 (43.5) 199 (44.7) 
 No (%) 229 (55.0) 238 (53.5) 
 Unable (%) 6 (1.5) 8 (1.8) 
 Missing 14 15 
EQ-5D n = 1399 n = 1375 
Mean (SD) tariff value (1 = full health, 0 = dead) 0.858 (0.204) 0.863 (0.195) 

aResponses reported only for patients answering Yes to question 1 on the Shortened WHO Rose angina questionnaire (WHO, World Health Organization).

Discussion

The ART is unique in not only being the largest randomized trial of two surgical operations ever undertaken in cardiac surgery but also with a primary outcome at 10 years of follow-up. It is designed to specifically answer the question of whether BIMA grafts offer additional survival benefit and freedom from re-intervention at 10 years to that already provided by a SIMA graft.

There are two key findings of the 1-year interim analyses of ART. The first is the overall very low mortality and major morbidity of contemporary CABG, irrespective of whether the procedure was BIMA or SIMA, with a 30-day mortality of around 1% and a 1-year mortality of around 2.5%. This is consistent with other contemporary reports of CABG outcome such as the SYNTAX Trial3 and the United Kingdom National Database for Cardiac Surgery,18 which reported an in-hospital mortality of around 1.1% in all 78 000 elective CABG patients in the UK for the 5-year period 2004–08. Likewise, the rates of stroke, myocardial infarction, and repeat revascularization were all ≤2% at 1 year and similar between the two groups. The use of BIMA grafts added, on average, 23 min to the duration of operation and 105 min to the duration of mechanical ventilation but did not significantly affect the duration of ITU stay or post-operative duration of hospital stay.

The second key finding is a 1.3% increase in the incidence of sternal wound reconstruction associated with the BIMA. Diabetes is a well-recognized major risk factor for impaired sternal healing and it is notable that approximately half of all patients requiring sternal reconstruction had diabetes in comparison with around one-quarter of all patients in the trial as a whole. This slight increase in the risk of need for sternal reconstruction in diabetic patients has to be balanced against the fact that diabetic patients tend to have the most severe coronary artery disease and may actually be the very patients with most to gain from BIMA grafts.27 The risk of impaired wound healing can be minimized with judicious patient selection (avoiding BIMA grafts in obese diabetic patients or those with respiratory impairment) and modification of the IMA dissection method whereby harvesting only the IMA (‘skeletonized’) rather than the IMA and its surrounding tissue (‘pedicled’) preserves collaterals and sternal blood supply28,29 and improves wound healing, particularly in diabetic patients.30

There was no evidence of QoL differences between the BIMA and SIMA groups at 12 months.

One key issue is whether participating surgeons were appropriately experienced to conduct this trial? The trial protocol stipulated that surgeons should have performed at least 50 BIMA grafts to be eligible for participation. In the SIMA group, 3.4% did not receive their randomized treatment compared with 15.5% in the BIMA group. This higher figure for the BIMA group may in part reflect some degree of inexperience in doing BIMA operations, but about 40% of all CABG surgeries were performed ‘off-pump’, suggesting a high level of surgical expertise in the surgeons in this trial. This is also emphasized by the very low rate of intra-operative conversion from off-pump to on-pump CABG at 2%. One of the major strengths of ART is that it has been carried out in a broad range of centres in seven countries and includes more than a quarter of all patients who received CABG in those centres during the enrolment period. This supports the generalizability of our results to routine clinical practice.

The trial stipulated that for optimal patency, both IMA should be placed to the left-sided arteries as previous studies had suggested that patency of the right IMA was lower if placed to the right coronary artery due to size discrepancy and eventual disease development at the crux.12 More recently, the Cleveland Clinic group reported that the right IMA could be placed to either the circumflex or right coronary artery system (with at least a 70% stenosis) with similar early and late outcomes.31

Conclusion

Analysis of early data from this trial demonstrates similar surgical mortality and major morbidity for both the SIMA and the BIMA groups at 30 days and 1 year but with a small increase in the need for sternal wound reconstruction using BIMA. These results support the feasibility of CABG using BIMA grafts in patients undergoing CABG. Particular care should be used in patient selection especially in the case of diabetics. These are early data from a long-term trial, and results from 10-year follow-up will in time provide more definitive evidence on survival, morbidity, the need for repeat intervention, and the relative costs and cost-effectiveness of BIMA vs. SIMA grafting in coronary revascularization.

Funding

ART was funded jointly by a grant from the British Heart Foundation (SP/03/001) and a grant from the Medical Research Council (G0200390).

Conflict of interest: none declared.

Acknowledgements

We thank the following: Jill Mollison and Ed Juszczak for statistical support; Oliver Rivero-Arias and Andrew Briggs for health economic analysis; Eva Matesanz, Wajid Aslam, and Monica Yanez-Lopez for data co-ordination and management; Pauline Newlands for database design; Professor Jeremy Pearson from the British Heart Foundation and Dr Mark Pitman from the Medical Research Council for support throughout; and all of the patients who are participating in ART in the seven countries worldwide.

Appendix

ART centres, number of patients enrolled, principal investigators (PIs), participating surgeons, and co-ordinators

Centre No. of patients enrolled PIs (in bold) and participating surgeons Co-ordinator(s) 
John Radcliffe Hospital, Oxford, UK 427 D. Taggart, C. Ratnatunga, S. Westaby J. Cook, C. Wallis 
Medical University of Silesia (2nd Department of Cardiac Surgery), Katowice, Poland 256 S. Wos, M. Jasinski, K. Widenka, A. Blach, R. Gocol, D. Hudziak, P. Zurek, M. Deja, R. Bachowski, R. Mrozek, T. Kargul, W. Domarardzki J. Frackiewicz 
Edinburgh Royal Infirmary, Edinburgh, UK 217 V. Zamvar D. Ezakadan 
Austin and Repatriation Medical Centre, Melbourne, Australia 192 B. Buxton, S. Seevanayagam, G. Matalanis, A. Rosalion, J. Negri, S. Moten, V. Atkinson, A. Newcomb P. Polidano, R. Pana, S. Gerbo 
University Hospital of Wales, Cardiff, UK 185 P. O'Keefe, U. von Oppell, D. Mehta, A. Azzu, A. Szafranek, E. Kulatilake J. Evans, N. Martin, D. Banner 
Royal Sussex County, Brighton, UK 180 U. Trivedi, A. Forsyth, J. Hyde, A. Cohen, M. Lewis E. Gardner, A. MacKenzie, N. Cooter, E. Joyce 
Freeman Hospital, Newcastle, UK 152 S. Clark, J. Dark, K. Tocewicz, T. Pillay S. Rowling 
Medical University of Silesia (1st Department of Cardiac Surgery), Katowice, Poland 145 A. Bochenek, M. Cisowski, M. Bolkowski, W. Morawski, M. Guc, M. Krejca, M. Wilczynski, A. Duralek, W. Gerber, J. Skarysz, R. Shrestha, W. Swiech, P. Szmagala L. Krzych, A. Pawlak 
Royal Infirmary, Manchester, UK 115 R. Hasan, D. Keenan, B. Prendergast, N. Odom, K. McLaughlin G. Cummings-Fosong, C. Mathew, H. Iles-Smith 
King's College Hospital, London, UK 114 J. Desai, A. El-Gamel, L. John, O. Wendler M. Andrews, K. Rance, R. Williams, V. Hogervorst, J. Gregory 
Papworth Hospital, Cambridge, UK 101 A. Ritchie, C. Choong, S. Nair, D. Jenkins, S. Large, C. Sudarshan, M. Barman, K. Dhital, T. Routledge, B. Rosengard H. Munday, K. Rintoul, E. Jarrett, S. Lao-Sirieix, A. Wilkinson 
Castle Hill Hospital, Hull, UK 97 A. Cale, S. Griffin J. Dickson 
Glenfield Hospital, Leicester, UK 95 T. Spyt, M. Hickey, A. Sosnowski, G. Peek, J. Szostek, L. Hadjinikalaou E. Logtens, M. Oakley 
Harefield Hospital, London, UK 94 J. Gaer, M. Amrani, G. Dreyfus, T. Bahrami, F. de Robertis, K. Baig, G. Asimakopoulos, H. Vohra, V. Pai, S. Tadjkarimi, B. Soleimani, G. Stavri G. Bull, H. Collappen 
John Paul II, Krakow, Poland 92 J. Sadowksi, B. Gaweda, P. Rudzinski, J. Stolinski  
Heart Institute of Pernambuco, Recife, Brazil 82 F. Moraes, C. Moraes J. Wanderley 
Royal Brompton Hospital, London, UK 82 J. Pepper, A. De Souza, M. Petrou, R. Trimlett T. Morgan, J. Gavino 
St George's Hospital, London, UK 78 V. Chandrasekaran, R. Kanagasaby, M. Sarsam H. Ryan, L. Billings, L. Ruddick, A. Achampong 
Medical University of Gdansk, Gdansk, Poland 74 R. Pawlaczyk, P. Siondalski, J. Rogowski, K. Roszak, K. Jarmoszewicz, D. Jagielak S. Gafka 
Care Hospital, Hyderabad, India 69 G. Mannam, G. Naguboyin, L. Rao Sajja, B. Dandu  
Northern General Hospital, Sheffield, UK 67 N. Briffa, P. Braidley, G. Cooper, A. Knighton, K. Allen 
Ospedale Mauriziano, Turin, Italy 60 R. Casabona, G. Actis Dato, G. Bardi, S. Del Ponte, P. Forsennati, F. Parisi, G. Punta R. Flocco, F. Sansone, E. Zingarelli 
The Cardiothoracic Centre, Liverpool, UK 50 W. Dihmis, M. Kuduvali C. Prince, H. Rogers 
Szpital Uniwersytecki, Bydgoszcz, Poland 23 L. Anisimowicz, M. Bokszanski, W. Pawliszak, J. Kolakowski, G. Lau, W. Ogorzeja I. Gumanska, P. Kulinski 
Landesklinikum, St Polten, Austria 20 B. Podesser, K. Trescher, O. Bernecker, Ch. Holzinger, K. Binder, I. Schor, P. Bergmann, H. Kassal B. Motovova 
Escorts Heart Institute, New Delhi, India 19 N. Trehan, Z. Meharwal, R. Malhotra, M. Goel, B. Kumer, S. Bazaz, N. Bake, A. Singh, Y. Mishka, R. Gupta S. Basumatary 
Silesian Centre for Heart Disease, Zabrze, Poland 10 M. Zembala, B. Szafron, J. Pacholewicz, M. Krason, Wojarski, Zych  
Szpital Wojewodzki 2, Rzeszow, Poland K. Widenka, I. Szymanik, M. Kolwca, W. Mazur, A. Kurowicki, S. Zurek, T. Stacel I. Jaworska 
Centre No. of patients enrolled PIs (in bold) and participating surgeons Co-ordinator(s) 
John Radcliffe Hospital, Oxford, UK 427 D. Taggart, C. Ratnatunga, S. Westaby J. Cook, C. Wallis 
Medical University of Silesia (2nd Department of Cardiac Surgery), Katowice, Poland 256 S. Wos, M. Jasinski, K. Widenka, A. Blach, R. Gocol, D. Hudziak, P. Zurek, M. Deja, R. Bachowski, R. Mrozek, T. Kargul, W. Domarardzki J. Frackiewicz 
Edinburgh Royal Infirmary, Edinburgh, UK 217 V. Zamvar D. Ezakadan 
Austin and Repatriation Medical Centre, Melbourne, Australia 192 B. Buxton, S. Seevanayagam, G. Matalanis, A. Rosalion, J. Negri, S. Moten, V. Atkinson, A. Newcomb P. Polidano, R. Pana, S. Gerbo 
University Hospital of Wales, Cardiff, UK 185 P. O'Keefe, U. von Oppell, D. Mehta, A. Azzu, A. Szafranek, E. Kulatilake J. Evans, N. Martin, D. Banner 
Royal Sussex County, Brighton, UK 180 U. Trivedi, A. Forsyth, J. Hyde, A. Cohen, M. Lewis E. Gardner, A. MacKenzie, N. Cooter, E. Joyce 
Freeman Hospital, Newcastle, UK 152 S. Clark, J. Dark, K. Tocewicz, T. Pillay S. Rowling 
Medical University of Silesia (1st Department of Cardiac Surgery), Katowice, Poland 145 A. Bochenek, M. Cisowski, M. Bolkowski, W. Morawski, M. Guc, M. Krejca, M. Wilczynski, A. Duralek, W. Gerber, J. Skarysz, R. Shrestha, W. Swiech, P. Szmagala L. Krzych, A. Pawlak 
Royal Infirmary, Manchester, UK 115 R. Hasan, D. Keenan, B. Prendergast, N. Odom, K. McLaughlin G. Cummings-Fosong, C. Mathew, H. Iles-Smith 
King's College Hospital, London, UK 114 J. Desai, A. El-Gamel, L. John, O. Wendler M. Andrews, K. Rance, R. Williams, V. Hogervorst, J. Gregory 
Papworth Hospital, Cambridge, UK 101 A. Ritchie, C. Choong, S. Nair, D. Jenkins, S. Large, C. Sudarshan, M. Barman, K. Dhital, T. Routledge, B. Rosengard H. Munday, K. Rintoul, E. Jarrett, S. Lao-Sirieix, A. Wilkinson 
Castle Hill Hospital, Hull, UK 97 A. Cale, S. Griffin J. Dickson 
Glenfield Hospital, Leicester, UK 95 T. Spyt, M. Hickey, A. Sosnowski, G. Peek, J. Szostek, L. Hadjinikalaou E. Logtens, M. Oakley 
Harefield Hospital, London, UK 94 J. Gaer, M. Amrani, G. Dreyfus, T. Bahrami, F. de Robertis, K. Baig, G. Asimakopoulos, H. Vohra, V. Pai, S. Tadjkarimi, B. Soleimani, G. Stavri G. Bull, H. Collappen 
John Paul II, Krakow, Poland 92 J. Sadowksi, B. Gaweda, P. Rudzinski, J. Stolinski  
Heart Institute of Pernambuco, Recife, Brazil 82 F. Moraes, C. Moraes J. Wanderley 
Royal Brompton Hospital, London, UK 82 J. Pepper, A. De Souza, M. Petrou, R. Trimlett T. Morgan, J. Gavino 
St George's Hospital, London, UK 78 V. Chandrasekaran, R. Kanagasaby, M. Sarsam H. Ryan, L. Billings, L. Ruddick, A. Achampong 
Medical University of Gdansk, Gdansk, Poland 74 R. Pawlaczyk, P. Siondalski, J. Rogowski, K. Roszak, K. Jarmoszewicz, D. Jagielak S. Gafka 
Care Hospital, Hyderabad, India 69 G. Mannam, G. Naguboyin, L. Rao Sajja, B. Dandu  
Northern General Hospital, Sheffield, UK 67 N. Briffa, P. Braidley, G. Cooper, A. Knighton, K. Allen 
Ospedale Mauriziano, Turin, Italy 60 R. Casabona, G. Actis Dato, G. Bardi, S. Del Ponte, P. Forsennati, F. Parisi, G. Punta R. Flocco, F. Sansone, E. Zingarelli 
The Cardiothoracic Centre, Liverpool, UK 50 W. Dihmis, M. Kuduvali C. Prince, H. Rogers 
Szpital Uniwersytecki, Bydgoszcz, Poland 23 L. Anisimowicz, M. Bokszanski, W. Pawliszak, J. Kolakowski, G. Lau, W. Ogorzeja I. Gumanska, P. Kulinski 
Landesklinikum, St Polten, Austria 20 B. Podesser, K. Trescher, O. Bernecker, Ch. Holzinger, K. Binder, I. Schor, P. Bergmann, H. Kassal B. Motovova 
Escorts Heart Institute, New Delhi, India 19 N. Trehan, Z. Meharwal, R. Malhotra, M. Goel, B. Kumer, S. Bazaz, N. Bake, A. Singh, Y. Mishka, R. Gupta S. Basumatary 
Silesian Centre for Heart Disease, Zabrze, Poland 10 M. Zembala, B. Szafron, J. Pacholewicz, M. Krason, Wojarski, Zych  
Szpital Wojewodzki 2, Rzeszow, Poland K. Widenka, I. Szymanik, M. Kolwca, W. Mazur, A. Kurowicki, S. Zurek, T. Stacel I. Jaworska 

Trial Steering Committee membership

Name Trial role Title Location 
Professor G. Vermes Patient Lay Member Emeritus Professor of Hebrew Studies Oxford, UK 
Professor D. Altman Statistician Professor of Statistics in Medicine Oxford, UK 
Professor J. Dark Lead Surgeon Professor of Cardiac Surgery Newcastle, UK 
Ms B. Farrell Trials Advisor Co-Director, Resource Centre for Randomised Trials Oxford, UK 
Dr M. Flather Co-Principal Investigator Director, CTEU, Royal Brompton Hospital London, UK 
Professor A. Gray Health Economist Professor of Health Economics Oxford, UK 
Professor J. Pepper Lead Surgeon Professor of Cardiac Surgery London, UK 
Professor P. Sleight CHAIRMAN Emeritus Professor Cardiology Oxford, UK 
Professor K. Channon Cardiologist Professor of Cardiovascular Medicine Oxford, UK 
Dr R. Stables Cardiologist Consultant Cardiologist Liverpool, UK 
Professor D. Taggart Chief Investigator Consultant Cardiac Surgeon Oxford, UK 
Professor J. Pearson Observer from British Heart Foundation Assistant Medical Director London, UK 
Dr M. Pitman Observer from Medical Research Council Research Manager London, UK 
Name Trial role Title Location 
Professor G. Vermes Patient Lay Member Emeritus Professor of Hebrew Studies Oxford, UK 
Professor D. Altman Statistician Professor of Statistics in Medicine Oxford, UK 
Professor J. Dark Lead Surgeon Professor of Cardiac Surgery Newcastle, UK 
Ms B. Farrell Trials Advisor Co-Director, Resource Centre for Randomised Trials Oxford, UK 
Dr M. Flather Co-Principal Investigator Director, CTEU, Royal Brompton Hospital London, UK 
Professor A. Gray Health Economist Professor of Health Economics Oxford, UK 
Professor J. Pepper Lead Surgeon Professor of Cardiac Surgery London, UK 
Professor P. Sleight CHAIRMAN Emeritus Professor Cardiology Oxford, UK 
Professor K. Channon Cardiologist Professor of Cardiovascular Medicine Oxford, UK 
Dr R. Stables Cardiologist Consultant Cardiologist Liverpool, UK 
Professor D. Taggart Chief Investigator Consultant Cardiac Surgeon Oxford, UK 
Professor J. Pearson Observer from British Heart Foundation Assistant Medical Director London, UK 
Dr M. Pitman Observer from Medical Research Council Research Manager London, UK 

Data Monitoring Committee membership

Name Trial role Title Location 
Professor S. Yusuf Chairman Professor of Medicine Hamilton, Canada 
Professor S. Pocock Statistician Professor of Medical Statistics London, UK 
Professor D. Julian Cardiology advisor Emeritus Professor of Cardiology London, UK 
Professor T. Treasure Surgical advisor Professor of Cardiothoracic Surgery London, UK 
Name Trial role Title Location 
Professor S. Yusuf Chairman Professor of Medicine Hamilton, Canada 
Professor S. Pocock Statistician Professor of Medical Statistics London, UK 
Professor D. Julian Cardiology advisor Emeritus Professor of Cardiology London, UK 
Professor T. Treasure Surgical advisor Professor of Cardiothoracic Surgery London, UK 

Clinical Events Review Committee membership

Name Hospital City 
Mr U. Trivedi Royal Sussex County Hospital Brighton, UK 
Mr P. O'Keefe University Hospital of Wales Cardiff, UK 
Professor U. Von Oppel University Hospital of Wales Cardiff, UK 
Mr V. Zamvar Edinburgh Royal Infirmary Edinburgh, UK 
Mr A. Cale Castle Hill Hospital Hull, UK 
Mr M. Hickey Glenfield Hospital Leicester, UK 
Mr T. Spyt Glenfield Hospital Leicester, UK 
Professor J. Pepper Royal Brompton Hospital London, UK 
Mr R. Kanagasabay St George's Hospital London, UK 
Mr T. Pillay Freeman Hospital Newcastle, UK 
Mr P. Braidley Northern General Hospital Sheffield, UK 
Mr G. Cooper Northern General Hospital Sheffield, UK 
Dr M. Flather Royal Brompton Hospital London, UK 
Mr J. Collinson Chelsea and Westminster Hospital London, UK 
Dr A. Bakhai Barnet General Hospital Barnet, UK 
Dr R. Pawlaczyk Medical University of Gdansk Gdansk, Poland 
Dr R. O'Hanlon Royal Brompton Hospital London, UK 
Dr D. Kotecha Royal Brompton Hospital London, UK 
Dr K. Qureshi London Chest Hospital London, UK 
Dr L. Krzych Medical University of Silesia Katowice, Poland 
Dr T. Geisler Royal Brompton Hospital London, UK 
Mr N. Briffa Northern General Hospital Sheffield, UK 
Dr L. Manzano-Espinosa Hospital Universitario Ramón y Cajal Madrid, Spain 
Dr M. Jasinski Medical University of Silesia Katowice, Poland 
Name Hospital City 
Mr U. Trivedi Royal Sussex County Hospital Brighton, UK 
Mr P. O'Keefe University Hospital of Wales Cardiff, UK 
Professor U. Von Oppel University Hospital of Wales Cardiff, UK 
Mr V. Zamvar Edinburgh Royal Infirmary Edinburgh, UK 
Mr A. Cale Castle Hill Hospital Hull, UK 
Mr M. Hickey Glenfield Hospital Leicester, UK 
Mr T. Spyt Glenfield Hospital Leicester, UK 
Professor J. Pepper Royal Brompton Hospital London, UK 
Mr R. Kanagasabay St George's Hospital London, UK 
Mr T. Pillay Freeman Hospital Newcastle, UK 
Mr P. Braidley Northern General Hospital Sheffield, UK 
Mr G. Cooper Northern General Hospital Sheffield, UK 
Dr M. Flather Royal Brompton Hospital London, UK 
Mr J. Collinson Chelsea and Westminster Hospital London, UK 
Dr A. Bakhai Barnet General Hospital Barnet, UK 
Dr R. Pawlaczyk Medical University of Gdansk Gdansk, Poland 
Dr R. O'Hanlon Royal Brompton Hospital London, UK 
Dr D. Kotecha Royal Brompton Hospital London, UK 
Dr K. Qureshi London Chest Hospital London, UK 
Dr L. Krzych Medical University of Silesia Katowice, Poland 
Dr T. Geisler Royal Brompton Hospital London, UK 
Mr N. Briffa Northern General Hospital Sheffield, UK 
Dr L. Manzano-Espinosa Hospital Universitario Ramón y Cajal Madrid, Spain 
Dr M. Jasinski Medical University of Silesia Katowice, Poland 

References

1
Yusuf
S
Zucker
D
Peduzzi
P
Fisher
LD
Takaro
T
Kennedy
JW
Davis
K
Killip
T
Passamani
E
Norris
R
Effect of CABG surgery on survival: overview of 10-year results from randomised trials by the CABG Trialists Collaboration
Lancet
 , 
1994
, vol. 
344
 (pg. 
563
-
570
)
2
Taggart
DP
Thomas B. Ferguson Lecture. Coronary artery bypass grafting is still the best treatment for multivessel and left main disease, but patients need to know
Ann Thorac Surg
 , 
2006
, vol. 
82
 (pg. 
1966
-
1975
)
3
Serruys
PW
Morice
MC
Kappetein
AP
Colombo
A
Holmes
DR
Mack
MJ
Ståhle
E
Feldman
TE
van den Brand
M
Bass
EJ
Van Dyck
N
Leadley
K
Dawkins
KD
Mohr
FW
SYNTAX Investigators
Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease
N Engl J Med
 , 
2009
, vol. 
360
 (pg. 
961
-
972
)
4
Loop
FD
Lytle
BW
Cosgrove
DM
Stewart
RW
Goormastic
M
Williams
GW
Golding
LA
Gill
CC
Taylor
PC
Sheldon
WC
Influence of the internal mammary artery graft on 10-year survival and other cardiac events
N Engl J Med
 , 
1986
, vol. 
314
 (pg. 
1
-
6
)
5
Cameron
A
Davis
KB
Green
G
Schaff
HV
Coronary bypass surgery with internal-thoracic-artery grafts: effects on survival over a 15-year period
N Engl J Med
 , 
1996
, vol. 
334
 (pg. 
216
-
219
)
6
Kurlansky
P
Thirty-year experience with bilateral internal thoracic artery grafting: where have we been and where are we going?
World J Surg
 , 
2010
, vol. 
34
 (pg. 
646
-
651
)
7
Fitzgibbon
GM
Kafka
HP
Leach
AJ
Keon
WJ
Hooper
GD
Burton
JR
Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival in reoperation in 1,388 patients during 25 years
J Am Coll Cardiol
 , 
1996
, vol. 
28
 (pg. 
616
-
626
)
8
Weintraub
WS
Jones
EL
Craver
JM
Guyton
RA
Frequency of repeat coronary bypass or coronary angioplasty after CABG using saphenous vein grafts
Am J Cardiol
 , 
1994
, vol. 
73
 (pg. 
103
-
112
)
9
Gansera
B
Schmidtler
F
Angelis
I
Kiask
T
Kemkes
BM
Botzenhardt
F
Patency of internal thoracic artery compared to vein grafts—postoperative angiographic findings in 1189 symptomatic patients in 12 years
Thorac Cardiovasc Surg
 , 
2007
, vol. 
55
 (pg. 
412
-
417
)
10
Lytle
BW
Blackstone
EH
Loop
FD
Houghtaling
PL
Arnold
JH
Akhrass
R
McCarthy
PM
Cosgrove
DM
Two internal thoracic artery grafts are better than one
J Thorac Cardiovasc Surg
 , 
1999
, vol. 
117
 (pg. 
855
-
872
)
[PubMed]
11
Buxton
BF
Ruengsakulrach
P
Fuller
J
Rosalion
A
Reid
CM
Tatoulis
J
The right ITA graft—benefits of grafting the left coronary system and native vessels with a high grade stenosis
Eur J Cardiothorac Surg
 , 
2001
, vol. 
18
 (pg. 
255
-
261
)
12
Taggart
DP
D'Amico
R
Altman
DG
The effect of arterial revascularization on survival: a systematic review of studies comparing bilateral and single internal mammary arteries
Lancet
 , 
2001
, vol. 
358
 (pg. 
870
-
875
)
13
Ioannidis
JP
Galanos
O
Katritsis
D
Connery
CP
Drossos
GE
Swistel
DG
Anagnostopoulos
CE
Early mortality and morbidity of bilateral versus single internal thoracic artery revascularization: propensity and risk modeling
J Am Coll Cardiol
 , 
2001
, vol. 
37
 (pg. 
521
-
528
)
14
Rizzoli
G
Schiavon
L
Bellini
P
Does the use of bilateral internal mammary artery (IMA) grafts provide incremental benefit relative to the use of a single IMA graft? A meta-analysis approach
Eur J Cardiothorac Surg
 , 
2002
, vol. 
22
 (pg. 
781
-
786
)
15
Endo
M
Nishida
H
Tomizawa
Y
Kasanuki
H
Benefit of bilateral over single internal mammary artery grafts for multiple coronary artery bypass grafting
Circulation
 , 
2001
, vol. 
104
 (pg. 
2164
-
2170
)
16
Calafiore
AM
Contini
M
Vitolla
G
Di Mauro
M
Mazzei
V
Teodori
G
Di Giammarco
G
Bilateral internal thoracic artery grafting: long-term clinical and angiographic results of in situ versus Y grafts
J Thorac Cardiovasc Surg
 , 
2000
, vol. 
120
 (pg. 
990
-
996
)
17
Dion
R
Glineur
D
Derouck
D
Verhelst
R
Noirhomme
P
El Khoury
G
Degrave
E
Hanet
C
Long-term clinical and angiographic follow-up of sequential internal thoracic artery grafting
Eur J Cardiothorac Surg
 , 
2000
, vol. 
17
 (pg. 
407
-
414
)
18
Sixth National Adult Cardiac Surgical Database Report 2008
Bridgewater B, Keogh B, on behalf of the Society for Cardiothoracic Surgery in Great Britain and Ireland
19
Tabata
M
Grab
JD
Khalpey
Z
Edwards
FH
O'Brien
SM
Cohn
LH
Bolman
RM
3rd
Prevalence and variability of internal mammary artery graft use in contemporary multivessel coronary artery bypass graft surgery: analysis of the Society of Thoracic Surgeons National Cardiac Database
Circulation
 , 
2009
, vol. 
120
 (pg. 
935
-
940
)
20
Lytle
BW
Loop
FD
Superiority of bilateral internal thoracic artery grafting: it's been a long time comin'
Circulation
 , 
2001
, vol. 
104
 (pg. 
2152
-
2154
)
[PubMed]
21
Catarino
PA
Black
E
Taggart
DP
Why do UK cardiac surgeons not perform their first choice operation for coronary artery bypass graft?
Heart
 , 
2002
, vol. 
88
 (pg. 
643
-
644
)
22
Taggart
DP
Lees
B
Gray
A
Altman
DG
Flather
M
Channon
K
on behalf of the ART Investigators
Protocol for the Arterial Revascularisation Trial (ART). A randomised trial to compare survival following bilateral versus single internal mammary grafting in coronary revascularisation [ISRCTN46552265]
Trials
 , 
2006
, vol. 
7
 pg. 
7
 
23
Schulz
KF
Grimes
DA
Unequal group sizes in randomised trials: guarding against guessing
Lancet
 , 
2002
, vol. 
359
 (pg. 
966
-
970
)
24
Performance of the WHO Rose angina questionnaire in post-menopausal women: Are all of the questions necessary?
J Epidemiol Commun Health
 , 
2003
, vol. 
57
 (pg. 
538
-
541
)
25
Brooks
R
The EuroQol Group
EuroQol: the current state of play
Health Policy
 , 
1996
, vol. 
37
 (pg. 
53
-
72
)
[PubMed]
26
National Institute for Health and Clinical Excellence (NICE)
Guide to the Methods of Technology Appraisals
 , 
2008
 
NICE: London
27
Lawlor
DA
Adamson
J
Ebrahim
S
Seven-year outcome in the Bypass Angioplasty Revascularization Investigation (BARI) by treatment and diabetic status
J Am Coll Cardiol
 , 
2000
, vol. 
35
 (pg. 
1122
-
1129
)
[PubMed]
28
Boodhwani
M
Lam
BK
Nathan
HJ
Mesana
TG
Ruel
M
Zeng
W
Sellke
FW
Rubens
FD
Skeletonized internal thoracic artery harvest reduces pain and dysesthesia and improves sternal perfusion after coronary artery bypass surgery: a randomised, double-blind, within-patient comparison
Circulation
 , 
2006
, vol. 
114
 (pg. 
766
-
773
)
29
Kamiya
H
Akhyari
P
Martens
A
Karck
M
Haverich
A
Lichtenberg
A
Sternal microcirculation after skeletonized versus pedicled harvesting of the internal thoracic artery: a randomised study
J Thorac Cardiovasc Surg
 , 
2008
, vol. 
135
 (pg. 
32
-
37
)
[PubMed]
30
Matsa
M
Paz
Y
Gurevitch
J
Shapira
I
Kramer
A
Pevny
D
Mohr
R
Bilateral skeletonized internal thoracic artery grafts in patients with diabetes mellitus
J Thorac Cardiovasc Surg
 , 
2001
, vol. 
121
 (pg. 
668
-
674
)
31
Sabik
JF
3rd
Stockins
A
Nowicki
ER
Blackstone
EH
Houghtaling
PL
Lytle
BW
Loop
FD
Does location of the second internal thoracic artery graft influence outcome of coronary artery bypass grafting?
Circulation
 , 
2008
, vol. 
118
 (pg. 
S210
-
S215
)

Supplementary data

Comments

0 Comments