Preamble

The field of percutaneous coronary intervention (PCI) remains extremely active, with major advances involving revascularisation strategies and techniques, adjuvant antithrombotic therapy (with a particular emphasis this year on the optimal duration of antiplatelet therapy after drug-eluting stent (DES) stenting), concerns regarding the importance and risks of bleeding and methods to decrease those risks and a strong focus on the study of newer generation DES and bioresorbable devices with lingering concerns regarding the safety of the latter.

Myocardial revascularization

Given the improved clinical outcomes of newer generation DES, comparisons between these and coronary artery bypass surgery (CABG) are important. The BEST trial1 randomly assigned 880 patients with multivessel disease to either PCI with everolimus-eluting stents (EES) or to CABG. After a median follow-up of 4.6 years, major adverse cardiac events were higher in the PCI group than in the CABG group (15.3 vs. 10.6%, P = 0.04), driven by a reduction of repeat revascularization but also spontaneous myocardial infarction (MI) in the surgical group, reaffirming the role of CABG surgery in the management of patients with multivessel disease in the era of newer DESs.

The management of in-stent restenosis can be difficult. The PROSPERO network meta-analysis of 27 trials2 attempted to synthesize the evidence and suggested that PCI with EES yielded the best angiographic and clinical outcomes and that drug-coated balloons provided favourable angiographic results without adding an additional metal layer. The RIBS-IV trial3 compared prospectively these two strategies in 309 patients with in-stent restenosis after DESs and found that EES provided superior 1-year clinical (lower composite of cardiac death, MI, and target vessel revascularization, 10 vs. 18%, P = 0.04) and angiographic outcomes compared with drug-eluting balloons. Thus, while drug-eluting balloons provide effective treatment for restenosis in bare metal stents, they are less effective than EES for restenosis in DES.

The optimal management of bifurcation lesions remains uncertain.4 The TRYTON trial5 randomly assigned 704 patients with bifurcation lesions to either a bifurcation stent (the TRYTON stent) or stenting of the main vessel with provisional stenting of the side branch. At 9 months, target vessel failure was numerically more frequent with the bifurcation stent, largely due to a higher periprocedural MI rate, and the bifurcation stent failed to achieve non-inferiority with the strategy of provisional stenting, illustrating once more that, in interventional cardiology, ‘less is more’… .

Likewise, the role of PCI in the management of chronic total occlusions is still debated, in the absence of a properly powered randomized outcomes trial. An observational analysis from the Italian registry of chronic total occlusions6 which enrolled 1777 patients with CTOs found that after propensity score matching, rates of cardiac death, acute MI, and rehospitalization were lower in patients managed with PCI than managed with medical therapy or CABG, suggesting that PCI may have a role in improving outcomes in these patients.

As interventionalists treat ever older patient populations with more advanced, complex, and calcified disease, the potential role of rotational atherectomy has increased. However, in many sites, the use of this technique has been hampered by the lack of a standardized protocol. A group of experienced operators has provided a consensus document,7 recapitulating recommendations for the performance of the technique, which will be useful to sites and operators with less experience.

The long-term safety of DESs vis à vis that of bare metal stents has long been a contentious issue. With the advent of newer generation DESs, both efficacy and safety have been improved. A comprehensive network meta-analysis reviewed these issues8 in 51 trials including a total of 52 158 randomized patients with follow-up duration ≥3 years. After a median follow-up of 3.8 years, all DES demonstrated superior efficacy compared with BMS. Among DES, second-generation devices have substantially improved long-term safety and efficacy outcomes compared with first-generation devices. Since there is continuous improvement and innovation in the field, an ESC-EAPCI task force has released a report reviewing the existing evidence and confirming the improved efficacy and safety of new DES (Figure 1A and B). This report also outlines the desirable pathway for preclinical and clinical evaluation and regulatory approval of future devices.9

Figure 1

(A) Results of a systematic review results regarding clinical outcomes at 9–12 months for bare metal stents (BMS), early and new drug-eluting stents (DES)—median rates per 100 person-years. Median rates and inter-quartile range per 100 person-year for the clinical endpoints all-cause death, myocardial infarction, target-lesion revascularization, and definite stent thrombosis. (B) Systematic review of median, inter-quartile range, and cumulative frequency of in-stent late lumen loss for bare metal stents, early and new drug-eluting stents (reprinted with kind permission from Byrne et al.9).

Figure 1

(A) Results of a systematic review results regarding clinical outcomes at 9–12 months for bare metal stents (BMS), early and new drug-eluting stents (DES)—median rates per 100 person-years. Median rates and inter-quartile range per 100 person-year for the clinical endpoints all-cause death, myocardial infarction, target-lesion revascularization, and definite stent thrombosis. (B) Systematic review of median, inter-quartile range, and cumulative frequency of in-stent late lumen loss for bare metal stents, early and new drug-eluting stents (reprinted with kind permission from Byrne et al.9).

Finally, the effect of PCI on long-term survival in patients with stable coronary artery disease was studied in the extended follow-up of the COURAGE trial10 In 2287 patients randomized to optimal medical therapy alone or combined with PCI, the initial median follow-up of 4.6 years had found no difference in the composite primary outcome of death or MI, or in survival. An updated report with an extended median follow-up of 11.9 years found no difference in mortality (adjusted HR 1.03; 95% CI 0.83–1.21; P = 0.76). These results are consistent with the BARI-2D results. Controversy regarding the lack of mortality benefit with PCI vs. either best of medical care or CABG was revisited by Windecker et al.11 in a 93 553 patient large network meta-analysis showing survival benefit with newer generation DES (HR everolimus DES 0.75; 95% CI 0.59–0.96; HR zotarolimus Resolute DES 0.65; 95% CI 0.42–1.00) vs. medical therapy. These results emphasize the importance of the ongoing International Study of Comparative Health Effectiveness with Medical and Invasive Appproaches (ISCHEMIA) trial (Clinical trials.gov number NCT01471522) to assess the role of cardiac catheterization and contemporary revascularization techniques in improving the outcomes of patients with stable coronary artery disease and at least moderate ischaemia.

Adjunctive pharmacologic therapies

Duration of antiplatelet therapy

The issue of the benefits and risks of prolonged dual antiplatelet therapy (DAPT) following DES placement has continued to attract interest and spark controversy, particularly given the heterogeneity of results. Many of the randomized trials comparing various durations of DAPT were underpowered.12,13 In addition, in the large DAPT trial, despite clear benefit of prolonged DAPT beyond 1 year in reducing the risks of MACCE, stent thrombosis, and MI, there was a signal of increased non-cardiovascular mortality. Both of these issues have sparked interest in meta-analyses of the data. With respect to mortality, a pairwise and Bayesian network meta-analysis of 10 randomized trials comparing different DAPT durations after DES stenting in 31 666 patients14 found that although treatment with DAPT beyond 1 year after DES implantation reduces MI and stent thrombosis, it is associated with increased mortality because of an increased risk of non-cardiovascular mortality not offset by a reduction in cardiac mortality. However, this signal had not been seen in a prior broader meta-analysis comparing various durations of DAPT across a variety of cardiovascular conditions.15 With respect to the risk benefit risk of shorter vs. longer durations of DAPT, several meta-analyses16–18 have concurred in suggesting that prolonged DAPT should be considered on a case-by-case basis, after weighing both ischaemic and bleeding risks.

One patient profile that is most likely a good candidate for consideration of prolonged DAPT after stenting is patients with prior MI. Both the analysis of the MI subset from the large DAPT trial19 and a comprehensive meta-analysis of randomized trials in patients with prior MI20 have found that patients with prior MI derive a clear benefit from prolonging DAPT beyond 1 year (compared with aspirin alone). In the meta-analysis, prolonged DAPT reduced rates of MACE (rate ratio, RR 0.78, 95% CI 0.67–0.90; P = 0.001), MI (RR 0.70, 95% CI 0.55–0.88; P = 0.003), stent thrombosis, but also cardiovascular mortality (RR 0.85, 95% CI 0.74–0.98; P = 0.03), at the cost of an increase in major bleeding (RR 1.73, 95% CI 1.19–2.50; P = 0.004) but without increase in fatal bleeding or in non-cardiovascular death.

The DAPT investigators developed a decision tool to identify whether an individual patient is more likely to derive benefit or harm from continuation of DAPT beyond 1 year.21 A nine-item score, including patient characteristics (age, diabetes, smoking, prior PCI or MI, congestive heart failure, or left ventricular ejection fraction <30%) and index procedure characteristics (MI at presentation, vein graft PCI, and stent diameter <3 mm) was able to discriminate patients with a score of <2 (half of the population) who derived no net clinical benefit from prolonged DAPT and had increased mortality (NNT 153 and NNH 64) from patients with a score of ≥2 in whom there was a marked reduction in ischaemic outcomes (−3.02% for the composite of MI or stent thrombosis) and marked net clinical benefit (−2.7%) at the expense of a minimal increase in GUSTO severe or moderate bleeding (0.37%) and no increase in mortality. The population with a DAPT score of ≥2 or more derived greater benefit and less harm from prolonged DAPT (NNT 34, NNH 272). This score, which was validated externally in the PROTECT trial database,22 will help clinicians make decisions regarding selection of candidates for prolonged DAPT.

Oral anticoagulation and percutaneous coronary intervention

The optimal strategy for managing antiplatelet therapy in patients who are treated with OAC (e.g. for stroke prevention in atrial fibrillation) is a common and difficult clinical problem, for which there is still little clinical evidence. One of the key randomized trials, ISAR TRIPLE, was released this year:23 it evaluated whether shortening the duration of clopidogrel therapy from 6 months to 6 weeks after DES implantation was associated with a superior net clinical outcome in 614 patients receiving concomitant aspirin and OAC. The trial failed to establish the superiority of shorter therapy, as the primary endpoint occurred in 30 patients (9.8%) in the 6-week group compared with 27 patients (8.8%) in the 6-month group [hazard ratio (HR) 1.14; 95% CI 0.68–1.91; P = 0.63]. There were no significant differences for the secondary combined ischaemic endpoint of cardiac death, MI, definite stent thrombosis, and ischaemic stroke or in terms of TIMI major bleeding. More trial evidence is needed to guide clinical decisions. Pending newer trials, an important and useful consensus document24 provides precious guidance. A key aspect is the sequential assessment of stroke risk, bleeding risk, and the clinical setting before making a decision on the type and duration of antiplatelet therapy (Figure 2). Generally, oral anticoagulation is the ‘foundation’ therapy to which antiplatelet therapy should be added for the shortest possible duration, given the increased bleeding risk associated with combination therapies.

Figure 2

Choice of antithrombotic therapy, including combination strategies of oral anticoagulation (O), aspirin (A), and/or clopidogrel (C). For Step 4, background colour and gradients reflect the intensity of antithrombotic therapy (i.e. dark background colour, high intensity; light background colour, low intensity). Solid boxes represent recommended drugs. Dashed boxes represent optional drugs depending on clinical judgement. New generation drug-eluting stent is generally preferable over bare metal stent, particularly in patients at low bleeding risk (HAS-BLED 0–2). When vitamin K antagonists are used as part of triple therapy, international normalized ratio should be targeted at 2.0–2.5, and the time in the therapeutic range should be 0.70%. *Dual therapy with oral anticoagulation and clopidogrel may be considered in selected patients. **Aspirin as an alternative to clopidogrel may be considered in patients on dual therapy (i.e. oral anticoagulation plus single antiplatelet). ***Dual therapy with oral anticoagulation and an antiplatelet agent (aspirin or clopidogrel) may be considered in patients at very high risk of coronary events. ACS, acute coronary syndromes; CAD, coronary artery disease; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention (reprinted with kind permission from Lip et al.24).

Figure 2

Choice of antithrombotic therapy, including combination strategies of oral anticoagulation (O), aspirin (A), and/or clopidogrel (C). For Step 4, background colour and gradients reflect the intensity of antithrombotic therapy (i.e. dark background colour, high intensity; light background colour, low intensity). Solid boxes represent recommended drugs. Dashed boxes represent optional drugs depending on clinical judgement. New generation drug-eluting stent is generally preferable over bare metal stent, particularly in patients at low bleeding risk (HAS-BLED 0–2). When vitamin K antagonists are used as part of triple therapy, international normalized ratio should be targeted at 2.0–2.5, and the time in the therapeutic range should be 0.70%. *Dual therapy with oral anticoagulation and clopidogrel may be considered in selected patients. **Aspirin as an alternative to clopidogrel may be considered in patients on dual therapy (i.e. oral anticoagulation plus single antiplatelet). ***Dual therapy with oral anticoagulation and an antiplatelet agent (aspirin or clopidogrel) may be considered in patients at very high risk of coronary events. ACS, acute coronary syndromes; CAD, coronary artery disease; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention (reprinted with kind permission from Lip et al.24).

Ranolazine

The RIVER-PCI randomized placebo-controlled trial tested the value of adding the anti-anginal agent ranolazine to medical therapy in 2651 patients with a history of chronic angina and incomplete revascularization after PCI.25 The primary endpoint was time to first occurrence of ischaemia-driven revascularization or ischaemia-driven hospitalization without revascularization. After a median follow-up of 643 days (IQR 575–758), ranolazine did not affect the composite primary endpoint (hazard ratio 0.95, 95% CI 0.82–1.10; P = 0·48) or the incidence of ischaemia-driven revascularization and ischaemia-driven hospitalization. Thus, routine adjunctive use of ranolazine in this setting does not improve clinical outcomes. A subsequent analysis also found no incremental improvement in angina or quality of life.26

Bleeding as a complication of percutaneous coronary intervention

Bleeding remains an important concern as a complication of PCI, given the need for invasive arterial access, the use of potent anticoagulant, and antiplatelet agents. Two strategies that have some benefit in addressing bleeding are vascular closure devices and radial access. ISAR CLOSURE27 was a randomized non-inferiority trial comparing vascular closure devices to manual haemostasis in 4524 patients undergoing angiography via femoral access. The trial found that vascular closure devices were non-inferior to manual haemostasis in avoiding access site-related vascular complications (6.9 vs. 7.9%) with a shorter time to haemostasis. The MATRIX trial28 was a large multicentre trial comparing transradial against transfemoral access in 8404 patients with acute coronary syndrome with or without ST-segment elevation who were about to undergo coronary angiography and PCI. Radial compared with femoral access did not significantly reduce the co-primary outcome of MACE [8.8 vs. 10.3%, RR 0.85, 95% CI 0.74–0.99; P = 0.0307, non-significant at α of 0.025] but did reduce the other co-primary outcome of net adverse clinical events, through a reduction in BARC major bleeding unrelated to CABG (1.6 vs. 2.3%, RR 0.67, 95% CI 0.49–0.92; P = 0.013) but also importantly all-cause mortality (1.6 vs. 2.2%, RR 0.72, 95% CI 0.53–0.99; P = 0·045). These data suggest that radial access has a major role in modern coronary intervention. However, bleeding during or after PCI is not limited to the access site and to the periprocedural period. Data from the ADAPT-DES29 have confirmed prior findings showing that post-discharge bleeding after PCI have a strong detrimental prognostic impact, which may even exceed that of post-discharge MI. These findings have bearing on the interpretation of the balance of benefit to risk of prolonged antiplatelet therapy after stenting.

Devices

Stents and scaffolds

In the BASKET-PROVE II trial,30 the second-generation biolimus-A9-eluting biodegradable-polymer (BP) stainless steel DES (Nobori, Terumo) was compared with the best-in-class durable-polymer (DP) DES (Xience Prime, Abbott Vascular) for efficacy and safety and to a last-generation thin-strut BMS coated with a biocompatible silicone-carbide layer (ProKinetik, Biotronik) for late safety in large-vessel stenting (≥3 mm). BP-DES (7.6%) was non-inferior compared with DP-DES (6.8%) and superior to BMS (12.7%) in terms of the composite primary endpoint of cardiac death, MI, or clinically indicated target-vessel revascularization (TVR) within 2 years. The composite secondary safety endpoint of very late (>1 year) stent thrombosis (VLST), MI, and cardiac death did not differ between the three stent groups. Those findings challenge the concept that durable polymers are the key initiator of VLST.

The open-label, randomized SORT OUT-VI trial (n = 2999) showed non-inferiority of the biocompatible DP zotarolimus-eluting stent, Resolute Integrity (Medtronic CardioVascular, Santa Rosa, CA, USA) compared with the BP-polymer biolimus-eluting stent, BioMatrix Flex (Biosensors Interventional Technologies, Singapore City, Singapore) in unselected patients.31 At 12 months, 79 (5.3%) and 75 (5.0%) patients, respectively, (Pnon-inferiority = 0.004) met the primary endpoint [a composite of safety (cardiac death and non-target lesion MI) and efficacy (target-lesion revascularization)]. The individual components of the primary endpoint also did not differ between stent types.

In the randomized, double-blind LEADERS FREE trial (n = 2466 patients), BioFreedom (a polymer-free and carrier-free, umirolimus-coated stent) was compared with a similar bare metal stent (the Gazelle stent, Biosensors Interventional Technologies, Singapore) in patients with a high bleeding risk, all received 1 month of DAPT.32 At 390 days, the rate of the primary safety endpoint (a composite of cardiac death, MI, or stent thrombosis) was 9.4% in the drug-coated stent group and 12.9% in the bare metal stent group (Psuperiority = 0.005). Clinically driven target-lesion revascularization was needed in 5.1% of patients in the drug-coated stent group and in 9.8% of patients in the bare metal stent group (P < 0.001). In spite of the short course of DAPT, the rate of BARC types 3–5 bleeding was high (7.2%) and similar in both groups.

In the ZEUS trial,33 compared with BMS, a biocompatible-polymer DES with a fast drug-eluting characteristics, combined with a short, tailored DAPT regimen, resulted in a lower risk of 1-year MACE in uncertain candidates for DES implantation (a unique patient population that was largely excluded from pivotal DES trials). Patients (n = 1606) with stable or unstable symptoms who, on the basis of thrombotic, bleeding, or restenosis risk criteria, were qualified as uncertain candidates for DES were randomized to receive zotarolimus-eluting stent [Endeavor stent (Medtronic Vascular, Minneapolis, Minnesota)] or thin-strut (<100 mm) BMS under similar duration (median 32 days) of DAPT. The primary endpoint (1-year MACE, including death, MI, or TVR) was lower in the DES group (17.5 vs. 22.1%, P = 0.011) as a result of lower rates of MI (2.9 vs. 8.1%; P < 0.001) and TVR (5.9 vs. 10.7%; P = 0.001). Definite or probable stent thrombosis was also reduced in DES-treated patients (2.0 vs. 4.1%; P = 0.019). Overall, these trials suggest that the indications for bare metal stents may be rapidly disappearing, as newer DES provides superior efficacy without safety concerns and no longer require protracted antiplatelet therapy.

Bioresorbable scaffolds

The Absorb II trial compared Absorb [Abbott Vascular, Santa Clara, CA, USA (n = 335 patients, 364 lesions)] to Xience [Abbott Vascular, Santa Clara, CA, USA (n = 166 patients, 182 lesions)].34 Although acute gain was lower for the bioresorbable scaffold, at 1-year interim analysis, cumulative rates of new or worsening angina were lower in the bioresorbable scaffold group, whereas performance during maximum exercise and rate of composite device-oriented endpoint were similar. Three patients in the bioresorbable scaffold group had scaffold thrombosis (definite or probable), compared with no patients in the metallic stent group. There were 17 (5%) major cardiac adverse events in the bioresorbable scaffold group compared with 5 (3%) events in the metallic stent group, with the most common adverse events being MI [15 cases (4%) vs. two cases (1%), respectively] and clinically indicated target-lesion revascularization [four cases (1%) vs. three cases (2%), respectively]. Data from Absorb III trial35 further support the non-inferiority of Absorb to Xience in terms of 1-year target lesion failure (TLF), although superiority (which was also targeted in the study design) was not achieved (TLF, 7.8% for Absorb and 6.1% for Xience; Pnon-inferiority = 0.007 and Psuperiority = 0.16). There was no statistical difference between groups in rates of cardiac death, target-vessel MI, ischaemia-driven TLR, or device thrombosis (1.5 vs. 0.7%) within 1 year. Consistent non-inferiority results were seen in the Absorb Japan36 and Absorb China37 trials. In the multicentre GHOST-EU registry,38 1731 bioresorbable scaffolds [Absorb bioresorbable vascular scaffold (BVS); Abbott Vascular, Santa Clara, CA, USA] were implanted in 1189 patients. Technical success was achieved in 99.7% of cases, while the cumulative incidence of TLF and scaffold thrombosis (definite/probable) was 2.2 and 1.5% at 30 days and 4.4 and 2.1% at 6 months. Diabetes mellitus was the only independent predictor of TLF (HR 2.41). Therefore, in spite of acceptable rates of TLF, the rate of scaffold thrombosis (early and midterm) was of concern. While trials have fulfilled statistical non-inferiority for BVS compared with DES, the non-inferiority margin was wide and several important clinical outcomes were numerically worse with BVS. This registry, as well as the results of trials, indicates that the issues of stent thrombosis and clinical efficacy (at least equivalent to that of newer DES) have to be addressed for bioresorbable scaffolds to be widely adopted in clinical practice.

In the BIOSOLVE-II trial,39 a second-generation drug-eluting absorbable metal scaffold (DREAMS 2G) was used in patients with stable or unstable angina or documented silent ischaemia. Routine angiographic surveillance at 6 months revealed a mean in-segment late lumen loss of 0.27 ± 0.37 mm and discernable vasomotion in 80% of 25 tested patients. Intravascular ultrasound and optical coherence tomography showed preservation of the scaffold area, a low mean neointimal area, and no intraluminal masses. Overall, TLF occurred in four (3%) patients with no definite or probable scaffold thrombosis observed.

Coronary sinus reduction

The management of patients with refractory angina who are not amenable to revascularization can be difficult. Verheye et al.40 used a new balloon-expandable device to reduce the coronary sinus in 104 such patients. Implantation led to an improvement of at least two angina classes in 35% and of one class in 71% of patients at 6 months. In the control group (received a sham procedure), angina class improvement by two or one class occurred in 15 and 42% of the patients, respectively (P < 0.05 for both). ‘More mechanistic markers of ischaemia reduction (improvement in exercise time or in the mean change of the wall-motion index) did not differ between the two groups’. Six-month event rates were low in both groups. This device may represent a future option for patients with refractory angina.

Plaque imaging and new pathophysiologic insights into coronary artery disease

Risk of adverse events in non-obstructive coronary lesions

Maddox et al.41 compared the rates of all-cause mortality and MI in patients with non-obstructive CAD (n = 20 899), obstructive CAD (n = 8384), and no apparent CAD (n = 8391). Non-obstructive CAD (defined as ≥1 stenosis ≥20% but no stenosis ≥70%), compared with no apparent CAD (no stenosis >20%;), was associated with a significantly greater 1-year risk of MI and all-cause mortality. One-year mortality rates increased with increasing CAD extent, ranging from 1.38% among patients without apparent CAD to 4.3% in patients with three-vessel or LM obstructive CAD. After risk adjustment, there was a stepwise increase in the risk of death or myocardial infarction with increasing extent of non-obstructive and obstructive CAD (Figure 3). These data confirm the prognostic importance of ‘mild lesions’, which is consistent with the previous observation that many infarctions are related to sites of modest luminal obstruction.

Figure 3

Time-to-event plots for 1-year combined myocardial infarction and mortality, by coronary artery disease (CAD) extent: the risk of adverse outcomes increases with the extent of obstructive but also non-obstructive coronary artery disease (reprinted with kind permission from Maddox et al.41).

Figure 3

Time-to-event plots for 1-year combined myocardial infarction and mortality, by coronary artery disease (CAD) extent: the risk of adverse outcomes increases with the extent of obstructive but also non-obstructive coronary artery disease (reprinted with kind permission from Maddox et al.41).

Fractional flow reserve

At the same time, 15-year follow-up data of Defer42 and 5-year follow-up of FAME43 confirm that fractional flow reserve guidance for revascularization does not result in worse long-term outcomes than angiographic guidance. At 15 years, deferral of treatment of non-significant stenoses42 was associated with similar mortality and reduced MI rate (2.2%) compared with PCI performance (10%; RR 0.22, 95% CI 0.05–0.99, P = 0.03). The meta-analysis by Johnson et al.44 established a significant relation between outcomes and FFR (clinical events increase as FFR decreases) in 6961 patients at 14 months. Revascularization shows larger benefit for lower baseline FFR, and final post-PCI FFR was inversely related with prognosis (HR 0.86, 95%CI 0.80–0.93; P < 0.001).

The impact of OCT during percutaneous coronary intervention on physician's decision-making

In 418 patients (467 stenoses) with stable or unstable angina or NSTEMI, the procedural decision-making was affected (selecting different stent length and diameter) by OCT imaging prior to PCI in 57% of stenoses.45 In 27% of stenoses, post-deployment OCT abnormalities (14.5% malapposition, 7.6% under-expansion, and 2.7% edge dissection) prompted further stent optimization using additional in-stent post-dilatation (n = 101) or placement of new stents (n = 20).

The impact of IVUS on outcomes following stenting

Intravascular ultrasound can be useful to guide stent deployment. A randomized trial compared IVUS-guided to angiography-guided everolimus stent implantation in 1400 patients with long coronary lesions46 and found that IVUS-guided stenting reduced major adverse cardiac events at 1 year by ∼50% (2.9 vs. 5.8%, HR0.48, 95% CI 0.28–0.83, P = 0.007) due to a reduction in ischaemia-driven target-lesion revascularization (2.5 vs. 5.0%, P = 0.02). Whether routine post-stenting balloon overexpansion would have achieved the same outcomes is uncertain. These results suggest value for IVUS to guide stent deployment in complex lesion subsets.

Conclusion

Current advances in coronary intervention aim primarily at perfecting long-term results, with the premise that bioerodable scaffolds will eventually replace metallic DESs. However, the short-term incremental benefit of technical advances or device iterations becomes increasingly difficult to demonstrate. Today, improved outcomes largely depend on defining the optimal synergy between best medical care and device-based therapies in the individual patient.

Authors' contributions

S.A. and S.W.: conceived and designed the research. S.A.: drafted the manuscript. S.W.: made critical revision of the manuscript for key intellectual content.

Conflict of interest: P.G.S. discloses the following relationships: research grant (to INSERM U1148) from Sanofi, and Servier; speaking or consulting fees from Amarin, AstraZeneca, Bayer, Boehringer-Ingelheim, Bristol-Myers-Squibb, CSL-Behring, Daiichi-Sankyo, GlaxoSmithKline, Janssen, Lilly, Novartis, Pfizer, Regado, Regeneron, Roche, Sanofi, Servier, The Medicines Company; and owns stocks from Aterovax; P.W.S. discloses relationships with Abbott laboratories, Astrazeneca, Biotronik, Cardialysis B.V, GLC research, Medtronic, Sino medical, Société Europa, Stentys France, Svelte Medical Systems, Volcano Europe; M.A. has no disclosures; W.W. is a non-executive Board member and shareholder of Argonauts partners and Celyad (formerly Cardio3Biosciences). He reports institutional research grants from Abbott Vascular, Biotronik, Boston Scientific, Medtronic, MiCell, Stentys, St Jude, Terumo.

References

1
Park
SJ
,
Ahn
JM
,
Kim
YH
,
Park
DW
,
Yun
SC
,
Lee
JY
,
Kang
SJ
,
Lee
SW
,
Lee
CW
,
Park
SW
,
Choo
SJ
,
Chung
CH
,
Lee
JW
,
Cohen
DJ
,
Yeung
AC
,
Hur
SH
,
Seung
KB
,
Ahn
TH
,
Kwon
HM
,
Lim
DS
,
Rha
SW
,
Jeong
MH
,
Lee
BK
,
Tresukosol
D
,
Fu
GS
,
Ong
TK
;
BEST Trial Investigators
.
Trial of everolimus-eluting stents or bypass surgery for coronary disease
.
N Engl J Med
 
2015
;
372
:
1204
1212
.
2
Siontis
GC
,
Stefanini
GG
,
Mavridis
D
,
Siontis
KC
,
Alfonso
F
,
Perez-Vizcayno
MJ
,
Byrne
RA
,
Kastrati
A
,
Meier
B
,
Salanti
G
,
Jüni
P
,
Windecker
S
.
Percutaneous coronary intervention strategies for in-stent restenosis: a network meta-analysis
.
Lancet
 
2015
;
386
:
655
664
.
3
Alfonso
F
,
Pérez-Vizcayno
MJ
,
Cárdenas
A
,
García del Blanco
B
,
García-Touchard
A
,
López-Minguéz
JR
,
Benedicto
A
,
Masotti
M
,
Zueco
J
,
Iñiguez
A
,
Velázquez
M
,
Moreno
R
,
Mainar
V
,
Domínguez
A
,
Pomar
F
,
Melgares
R
,
Rivero
F
,
Jiménez-Quevedo
P
,
Gonzalo
N
,
Fernández
C
,
Macaya
C
;
RIBS IV Study Investigators (under auspices of Interventional Cardiology Working Group of Spanish Society of Cardiology)
.
A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS-IV randomized clinical trial
.
J Am Coll Cardiol
 
2015
;
66
:
23
33
.
4
Lassen
JF
,
Holm
NR
,
Stankovic
G
,
Lefèvre
T
,
Chieffo
A
,
Hildick-Smith
D
,
Pan
M
,
Darremont
O
,
Albiero
R
,
Ferenc
M
,
Louvard
Y
.
Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings
.
Eurointervention
 
2014
;
10
:
545
560
.
5
Généreux
P
,
Kumsars
I
,
Lesiak
M
,
Kini
A
,
Fontos
G
,
Slagboom
T
,
Ungi
I
,
Metzger
DC
,
Wykrzykowska
JJ
,
Stella
PR
,
Bartorelli
AL
,
Fearon
WF
,
Lefèvre
T
,
Feldman
RL
,
LaSalle
L
,
Francese
DP
,
Onuma
Y
,
Grundeken
MJ
,
Garcia-Garcia
HM
,
Laak
LL
,
Cutlip
DE
,
Kaplan
AV
,
Serruys
PW
,
Leon
MB
.
A randomized trial of a dedicated bifurcation stent versus provisional stenting in the treatment of coronary bifurcation lesions
.
J Am Coll Cardiol
 
2015
;
65
:
533
543
.
6
Tomasello
SD
,
Boukhris
M
,
Giubilato
S
,
Marzà
F
,
Garbo
R
,
Contegiacomo
G
,
Marzocchi
A
,
Niccoli
G
,
Gagnor
A
,
Varbella
F
,
Desideri
A
,
Rubartelli
P
,
Cioppa
A
,
Baralis
G
,
Galassi
AR
.
Management strategies in patients affected by chronic total occlusions: results from the Italian Registry of Chronic Total Occlusions
.
Eur Heart J
 
2016
;
36
:
3189
3198
.
7
Barbato
E
,
Carrié
D
,
Dardas
P
,
Fajadet
J
,
Gaul
G
,
Haude
M
,
Khashaba
A
,
Koch
K
,
Meyer-Gessner
M
,
Palazuelos
J
,
Reczuch
K
,
Ribichini
FL
,
Sharma
S
,
Sipötz
J
,
Sjögren
I
,
Suetsch
G
,
Szabó
G
,
Valdés-Chávarri
M
,
Vaquerizo
B
,
Wijns
W
,
Windecker
S
,
de Belder
A
,
Valgimigli
M
,
Byrne
RA
,
Colombo
A
,
Di Mario
C
,
Latib
A
,
Hamm
C
.
European expert consensus on rotational atherectomy
.
EuroIntervention
 
2015
;
11
:
30
36
.
8
Palmerini
T
,
Benedetto
U
,
Biondi-Zoccai
G
,
Della Riva
D
,
Bacchi-Reggiani
L
,
Smits
PC
,
Vlachojannis
GJ
,
Jensen
LO
,
Christiansen
EH
,
Berencsi
K
,
Valgimigli
M
,
Orlandi
C
,
Petrou
M
,
Rapezzi
C
,
Stone
GW
.
Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis
.
J Am Coll Cardiol
 
2015
;
65
:
2496
2507
.
9
Byrne
RA
,
Serruys
PW
,
Baumbach
A
,
Escaned
J
,
Fajadet
J
,
James
S
,
Joner
M
,
Oktay
S
,
Jüni
P
,
Kastrati
A
,
Sianos
G
,
Stefanini
GG
,
Wijns
W
,
Windecker
S
.
Report of a European Society of Cardiology-European Association of Percutaneous Cardiovascular Interventions task force on the evaluation of coronary stents in Europe: executive summary
.
Eur Heart J
 
2015
;
36
:
2608
2620
.
10
Sedlis
SP
,
Hartigan
PM
,
Teo
KK
,
Maron
DJ
,
Spertus
JA
,
Mancini
GB
,
Kostuk
W
,
Chaitman
BR
,
Berman
D
,
Lorin
JD
,
Dada
M
,
Weintraub
WS
,
Boden
WE
,
COURAGE Trial Investigators
.
Effect of PCI on long-term survival in patients with stable ischemic heart disease
.
N Engl J Med
 
2015
;
373
:
1937
1946
.
11
Windecker
S
,
Stortecky
S
,
Stefanini
GG
,
da Costa
BR
,
Rutjes
AW
,
Di Nisio
M
,
Silletta
MG
,
Maione
A
,
Alfonso
F
,
Clemmensen
PM
,
Collet
JP
,
Cremer
J
,
Falk
V
,
Filippatos
G
,
Hamm
C
,
Head
S
,
Kappetein
AP
,
Kastrati
A
,
Knuuti
J
,
Landmesser
U
,
Laufer
G
,
Neumann
FJ
,
Richter
D
,
Schauerte
P
,
Sousa Uva
M
,
Taggart
DP
,
Torracca
L
,
Valgimigli
M
,
Wijns
W
,
Witkowski
A
,
Kolh
P
,
Jüni
P
.
Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis
.
BMJ
 
2014
;
348
:
g3859
.
12
Helft
G
,
Steg
PG
,
Le Feuvre
C
,
Georges
JL
,
Carrie
D
,
Dreyfus
X
,
Furber
A
,
Leclercq
F
,
Eltchaninoff
H
,
Falquier
JF
,
Henry
P
,
Cattan
S
,
Sebagh
L
,
Michel
PL
,
Tuambilangana
A
,
Hammoudi
N
,
Boccara
F
,
Cayla
G
,
Douard
H
,
Diallo
A
,
Berman
E
,
Komajda
M
,
Metzger
JP
,
Vicaut
E
,
OPTImal DUAL Antiplatelet Therapy Trial Investigators
.
Stopping or continuing clopidogrel 12 months after drug-eluting stent placement: the OPTIDUAL randomized trial
.
Eur Heart J
 
2016
;
37
:
365
374
.
13
Schulz-Schüpke
S
,
Byrne
RA
,
Ten Berg
JM
,
Neumann
FJ
,
Han
Y
,
Adriaenssens
T
,
Tölg
R
,
Seyfarth
M
,
Maeng
M
,
Zrenner
B
,
Jacobshagen
C
,
Mudra
H
,
von Hodenberg
E
,
Wöhrle
J
,
Angiolillo
DJ
,
von Merzljak
B
,
Rifatov
N
,
Kufner
S
,
Morath
T
,
Feuchtenberger
A
,
Ibrahim
T
,
Janssen
PW
,
Valina
C
,
Li
Y
,
Desmet
W
,
Abdel-Wahab
M
,
Tiroch
K
,
Hengstenberg
C
,
Bernlochner
I
,
Fischer
M
,
Schunkert
H
,
Laugwitz
KL
,
Schömig
A
,
Mehilli
J
,
Kastrati
A
,
Intracoronary Stenting and Antithrombotic Regimen: Safety And EFficacy of 6 Months Dual Antiplatelet Therapy After Drug-Eluting Stenting (ISAR-SAFE) Trial Investigators
.
ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting
.
Eur Heart J
 
2015
;
36
:
1252
1263
.
14
Palmerini
T
,
Benedetto
U
,
Bacchi-Reggiani
L
,
Della Riva
D
,
Biondi-Zoccai
G
,
Feres
F
,
Abizaid
A
,
Hong
MK
,
Kim
BK
,
Jang
Y
,
Kim
HS
,
Park
KW
,
Genereux
P
,
Bhatt
DL
,
Orlandi
C
,
De Servi
S
,
Petrou
M
,
Rapezzi
C
,
Stone
GW
.
Mortality in patients treated with extended duration dual antiplatelet therapy after drug-eluting stent implantation: a pairwise and Bayesian network meta-analysis of randomised trials
.
Lancet
 
2015
;
385
:
2371
2382
.
15
Elmariah
S
,
Mauri
L
,
Doros
G
,
Galper
BZ
,
O'Neill
KE
,
Steg
PG
,
Kereiakes
DJ
,
Yeh
RW
.
Extended duration dual antiplatelet therapy and mortality: a systematic review and meta-analysis
.
Lancet
 
2015
;
385
:
792
798
.
16
Giustino
G
,
Baber
U
,
Sartori
S
,
Mehran
R
,
Mastoris
I
,
Kini
AS
,
Sharma
SK
,
Pocock
SJ
,
Dangas
GD
.
Duration of dual antiplatelet therapy after drug-eluting stent implantation: a systematic review and meta-analysis of randomized controlled trials
.
J Am Coll Cardiol
 
2015
;
65
:
1298
1310
.
17
Palmerini
T
,
Sangiorgi
D
,
Valgimigli
M
,
Biondi-Zoccai
G
,
Feres
F
,
Abizaid
A
,
Costa
RA
,
Hong
MK
,
Kim
BK
,
Jang
Y
,
Kim
HS
,
Park
KW
,
Mariani
A
,
Della Riva
D
,
Genereux
P
,
Leon
MB
,
Bhatt
DL
,
Bendetto
U
,
Rapezzi
C
,
Stone
GW
.
Short- versus long-term dual antiplatelet therapy after drug-eluting stent implantation: an individual patient data pairwise and network meta-analysis
.
J Am Coll Cardiol
 
2015
;
65
:
1092
1102
.
18
Navarese
EP
,
Andreotti
F
,
Schulze
V
,
Kołodziejczak
M
,
Buffon
A
,
Brouwer
M
,
Costa
F
,
Kowalewski
M
,
Parati
G
,
Lip
GY
,
Kelm
M
,
Valgimigli
M
.
Optimal duration of dual antiplatelet therapy after percutaneous coronary intervention with drug eluting stents: meta-analysis of randomised controlled trials
.
BMJ
 
2015
;
350
:
h1618
.
19
Yeh
RW
,
Kereiakes
DJ
,
Steg
PG
,
Windecker
S
,
Rinaldi
MJ
,
Gershlick
AH
,
Cutlip
DE
,
Cohen
DJ
,
Tanguay
JF
,
Jacobs
A
,
Wiviott
SD
,
Massaro
JM
,
Iancu
AC
,
Mauri
L
,
DAPT Study Investigators
.
Benefits and risks of extended duration dual antiplatelet therapy after pci in patients with and without acute myocardial infarction
.
J Am Coll Cardiol
 
2015
;
65
:
2211
2221
.
20
Udell
JA
,
Bonaca
MP
,
Collet
JP
,
Lincoff
AM
,
Kereiakes
DJ
,
Costa
F
,
Lee
CW
,
Mauri
L
,
Valgimigli
M
,
Park
SJ
,
Montalescot
G
,
Sabatine
MS
,
Braunwald
E
,
Bhatt
DL
.
Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials
.
Eur Heart J
 
2016
;
37
:
390
399
.
21
Yeh
RW
,
Secemsky
EA
,
Kereiakes
DJ
,
Normand
S-LT
,
Gershlick
AH
,
Cohen
DJ
,
Spertus
JA
,
Steg
PG
,
Cutlip
DE
,
Rinaldi
MJ
,
Camenzind
E
,
Wijns
W
,
Apruzzese
PK
,
Song
Y
,
Massaro
JM
,
Mauri
L
,
for the Dual Antiplatelet Therapy (DAPT) Study Investigators.
Individualizing treatment duration of dual antiplatelet therapy after percutaneous coronary intervention: an analysis from the DAPT study. American Heart Association Late Breaking Session
.
2015
.
Oral presentation
.
22
Camenzind
E
,
Wijns
W
,
Mauri
L
,
Kurowski
V
,
Parikh
K
,
Gao
R
,
Bode
C
,
Greenwood
JP
,
Boersma
E
,
Vranckx
P
,
McFadden
E
,
Serruys
PW
,
O'Neil
WW
,
Jorissen
B
,
Van Leeuwen
F
,
Steg
PG
,
PROTECT Steering Committee and Investigators
.
Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: a randomised, multicentre, open-label, controlled trial
.
Lancet
 
2012
;
380
:
1396
1405
.
23
Fiedler
KA
,
Maeng
M
,
Mehilli
J
,
Schulz-Schüpke
S
,
Byrne
RA
,
Sibbing
D
,
Hoppmann
P
,
Schneider
S
,
Fusaro
M
,
Ott
I
,
Kristensen
SD
,
Ibrahim
T
,
Massberg
S
,
Schunkert
H
,
Laugwitz
KL
,
Kastrati
A
,
Sarafoff
N.
Duration of triple therapy in patients requiring oral anticoagulation after drug-eluting stent implantation. The intracoronary stenting and antithrombotic regimen testing of a 6-week versus a 6-month clopidogrel treatment regiment in patients with concomitant aspirin and oral anticoagulant therapy following drug-eluting stenting (ISAR-TRIPLE) trial
.
J Am Coll Cardiol
 
2015
;
65
:
1619
1629
.
24
Lip
GY
,
Windecker
S
,
Huber
K
,
Kirchhof
P
,
Marin
F
,
Ten Berg
JM
,
Haeusler
KG
,
Boriani
G
,
Capodanno
D
,
Gilard
M
,
Zeymer
U
,
Lane
D
,
Document Reviewers
,
Storey
RF
,
Bueno
H
,
Collet
JP
,
Fauchier
L
,
Halvorsen
S
,
Lettino
M
,
Morais
J
,
Mueller
C
,
Potpara
TS
,
Rasmussen
LH
,
Rubboli
A
,
Tamargo
J
,
Valgimigli
M
,
Zamorano
JL
.
Management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous coronary or valve interventions: a joint consensus document of the European Society of Cardiology Working Group on Thrombosis, European Heart Rhythm Association (EHRA), European Association of Percutaneous Cardiovascular Interventions (EAPCI) and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS) and Asia-Pacific Heart Rhythm Society (APHRS)
.
Eur Heart J
 
2014
;
35
:
3155
3179
.
25
Weisz
G
,
Généreux
P
,
Iñiguez
A
,
Zurakowski
A
,
Shechter
M
,
Alexander
KP
,
Dressler
O
,
Osmukhina
A
,
James
S
,
Ohman
EM
,
Ben-Yehuda
O
,
Farzaneh-Far
R
,
Stone
GW
,
RIVER-PCI investigators
.
Ranolazine in patients with incomplete revascularisation after percutaneous coronary intervention (RIVER-PCI): a multicentre, randomised, double-blind, placebo-controlled trial
.
Lancet
 
2015
.
pii: S0140-6736(15)00459-6. doi: 10.1016/S0140-6736(15)00459-6
.
26
Alexander
KP
,
Weisz
G
,
Prather
K
,
James
S
,
Mark
DB
,
Anstrom
KJ
,
Davidson-Ray
L
,
Witkowski
A
,
Mulkay
AJ
,
Osmukhina
A
,
Farzaneh-Far
R
,
Ben-Yehuda
O
,
Stone
GW
,
Ohman
EM
.
Effects of ranolazine on angina and quality of life after percutaneous coronary intervention with incomplete revascularization: results from the ranolazine for incomplete vessel revascularization (RIVER-PCI) trial
.
Circulation
 
2015
.
pii: CIRCULATIONAHA.115.019768
.
27
Schulz-Schüpke
S
,
Helde
S
,
Gewalt
S
,
Ibrahim
T
,
Linhardt
M
,
Haas
K
,
Hoppe
K
,
Böttiger
C
,
Groha
P
,
Bradaric
C
,
Schmidt
R
,
Bott-Flügel
L
,
Ott
I
,
Goedel
J
,
Byrne
RA
,
Schneider
S
,
Burgdorf
C
,
Morath
T
,
Kufner
S
,
Joner
M
,
Cassese
S
,
Hoppmann
P
,
Hengstenberg
C
,
Pache
J
,
Fusaro
M
,
Massberg
S
,
Mehilli
J
,
Schunkert
H
,
Laugwitz
KL
,
Kastrati
A
,
Instrumental Sealing of Arterial Puncture Site—CLOSURE Device vs Manual Compression (ISAR-CLOSURE) Trial Investigators
.
Comparison of vascular closure devices vs manual compression after femoral artery puncture: the ISAR-CLOSURE randomized clinical trial
.
JAMA
 
2014
;
312
:
1981
1987
.
28
Valgimigli
M
,
Gagnor
A
,
Calabró
P
,
Frigoli
E
,
Leonardi
S
,
Zaro
T
,
Rubartelli
P
,
Briguori
C
,
Andò
G
,
Repetto
A
,
Limbruno
U
,
Cortese
B
,
Sganzerla
P
,
Lupi
A
,
Galli
M
,
Colangelo
S
,
Ierna
S
,
Ausiello
A
,
Presbitero
P
,
Sardella
G
,
Varbella
F
,
Esposito
G
,
Santarelli
A
,
Tresoldi
S
,
Nazzaro
M
,
Zingarelli
A
,
de Cesare
N
,
Rigattieri
S
,
Tosi
P
,
Palmieri
C
,
Brugaletta
S
,
Rao
SV
,
Heg
D
,
Rothenbühler
M
,
Vranckx
P
,
Jüni
P
,
MATRIX Investigators
.
Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial
.
Lancet
 
2015
;
385
:
2465
2476
.
29
Généreux
P
,
Giustino
G
,
Witzenbichler
B
,
Weisz
G
,
Stuckey
TD
,
Rinaldi
MJ
,
Neumann
FJ
,
Metzger
DC
,
Henry
TD
,
Cox
DA
,
Duffy
PL
,
Mazzaferri
E
,
Yadav
M
,
Francese
DP
,
Palmerini
T
,
Kirtane
AJ
,
Litherland
C
,
Mehran
R
,
Stone
GW
.
Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention
.
J Am Coll Cardiol
 
2015
;
66
:
1036
1045
.
30
Kaiser
C
,
Galatius
S
,
Jeger
R
,
Gilgen
N
,
Skov Jensen
J
,
Naber
C
,
Alber
H
,
Wanitschek
M
,
Eberli
F
,
Kurz
DJ
,
Pedrazzini
G
,
Moccetti
T
,
Rickli
H
,
Weilenmann
D
,
Vuillomenet
A
,
Steiner
M
,
Von Felten
S
,
Vogt
DR
,
Wadt Hansen
K
,
Rickenbacher
P
,
Conen
D
,
Muller
C
,
Buser
P
,
Hoffmann
A
,
Pfisterer
M
.
Long-term efficacy and safety of biodegradable-polymer biolimus-eluting stents: main results of the Basel Stent Kosten-Effektivitats Trial-PROspective Validation Examination II (BASKET-PROVE II), a randomized, controlled noninferiority 2-year outcome trial
.
Circulation
 
2015
;
131
:
74
81
.
31
Raungaard
B
,
Jensen
LO
,
Tilsted
HH
,
Christiansen
EH
,
Maeng
M
,
Terkelsen
CJ
,
Krusell
LR
,
Kaltoft
A
,
Kristensen
SD
,
Botker
HE
,
Thuesen
L
,
Aaroe
J
,
Jensen
SE
,
Villadsen
AB
,
Thayssen
P
,
Veien
KT
,
Hansen
KN
,
Junker
A
,
Madsen
M
,
Ravkilde
J
,
Lassen
JF
.
Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI): a randomised non-inferiority trial
.
Lancet
 
2015
;
385
:
1527
1535
.
32
Urban
P
,
Meredith
IT
,
Abizaid
A
,
Pocock
SJ
,
Carrie
D
,
Naber
C
,
Lipiecki
J
,
Richardt
G
,
Iniguez
A
,
Brunel
P
,
Valdes-Chavarri
M
,
Garot
P
,
Talwar
S
,
Berland
J
,
Abdellaoui
M
,
Eberli
F
,
Oldroyd
K
,
Zambahari
R
,
Gregson
J
,
Greene
S
,
Stoll
HP
,
Morice
MC
.
Polymer-free drug-coated coronary stents in patients at high bleeding risk
.
N Engl J Med
 
2015
.
[Epub ahead of print]
.
33
Valgimigli
M
,
Patialiakas
A
,
Thury
A
,
McFadden
E
,
Colangelo
S
,
Campo
G
,
Tebaldi
M
,
Ungi
I
,
Tondi
S
,
Roffi
M
,
Menozzi
A
,
de Cesare
N
,
Garbo
R
,
Meliga
E
,
Testa
L
,
Gabriel
HM
,
Airoldi
F
,
Ferlini
M
,
Liistro
F
,
Dellavalle
A
,
Vranckx
P
,
Briguori
C
.
Zotarolimus-eluting versus bare-metal stents in uncertain drug-eluting stent candidates
.
J Am Coll Cardiol
 
2015
;
65
:
805
815
.
34
Serruys
PW
,
Chevalier
B
,
Dudek
D
,
Cequier
A
,
Carrie
D
,
Iniguez
A
,
Dominici
M
,
van der Schaaf
RJ
,
Haude
M
,
Wasungu
L
,
Veldhof
S
,
Peng
L
,
Staehr
P
,
Grundeken
MJ
,
Ishibashi
Y
,
Garcia-Garcia
HM
,
Onuma
Y
.
A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial
.
Lancet
 
2015
;
385
:
43
54
.
35
Ellis
SG
,
Kereiakes
DJ
,
Metzger
DC
,
Caputo
RP
,
Rizik
DG
,
Teirstein
PS
,
Litt
MR
,
Kini
A
,
Kabour
A
,
Marx
SO
,
Popma
JJ
,
McGreevy
R
,
Zhang
Z
,
Simonton
C
,
Stone
GW
.
Everolimus-eluting bioresorbable scaffolds for coronary artery disease
.
N Engl J Med
 
2015
.
[Epub ahead of print]
.
36
Kimura
T
,
Kozuma
K
,
Tanabe
K
,
Nakamura
S
,
Yamane
M
,
Muramatsu
T
,
Saito
S
,
Yajima
J
,
Hagiwara
N
,
Mitsudo
K
,
Popma
JJ
,
Serruys
PW
,
Onuma
Y
,
Ying
S
,
Cao
S
,
Staehr
P
,
Cheong
WF
,
Kusano
H
,
Stone
GW
,
ABSORB Japan Investigators
.
A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan
.
Eur Heart J
 
2015
;
36
:
3332
3342
.
37
Gao
R
,
Yang
Y
,
Han
Y
,
Huo
Y
,
Chen
J
,
Yu
B
,
Su
X
,
Li
L
,
Kuo
HC
,
Ying
SW
,
Cheong
WF
,
Zhang
Y
,
Su
X
,
Xu
B
,
Popma
JJ
,
Stone
GW
,
ABSORB China Investigators
.
Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial
.
J Am Coll Cardiol
 
2015
.
pii: S0735-1097(15)06595-X. doi: 10.1016/j.jacc.2015.09.054
.
38
Capodanno
D
,
Gori
T
,
Nef
H
,
Latib
A
,
Mehilli
J
,
Lesiak
M
,
Caramanno
G
,
Naber
C
,
Di Mario
C
,
Colombo
A
,
Capranzano
P
,
Wiebe
J
,
Araszkiewicz
A
,
Geraci
S
,
Pyxaras
S
,
Mattesini
A
,
Naganuma
T
,
Munzel
T
,
Tamburino
C
.
Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry
.
EuroIntervention
 
2015
;
10
:
1144
1153
.
39
Haude
M
,
Ince
H
,
Abizaid
A
,
Toelg
R
,
Lemos
PA
,
von Birgelen
C
,
Christiansen
EH
,
Wijns
W
,
Neumann
FJ
,
Kaiser
C
,
Eeckhout
E
,
Lim
ST
,
Escaned
J
,
Garcia-Garcia
HM
,
Waksman
R
.
Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial
.
Lancet
 
2015
.
[Epub ahead of print]
.
40
Verheye
S
,
Jolicoeur
EM
,
Behan
MW
,
Pettersson
T
,
Sainsbury
P
,
Hill
J
,
Vrolix
M
,
Agostoni
P
,
Engstrom
T
,
Labinaz
M
,
de Silva
R
,
Schwartz
M
,
Meyten
N
,
Uren
NG
,
Doucet
S
,
Tanguay
JF
,
Lindsay
S
,
Henry
TD
,
White
CJ
,
Edelman
ER
,
Banai
S
.
Efficacy of a device to narrow the coronary sinus in refractory angina
.
N Engl J Med
 
2015
;
372
:
519
527
.
41
Maddox
TM
,
Stanislawski
MA
,
Grunwald
GK
,
Bradley
SM
,
Ho
PM
,
Tsai
TT
,
Patel
MR
,
Sandhu
A
,
Valle
J
,
Magid
DJ
,
Leon
B
,
Bhatt
DL
,
Fihn
SD
,
Rumsfeld
JS
.
Nonobstructive coronary artery disease and risk of myocardial infarction
.
JAMA
 
2014
;
312
:
1754
1763
.
42
Zimmermann
FM
,
Ferrara
A
,
Johnson
NP
,
van Nunen
LX
,
Escaned
J
,
Albertsson
P
,
Erbel
R
,
Legrand
V
,
Gwon
HC
,
Remkes
WS
,
Stella
PR
,
van Schaardenburgh
P
,
Bech
GJ
,
De Bruyne
B
,
Pijls
NH
.
Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial
.
Eur Heart J
 
2015
;
36
:
3182
3188
.
43
van Nunen
LX
,
Zimmermann
FM
,
Tonino
PA
,
Barbato
E
,
Baumbach
A
,
Engstrøm
T
,
Klauss
V
,
MacCarthy
PA
,
Manoharan
G
,
Oldroyd
KG
,
Ver Lee
PN
,
Van't Veer
M
,
Fearon
WF
,
De Bruyne
B
,
Pijls
NH
,
FAME Study Investigators
.
Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial
.
Lancet
 
2015
.
pii: S0140-6736(15)00057-4. doi: 10.1016/S0140-6736(15)00057-4
.
44
Johnson
NP
,
Tóth
GG
,
Lai
D
,
Zhu
H
,
Açar
G
,
Agostoni
P
,
Appelman
Y
,
Arslan
F
,
Barbato
E
,
Chen
SL
,
Di Serafino
L
,
Domínguez-Franco
AJ
,
Dupouy
P
,
Esen
AM
,
Esen
OB
,
Hamilos
M
,
Iwasaki
K
,
Jensen
LO
,
Jiménez-Navarro
MF
,
Katritsis
DG
,
Kocaman
SA
,
Koo
BK
,
López-Palop
R
,
Lorin
JD
,
Miller
LH
,
Muller
O
,
Nam
CW
,
Oud
N
,
Puymirat
E
,
Rieber
J
,
Rioufol
G
,
Rodés-Cabau
J
,
Sedlis
SP
,
Takeishi
Y
,
Tonino
PA
,
Van Belle
E
,
Verna
E
,
Werner
GS
,
Fearon
WF
,
Pijls
NH
,
De Bruyne
B
,
Gould
KL
.
Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes
.
J Am Coll Cardiol
 
2014
;
64
:
1641
.
45
Wijns
W
,
Shite
J
,
Jones
MR
,
Lee
SW
,
Price
MJ
,
Fabbiocchi
F
,
Barbato
E
,
Akasaka
T
,
Bezerra
H
,
Holmes
D
.
Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study
.
Eur Heart J
 
2015
.
[Epub ahead of print].
46
Hong
SJ
,
Kim
BK
,
Shin
DH
,
Nam
CM
,
Kim
JS
,
Ko
YG
,
Choi
D
,
Kang
TS
,
Kang
WC
,
Her
AY
,
Kim
Y
,
Hur
SH
,
Hong
BK
,
Kwon
H
,
Jang
Y
,
Hong
MK
,
IVUS-XPL Investigators
.
Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial
.
JAMA
 
2015
:
1
9
. .

Author notes

The opinions expressed in this article are not necessarily those of the Editors of the European Heart Journal or of the European Society of Cardiology.

Comments

0 Comments