Abstract

Introduction

Atherosclerotic cardiovascular disease (ASCVD) starts early, even in childhood.1  ,  2 Non-invasive imaging in the PESA (Progression of Early Subclinical Atherosclerosis) study revealed that 71% and 43% of middle-aged men and women, respectively, have evidence of subclinical atherosclerosis.3 Extensive evidence from epidemiologic, genetic, and clinical intervention studies has indisputably shown that low-density lipoprotein (LDL) is causal in this process, as summarized in the first Consensus Statement on this topic.4 What are the key biological mechanisms, however, that underlie the central role of LDL in the complex pathophysiology of ASCVD, a chronic and multifaceted lifelong disease process, ultimately culminating in an atherothrombotic event?

This second Consensus Statement on LDL causality discusses the established and newly emerging biology of ASCVD at the molecular, cellular, and tissue levels, with emphasis on integration of the central pathophysiological mechanisms. Key components of this integrative approach include consideration of factors that modulate the atherogenicity of LDL at the arterial wall and downstream effects exerted by LDL particles on the atherogenic process within arterial tissue.

Although LDL is unequivocally recognized as the principal driving force in the development of ASCVD and its major clinical sequelae,4  ,  5 evidence for the causal role of other apolipoprotein B (apoB)-containing lipoproteins in ASCVD is emerging. Detailed consideration of the diverse mechanisms by which these lipoproteins, including triglyceride (TG)-rich lipoproteins (TGRL) and their remnants [often referred to as intermediate-density lipoproteins (IDL)], and lipoprotein(a) [Lp(a)], contribute not only to the underlying pathophysiology of ASCVD but also potentially to atherothrombotic events, is however beyond the focus of this appraisal.6–14

The pathophysiological and genetic components of ASCVD are not fully understood. We have incomplete understanding, for example, of factors controlling the intimal penetration and retention of LDL, and the subsequent immuno-inflammatory responses of the arterial wall to the deposition and modification of LDL. Disease progression is also affected by genetic and epigenetic factors influencing the susceptibility of the arterial wall to plaque formation and progression. Recent data indicate that these diverse pathophysiological aspects are key to facilitating superior risk stratification of patients and optimizing intervention to prevent atherosclerosis progression. Moreover, beyond atherosclerosis progression are questions relating to mechanisms of plaque regression and stabilization induced following marked LDL-cholesterol (LDL-C) reduction by lipid-lowering agents.15–19 Finally, the potential implication of high-density lipoprotein (HDL) and its principal protein, apoAI, as a potential modulator of LDL atherogenicity remains unresolved.20 It was, therefore, incumbent on this Consensus Panel to identify and highlight the missing pieces of this complex puzzle as target areas for future clinical and basic research, and potentially for the development of innovative therapeutics to decrease the burgeoning clinical burden of ASCVD.

Trancytosis of low-density lipoprotein across the endothelium

Apolipoprotein B-containing lipoproteins of up to ∼70 nm in diameter [i.e. chylomicron remnants, very low-density lipoproteins (VLDL) and VLDL remnants, IDL, LDL, and Lp(a)] can cross the endothelium (Figure 1).21–29 Low-density lipoprotein, as the most abundant atherogenic lipoprotein in plasma, is the key deliverer of cholesterol to the artery wall. Many risk factors modulate the propensity of LDL and other atherogenic lipoproteins to traverse the endothelium and enter the arterial intima.30 Despite the relevance of LDL endothelial transport during atherogenesis, however, the molecular mechanisms controlling this process are still not fully understood.31

Figure 1

Low-density lipoprotein (LDL) as the primary driver of atherogenesis. Key features of the influx and retention of LDL in the arterial intima, with ensuing pathways of modification leading to (i) extracellular cholesterol accumulation and (ii) formation of cholesteryl ester droplet-engorged macrophage foam cells with transformation to an inflammatory and prothrombotic phenotype. Both of these major pathways favour formation of the plaque necrotic core containing cellular and extracellular debris and LDL-cholesterol-derived cholesterol crystals. CE, cholesteryl ester; DAMPs, damage-associated molecular patterns; ECM, extracellular matrix; FC, free cholesterol; GAG, glycosaminoglycans; PG, proteoglycans; ROS, reactive oxygen species.

A considerable body of evidence in recent years32 has challenged the concept that movement of LDL occurs by passive filtration (i.e. as a function of particle size and concentration) across a compromised endothelium of high permeability.33 Studies have demonstrated that LDL transcytosis occurs through a vesicular pathway, involving caveolae,34–36 scavenger receptor B1 (SR-B1),37 activin receptor-like kinase 1 (ALK1),38 and the LDL receptor.32 However, although the LDL receptor appears to mediate LDL transcytosis across the blood–brain barrier,39 proprotein convertase subtilisin/kexin type 9 (PCSK9)-directed degradation of the LDL receptor has no effect on LDL transcytosis40; thus, LDL transport across the endothelium in the systemic circulation seems to be LDL receptor-independent.32 Indeed, new evidence shows that LDL transcytosis across endothelial cell monolayers requires interaction of SR-B1 with a cytoplasmic protein.40 More specifically, LDL induces a marked increase in the coupling of SR-B1 (through an eight-amino-acid cytoplasmic tail domain) to the guanine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4); both SR-B1 and DOCK4 are required for LDL transport.41 Interestingly, expression of SR-B1 and DOCK4 is higher in human atherosclerotic arteries than in normal arteries.41

Oestrogens significantly inhibit LDL transcytosis by down-regulating endothelial SR-BI.42 This down-regulation is dependent on the G-protein-coupled oestrogen receptor and explains why physiological levels of oestrogen reduce LDL transcytosis in arterial endothelial cells of male but not female origin. These findings offer one explanation for why women have a lower risk than men of ASCVD before but not after the menopause.43  ,  44 Transcytosis of LDL across endothelial cells can also be increased, for example, by activation of the NOD-like receptor containing domain pyrin 3 (NLRP3) inflammasome,45 the multiprotein cytosolic complex that activates expression of the interleukin-1 (IL-1) family of cytokines, or by hyperglycaemia.46 In contrast, rapid correction of hypercholesterolaemia in mice improved the endothelial barrier to LDL.47 The mechanisms that underlie increased rates of LDL transcytosis during hypercholesterolaemia remain unclear; improved understanding offers potential for therapies targeting early events in atherosclerosis.48

Factors affecting retention of low-density lipoprotein in the artery wall

Subendothelial accumulation of LDL at lesion-susceptible arterial sites is mainly due to selective retention of LDL in the intima, and is mediated by interaction of specific positively charged amino acyl residues (arginine and lysine) in apoB100 with negatively charged sulfate and carboxylic acid groups of arterial wall proteoglycans.49 Genetic alteration of either the proteoglycan-binding domain of apoB100 or the apoB100-binding domain of arterial wall proteoglycans greatly reduces atherogenesis.49  ,  50 Thus, the atherogenicity of LDL is linked to the ability of its apoB100 moiety to interact with arterial wall proteoglycans,50  ,  51 a process influenced by compositional changes in both the core and surface of the LDL particle. For example, enrichment of human LDL with cholesteryl oleate enhances proteoglycan-binding and atherogenesis.52 In addition, apoE, apoC-III, and serum amyloid A increase the affinity of LDL for arterial wall proteoglycans.49  ,  53–55

Autopsy studies in young individuals demonstrated that atherosclerosis-prone arteries develop intimal hyperplasia, a thickening of the intimal layer due to accumulation of smooth muscle cells (SMCs) and proteoglycans.56  ,  57 In contrast, atherosclerosis-resistant arteries form minimal to no intimal hyperplasia.57–59 Surgical induction of disturbed laminar flow in the atherosclerosis-resistant common carotid artery of mice has been shown to cause matrix proliferation and lipoprotein retention,60 indicating that hyperplasia is critical to the sequence of events leading to plaque formation.

Although the propensity to develop atherosclerosis varies markedly across different sites in the human vasculature, it is notable at branches and bifurcations where the endothelium is exposed to disturbed laminar blood flow and low or fluctuating shear stress.61 These mechanical forces may modulate gene and protein expression and induce endothelial dysfunction and intimal hyperplasia. Formation of atherosclerotic lesions in vessels exhibiting intimal hyperplasia also occurs following surgical intervention, as exemplified by vascular changes following coronary artery bypass surgery.62 A number of the genetic variants strongly associated with ASCVD in genome-wide association studies (GWAS) occur in genes that encode arterial wall proteins, which either regulate susceptibility to LDL retention or the arterial response to LDL accumulation.63 This topic is discussed in more detail below.

Low-density lipoprotein particle heterogeneity

Low-density lipoprotein particles are pseudomicellar, quasi-spherical, and plurimolecular complexes. The lipidome accounts for ∼80% by weight and involves >300 distinct molecular species of lipids (Meikle and Chapman, unpublished observations), whereas the proteome is dominated by apoB100 (one molecule per LDL particle).64–66 ApoB100, one of the largest mammalian proteins (∼550 kDa), maintains the structural integrity of particles in the VLDL-LDL spectrum and, in contrast to smaller apolipoproteins, remains with the lipoprotein particle throughout its life cycle.

At circulating particle concentrations of ∼1 mmol/L, LDL is the principal carrier of cholesterol (2000–2700 molecules per particle, of which ∼1700 are in esterified form) in human plasma. Low-density lipoprotein is also the major carrier of vitamin E, carotenoids, and ubiquinol, but a minor carrier of small, non-coding RNAs compared with HDL, although the proatherogenic microRNA miR-155 is abundant in LDL.66–68

Low-density lipoprotein comprises a spectrum of multiple discrete particle subclasses with different physicochemical, metabolic, and functional characteristics (Box 1).64  ,  66  ,  67  ,  69–84  ,  90–98 In people with normal lipid levels, three major subclasses are typically recognized: large, buoyant LDL-I (density 1.019–1.023 g/mL), LDL-II of intermediate size and density (density 1.023–1.034 g/mL), small dense LDL-III (density 1.034–1.044 g/mL); and a fourth subfraction of very small dense LDL-IV (density 1.044–1.063 g/mL) is present in individuals with elevated TG levels 64  ,  75  ,  81  ,  90  ,  99 Low-density lipoprotein-cholesterol measured routinely in the clinical chemistry laboratory is the sum of cholesterol in these subclasses and in IDL and Lp(a).100  ,  101

Box 1

Differences in physicochemical, metabolic, and functional characteristics between the markedly heterogenous low-density lipoprotein subclasses

  • Particle diameter, molecular weight, hydrated density, net surface charge, % weight lipid and protein composition (CE, FC, TG, PL, and PRN), and N-linked glycosylation of apoB100.

  • Particle origin (liver and intravascular remodelling from precursor particles).

  • Residence time in plasma (turnover half-life).

  • Relative binding affinity for the cellular LDL receptor.

  • Conformational differences in apoB100.

  • Relative susceptibility to oxidative modification under oxidative stress (e.g. conjugated diene and LOOH formation).

  • Relative binding affinity for arterial wall matrix proteoglycans and thus potential for arterial retention.

  • Relative content of minor apolipoproteins, including apoC-III and apoE.

  • Relative content of lipoprotein-associated phospholipase A2.

  • Relative acceptor activities for neutral lipid transfer/exchange (CE and TG) mediated by CETP.

References: 64  ,  66  ,  67  ,  69–89

apo, apolipoprotein; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; FC, free cholesterol; LOOH, lipid hydroperoxide; PL, phospholipid; PRN, protein; TG, triglyceride.

Factors affecting the low-density lipoprotein subfraction profile

Very low-density lipoprotein-TG levels are a major determinant of the LDL subfraction profile. As plasma TG levels rise, the profile shifts from a predominance of large particles to small dense LDL.64  ,  66  ,  74  ,  77–79  ,  90  ,  99 Sex is also a key factor; men are more likely to produce small dense LDL than women at a given TG level, with the underlying mechanism attributed to higher hepatic lipase activity.74  ,  79  ,  90 In metabolic models explaining the generation of small LDL species (LDL-III and LDL-IV), cholesteryl ester transfer protein (CETP)-mediated transfer of TG molecules from VLDL (and potentially chylomicrons) to the core of LDL particles in exchange for cholesteryl esters is a critical step.102 The LDL particle may be subsequently lipolyzed by hepatic lipase to remove both TG from the core and phospholipid from the surface, thereby producing a new, stable but smaller and denser particle.64  ,  74  ,  75  ,  79

Plasma TG levels in the fasting state are regulated by VLDL production in the liver, residual intestinal production of apoB48-containing VLDL-sized particles,103 the activities of lipoprotein and hepatic lipases, and the rate of particle clearance by receptor-mediated uptake. The liver can produce a range of particles varying in size from large VLDL1, medium-sized VLDL2, to LDL, depending on hepatic TG availability.92 The rate of VLDL production is also influenced by metabolic factors, such as insulin resistance, and lipolysis and clearance of VLDL are markedly affected by apoC-III and angiopoietin-like 3 (ANGPTL3) content and lipase activities.91  ,  94 The LDL subclass profile is principally determined by the nature of the secreted VLDL particles, their circulating concentrations, the activities of lipases and neutral lipid transfer proteins including CETP, tissue LDL receptor activity, and the affinity of LDL particles to bind to the receptor, which is, in turn, a function of the conformation of apoB100 within the particle.69  ,  104  ,  105 These factors are critical determinants of the amount and overall distribution of LDL particle subclasses, as well as their lipidomic profile and lipid load.64  ,  69  ,  70  ,  74  ,  75

Individuals with plasma TG in the range 0.85–1.7 mmol/L (75–150 mg/dL) release VLDL1 and VLDL2 from the liver,91  ,  93 which are delipidated rapidly to IDL and then principally to LDL of medium size;64  ,  66  ,  99 thus, the LDL profile is dominated by LDL-II (Figure 2A). In contrast, people with low plasma TG levels (<0.85 mmoL/L or 75 mg/dL) have highly active lipolysis and generally low hepatic TG content. Consequently, hepatic VLDL tend to be smaller and indeed some IDL/LDL-sized particles are directly released from the liver.74–76 The LDL profile displays a higher proportion of larger LDL-I (Figure 2B) and is associated with a healthy state (as in young women). However, this pattern is also seen with familial hypercholesterolaemia (FH), in which LDL levels are high77  ,  99 because of overproduction of small VLDL and reduced LDL clearance due to low receptor numbers.76 Finally, formation of small dense LDL is favoured when plasma TG levels exceed 1.7 mmol/L (150 mg/dL),79  ,  80 and especially at levels >2.23 mmol/L (200 mg/dL) due to VLDL overproduction (as in insulin-resistant states, such as Type 2 diabetes and metabolic syndrome), and potentially when lipolysis is defective due to high apoC-III content [which inhibits lipoprotein lipase (LPL) action and possibly VLDL particle clearance].78  ,  95 An LDL subfraction profile in which small particles predominate (Figure 2C) is part of an atherogenic dyslipidaemia in which remnant lipoproteins are also abundant. As particle size decreases and the conformation of apoB100 is altered, LDL receptor binding affinity is attenuated, resulting in a prolonged residence time in plasma (Box 2).64  ,  78–80

Figure 2

Model of the metabolic interrelationships between low-density lipoprotein (LDL) subfractions and their hepatic precursors. The liver produces apolipoprotein (apo)B100-containing particles ranging in size from large triglyceride (TG)-rich very low-density lipoprotein (VLDL) 1, through small VLDL2 and intermediate-density lipoprotein (IDL) to LDL.74 The hepatic TG content (TG pool) affects the profile of the secreted particles.99 Secreted VLDL undergoes lipolysis and remodelling to form remnants/IDL; LDL is then formed via the actions of lipoprotein lipase (LPL), hepatic lipase (HL), and cholesteryl ester transfer protein (CETP). (A) In people with population average TG levels, about half the lipolytic remnants (which correspond to IDL based on density and size) in this pathway are cleared relatively efficiently and the remainder are converted mainly to LDL-II, which has higher LDL receptor affinity and shorter residence time than the LDL arising from VLDL1.74  ,  79  ,  82  ,  83 The composition of IDL-derived LDL is modulated both by CETP-mediated transfer of cholesteryl esters (CE) from high-density lipoprotein (HDL) and by CETP-mediated transfer of TG from VLDL and their remnants.102  ,  106 (B) In individuals with low plasma TG, LDL-I and -II predominate. Clearance of these lipoproteins is rapid and LDL-cholesterol (LDL-C) and apoB concentrations are low. (C) Individuals with elevated plasma TG levels overproduce VLDL1 and have reduced lipolysis rates due in part to inhibition of LPL activity by their abundant content of apoC-III, an LPL inhibitor. Very low-density lipoprotein 1 remodelling gives rise to remnants within the VLDL size range that are enriched in apoE; such circulating remnants can be removed by several mechanisms, primarily in the liver, including the LDL receptor-related protein, heparan sulfate proteoglycans, and LDL receptor.107–109 Hepatic clearance of VLDL1-derived remnant particles may, however, be slowed by enrichment with apoC-III.78 Very low-density lipoprotein 1 and VLDL2 are targeted by CETP, which exchanges core CE in LDL for TG in both VLDL1 and VLDL2. Hydrolysis of TG by HL action then shrinks LDL particles to preferentially form small, dense LDL-III in moderate hypertriglyceridaemia, or even smaller LDL-IV in severe hypertriglyceridaemia; such small dense LDL exhibit attenuated binding affinity for the LDL receptor, resulting in prolonged plasma residence (Box 2). Together, this constellation of lipoprotein changes, originating in increased levels of large VLDL1 and small dense LDL, represents a lipid phenotype designated atherogenic dyslipidaemia,6–8  ,  74  ,  75  ,  79–81  ,  110 a key feature of metabolic syndrome and Type 2 diabetes.6–8  ,  78–80 Typical LDL subfraction patterns are indicated together with relevant plasma lipid and apoB levels. Note that when small dense LDL is abundant, apoB is elevated more than LDL-C. The width of the red arrows reflects the quantity of apoB/particle production and release from the liver, while the width of the blue arrows depicts relative lipolytic efficiency.

Box 2

 The distinct biological features of small dense low-density lipoprotein

  • Prolonged plasma residence time reflecting low LDL receptor binding affinity.

  • Increased affinity for LDL receptor-independent cell surface binding sites.

  • Small particle size favouring enhanced arterial wall penetration.

  • Elevated binding affinity for arterial wall proteoglycans favouring enhanced arterial retention.

  • Elevated susceptibility of PL and CE components to oxidative modification, with formation of lipid hydroperoxides.

  • Elevated susceptibility to glycation.

  • Enrichment in electronegative LDL.

  • Preferential enrichment in lipoprotein-associated phospholipase A2.

  • Preferential enrichment in apoC-III.

References: 54  ,  55  ,  64  ,  66  ,  69–75  ,  78  ,  79  ,  81–85  ,  105  ,  111–113

apo, apolipoprotein; CE, cholesteryl ester; PL, phospholipid.

Low-density lipoprotein as the primary driver of atherogenesis

All LDL particles exert atherogenicity to variable degrees, which can be influenced by the proteome, lipidome, proteoglycan binding, aggregability, and oxidative susceptibility.64  ,  96  ,  97 The atherogenic actions of LDL in arterial tissue have multiple origins. Broadly, these encompass:

  1. Formation of macrophage-derived foam cells upon phagocytic uptake of aggregated LDL particles, or LDL in which lipid and/or protein components have undergone covalent modification, triggering uptake by scavenger receptors. Aggregation may occur by non-enzymatic or enzymatically induced mechanisms. Oxidation of lipids (phospholipids, cholesteryl esters, and cholesterol) or apoB100 can occur enzymatically (e.g. by myeloperoxidase) or non-enzymatically (e.g. by reactive oxygen species liberated by activated endothelial cells or macrophages).

  2. Release of bioactive proinflammatory lipids (e.g. oxidized phospholipids) or their fragments (e.g. short-chain aldehydes) subsequent to oxidation, which may exert both local and systemic actions.

  3. Formation of extracellular lipid deposits, notably cholesterol crystals, upon particle denaturation.

  4. Induction of an innate immune response, involving damage-associated molecular patterns (DAMPs, notably oxidation-specific epitopes and cholesterol crystals). Damage-associated molecular patterns promote recruitment of immuno-inflammatory cells (monocyte-macrophages, neutrophils, lymphocytes, and dendritic cells) leading to local and potentially chronic inflammation that can induce cell death by apoptosis or necrosis, thereby contributing to necrotic core formation.

  5. Induction of an adaptive immune response subsequent to covalent modification of apoB100 by aldehydes or apoB100 degradation with the activation of antigen-specific T-cell responses and anti-bodies.114–118

Beyond LDL, additional apoB-containing lipoproteins (<70 nm diameter) can exacerbate the atherogenic process; these include Lp(a) (which is composed of apo(a) covalently linked to the apoB of LDL and is a major carrier of proinflammatory oxidized phospholipids) and cholesterol-enriched remnant particles metabolically derived from TGRL.6  ,  7  ,  11  ,  13  ,  26  ,  119 Whereas the classic TG-poor LDL requires modification for efficient uptake by arterial macrophages, remnant particles are taken up by members of the LDL receptor family in their native state.107  ,  120 There is also evidence that LPL-mediated hydrolysis of TG from incoming remnant particles enhances the inflammatory response of arterial macrophages, 121  ,  122 and that the internalization of remnants induces lysosomal engorgement and altered trafficking of lipoprotein cholesterol within the cell, 123 thus inducing endoplasmic reticulum stress and activation of apoptosis disproportionate to the cholesterol cargo delivered.

Low-density lipoprotein subfraction profile affects atherogenicity

Under defined cardiometabolic conditions, a specific LDL subclass may become more prominent as the driver of atherogenesis. Several biological properties of small dense LDL could confer heightened coronary heart disease (CHD) risk (Box 2). Certainly, small dense LDL appears to enter the arterial intima faster than larger LDL.111 However, the significant metabolic inter-relationships of small dense LDL with abnormalities of other atherogenic apoB-containing lipoproteins, particularly increased concentrations of VLDL and remnant lipoproteins, have created challenges in assessing the independent contributions of small dense LDL to CHD.81 Nevertheless, in several recent large prospective cohort studies,98  ,  124  ,  125 and the placebo group of a large statin trial,126 concentrations of small dense LDL but not large LDL predicted incident CHD independent of LDL-C. The heterogenous proteomic and lipidomic profiles of LDL particles may also affect their pathophysiologic activity. For example, small dense LDL is preferentially enriched in apoC-III and glycated apoB relative to larger LDL.85  ,  112 Additionally, the small dense LDL subclass includes an electronegative LDL species associated with endothelial dysfunction.113 Moreover, the unsaturated cholesteryl esters in the lipidome of small dense LDL are markedly susceptible to hydroperoxide formation under oxidative stress.73

Low-density lipoprotein particle profiles may also reflect specific genetic influences on LDL metabolism that concomitantly influence CHD risk.98 A notable example is a common non-coding DNA variant at a locus on chromosome 1p13 that regulates hepatic expression of sortilin, as well as other proteins, 127 and is strongly associated with both LDL-C levels and incident myocardial infarction.128 The major risk allele at this locus is preferentially associated with increased levels of small dense LDL, 127 but the mechanistic basis for this association is unknown.

The residence time of LDL in the circulation may be the critical factor in the relationship between plasma LDL subclass level and atherosclerosis risk, as it determines both exposure of arterial tissue to LDL particles and the potential of LDL to undergo proatherogenic intravascular modifications, such as oxidation. Increased plasma residence time can result from deficiency or dysfunction of LDL receptors, as in FH, or from structural or compositional features of LDL particles that impair their binding affinity for LDL receptors, as for small dense LDL.82  ,  83 Indeed, there is evidence of a lower fractional catabolic rate and longer plasma residence time for small dense LDL than for larger LDL in combined hyperlipidaemia.84

Responses elicited by low-density lipoprotein retained in the artery wall

Retention and subsequent accumulation of LDL in the artery wall triggers a number of events that initiate and propagate lesion development.21  ,  50 Due to the local microenvironment of the subendothelial matrix, LDL particles are susceptible to oxidation by both enzymatic and non-enzymatic mechanisms, which leads to the generation of oxidized LDL (oxLDL) containing several bioactive molecules including oxidized phospholipids.129  ,  130 Oxidized LDL, in turn, initiates a sterile inflammatory response by activating endothelial cells to up-regulate adhesion molecules and chemokines that trigger the recruitment of monocytes—typically inflammatory Ly6Chi monocytes—into the artery wall.131 The importance of oxidized phospholipids in the inflammatory response of the vascular wall has been demonstrated through the transgenic expression of an oxidized phospholipid-neutralizing single-chain antibody, which protected atherosclerosis-prone mice against lesion formation.132 Newly recruited monocytes differentiate into macrophages that can further promote the oxidation of LDL particles, which are then recognized and internalized by specific scavenger receptors giving rise to cholesterol-laden foam cells.133 Several other modifications of retained LDL, including enzymatic degradation or aggregation, have also been shown to promote its uptake by macrophages. Macropinocytosis of native LDL may also contribute to this process.134  ,  135

Macrophages exhibiting different phenotypes, ranging from classical inflammatory subtypes to alternatively activated anti-inflammatory macrophages, have been identified in atherosclerotic lesions.136  ,  137 Macrophage polarization appears to depend on the microenvironment, where different pro- and anti-inflammatory inducers are present together with complex lipids, senescent cells, and hypoxia.137 Thus, macrophage behaviour is a dynamic process adapting to the microenvironment, thereby allowing macrophage subsets to participate in almost every stage of atherosclerosis.138

Several DAMPs, generated by modification of retained LDL, induce the expression of pro-inflammatory and pro-thrombotic genes in macrophages by engaging pattern recognition receptors, such as toll-like receptors (TLRs). In particular, recognition of oxLDL by a combination of TLR4-TLR6 and the scavenger receptor CD36 triggers NFκB-dependent expression of chemokines, such as CXCL1, resulting in further recruitment of monocytes.139 Such leucocyte recruitment is tightly controlled in a stage-specific manner by a diverse range of chemokines and their receptors.140 At later stages of plaque development, the pool of intimal macrophages is largely maintained by self-renewal, which increases the burden of foam cells in the plaque. Moreover, SMCs may take up cholesterol-rich lipoproteins to become macrophage-like cells that contribute to the number of foam cells in advanced lesions.141

An important consequence of lipid loading of macrophages is the formation of cholesterol crystals, which activate an intracellular complex, the NLRP3 inflammasome, to promote local production of IL-1β and IL-18.142–144 The persistent presence of lipid-derived DAMPs in the artery wall, together with continuous expression of inflammatory cytokines and recruitment of phagocytes (whose role is to remove the triggers of inflammation), sustains this inflammatory response. It also facilitates an active cross-talk with several other arterial cells, including mast cells, which in turn become activated and contribute to plaque progression by releasing specific mediators.145

The recruitment of myeloid cells is also accompanied by the infiltration of both CD4+ and CD8+ T cells that display signs of activation and may interact with other vascular cells presenting molecules for antigen presentation, such as major histocompatibility complex II.146 Analyses of the T-cell receptor repertoire of plaque-infiltrating T cells demonstrated an oligoclonal origin of these T cells and suggest expansion of antigen-specific clones. Indeed, T cells with specificity for apoB-derived epitopes have been identified, linking adaptive immune responses to the vascular retention of LDL (Figure 3).147

Figure 3

Cellular and humoral immune responses in atherosclerosis. Dendritic cells (DC) take up several forms of modified low-density lipoprotein (LDL), including oxidized LDL (oxLDL), and present specific epitopes (e.g. apolipoprotein B peptides) to naive T cells (Th0), which induces differentiation into CD4+ T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17), or T regulatory (T reg) cell subtypes; multiple cytokines control such differentiation. CD4+ T-cell subtypes, together with specific cytokines that they secrete, provide help to B cells and regulate the activity of other T-cell subtypes. The pro-atherogenic role of interferon gamma (IFN-γ)-secreting Th1 cells and the anti-atherogenic effect of interleukin-10/transforming growth factor beta (IL-10/TGF-β)-secreting T regulatory cells are well established. However, the role of Th2 and Th17 in atherogenesis is less clear, as opposing effects of cytokines associated with these respective subtypes have been described. Cytotoxic CD8+ T cells can promote atherogenesis. Anti-oxLDL immunoglobulin (Ig)M antibodies produced by B1 cells are atheroprotective, whereas anti-oxLDL IgG antibodies produced by B2-cell subsets are likely pro-atherogenic. All of these cell types may infiltrate the arterial wall at sites of ongoing plaque development, with the possible exception of Th2 and Th17 cell types. EC, endothelial cell; Mph, monocyte-derived macrophage.

Interferon-gamma (IFNγ)-secreting CD4+ Th1 cells promote atherogenesis, but this response is dampened by T regulatory cells expressing transforming growth factor beta (TGF-β) and IL-10.148 The role of CD4+ Th2 and Th17 cells is less clear, but CD8+ cytotoxic T cells also seem to promote atherogenesis.149 Distinct roles for different B-cell subsets have been reported, and although only small numbers of B cells are found in atherosclerotic lesions, both immunoglobulin (Ig)G and IgM antibodies derived from such cells accumulate.150  ,  151 Many of these antibodies have specificity for oxLDL and, in an isotype-dependent manner, trigger activation of complement, further modulating the inflammatory response.152

Thus, retention and subsequent modification of LDL elicits both innate and adaptive cellular and humoral immune responses that drive inflammation in the artery wall. Disrupting this vicious cycle by targeting inducers and mediators may provide alternative approaches to halting atherogenesis at specific stages (Box 3). Proof of concept for this therapeutic strategy has been provided in a secondary prevention trial in which patients were treated with a statin in combination with the anti-IL-1β antibody canakinumab.154

Box 3

 Cell-specific responses to retained and modified low-density lipoprotein

  • Oxidized LDL initiates a sterile inflammatory response by activating endothelial cells to up-regulate adhesion molecules and chemokines, triggering the recruitment of monocytes that differentiate into macrophages.

  • Modifications of retained LDL promote its uptake by macrophages leading to cholesterol-laden foam cells.

  • Smooth muscle cells also take up cholesterol-rich lipoproteins and significantly contribute to the number of foam cells in advanced lesions.

  • Lesional macrophages contain subsets with different phenotypes, ranging from classical inflammatory subtypes to alternatively activated anti-inflammatory macrophages.

  • DAMPs, formed when retained LDL become modified, induce the expression of pro-inflammatory and pro-thrombotic genes in macrophages by engaging PRRs, such as TLRs.

  • Lipid loading of macrophages may lead to formation of cholesterol crystals, which activate the NLRP3 inflammasome, leading to production of IL-1β and IL-18.

  • T cells and B cells are found in atherosclerotic lesions. The B cells have specificity for oxidized LDL, which also triggers the activation of complement, further modulating the inflammatory response.

References: 129  ,  130  ,  132  ,  133  ,  136–143  ,  145–148  ,  150–153

DAMPs, damage-associated molecular patterns; IL, interleukin; PRRs, pattern recognition receptors; TLRs, toll-like receptors.

Defective cellular efferocytosis and impaired resolution of inflammation

The efficient clearance of dying cells by phagocytes, termed efferocytosis, is an important homeostatic process that ensures resolution of inflammatory responses (Figure 4).155  ,  156 This involves recognition of several ‘eat-me’ signals, such as phosphatidylserine exposure on apoptotic cells, by their respective receptors on macrophages, as well as bridging molecules that mediate binding. Moreover, ‘don’t-eat-me’ signals, such as CD47, also play a critical role and influence atherogenesis.157 Uptake of apoptotic cells is associated with increased expression of the anti-inflammatory cytokines TGF-β and IL-10 and decreased expression of pro-inflammatory IL-8 and IL-1β by macrophages.158 Efficient efferocytosis thereby protects against atherogenesis by removing cellular debris and creating an anti-inflammatory milieu. Uptake of cellular debris also favours the production of various specialized pro-resolving lipid mediators, such as lipoxins, resolvins, and maresins that are actively involved in resolving inflammation.159

Figure 4

Schematic representation of processes involved in lesional efferocytosis. (A) Externalized ‘eat me’ signals including phosphatidylserine (PS), calreticulin, and oxidized phospholipids (oxPL) are recognized by their respective receptors, Mer tyrosine kinase (MerTK), low-density lipoprotein-receptor-related protein 1 (LRP1), as well as integrin αvβ3 and CD36 on macrophages; such recognition is facilitated either directly or mediated by bridging molecules such as growth arrest-specific 6 for PS, complement protein C1q for calreticulin and milk fat globule-epidermal growth factor 8 (MFG-E8) for oxPL. Calcium-dependent vesicular trafficking events driven by mitochondrial fission and LC3-associated phagocytosis (LAP) promote phagolysosomal fusion and the hydrolytic degradation of apoptotic cells. Simultaneously, natural immunoglobulin (Ig)M antibodies with reactivity towards oxidation-specific epitopes further enhance the efficient clearance of dying cells via complement receptors. (B) In advanced atherosclerosis, one or more of these mechanisms are dysfunctional and can lead to defective efferocytosis, propagating non-resolving inflammation and plaque necrosis. Additional processes contributing to impaired efferocytosis include ADAM-17-mediated cleavage of MerTK as well as the inappropriate expression of the ‘don’t eat me’ signal CD47 on apoptotic cell surfaces. ACs, apoptotic cells.

In chronic inflammation, the general pro-inflammatory environment alters the expression of molecules that regulate efferocytosis, so that oxLDL particles in atherosclerotic lesions compete for uptake by macrophages.129  ,  160 As a result, efferocytosis becomes defective and resolution of inflammation, which is mainly driven by modified LDL, is impaired. Under such conditions, apoptotic cells accumulate and undergo secondary necrosis, promoting the release of several DAMPs that further propagate inflammation. Impaired clearance of apoptotic cells results in the formation of necrotic cores that contribute to unstable plaques and plaque rupture (Box 4). Thus, defective efferocytosis may be a potential therapeutic target to promote resolution of inflammation in atherosclerosis.

Box 4

 Efficient vs. impaired efferocytosis

  • Efficient efferocytosis removes cellular debris and modified forms of low-density lipoprotein, and creates an anti-inflammatory milieu.

  • Impaired efferocytosis in atherosclerosis results in non-resolving inflammation.

  • Impaired clearance of apoptotic cells contributes to formation of necrotic core in atherosclerotic lesions

  • Genetically modified mice with enhanced/restored efferocytosis protects from atherosclerosis, indicating novel therapeutic strategies.

References: 129  ,  155–169

How does plaque composition and architecture relate to plaque stability?

Our knowledge of the intricate relationships between plaque stability and the cellular and non-cellular components of plaque tissue, together with their spatial organization, is incomplete. Local SMCs respond to insults exerted by progressive oxLDL accumulation170 by proliferating and ultimately changing their phenotype to fibroblast- and ostechondrogenic-like cells;171 the latter produce extracellular matrix, regulate calcification and contribute (through SMC death) to necrotic core formation. This ‘healing’ response is the major source of key components of advanced plaques but is highly heterogenous. Furthermore, the determinants of this response are diverse, and its interaction with LDL-driven inflammation is poorly understood. Depending on the pathways that predominate in development of a lesion, segments of an atherosclerotic artery may remain quiescent, exhibit chronic stenosis, or precipitate an acute, life-threatening thrombus.

Lesions that develop substantial lipid cores, which almost reach the luminal surface, are at risk of rupturing with subsequent thrombus formation (Figure 5). In this event, the thin cap of fibrous tissue between the lipid core and blood is torn, allowing blood to enter and often core material to leak out. Cholesterol crystals, which can be seen protruding through the plaque surface around sites of rupture, may contribute to final disintegration of the residual cap tissue.172 Ruptured lesions are also typically large with intraplaque angiogenesis and often have little previous stenosis due to extensive expansive remodelling (Box 5).

Figure 5

Proposed mechanisms of plaque rupture and plaque erosion. Rupture: lesions that develop extensive necrosis and only sparse fibrous cap tissue are at risk of plaque rupture. Suggested final processes that precipitate rupture include senescence and death of residual cap smooth muscle cells (SMC), degradation of the fibrous matrix by macrophage-secreted proteolytic enzymes, and cholesterol crystals, which may penetrate cap tissue. These processes expose the prothrombotic plaque interior and result in neutrophil-accelerated thrombosis. Erosion: lesions that are complicated by erosion typically display variable amounts of plaque necrosis, but are frequently characterized by subendothelial accumulation of proteoglycans and hyaluronan. Current hypotheses suggest that the combination of disturbed blood flow and endothelial activation by immune activators, e.g. hyaluronan fragments, leads to neutrophil recruitment with neutrophil extracellular trapsosis, endothelial cell apoptosis/sloughing, and thrombus formation. ACS, acute coronary syndrome; NETosis, cell death by neutrophil extracellular traps.

Box 5

 Plaque rupture and erosion

  • Plaques developing substantial necrosis that reach the luminal surface can rupture and precipitate thrombus.

  • Ruptured plaques are often large, non-stenotic, and vascularized lesions with protruding cholesterol crystals, but the causal role of these features is unresolved.

  • Thrombus can form on other types of plaques by plaque erosion. The process is less well-understood but may involve combinations of flow disturbance, vasospasm, and neutrophil-generated endothelial shedding.

  • Plaque progression and rupture are influenced by both biological and mechanical factors, highlighting plaque composition as a major factor in resistance to mechanical stress.

  • Lowering of low-density lipoprotein levels appears more effective in reducing the risk for plaque rupture than for plaque erosion.

References: 56  ,  172–180

Plaque rupture accounts for the majority of coronary thrombi at autopsy (73%), 173 and in survivors of ST-elevation myocardial infarction (STEMI) examined by optical coherence tomography (∼70%), 174  ,  175 but is less common (∼43–56%) in culprit lesions of non-ST segment elevation myocardial infarction (NSTEMI).175  ,  176 Lesions without lipid cores or with thick fibrous caps are not at risk of rupture but may produce a thrombus in response to plaque erosion. In these cases, the plaque is intact but lacks endothelial cells, and neutrophils predominate at the plaque-thrombus interface. The underlying lesion is frequently, but not always, rich in the glycosaminoglycan hyaluronan and SMCs.173 The mechanism leading to intravascular thrombosis is not yet clear, but experiments with mouse arteries have shown that subendothelial hyaluronan and disturbed blood flow render the endothelium vulnerable to neutrophil-mediated denudation and thrombosis.177 Vasospasm has also been proposed as the initiating event in plaque erosion.178

Rupture requires a specific plaque morphology (thin-cap fibro-atheroma) and is a strong prothrombotic stimulus, whereas erosion complicates earlier lesion types and provides a subtler thrombogenic stimulus. Plaque progression and potentially plaque rupture are influenced by the complex interaction between biological and mechanical factors, indicating that plaque composition is a major factor in its resistance to mechanical stress.179 Erosion favours a higher fraction of thrombi in younger, especially female, patients and in patients with less severe atherosclerosis with few thin-cap fibroatheromas,173  ,  174 and more frequently affects lesions exposed to local (disturbed blood flow near bifurcations) or systemic (smoking) prothrombotic factors.56

Low-density lipoprotein-lowering therapies mitigate key mechanisms of plaque rupture, i.e. lipid core formation and LDL-driven inflammation and degeneration of caps. Statin therapy lowers the rate of events but also shifts the presentation of acute coronary syndromes from STEMI towards NSTEMI, indicating that LDL lowering is less efficient in counteracting erosion mechanisms.176  ,  180 Successful implementation of LDL lowering in patients with established plaques may, therefore, leave a residual burden of thrombosis caused by plaque erosion, thus emphasizing the need for alternative types of prevention and therapy.

Fibrous cap matrix components: guardians of cardiovascular peace?

Lesions that rupture form predominantly in arterial regions with thick pre-existing arterial intima. When the lipid core develops in the deep part of the intima at these sites, it is initially separated from the lumen by normal intima but is gradually replaced by a more compact layer of SMCs and collagen-rich matrix that spreads underneath the endothelium.181 This structure, called the fibrous cap in areas where it overlies lipid core, prevents rupture as long as it is not excessively thin: 95% of ruptured plaques have cap thickness <65 μm (by definition thin-cap fibroatheroma).182 It is uncertain to what extent such thin caps result from degradation of an initially thick cap or from failure to form thick-cap tissue in the first place. From a therapeutic viewpoint, the relationship of LDL-C levels to fibrous cap thickness is of relevance.183 Thus, frequency-driven optical coherence tomography imaging of coronary arteries selected for percutaneous intervention in statin-treated patients with CHD revealed that those with LDL-C levels <1.3 mmol/L (50 mg/dL) were more likely to have fibrous plaque and thick fibrous caps (51.7% and 139.9 μm, respectively).183

Lineage tracking of SMCs showed that fibrous caps in mice form by massive clonal expansion of a few pre-existing SMCs.184  ,  185 These findings are consistent with earlier studies of X chromosome inactivation patterns in human lesions, which indicated the existence of similar large clonal populations in SMC-rich lesion areas.186 If substantial SMC clonal expansion does indeed occur during human cap formation, this may contribute to the replicative senescence and limited repair potential that characterize cap SMCs.187

Several processes leading to cap degradation have been described. Cap collagen and elastin fibres are long-lived with little spontaneous turnover, but invading macrophages, recruited as a result of LDL-driven plaque inflammation, secrete matrix metalloproteinases and cathepsins that break down the matrix.188 Together with SMC and macrophage death, such proteolysis progressively converts cap tissue into lipid core and predisposes it to rupture (Box 6).

Box 6

 Fibrous cap

  • The fibrous cap, between the necrotic core and the lumen, protects against rupture.

  • Processes integral to both tissue degeneration and reduced cap formation may be involved in the genesis of thin-cap fibroatheromas.

  • Caps form by oligoclonal expansion of smooth muscle cells in experimental models, and there is suggestive evidence for the same process in humans.

  • Degradation of cap tissue involves inflammatory cell invasion with secretion of proteolytic enzymes. Mechanical effects of local cholesterol crystals may also contribute.

References: 181–191

How does calcification impact plaque architecture and stability?

Arterial calcification is an established marker of atherosclerotic disease,192  ,  193 and the severity of coronary artery calcification is a strong predictor of cardiovascular morbidity and mortality.194  ,  195 Yet whether coronary artery calcium (CAC) is simply a marker of advanced disease, or whether it increases risk of plaque rupture, is unclear.

Clinical, animal, and in vitro studies implicate hyperlipidaemia-induced inflammation in the genesis and progression of arterial calcification.196–201 Although statins were expected to prevent and/or reverse vascular calcification, clinical studies showed that, despite benefit on mortality,202 treatment increased progression of coronary artery calcification.203–206 Moreover, elite male endurance athletes have higher CAC scores than less physically active individuals, but experience fewer cardiovascular events.207–209

This paradox raises the question of whether calcified plaque architecture influences rupture vulnerability, either positively or negatively. Understanding in this area, however, remains limited. By using finite element analysis, rigid deposits (calcification) embedded in a distensible material (vessel wall) under tension are shown to create focal stress that is concentrated at areas of compliance mismatch at the surfaces of the deposits, 210 rendering them prone to debonding or rupture. The mineral surfaces found in carotid arteries and those in skeletal bone are remarkably similar and characterized by abundant proteoglycans.211 The chemical nature and architecture of that surface bonding may be critical in determining whether calcium deposits promote plaque rupture or stability.

Clinical studies provide varying results with respect to the association of calcification with plaque rupture. Histological analysis showed that patients who died of acute myocardial infarction had more CAC than controls, but the CAC did not colocalize closely with the unstable plaque.212 Computed tomographic (CT) analyses of patients with acute coronary syndrome, however, showed that the culprit lesions tended to have dispersed or ‘spotty’ calcification (∼0.2–3 mm), whereas stable lesions tended to have contiguous calcium deposits (≥3 mm).213 Based on this and other findings, 214  ,  215 the presence of a spotty pattern of calcium deposits is now considered a feature of a ‘high-risk’ plaque.

A new imaging modality using positron emission tomography (PET)216 detects smaller calcium deposits that are below the resolution of CT (∼200–500 μm)217 and intravascular ultrasound (∼200 μm lateral resolution). In human and animal studies, 18F-NaF PET-CT imaging, which has higher sensitivity for calcium mineral, 218 identified high-risk, vulnerable lesions.218–221

Taken together, these findings suggest that calcification is not a clear marker; mineral features may vary in quality and microarchitecture, which may affect the mechanical properties of plaque tissue.222 For example, certain therapies, such as anabolic parathyroid hormone analogues used to treat osteoporosis, may modify the architecture of calcium deposits and impact calcified plaque vulnerability.219 Research is needed to establish the mechanism linking calcium morphology and plaque vulnerability; the use of 18F-NaF PET scanning offers promise.223 Given the evidence that statins and high-intensity exercise promote calcification without increased risk, these interventions may stabilize mineral morphology. Further studies are needed to better understand these mechanisms in modulating the effects of calcification on plaque vulnerability (Box 7).

Box 7

 Calcification and plaque stability

  • Oxidized low-density lipoprotein stimulates vascular calcification by driving osteoblastic differentiation of vascular smooth muscle cells.

  • High-density lipoprotein exerts beneficial effects on vascular calcification through effects on bone preosteoclasts.

  • The severity of coronary artery calcification is a strong predictor of cardiovascular morbidity and mortality.

  • It is still unclear whether coronary artery calcium is simply a marker of advanced disease or whether it increases risk of plaque rupture.

  • Clinical studies provide varying results with respect to association of calcification with plaque rupture.

  • Statins and high-intensity exercise promote calcification without increasing risk.

References: 192–223

Although the role of LDL in coronary artery calcification remains unclear, 224 it is well-established that an elevated LDL-C level is a strong risk factor for progression of calcification.225 Interestingly, modified LDL stimulates vascular calcification by driving osteoblastic differentiation of vascular SMCs,197 while inhibiting osteoclast differentiation of macrophages.224 In contrast, HDL appears to exert beneficial effects on vascular calcification, as HDL-mediated efflux of cholesterol from bone preosteoclasts inhibits both their maturation and osteoblast RANKL expression, and stimulates their apoptosis.226

In addition, several clinical trials have demonstrated that Lp(a) is an independent risk factor for coronary artery calcification.227 Ongoing research suggests a causal role for Lp(a) in arterial calcification; although the underlying mechanisms remain unclear, oxidized phospholipids in Lp(a) may induce differentiation of valve interstitial cells into a procalcification, osteoblast-like phenotype.228 Ongoing trials with Lp(a)-lowering therapies will provide insight into the potential role of Lp(a) in coronary artery calcification.

Can genes influence the susceptibility of the artery wall to coronary disease?

Genome-wide association studies and related research indicate that predisposition to ASCVD is associated with multiple variants in genes that affect plasma LDL concentration (Figure 6).229  ,  230 Indeed, genomic risk scores that predict coronary artery disease (CAD) risk contain a large number of variants that affect LDL particle quantity and LDL-C levels.231 Most GWAS loci governing LDL-C levels and CAD risk occur in noncoding regions and predominantly alter gene expression that affects uptake and metabolism of LDL in the hepatic cell. Other genomic loci affect qualitative attributes of LDL (Figure 6) including arterial wall susceptibility to LDL infiltration, transcytosis, retention, and modification (Box 8).229

Figure 6

Genomic loci associated with atherosclerosis. Loci identified by genome-wide association studies (GWAS) can have different effects on low-density lipoprotein (LDL). On the left are shown selected GWAS loci associated with LDL-cholesterol (LDL-C) levels, several of which are associated with atherosclerosis events and are incorporated in predictive risk scores. Many have also been independently validated in Mendelian randomization studies and in studies of rare families. Some are proven drug targets to reduce clinical events. On the right are shown loci that do not primarily affect LDL-C levels, but may instead underlie qualitative changes in either the particle itself or in the vessel wall to locally promote atherogenesis.

Box 8

 New concepts in genetic determinants of arterial wall biology and susceptibility to atherosclerotic cardiovascular disease

  • Genome-wide association studies (GWAS) reveal causal associations of coronary artery disease with loci for several genes regulating arterial wall susceptibility to infiltration, transcytosis, retention and modification of low-density lipoprotein (LDL).

  • The interconnectedness of gene-regulatory networks means that virtually any expressed gene can modulate the function of a ‘core’ disease-related gene.

  • Atherosclerosis heritability will ultimately be explained in large part by genes acting outside core mechanistic pathways, as exemplified by non-canonical, LDL-associated genes.

  • ‘Omnigenic’ models of disease are being vigorously explored in large-scale GWAS.

References: 32  ,  38  ,  63  ,  229–244

A few early GWAS hits for lipid levels and CAD have mechanistic links to LDL transcytosis across the endothelium, including SRB1 encoding SR-B1 and LDLR encoding the LDL receptor.32  ,  232  ,  233 Low-density lipoprotein transcytosis requires caveolin 1,32 encoded by CAV1, in which the single-nucleotide polymorphism (SNP) rs3807989 is associated with increased CAV1 expression from leucocytes, altered plasma LDL-C levels and increased CAD risk.234

More recent GWAS and sequencing efforts further support a causal role for such qualitative local pathways. For instance, a GWAS of 88 192 CAD cases and 162 544 controls found 25 new SNP-CAD associations from 15 genomic regions, including rs1867624 at PECAM1 (encoding platelet and endothelial cell adhesion molecule 1), rs867186 at PROCR (encoding protein C receptor), and rs2820315 at LMOD1 (encoding SMC-expressed leiomodin 1).235 Another GWAS of 34 541 CAD cases and 261 984 controls from the UK Biobank, with replication in 88 192 cases and 162 544 controls, identified 64 novel CAD risk loci, including several loci implicated by network analysis in arterial wall biology, such as CCM2 encoding cerebral cavernous malformation scaffolding protein and EDN1 encoding endothelin 1.236

Next-generation DNA sequencing of 4831 CAD cases and 115 455 controls identified 15 new CAD loci, which included rs12483885, a common p.Val29Leu polymorphism in ARHGEF26 encoding Rho guanine nucleotide exchange factor 26.237 The ARHGEF26 Leu29 isoform had an allele frequency of 0.85 and increased CAD risk by ∼8%, 237 a finding that was confirmed by an independent GWAS in the UK Biobank.238 ARHGEF26 activates Rho guanosine triphosphatase, thereby enhancing formation of endothelial docking structures, and in turn, promoting transendothelial migration of leucocytes.239–241  In vitro studies showed the high-risk Leu29 isoform to be degradation-resistant and associated with increased leucocyte transendothelial migration compared with the low-risk Val29 isoform.237  ApoE-null mice crossed with Arhgef26-null mice displayed reduced aortic atherosclerosis without any change in lipid levels,240 supporting a modulatory role for ARHGEF26 in atherogenesis.

Other studies indicate a role for genes governing transcytosis of LDL in CAD. For instance, genome-wide RNA interference screening supplemented by pathway analysis and GWAS data cross-referencing identified ALK1 as a key mediator of LDL uptake into endothelial cells. By directly binding LDL, ALK1 diverts LDL from lysosomal degradation via a unique endocytic pathway and promotes LDL transcytosis.38 Endothelium-specific ablation of Alk1 in Ldlr-null mice reduced LDL uptake into cells.38 In studies of highly expressed genes in human carotid endarterectomy samples, lipid metabolism pathways, driven by genes such as ApoE, coincided with known CAD risk-associated SNPs from GWAS.242 Consistent with this mechanism, macrophage-specific re-introduction of apoE in hyperlipidaemic ApoE-null mice ameliorated lipid lesion formation independent of LDL levels, indicating a local apoE-related mechanism in the arterial wall.243

Finally, as meta-analyses of GWAS incorporate ever-larger patient cohorts, gene-regulatory networks are recognized as being highly interconnected. For instance, a meta-analysis of GWAS results showed that common CAD-associated variants near COL4A2 encoding collagen type 4 alpha chain, and ITGA1 encoding integrin alpha 9, both of which are important in cell adhesion and matrix biology, were also significant determinants of plasma LDL-C levels.63 For complex traits, such as LDL-C, arterial wall susceptibility, and CAD risk, Boyle et al.244 proposed that gene-regulatory networks are sufficiently interconnected that any gene expressed in disease-relevant cells can modulate the function of core disease-related genes and that most heritability is explained by genes that act outside core mechanistic pathways. This ‘omnigenic model’ of disease is under active investigation in current large-scale genetic studies.

Which plaque components favour a thrombotic reaction upon rupture?

Fibrous cap rupture is defined as a structural defect in the fibrous cap that separates the lipid-rich necrotic core of a plaque from the lumen of the artery.245 The key features of a vulnerable plaque are a thin fibrous cap, a large necrotic core, pronounced inflammation, and low vascular SMC density.246 Both biomechanical and haemodynamic factors contribute to plaque rupture,247 and the exposure of the blood to plaque components initiates the coagulation cascade, promoting thrombus formation at the site of rupture.248 The question is: which plaque components favour this thrombotic reaction?

The initial trigger of thrombus formation is the exposure of tissue factor (TF) in the cell membrane of plaque macrophages and/or lipid-laden vascular SMCs to blood components. Uptake of exogenous non-lipoprotein cholesterol and oxLDL by human monocyte-macrophages and foam cells markedly up-regulates TF synthesis and release of TF+ microvesicles,249  ,  250 with a strong correlation between intracellular cholesterol content and TF production.251  ,  252 Such exogenous cholesterol may be derived from intimally retained atherogenic lipoproteins subsequent to their degradation by macrophage- and SMC-derived foam cells. TF expression may also be induced in endothelial cells by remnant lipoproteins.253 Exposure of the extracellular domain of TF to flowing blood initiates the coagulation cascade,254 and leads to thrombin formation; thrombin then cleaves fibrinogen to fibrin, with ensuing formation of a fibrin monolayer covering the surface of the exposed damaged plaque surface. Thrombosis evolves with a predominance of platelets that are rapidly activated and recruited from the blood to the growing thrombus. In addition, hypercholesterolaemia and oxidized lipids can promote procoagulant activity and propagate the coagulation cascade that is initiated by TF-VIII.249 Moreover, it is established that FH is associated with increased platelet activation and an underlying pro-coagulant state.255 Both native and oxidized forms of LDL may prime platelets and increase platelet activation in response to various agonists, thereby contributing to increased risk of atherothrombosis.256  ,  257 Plasma levels of platelet activation markers (such as thrombin-antithrombin complex, soluble P-selectin, and soluble CD40L) or P-selectin exposure at the surface of platelets can also be enhanced in hypercholesterolaemic patients, and are intimately associated with increased platelet membrane cholesterol.

The healthy endothelium typically exhibits strong anticoagulant, antiplatelet, and fibrinolytic properties that counterbalance prothrombotic factors.258 Upon plaque fissure (or plaque erosion), the local antithrombotic actions of the normal endothelium are lost, as endothelium is absent from the fissured or eroded surface. An important amplifier of the thrombotic reaction upon fissure is the interaction between inflammatory cells and platelets,247 which promotes an autocrine loop stimulating platelet aggregation and adhesion and sustained neutrophil adhesion and recruitment.259 Moreover, both oxLDL and oxidized phospholipids may activate platelets.260 The cardiovascular risk reduction seen with antiplatelet therapy is generally thought to be an effect of platelet inhibition in the event of plaque rupture.261 However, platelets may also have direct involvement in plaque instability.261

Does aggressive low-density lipoprotein lowering positively impact the plaque?

Previous sections in this article have described the complex nature of atherosclerotic plaques, including foam cells, lipid cores, fibrotic caps, necrosis, and calcification, all resulting from the retention and accumulation of LDL in the subendothelial matrix.262 The structural complexity of plaques almost certainly constitutes the basis of the heterogeneous progression of ASCVD from subclinical to clinical, 246  ,  263 as demonstrated in early studies where sites of modest stenosis were observed to rapidly progress to a clinical coronary event upon rupture or erosion of plaques, with subsequent complete occlusion of a vessel.264  ,  265 Recent studies, using a variety of intravascular imaging approaches, show that plaque characteristics can not only predict initial events, but also provide important insights into the course of CHD after an individual’s first episode, lesions with large necrotic cores, and thin fibrous caps being significantly associated with greater risk for subsequent events.266–268

Although the evidence that treatments to reduce LDL-C lead to fewer ASCVD events is unequivocal,4  ,  5 understanding of how the beneficial effects of lower circulating LDL levels translate to changes in the atherosclerotic plaque is less clear. A pioneering investigation of bilateral, biopsied carotid endarterectomy samples at baseline and after 6 months of pravastatin treatment was seminal in demonstrating statin-induced increases in collagen content and reductions in lipid content, inflammatory cells, metalloprotease activity, and cell death, all of which favour plaque stabilization.17 Furthermore, several early studies involving quantitative coronary angiography without269 or with intravascular ultrasound18 demonstrated modest but significant benefits from statin-mediated LDL lowering on the degree of coronary artery stenosis. The magnitude of the effects of statin treatment on plaque volume and composition, particularly the thickness of the fibrous cap and the size of the lipid-rich core have not, however, been uniform among studies, potentially reflecting the differing resolution of the imaging modalities applied and dissimilarities in the underlying substrate.270  ,  271 On the other hand, an open-label study with serial intravascular optical coherence tomographic measurements indicated that efficient LDL lowering can alter the balance between cap formation and degradation, leading to thicker caps and, by inference, lower risk of rupture and thrombosis.272 Of note, reductions in LDL-C by the PCSK9 inhibitor evolocumab in a secondary prevention trial reduced major coronary events273 and plaque volume274 but did not alter the composition of plaques over 76 weeks of treatment.275 However, the validity of virtual histology for plaque composition measurements remains uncertain.275 Moreover, this trial was conducted in patients previously treated with a statin, suggesting that the lesions studied may, in all probability, have been stabilized to a significant degree before the addition of evolocumab.

Can high-density lipoprotein or its components modulate intra-plaque biology driven by low-density lipoprotein?

Our understanding of the putative direct role of HDL and its major apolipoprotein, apoAI, in the pathophysiology of atherogenesis remains unclear, as does the potential modulation of the atherogenicity of LDL by HDL and its components within plaque tissue (Box 9). Nonetheless, we cannot exclude the possibility that the biological activities of functional HDL/apoAI particles may directly or indirectly attenuate the atherogenic drive of LDL particles in plaque progression.276–281

Box 9

 Apolipoprotein AI (apoAI), high-density lipoprotein (HDL), and atherosclerosis

  • HDL/apoAI possess diverse functional properties, including cellular cholesterol efflux capacity and anti-oxidative and anti-inflammatory activities.

  • Which of these activities may be most relevant to intra-plaque biology is unclear.

  • HDL/apoAI may slow plaque progression by lipid efflux and by attenuating both intra-plaque oxidative modification of low-density lipoprotein (LDL) and inflammatory processes driven by modified LDL. For example, HDL plasmalogens attenuate the propagation of lipid peroxidation in LDL particles.

  • Abundant apoAI in human atheroma tissue is typically dysfunctional due to extensive oxidative modification.

References: 20  ,  276–310

The finding of abundant dysfunctional, cross-linked apoAI in human atheroma tissue is perhaps relevant.282 Such dysfunction results from chemical modification (oxidation, carbamylation, or glycation) of key amino acid residues in apoAI by macrophage-derived myeloperoxidase;282 moreover, oxidative modification also alters the endothelial effects of HDL.283  ,  284 These observations raise the possibility that a primary function of apoAI/HDL in plaque tissue is anti-inflammatory and anti-oxidative, i.e. apoAI acts to neutralize reactive oxygen species, a central feature of the oxidative stress and inflammation integral to the oxidative modification of LDL and thus to the pathogenesis of accelerated atherosclerosis.285  ,  286 Furthermore, recent data suggest that plasmalogens of the HDL lipidome may also play an antioxidative role by attenuating the propagation of lipid peroxidation in LDL particles.279 These initial insights into the potential actions of HDL/apoAI in counterbalancing the atherogenic effects of LDL particles within plaque tissue require confirmation and extensive additional experimentation.

Missing pieces of the puzzle and their potential translation into innovative therapeutics

Genetic studies suggest that, in addition to LDL, TG-rich remnants and Lp(a) are directly causal in ASCVD, independent of LDL-C levels.6  ,  7  ,  9  ,  11 Indeed, the hazard ratios for myocardial infarction for a 1 mmol/L (39 mg/dL) cholesterol increment were 1.3-fold for LDL, 1.4-fold for remnants, and 1.6-fold for Lp(a) when tested in parallel in approximately 100 000 individuals in the Copenhagen General Population Study (Figure 7).311 Using Mendelian randomization genetic data, the corresponding causal risk ratios for myocardial infarction were 2.1-fold for LDL, 1.7-fold for remnants, and 2.0-fold for Lp(a).

Figure 7

Comparison of risk of myocardial infarction by 1 mmol/L (39 mg/dL) higher levels of low-density lipoprotein (LDL) cholesterol, remnant-cholesterol, and lipoprotein(a)-cholesterol from observational and genetic studies. Data from individuals in the Copenhagen General Population Study adapted with permission from Nordestgaard et al.311

These three lipoprotein classes may differ with respect to the mechanisms that underlie their respective contributions to plaque progression (Figure 7 and Box 10). Therefore, combining all three lipoprotein classes as total apoB or non-HDL-C should demand caution. Simplified expressions, such as ‘atherogenic apoB-containing lipoproteins’, may misinform the reader. As described above, LDL-C is a main causal driver of atherosclerosis development and thereby ASCVD, and typically is the most abundant atherogenic particle in the majority of individuals (LDL ∼1 mmol/L; VLDL ∼ 40 µmol/L). Of note, however, HDL particles are some 10-fold more abundant than those of LDL (∼12 mmol/L). Triglyceride-rich lipoproteins or Lp(a) (molar particle concentration range: 0.1–0.7 mmol/L) may be quantitatively more important than LDL in the causation of ASCVD in some individuals as a function of genetic background and metabolic state.

Box 10

 Outstanding questions

  • Do the causal mechanisms by which low-density lipoprotein (LDL), lipoprotein(a) [Lp(a)], and remnant particles drive atherosclerotic cardiovascular disease differ?

  • Do omega-3 fatty acids influence the mechanisms that underlie the atherogenicity of lipoproteins, including remnants and LDL?

  • Will therapeutic modulation of apolipoprotein C-III and/or ANGPTL3 attenuate the impact of LDL on arterial plaque biology?

  • To what degree can therapeutic modulation of HDL particles and their components attenuate atherobiology driven by LDL?

References: 6  ,  7  ,  9  ,  11  ,  12  ,  287  ,  311–333

ANGPTL3, angiopoietin-like 3.

As a consequence of their elevated cholesterol content (‘remnant cholesterol’, <4000 cholesterol molecules per particle), TG-rich remnants also contribute to intimal cholesterol deposition. Like LDL, remnants enter the arterial intima, in all likelihood by endothelial transcytosis, and are trapped prior to uptake as native (rather than modified) particles by macrophages to produce foam cells.6  ,  312 In addition, hydrolysis of remnant TG by LPL in the arterial intima will produce tissue-toxic free fatty acids and thereby induce inflammation.313  ,  314

In the REDUCE-IT trial, treatment with icosapent ethyl omega-3 fatty acid (4 g daily) resulted in a 25% reduction in ASCVD concomitant with a 20% reduction in plasma TG levels and 40% reduction in C-reactive protein (Box 10).315 This finding is consistent with genetic studies that indicated a causal role of TG in the aetiology of CAD.287  ,  316  ,  317 However, cardiovascular event reduction in the REDUCE-IT trial was independent of TG levels both at baseline and on treatment. This finding might raise questions about the role of TGRL in eliciting clinical benefit. However, consideration of the area under the curve for TGRL and remnants during the atherogenic postprandial period indicates that levels of TGRL and remnants are considerably amplified in subjects with Type 2 diabetes;78 such individuals represented 58% of participants in the REDUCE-IT trial. It is possible that attenuation of the postprandial response by eicosapentanoic acid, the hydrolytic product of icosapent ethyl, may underlie a significant proportion of clinical benefit in the REDUCE-IT trial.

The results of similar cardiovascular outcome trials using another purified omega-3 fatty acid formulation (STRENGTH; NCT02104817) or pemafibrate, a selective peroxisome proliferator-activated receptor alpha agonist, are eagerly awaited.318 In addition, ongoing phase three trials involving inhibitors of apoC-III319 and of ANGPTL3,320  ,  321 whose action enhances the activity of LPL, should significantly reduce remnant cholesterol and TG levels and may translate into cardiovascular benefit (Box 10).

Implications for future prevention of atherosclerotic cardiovascular disease

Extensive evidence on the pathophysiology of ASCVD presented here supplements and extends our earlier review on the causality of LDL based on epidemiological, GWAS, and Mendelian randomization studies, as well as controlled intervention trials with pharmacological agents targeting the LDL receptor.4 Such evidence, together with the associated molecular mechanisms, has clear implications across the continuum of ASCVD prevention (i.e. primordial, primary, secondary, and tertiary) and is consistent with the central concept derived from genomics that the cumulative arterial burden of LDL-C drives the development and progression of ASCVD and its clinical sequelae.4  ,  334  ,  335

Furthermore, the pathophysiological evidence supports therapeutic strategies aimed at maintaining very low levels of LDL-C (e.g. <1 mmol/L or 40 mg/dL) in patients with established ASCVD at very high risk of recurrent events.336 Such low plasma LDL-C levels are now attainable with the combination of statins and PCSK9 inhibitors (with or without addition of ezetimibe), therapeutic regimens that have proven safety and tolerability.273  ,  337  ,  338 The unequivocal body of evidence for LDL causality in ASCVD will impact on future international recommendations for the management of atherogenic and ASCVD-promoting dyslipidaemias and will guide the rational use of both existing and new therapies.339–342 The success of modern programmes of ASCVD prevention will also rely on the practice of precision medicine and patient-centred approaches.343

Finally, this thesis has highlighted emerging mechanistic features of atherosclerosis that can potentially lead to evaluation of new therapeutic targets integral to arterial wall biology and plaque stability. Prominent amongst these are endothelial transcytosis of atherogenic lipoproteins, monocyte/macrophage and SMC biology, efferocytosis, inflammation, innate and adaptive immune responses to the intimal retention of apoB-containing lipoproteins and calcification (Take home figure). The future holds great promise but will not be lacking in surprises.

Take home figure

 Low-density lipoprotein (LDL) and atherobiology. Summary of the principal mechanisms underlying the entry, retention, and accumulation of LDL particles in the artery wall, and subsequent LDL-driven downstream events that are central to the complex pathogenesis of atherothrombosis. Intermediate fatty streak lesions are characterized by subintimal accumulation of macrophage foam cells. AGE, advanced glcation end-products; LDL-C, LDL-cholesterol; MMPs, matrix metallopeptidases

Acknowledgements

The authors thank Sherborne Gibbs Ltd for logistical support during meetings of the Consensus Panel, Dr Jane Stock (European Atherosclerosis Society Consensus Panel Administration Office, London, UK) for editorial and administrative support and Dr Rosie Perkins for scientific editing and proof reading.

Funding

The European Atherosclerosis Society (EAS) supported travel and accommodation of Panel members and meeting logistics. Funding to pay the open access publication charges for this article was provided by the European Atherosclerosis Society.

Conflict of interest: J.F.B. has received research grants from Regeneron and Ferring Pharmaceuticals and honoraria for consultancy from Novo Nordisk. C.J.B. has received honoraria for consultancy and lectures from Amgen and AOP Pharma. J.B. has received research grants from Amgen, AstraZeneca, NovoNordisk, Pfizer, and Regeneron/Sanofi and honoraria for consultancy and lectures from Amgen, AstraZeneca, Eli Lilly, Merck, Novo-Nordisk, Pfizer, and Regeneron/Sanofi. E.B. has received honoraria from AstraZeneca, Amgen, Genfit, MSD, Sanofi-Regeneron, Unilever, Danone, Aegerion, Chiesi, Rottapharm, Lilly, and Servier and research grants from Amgen, Danone, and Aegerion. A.L.C. has received grants from Pfizer, Sanofi, Regeneron, Merck, and Mediolanum; non-financial support from SigmaTau, Menarini, Kowa, Recordati, and Eli Lilly; and personal honoraria for lectures/speakers bureau or consultancy from AstraZeneca, Genzyme, Menarini, Kowa, Eli Lilly, Recordati, Pfizer, Sanofi, Mediolanum, Pfizer, Merck, Sanofi, Aegerion, and Amgen. M.J.C. has received grants from Amgen, Kowa Europe, and Pfizer; and personal honoraria for lectures/speaker’s bureau from Akcea, Alexion, Amarin, Amgen, AstraZeneca, Daiichi-Sankyo, Kowa Europe, Merck/MSD, Pfizer, Sanofi, Regeneron, and Unilever. M.J.D., L.L.D., G.P., M.-R.T., and B.v.d.S. have no conflict of interest to declare. S.F. discloses compensated consultant and advisory activities with Merck, Kowa, Sanofi, Amgen, Amarin, and Aegerion. B.A.F. has received research grants from Merck, Amgen, and Esperion Therapeutics; and received honoraria for lectures, consulting and/or advisory board membership from Merck, Amgen, Esperion, Ionis, and the American College of Cardiology. H.N.G. has received grants and personal honoraria for consultancy from Merck; grants from Sanofi-Regeneron, Amgen, and Medimmune/AstraZeneca; and personal honoraria for consultancy from Janssen, Sanofi, Regeneron, Kowa, Pfizer, and Resverlogix. I.G. has received speaker fees from MSD and Pfizer relating to cardiovascular risk estimation and lipid guidelines, and consultancy/speaker fee from Amgen. R.A.H. has received grants and personal honoraria for consultancy from Acasti and Akcea/Ionis; grants from Regeneron and Boston Heart Diagnostics; and personal honoraria for consultancy from Aegerion, Amgen, Gemphire, and Sanofi. J.D.H. reports honoraria for consultancy from Gilead, Pfizer, Regeneron, Sanofi Aventis, Merck, Gemphire, BioEnergenix, and stock options from Catabasis. R.M.K. has received research grants, consultancy honoraria, and non-financial support from Quest Diagnostics and is also co-inventor of a licensed patent for measurement of lipoprotein particles by ion mobility. U.L. has received honoraria for lectures and/or consulting from Amgen, Medicines Company, Astra Zeneca, Berlin Chemie, Bayer, Abbott, and Sanofi. U.L. has received honoraria for board membership, consultancy, and lectures from Amgen, MSD, Sanofi, and Servier. L.M. has received honoraria for consultancy and lectures from Amgen, Merck, Sanofi-Regeneron, Mylan, and Daiichi-Sankyo. S.J.N. has received research support from Amgen, AstraZeneca, Anthera, Cerenis, Novartis, Eli Lilly, Esperion, Resverlogix, Sanofi-Regeneron, InfraReDx, and LipoScience and is a consultant for Akcea, Amgen, AstraZeneca, Boehringer Ingelheim, CSL Behring, Eli Lilly, Merck, Takeda, Pfizer, Roche, Sanofi-Regeneron, Kowa, and Novartis. B.G.N. reports consultancies and honoraria for lectures from AstraZeneca, Sanofi, Regeneron, Amgen, Akcea, Kowa, Novartis, Novo Nordisk. C.J.P. has received research support from MSD and honoraria from Sanofi/Regeneron, Amgen, and Daiichi-Sankyo. F.J.R. has received personal honoraria for consultancy and non-financial support from Amgen, Sanofi/Regeneron, and The Medicines Company. K.K.R. has received grants and personal honoraria for consultancy, advisory boards and/or lectures from Amgen, Sanofi, Regeneron, MSD, and Pfizer personal honoraria for consultancy, advisory boards and/or lectures from Abbvie, AstraZeneca, The Medicines Company, Resverlogix, Akcea, Boehringer Ingelheim, Novo Nordisk, Takeda, Kowa, Algorithm, Cipla, Cerenis, Dr Reddys, Lilly, Zuellig Pharma, Silence Theapeutics, and Bayer. H.S. has received research grants from AstraZeneca and honoraria for speaker fees/consultancy from AstraZeneca, MSD, Amgen, Bayer Vital GmbH, Boehringer Ingelheim, Novartis, Servier, Daiichi Sankyo, Brahms, Bristol-Myers Squibb, Medtronic, Sanofi Aventis, and Synlab. L.T. has received personal honoraria for lectures/speakers bureau or consultancy from MSD, Sanofi, AMGEN, Abbott, Mylan, Bayer, Actelion, Novartis, Astra, Recordati, Pfizer, Servier, and Novo Nordisk. She is also the President, European Atherosclerosis Society (EAS) and an Editorial Board Member, European Heart Journal. G.F.W. has received research support from Sanofi, Regeneron, Arrowhead and Amgen, and honoraria for board membership from Sanofi, Regeneron, Amgen, Kowa, and Gemphire. O.W. has received honoraria for lectures or consultancy from Sanofi and Amgen.

The opinions expressed in this article are not necessarily those of the Editors of the European Heart Journal or of the European Society of Cardiology.

References

1

Berenson
 
GS
,
Srinivasan
 
SR
,
Bao
 
W
,
Newman
 
WP
 3rd
,
Tracy
 
RE
,
Wattigney
 
WA.
 
Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study
.
N Engl J Med
 
1998
;
338
:
1650
1656
.

2

Newman
 
WP
 3rd ,
Freedman
 
DS
,
Voors
 
AW
,
Gard
 
PD
,
Srinivasan
 
SR
,
Cresanta
 
JL
,
Williamson
 
GD
,
Webber
 
LS
,
Berenson
 
GS.
 
Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study
.
N Engl J Med
 
1986
;
314
:
138
144
.

3

Fernandez-Friera
 
L
,
Penalvo
 
JL
,
Fernandez-Ortiz
 
A
,
Ibanez
 
B
,
Lopez-Melgar
 
B
,
Laclaustra
 
M
,
Oliva
 
B
,
Mocoroa
 
A
,
Mendiguren
 
J
,
Martinez de Vega
 
V
,
Garcia
 
L
,
Molina
 
J
,
Sanchez-Gonzalez
 
J
,
Guzman
 
G
,
Alonso-Farto
 
JC
,
Guallar
 
E
,
Civeira
 
F
,
Sillesen
 
H
,
Pocock
 
S
,
Ordovas
 
JM
,
Sanz
 
G
,
Jimenez-Borreguero
 
LJ
,
Fuster
 
V.
 
Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study
.
Circulation
 
2015
;
131
:
2104
2113
.

4

Ference
 
BA
,
Ginsberg
 
HN
,
Graham
 
I
,
Ray
 
KK
,
Packard
 
CJ
,
Bruckert
 
E
,
Hegele
 
RA
,
Krauss
 
RM
,
Raal
 
FJ
,
Schunkert
 
H
,
Watts
 
GF
,
Borén
 
J
,
Fazio
 
S
,
Horton
 
JD
,
Masana
 
L
,
Nicholls
 
SJ
,
Nordestgaard
 
BG
,
van de Sluis
 
B
,
Taskinen
 
M-R
,
Tokgözoğlu
 
L
,
Landmesser
 
U
,
Laufs
 
U
,
Wiklund
 
O
,
Stock
 
JK
,
Chapman
 
MJ
,
Catapano
 
AL.
 
Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel
.
Eur Heart J
 
2017
;
38
:
2459
2472
.

5

Goldstein
 
JL
,
Brown
 
MS.
 
A century of cholesterol and coronaries: from plaques to genes to statins
.
Cell
 
2015
;
161
:
161
172
.

6

Nordestgaard
 
BG.
 
Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology
.
Circ Res
 
2016
;
118
:
547
563
.

7

Chapman
 
MJ
,
Ginsberg
 
HN
,
Amarenco
 
P
,
Andreotti
 
F
,
Borén
 
J
,
Catapano
 
AL
,
Descamps
 
OS
,
Fisher
 
E
,
Kovanen
 
PT
,
Kuivenhoven
 
JA
,
Lesnik
 
P
,
Masana
 
L
,
Nordestgaard
 
BG
,
Ray
 
KK
,
Reiner
 
Z
,
Taskinen
 
M-R
,
Tokgözoglu
 
L
,
Tybjærg-Hansen
 
A
,
Watts
 
GF
; European Atherosclerosis Society Consensus Panel.
Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management
.
Eur Heart J
 
2011
;
32
:
1345
1361
.

8

Hegele
 
RA
,
Ginsberg
 
HN
,
Chapman
 
MJ
,
Nordestgaard
 
BG
,
Kuivenhoven
 
JA
,
Averna
 
M
,
Borén
 
J
,
Bruckert
 
E
,
Catapano
 
AL
,
Descamps
 
OS
,
Hovingh
 
GK
,
Humphries
 
SE
,
Kovanen
 
PT
,
Masana
 
L
,
Pajukanta
 
P
,
Parhofer
 
KG
,
Raal
 
FJ
,
Ray
 
KK
,
Santos
 
RD
,
Stalenhoef
 
AFH
,
Stroes
 
E
,
Taskinen
 
M-R
,
Tybjærg-Hansen
 
A
,
Watts
 
GF
,
Wiklund
 
O
; European Atherosclerosis Society Consensus Panel.
The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management
.
Lancet Diabetes Endocrinol
 
2014
;
2
:
655
666
.

9

Nordestgaard
 
BG
,
Chapman
 
MJ
,
Ray
 
K
,
Boren
 
J
,
Andreotti
 
F
,
Watts
 
GF
,
Ginsberg
 
H
,
Amarenco
 
P
,
Catapano
 
A
,
Descamps
 
OS
,
Fisher
 
E
,
Kovanen
 
PT
,
Kuivenhoven
 
JA
,
Lesnik
 
P
,
Masana
 
L
,
Reiner
 
Z
,
Taskinen
 
MR
,
Tokgozoglu
 
L
,
Tybjaerg-Hansen
 
A
European Atherosclerosis Society Consensus Panel.
Lipoprotein(a) as a cardiovascular risk factor: current status
.
Eur Heart J
 
2010
;
31
:
2844
2853
.

10

Kamstrup
 
PR
,
Tybjaerg-Hansen
 
A
,
Steffensen
 
R
,
Nordestgaard
 
BG.
 
Genetically elevated lipoprotein(a) and increased risk of myocardial infarction
.
JAMA
 
2009
;
301
:
2331
2339
.

11

Nordestgaard
 
BG
,
Langsted
 
A.
 
Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology
.
J Lipid Res
 
2016
;
57
:
1953
1975
.

12

Thanassoulis
 
G
,
Campbell
 
CY
,
Owens
 
DS
,
Smith
 
JG
,
Smith
 
AV
,
Peloso
 
GM
,
Kerr
 
KF
,
Pechlivanis
 
S
,
Budoff
 
MJ
,
Harris
 
TB
,
Malhotra
 
R
,
O'Brien
 
KD
,
Kamstrup
 
PR
,
Nordestgaard
 
BG
,
Tybjaerg-Hansen
 
A
,
Allison
 
MA
,
Aspelund
 
T
,
Criqui
 
MH
,
Heckbert
 
SR
,
Hwang
 
S-J
,
Liu
 
Y
,
Sjogren
 
M
,
van der Pals
 
J
,
Kälsch
 
H
,
Mühleisen
 
TW
,
Nöthen
 
MM
,
Cupples
 
LA
,
Caslake
 
M
,
Di Angelantonio
 
E
,
Danesh
 
J
,
Rotter
 
JI
,
Sigurdsson
 
S
,
Wong
 
Q
,
Erbel
 
R
,
Kathiresan
 
S
,
Melander
 
O
,
Gudnason
 
V
,
O'Donnell
 
CJ
,
Post
 
WS
; CHARGE Extracoronary Calcium Working Group.
Genetic associations with valvular calcification and aortic stenosis
.
N Engl J Med
 
2013
;
368
:
503
512
.

13

Mahley
 
RW
,
Huang
 
Y
,
Rall
 
SC
 
Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes
.
J Lipid Res
 
1999
;
40
:
1933
1949
.

14

Laufs
 
U
,
Parhofer
 
KG
,
Ginsberg
 
HN
,
Hegele
 
RA.
 
Clinical review on triglycerides
.
Eur Heart J
 
2020
;
41
:
99
109
.

15

Ellis
 
KL
,
Boffa
 
MB
,
Sahebkar
 
A
,
Koschinsky
 
ML
,
Watts
 
GF.
 
The renaissance of lipoprotein(a): brave new world for preventive cardiology?
 
Prog Lipid Res
 
2017
;
68
:
57
82
.

16

Tsimikas
 
S
,
Fazio
 
S
,
Ferdinand
 
KC
,
Ginsberg
 
HN
,
Koschinsky
 
ML
,
Marcovina
 
SM
,
Moriarty
 
PM
,
Rader
 
DJ
,
Remaley
 
AT
,
Reyes-Soffer
 
G
,
Santos
 
RD
,
Thanassoulis
 
G
,
Witztum
 
JL
,
Danthi
 
S
,
Olive
 
M
,
Liu
 
L.
 
NHLBI Working Group recommendations to reduce lipoprotein(a)-mediated risk of cardiovascular disease and aortic stenosis
.
J Am Coll Cardiol
 
2018
;
71
:
177
192
.

17

Crisby
 
M
,
Nordin-Fredriksson
 
G
,
Shah
 
PK
,
Yano
 
J
,
Zhu
 
J
,
Nilsson
 
J.
 
Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization
.
Circulation
 
2001
;
103
:
926
933
.

18

Nissen
 
SE
,
Nicholls
 
SJ
,
Sipahi
 
I
,
Libby
 
P
,
Raichlen
 
JS
,
Ballantyne
 
CM
,
Davignon
 
J
,
Erbel
 
R
,
Fruchart
 
JC
,
Tardif
 
JC
,
Schoenhagen
 
P
,
Crowe
 
T
,
Cain
 
V
,
Wolski
 
K
,
Goormastic
 
M
,
Tuzcu
 
EM
; ASTEROID Investigators.
Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the trial
.
JAMA
 
2006
;
295
:
1556
1565
.

19

Nicholls
 
SJ
,
Ballantyne
 
CM
,
Barter
 
PJ
,
Chapman
 
MJ
,
Erbel
 
RM
,
Libby
 
P
,
Raichlen
 
JS
,
Uno
 
K
,
Borgman
 
M
,
Wolski
 
K
,
Nissen
 
SE.
 
Effect of two intensive statin regimens on progression of coronary disease
.
N Engl J Med
 
2011
;
365
:
2078
2087
.

20

Di Bartolo
 
BA
,
Psaltis
 
PJ
,
Bursill
 
CA
,
Nicholls
 
SJ.
 
Translating evidence of HDL and plaque regression
.
Arterioscler Thromb Vasc Biol
 
2018
;
38
:
1961
1968
.

21

Tabas
 
I
,
Williams
 
KJ
,
Borén
 
J.
 
Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications
.
Circulation
 
2007
;
116
:
1832
1844
.

22

Williams
 
KJ
,
Tabas
 
I.
 
The response-to-retention hypothesis of early atherogenesis
.
Arterioscler Thromb Vasc Biol
 
1995
;
15
:
551
561
.

23

Schwenke
 
DC
,
Carew
 
TE.
 
Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries
.
Arteriosclerosis
 
1989
;
9
:
908
918
.

24

Schwenke
 
DC
,
Carew
 
TE.
 
Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions
.
Arteriosclerosis
 
1989
;
9
:
895
907
.

25

Stender
 
S
,
Zilversmit
 
DB.
 
Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx
.
Arteriosclerosis
 
1981
;
1
:
38
49
.

26

Nordestgaard
 
BG
,
Zilversmit
 
DB.
 
Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits
.
J Lipid Res
 
1988
;
29
:
1491
1500
.

27

Nordestgaard
 
BG
,
Tybjaerg-Hansen
 
A
,
Lewis
 
B.
 
Influx in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants
.
Arterioscler Thromb
 
1992
;
12
:
6
18
.

28

Nordestgaard
 
BG
,
Wootton
 
R
,
Lewis
 
B.
 
Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media
.
Arterioscler Thromb Vasc Biol
 
1995
;
15
:
534
542
.

29

Nielsen
 
LB
,
Stender
 
S
,
Jauhiainen
 
M
,
Nordestgaard
 
BG.
 
Preferential influx and decreased fractional loss of lipoprotein(a) in atherosclerotic compared with nonlesioned rabbit aorta
.
J Clin Invest
 
1996
;
98
:
563
571
.

30

Mundi
 
S
,
Massaro
 
M
,
Scoditti
 
E
,
Carluccio
 
MA
,
van Hinsbergh
 
VWM
,
Iruela-Arispe
 
ML
,
De Caterina
 
R.
 
Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review
.
Cardiovasc Res
 
2018
;
114
:
35
52
.

31

Zanoni
 
P
,
Velagapudi
 
S
,
Yalcinkaya
 
M
,
Rohrer
 
L
,
von Eckardstein
 
A.
 
Endocytosis of lipoproteins
.
Atherosclerosis
 
2018
;
275
:
273
295
.

32

Zhang
 
X
,
Sessa
 
WC
,
Fernandez-Hernando
 
C.
 
Endothelial transcytosis of lipoproteins in atherosclerosis
.
Front Cardiovasc Med
 
2018
;
5
:
130
.

33

Nordestgaard
 
BG.
 
The vascular endothelial barrier–selective retention of lipoproteins
.
Curr Opin Lipidol
 
1996
;
7
:
269
273
.

34

Frank
 
PG
,
Lisanti
 
MP.
 
Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia
.
Current Opin Lipidol
 
2004
;
15
:
523
529
.

35

Fernandez-Hernando
 
C
,
Yu
 
J
,
Suarez
 
Y
,
Rahner
 
C
,
Davalos
 
A
,
Lasuncion
 
MA
,
Sessa
 
WC.
 
Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis
.
Cell Metab
 
2009
;
10
:
48
54
.

36

Frank
 
PG
,
Pavlides
 
S
,
Lisanti
 
MP.
 
Caveolae and transcytosis in endothelial cells: role in atherosclerosis
.
Cell Tissue Res
 
2009
;
335
:
41
47
.

37

Armstrong
 
SM
,
Sugiyama
 
MG
,
Levy
 
A
,
Neculai
 
D
,
Roufaiel
 
M
,
Bolz
 
S-S
,
Cybulsky
 
M
,
Heit
 
B
,
Lee
 
WL.
 
Novel assay for detection of LDL transcytosis across coronary endothelium reveals an unexpected role for SR-B1
.
Circulation
 
2014
;
130
(Suppl_2):
A11607
.

38

Kraehling
 
JR
,
Chidlow
 
JH
,
Rajagopal
 
C
,
Sugiyama
 
MG
,
Fowler
 
JW
,
Lee
 
MY
,
Zhang
 
X
,
Ramírez
 
CM
,
Park
 
EJ
,
Tao
 
B
,
Chen
 
K
,
Kuruvilla
 
L
,
Larriveé
 
B
,
Folta-Stogniew
 
E
,
Ola
 
R
,
Rotllan
 
N
,
Zhou
 
W
,
Nagle
 
MW
,
Herz
 
J
,
Williams
 
KJ
,
Eichmann
 
A
,
Lee
 
WL
,
Fernández-Hernando
 
C
,
Sessa
 
WC.
 
Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells
.
Nat Commun
 
2016
;
7
:
13516.

39

Dehouck
 
B
,
Fenart
 
L
,
Dehouck
 
MP
,
Pierce
 
A
,
Torpier
 
G
,
Cecchelli
 
R.
 
A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier
.
J Cell Biol
 
1997
;
138
:
877
889
.

40

Armstrong
 
SM
,
Sugiyama
 
MG
,
Fung
 
KY
,
Gao
 
Y
,
Wang
 
C
,
Levy
 
AS
,
Azizi
 
P
,
Roufaiel
 
M
,
Zhu
 
SN
,
Neculai
 
D
,
Yin
 
C
,
Bolz
 
SS
,
Seidah
 
NG
,
Cybulsky
 
MI
,
Heit
 
B
,
Lee
 
WL.
 
A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis
.
Cardiovasc Res
 
2015
;
108
:
268
277
.

41

Huang
 
L
,
Chambliss
 
KL
,
Gao
 
X
,
Yuhanna
 
IS
,
Behling-Kelly
 
E
,
Bergaya
 
S
,
Ahmed
 
M
,
Michaely
 
P
,
Luby-Phelps
 
K
,
Darehshouri
 
A
,
Xu
 
L
,
Fisher
 
EA
,
Ge
 
WP
,
Mineo
 
C
,
Shaul
 
PW.
 
SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis
.
Nature
 
2019
;
569
:
565
569
.

42

Ghaffari
 
S
,
Naderi Nabi
 
F
,
Sugiyama
 
MG
,
Lee
 
WL.
 
Estrogen inhibits LDL (Low-Density Lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-Protein-Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1)
.
Arterioscler Thromb Vasc Biol
 
2018
;
38
:
2283
2294
.

43

Gordon
 
T
,
Kannel
 
WB
,
Hjortland
 
MC
,
McNamara
 
PM.
 
Menopause and coronary heart disease. The Framingham Study
.
Ann Intern Med
 
1978
;
89
:
157
161
.

44

Sessa
 
WC.
 
Estrogen reduces LDL (low-density lipoprotein) transcytosis
.
Arterioscler Thromb Vasc Biol
 
2018
;
38
:
2276
2277
.

45

Bian
 
F
,
Yang
 
XY
,
Xu
 
G
,
Zheng
 
T
,
Jin
 
S.
 
CRP-induced NLRP3 inflammasome activation increases LDL transcytosis across endothelial cells
.
Front Pharmacol
 
2019
;
10
:
40
.

46

Bai
 
X
,
Yang
 
X
,
Jia
 
X
,
Rong
 
Y
,
Chen
 
L
,
Zeng
 
T
,
Deng
 
X
,
Li
 
W
,
Wu
 
G
,
Wang
 
L
,
Li
 
Y
,
Zhang
 
J
,
Xiong
 
Z
,
Xiong
 
L
,
Wang
 
Y
,
Zhu
 
L
,
Zhao
 
Y
,
Jin
 
S.
 
CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose-stimulated LDL transcytosis
.
Autophagy
 
2019
;doi: 10.1080/15548627.2019.1659613.

47

Bartels
 
ED
,
Christoffersen
 
C
,
Lindholm
 
MW
,
Nielsen
 
LB.
 
Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression
.
Circ Res
 
2015
;
117
:
933
942
.

48

Williams
 
KJ
,
Tabas
 
I
,
Fisher
 
EA.
 
How an artery heals
.
Circ Res
 
2015
;
117
:
909
913
.

49

Boren
 
J
,
Olin
 
K
,
Lee
 
I
,
Chait
 
A
,
Wight
 
TN
,
Innerarity
 
TL.
 
Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding
.
J Clin Invest
 
1998
;
101
:
2658
2664
.

50

Skalen
 
K
,
Gustafsson
 
M
,
Rydberg
 
EK
,
Hulten
 
LM
,
Wiklund
 
O
,
Innerarity
 
TL
,
Boren
 
J.
 
Subendothelial retention of atherogenic lipoproteins in early atherosclerosis
.
Nature
 
2002
;
417
:
750
754
.

51

Camejo
 
G
,
Lalaguna
 
F
,
Lopez
 
F
,
Starosta
 
R.
 
Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta
.
Atherosclerosis
 
1980
;
35
:
307
320
.

52

Melchior
 
JT
,
Sawyer
 
JK
,
Kelley
 
KL
,
Shah
 
R
,
Wilson
 
MD
,
Hantgan
 
RR
,
Rudel
 
LLL.
LDL
particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis
.
J Lipid Res
 
2013
;
54
:
2495
2503
.

53

O'Brien
 
KD
,
McDonald
 
TO
,
Kunjathoor
 
V
,
Eng
 
K
,
Knopp
 
EA
,
Lewis
 
K
,
Lopez
 
R
,
Kirk
 
EA
,
Chait
 
A
,
Wight
 
TN
,
deBeer
 
FC
,
LeBoeuf
 
RC.
 
Serum amyloid A and lipoprotein retention in murine models of atherosclerosis
.
Arterioscler Thromb Vasc Biol
 
2005
;
25
:
785
790
.

54

Hiukka
 
A
,
Stahlman
 
M
,
Pettersson
 
C
,
Levin
 
M
,
Adiels
 
M
,
Teneberg
 
S
,
Leinonen
 
ES
,
Hulten
 
LM
,
Wiklund
 
O
,
Oresic
 
M
,
Olofsson
 
SO
,
Taskinen
 
MR
,
Ekroos
 
K
,
Boren
 
J.
 
ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan
.
Diabetes
 
2009
;
58
:
2018
2026
.

55

Olin-Lewis
 
K
,
Krauss
 
RM
,
La Belle
 
M
,
Blanche
 
PJ
,
Barrett
 
PH
,
Wight
 
TN
,
Chait
 
A.
 
ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan
.
J Lipid Res
 
2002
;
43
:
1969
1977
.

56

Nakashima
 
Y
,
Fujii
 
H
,
Sumiyoshi
 
S
,
Wight
 
TN
,
Sueishi
 
K.
 
Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration
.
Arterioscler Thromb Vasc Biol
 
2007
;
27
:
1159
1165
.

57

Nakashima
 
Y
,
Wight
 
TN
,
Sueishi
 
K.
 
Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans
.
Cardiovasc Res
 
2008
;
79
:
14
23
.

58

Nakashima
 
Y
,
Chen
 
YX
,
Kinukawa
 
N
,
Sueishi
 
K.
 
Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age
.
Virchows Arch
 
2002
;
441
:
279
288
.

59

Velican
 
C
,
Velican
 
D.
 
Natural resistance to atherosclerosis exhibited by the first centimeter of left and right coronary arteries
.
Atherosclerosis
 
1984
;
50
:
173
181
.

60

Steffensen
 
LB
,
Mortensen
 
MB
,
Kjolby
 
M
,
Hagensen
 
MK
,
Oxvig
 
C
,
Bentzon
 
JF.
 
Disturbed laminar blood flow vastly augments lipoprotein retention in the artery wall: a key mechanism distinguishing susceptible from resistant sites
.
Arterioscler Thromb Vasc Biol
 
2015
;
35
:
1928
1935
.

61

Peiffer
 
V
,
Sherwin
 
SJ
,
Weinberg
 
PD.
 
Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review
.
Cardiovasc Res
 
2013
;
99
:
242
250
.

62

Kalan
 
JM
,
Roberts
 
WC.
 
Morphologic findings in saphenous veins used as coronary arterial bypass conduits for longer than 1 year: necropsy analysis of 53 patients, 123 saphenous veins, and 1865 five-millimeter segments of veins
.
Am Heart J
 
1990
;
119
:
1164
1184
.

63

Klarin
 
D
,
Damrauer
 
SM
,
Cho
 
K
,
Sun
 
YV
,
Teslovich
 
TM
,
Honerlaw
 
J
,
Gagnon
 
DR
,
DuVall
 
SL
,
Li
 
J
,
Peloso
 
GM
,
Chaffin
 
M
,
Small
 
AM
,
Huang
 
J
,
Tang
 
H
,
Lynch
 
JA
,
Ho
 
YL
,
Liu
 
DJ
,
Emdin
 
CA
,
Li
 
AH
,
Huffman
 
JE
,
Lee
 
JS
,
Natarajan
 
P
,
Chowdhury
 
R
,
Saleheen
 
D
,
Vujkovic
 
M
,
Baras
 
A
,
Pyarajan
 
S
,
Di Angelantonio
 
E
,
Neale
 
BM
,
Naheed
 
A
,
Khera
 
AV
,
Danesh
 
J
,
Chang
 
KM
,
Abecasis
 
G
,
Willer
 
C
,
Dewey
 
FE
,
Carey
 
DJ
Global Lipids Genetics ConsortiumMyocardial Infarction Genetics (MIGen) ConsortiumGeisinger-Regeneron DiscovEHR CollaborationVA Million Veteran Program
Concato
 
J
,
Gaziano
 
JM
,
O'Donnell
 
CJ
,
Tsao
 
PS
,
Kathiresan
 
S
,
Rader
 
DJ
,
Wilson
 
PWF
,
Assimes
 
TL
.
Genetics of blood lipids among ∼300,000 multi-ethnic participants of the Million Veteran Program
.
Nat Genet
 
2018
;
50
:
1514
1523
.

64

Berneis
 
KK
,
Krauss
 
RM.
 
Metabolic origins and clinical significance of LDL heterogeneity
.
J Lipid Res
 
2002
;
43
:
1363
1379
.

65

Segrest
 
JP
,
Jones
 
MK
,
De Loof
 
H
,
Dashti
 
N.
 
Structure of apolipoprotein B-100 in low density lipoproteins
.
J Lipid Res
 
2001
;
42
:
1346
1367
.

66

Chapman
 
MJ
,
Laplaud
 
PM
,
Luc
 
G
,
Forgez
 
P
,
Bruckert
 
E
,
Goulinet
 
S
,
Lagrange
 
D.
 
Further resolution of the low density lipoprotein spectrum in normal human plasma: physicochemical characteristics of discrete subspecies separated by density gradient ultracentrifugation
.
J Lipid Res
 
1988
;
29
:
442
458
.

67

Tribble
 
DL
,
van den Berg
 
JJ
,
Motchnik
 
PA
,
Ames
 
BN
,
Lewis
 
DM
,
Chait
 
A
,
Krauss
 
RM.
 
Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content
.
Proc Natl Acad Sci USA
 
1994
;
91
:
1183
1187
.

68

Wagner
 
J
,
Riwanto
 
M
,
Besler
 
C
,
Knau
 
A
,
Fichtlscherer
 
S
,
Roxe
 
T
,
Zeiher
 
AM
,
Landmesser
 
U
,
Dimmeler
 
S.
 
Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs
.
Arterioscler Thromb Vasc Biol
 
2013
;
33
:
1392
1400
.

69

Lund-Katz
 
S
,
Laplaud
 
PM
,
Phillips
 
MC
,
Chapman
 
MJ.
 
Apolipoprotein B-100 conformation and particle surface charge in human LDL subspecies: implication for LDL receptor interaction
.
Biochemistry
 
1998
;
37
:
12867
12874
.

70

Galeano
 
NF
,
Al-Haideri
 
M
,
Keyserman
 
F
,
Rumsey
 
SC
,
Deckelbaum
 
RJ.
 
Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity
.
J Lipid Res
 
1998
;
39
:
1263
1273
.

71

Anber
 
V
,
Griffin
 
BA
,
McConnell
 
M
,
Packard
 
CJ
,
Shepherd
 
J.
 
Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans
.
Atherosclerosis
 
1996
;
124
:
261
271
.

72

Tselepis
 
AD
,
Dentan
 
C
,
Karabina
 
SA
,
Chapman
 
MJ
,
Ninio
 
E.
 
PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme
.
Arterioscler Thromb Vasc Biol
 
1995
;
15
:
1764
1773
.

73

Chancharme
 
L
,
Thérond
 
P
,
Nigon
 
F
,
Lepage
 
S
,
Couturier
 
M
,
Chapman
 
MJ.
 
Cholesteryl ester hydroperoxide lability is a key feature of the oxidative susceptibility of small, dense LDL
.
Arterioscler Thromb Vasc Biol
 
1999
;
19
:
810
820
.

74

Packard
 
CJ
,
Shepherd
 
J.
 
Lipoprotein heterogeneity and apolipoprotein B metabolism
.
Arterioscler Thromb Vasc Biol
 
1997
;
17
:
3542
3556
.

75

Diffenderfer
 
MR
,
Schaefer
 
EJ.
 
The composition and metabolism of large and small LDL
.
Curr Opin Lipidol
 
2014
;
25
:
221
226
.

76

Tremblay
 
AJ
,
Lamarche
 
B
,
Ruel
 
IL
,
Hogue
 
JC
,
Bergeron
 
J
,
Gagne
 
C
,
Couture
 
P.
 
Increased production of VLDL apoB-100 in subjects with familial hypercholesterolemia carrying the same null LDL receptor gene mutation
.
J Lipid Res
 
2004
;
45
:
866
872
.

77

Guerin
 
M
,
Dolphin
 
PJ
,
Chapman
 
MJ.
 
Preferential cholesteryl ester acceptors among the LDL subspecies of subjects with familial hypercholesterolemia
.
Arterioscler Thromb
 
1994
;
14
:
679
685
.

78

Taskinen
 
MR
,
Boren
 
J.
 
New insights into the pathophysiology of dyslipidemia in type 2 diabetes
.
Atherosclerosis
 
2015
;
239
:
483
495
.

79

Krauss
 
RM.
 
Lipids and lipoproteins in patients with type 2 diabetes
.
Diabetes Care
 
2004
;
27
:
1496
1504
.

80

Guerin
 
M
,
Le Goff
 
W
,
Lassel
 
TS
,
Van Tol
 
A
,
Steiner
 
G
,
Chapman
 
MJ.
 
Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: impact of the degree of triglyceridemia
.
Arterioscler Thromb Vasc Biol
 
2001
;
21
:
282
288
.

81

Krauss
 
RM.
 
Lipoprotein subfractions and cardiovascular disease risk
.
Curr Opin Lipidol
 
2010
;
21
:
305
311
.

82

Nigon
 
F
,
Lesnik
 
P
,
Rouis
 
M
,
Chapman
 
MJ.
 
Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor
.
J Lipid Res
 
1991
;
32
:
1741
1753
.

83

Campos
 
H
,
Arnold
 
KS
,
Balestra
 
ME
,
Innerarity
 
TL
,
Krauss
 
RM.
 
Differences in receptor binding of LDL subfractions
.
Arterioscler Thromb Vasc Biol
 
1996
;
16
:
794
801
.

84

Thongtang
 
N
,
Diffenderfer
 
MR
,
Ooi
 
EMM
,
Barrett
 
PHR
,
Turner
 
SM
,
Le
 
NA
,
Brown
 
WV
,
Schaefer
 
EJ.
 
Metabolism and proteomics of large and small dense LDL in combined hyperlipidemia: effects of rosuvastatin
.
J Lipid Res
 
2017
;
58
:
1315
1324
.

85

Shin
 
MJ
,
Krauss
 
RM.
 
Apolipoprotein CIII bound to apoB-containing lipoproteins is associated with small, dense LDL independent of plasma triglyceride levels in healthy men
.
Atherosclerosis
 
2010
;
211
:
337
341
.

86

Krauss
 
RM
,
Wojnooski
 
K
,
Orr
 
J
,
Geaney
 
JC
,
Pinto
 
CA
,
Liu
 
Y
,
Wagner
 
JA
,
Luk
 
JM
,
Johnson-Levonas
 
AO
,
Anderson
 
MS
,
Dansky
 
HM.
 
Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib
.
J Lipid Res
 
2012
;
53
:
540
547
.

87

La Belle
 
M
,
Blanche
 
PJ
,
Krauss
 
RM.
 
Charge properties of low density lipoprotein subclasses
.
J Lipid Res
 
1997
;
38
:
690
700
.

88

La Belle
 
M
,
Krauss
 
RM.
 
Differences in carbohydrate content of low density lipoproteins associated with low density lipoprotein subclass patterns
.
J Lipid Res
 
1990
;
31
:
1577
1588
.

89

Stahlman
 
M
,
Pham
 
HT
,
Adiels
 
M
,
Mitchell
 
TW
,
Blanksby
 
SJ
,
Fagerberg
 
B
,
Ekroos
 
K
,
Boren
 
J.
 
Clinical dyslipidaemia is associated with changes in the lipid composition and inflammatory properties of apolipoprotein-B-containing lipoproteins from women with type 2 diabetes
.
Diabetologia
 
2012
;
55
:
1156
1166
.

90

Krauss
 
RM
,
Burke
 
DJ.
 
Identification of multiple subclasses of plasma low density lipoproteins in normal humans
.
J Lipid Res
 
1982
;
23
:
97
104
.

91

Adiels
 
M
,
Olofsson
 
S-O
,
Taskinen
 
M-R
,
Borén
 
J.
 
Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome
.
Arterioscler Thromb Vasc Biol
 
2008
;
28
:
1225
1236
.

92

Adiels
 
M
,
Taskinen
 
M-R
,
Packard
 
C
,
Caslake
 
MJ
,
Soro-Paavonen
 
A
,
Westerbacka
 
J
,
Vehkavaara
 
S
,
Häkkinen
 
A
,
Olofsson
 
S-O
,
Yki-Järvinen
 
H
,
Borén
 
J.
 
Overproduction of large VLDL particles is driven by increased liver fat content in man
.
Diabetologia
 
2006
;
49
:
755
765
.

93

Boren
 
J
,
Watts
 
GF
,
Adiels
 
M
,
Soderlund
 
S
,
Chan
 
DC
,
Hakkarainen
 
A
,
Lundbom
 
N
,
Matikainen
 
N
,
Kahri
 
J
,
Verges
 
B
,
Barrett
 
PH
,
Taskinen
 
MR.
 
Kinetic and related determinants of plasma triglyceride concentration in abdominal obesity: multicenter Tracer Kinetic Study
.
Arterioscler Thromb Vasc Biol
 
2015
;
35
:
2218
2224
.

94

Taskinen
 
MR
,
Boren
 
J.
 
Why is apolipoprotein CIII emerging as a novel therapeutic target to reduce the burden of cardiovascular disease?
 
Curr Atheroscler Rep
 
2016
;
18
:
59
.

95

Taskinen
 
M-R
,
Adiels
 
M
,
Westerbacka
 
J
,
Söderlund
 
S
,
Kahri
 
J
,
Lundbom
 
N
,
Lundbom
 
J
,
Hakkarainen
 
A
,
Olofsson
 
S-O
,
Orho-Melander
 
M
,
Borén
 
J.
 
Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects
.
Arterioscler Thromb Vasc Biol
 
2011
;
31
:
2144
2150
.

96

Lada
 
AT
,
Rudel
 
LL.
 
Associations of low density lipoprotein particle composition with atherogenicity
.
Curr Opin Lipidol
 
2004
;
15
:
19
24
.

97

Ruuth
 
M
,
Nguyen
 
SD
,
Vihervaara
 
T
,
Hilvo
 
M
,
Laajala
 
TD
,
Kondadi
 
PK
,
Gisterå
 
A
,
Lähteenmäki
 
H
,
Kittilä
 
T
,
Huusko
 
J
,
Uusitupa
 
M
,
Schwab
 
U
,
Savolainen
 
MJ
,
Sinisalo
 
J
,
Lokki
 
M-L
,
Nieminen
 
MS
,
Jula
 
A
,
Perola
 
M
,
Ylä-Herttula
 
S
,
Rudel
 
L
,
Öörni
 
A
,
Baumann
 
M
,
Baruch
 
A
,
Laaksonen
 
R
,
Ketelhuth
 
DFJ
,
Aittokallio
 
T
,
Jauhiainen
 
M
,
Käkelä
 
R
,
Borén
 
J
,
Williams
 
KJ
,
Kovanen
 
PT
,
Öörni
 
K.
 
Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths
.
Eur Heart J
 
2018
;
39
:
2562
2573
.

98

Musunuru
 
K
,
Orho-Melander
 
M
,
Caulfield
 
MP
,
Li
 
S
,
Salameh
 
WA
,
Reitz
 
RE
,
Berglund
 
G
,
Hedblad
 
B
,
Engström
 
G
,
Williams
 
PT
,
Kathiresan
 
S
,
Melander
 
O
,
Krauss
 
RM.
 
Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk
.
Arterioscler Thromb Vasc Biol
 
2009
;
29
:
1975
1980
.

99

Griffin
 
BA
,
Caslake
 
MJ
,
Yip
 
B
,
Tait
 
GW
,
Packard
 
CJ
,
Shepherd
 
J.
 
Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation
.
Atherosclerosis
 
1990
;
83
:
59
67
.

100

Li
 
KM
,
Wilcken
 
DE
,
Dudman
 
NP.
 
Effect of serum lipoprotein(a) on estimation of low-density lipoprotein cholesterol by the Friedewald formula
.
Clin Chem
 
1994
;
40
:
571
573
.

101

Giral
 
P
,
Simon
 
D
,
Chapman
 
MJ.
 
Letter by Giral et al regarding article, “lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin).”
 
Circulation
 
2014
;
130
:
e151
.

102

Chapman
 
MJ
,
Le Goff
 
W
,
Guerin
 
M
,
Kontush
 
A.
 
Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors
.
Eur Heart J
 
2010
;
31
:
149
164
.

103

Bjornson
 
E
,
Packard
 
CJ
,
Adiels
 
M
,
Andersson
 
L
,
Matikainen
 
N
,
Soderlund
 
S
,
Kahri
 
J
,
Sihlbom
 
C
,
Thorsell
 
A
,
Zhou
 
H
,
Taskinen
 
MR
,
Boren
 
J.
 
Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics
.
J Intern Med
 
2019
;
285
:
562
577
.

104

Boren
 
J
,
Lee
 
I
,
Zhu
 
W
,
Arnold
 
K
,
Taylor
 
S
,
Innerarity
 
TL.
 
Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100
.
J Clin Invest
 
1998
;
101
:
1084
1093
.

105

Flood
 
C
,
Gustafsson
 
M
,
Pitas
 
RE
,
Arnaboldi
 
L
,
Walzem
 
RL
,
Borén
 
J.
 
Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein-containing human apolipoprotein B100
.
Arterioscler Thromb Vasc Biol
 
2004
;
24
:
564
570
.

106

Barter
 
PJ
,
Brewer
 
HB
 Jr
,
Chapman
 
MJ
,
Hennekens
 
CH
,
Rader
 
DJ
,
Tall
 
AR.
 
Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis
.
Arterioscler Thromb Vasc Biol
 
2003
;
23
:
160
167
.

107

Mahley
 
RW
,
Huang
 
Y.
 
Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing
.
J Clin Invest
 
2007
;
117
:
94
98
.

108

Kypreos
 
KE
,
Zannis
 
VI.
 
LDL receptor deficiency or apoE mutations prevent remnant clearance and induce hypertriglyceridemia in mice
.
J Lipid Res
 
2006
;
47
:
521
529
.

109

Williams
 
KJ.
 
Molecular processes that handle—and mishandle—dietary lipids
.
J Clin Invest
 
2008
;
118
:
3247
3259
.

110

Austin
 
MA
,
King
 
MC
,
Vranizan
 
KM
,
Krauss
 
RM.
 
Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk
.
Circulation
 
1990
;
82
:
495
506
.

111

Nordestgaard
 
BG
,
Zilversmit
 
DB.
 
Comparison of arterial intimal clearances of LDL from diabetic and nondiabetic cholesterol-fed rabbits. Differences in intimal clearance explained by size differences
.
Arteriosclerosis
 
1989
;
9
:
176
183
.

112

Younis
 
N
,
Charlton-Menys
 
V
,
Sharma
 
R
,
Soran
 
H
,
Durrington
 
PN.
 
Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro
.
Atherosclerosis
 
2009
;
202
:
162
168
.

113

de Queiroz Mello
 
AP
,
da Silva
 
IT
,
Oliveira
 
AS
,
Nunes
 
VS
,
Abdalla
 
DS
,
Gidlund
 
M
,
Damasceno
 
NR.
 
Electronegative low-density lipoprotein is associated with dense low-density lipoprotein in subjects with different levels of cardiovascular risk
.
Lipids
 
2010
;
45
:
619
625
.

114

Steinberg
 
D
,
Parthasarathy
 
S
,
Carew
 
TE
,
Khoo
 
JC
,
Witztum
 
JL.
 
Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity
.
N Engl J Med
 
1989
;
320
:
915
924
.

115

Tabas
 
I.
 
Consequences of cellular cholesterol accumulation: basic concepts and physiological implications
.
J Clin Invest
 
2002
;
110
:
905
911
.

116

Moore
 
KJ
,
Tabas
 
I.
 
Macrophages in the pathogenesis of atherosclerosis
.
Cell
 
2011
;
145
:
341
355
.

117

Witztum
 
JL
,
Lichtman
 
AH.
 
The influence of innate and adaptive immune responses on atherosclerosis
.
Annu Rev Pathol
 
2014
;
9
:
73
102
.

118

Steinberg
 
D
,
Witztum
 
JL.
 
Oxidized low-density lipoprotein and atherosclerosis
.
Arterioscler Thromb Vasc Biol
 
2010
;
30
:
2311
2316
.

119

Nordestgaard
 
BG
,
Stender
 
S
,
Kjeldsen
 
K.
 
Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall
.
Arteriosclerosis
 
1988
;
8
:
421
428
.

120

Koo
 
C
,
Wernette-Hammond
 
ME
,
Garcia
 
Z
,
Malloy
 
MJ
,
Uauy
 
R
,
East
 
C
,
Bilheimer
 
DW
,
Mahley
 
RW
,
Innerarity
 
TL.
 
Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors
.
J Clin Invest
 
1988
;
81
:
1332
1340
.

121

Babaev
 
VR
,
Fazio
 
S
,
Gleaves
 
LA
,
Carter
 
KJ
,
Semenkovich
 
CF
,
Linton
 
MF.
 
Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo
.
J Clin Invest
 
1999
;
103
:
1697
1705
.

122

Gustafsson
 
M
,
Levin
 
M
,
Skalen
 
K
,
Perman
 
J
,
Fridén
 
V
,
Jirholt
 
P
,
Olofsson
 
S-O
,
Fazio
 
S
,
Linton
 
MF
,
Semenkovich
 
CF
,
Olivecrona
 
G
,
Borén
 
J.
 
Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase
.
Circ Res
 
2007
;
101
:
777
783
.

123

Ullery-Ricewick
 
JC
,
Cox
 
BE
,
Griffin
 
EE
,
Jerome
 
WG.
 
Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells
.
J Lipid Res
 
2009
;
50
:
2014
2026
.

124

Hoogeveen
 
RC
,
Gaubatz
 
JW
,
Sun
 
W
,
Dodge
 
RC
,
Crosby
 
JR
,
Jiang
 
J
,
Couper
 
D
,
Virani
 
SS
,
Kathiresan
 
S
,
Boerwinkle
 
E
,
Ballantyne
 
CM.
 
Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study
.
Arterioscler Thromb Vasc Biol
 
2014
;
34
:
1069
1077
.

125

Tsai
 
MY
,
Steffen
 
BT
,
Guan
 
W
,
McClelland
 
RL
,
Warnick
 
R
,
McConnell
 
J
,
Hoefner
 
DM
,
Remaley
 
AT.
 
New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-ethnic Study of Atherosclerosis
.
Arterioscler Thromb Vasc Biol
 
2014
;
34
:
196
201
.

126

Mora
 
S
,
Caulfield
 
MP
,
Wohlgemuth
 
J
,
Chen
 
Z
,
Superko
 
HR
,
Rowland
 
CM
,
Glynn
 
RJ
,
Ridker
 
PM
,
Krauss
 
RM.
 
Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial
.
Circulation
 
2015
;
132
:
2220
2229
.

127

Musunuru
 
K
,
Strong
 
A
,
Frank-Kamenetsky
 
M
,
Lee
 
NE
,
Ahfeldt
 
T
,
Sachs
 
KV
,
Li
 
X
,
Li
 
H
,
Kuperwasser
 
N
,
Ruda
 
VM
,
Pirruccello
 
JP
,
Muchmore
 
B
,
Prokunina-Olsson
 
L
,
Hall
 
JL
,
Schadt
 
EE
,
Morales
 
CR
,
Lund-Katz
 
S
,
Phillips
 
MC
,
Wong
 
J
,
Cantley
 
W
,
Racie
 
T
,
Ejebe
 
KG
,
Orho-Melander
 
M
,
Melander
 
O
,
Koteliansky
 
V
,
Fitzgerald
 
K
,
Krauss
 
RM
,
Cowan
 
CA
,
Kathiresan
 
S
,
Rader
 
DJ.
 
From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus
.
Nature
 
2010
;
466
:
714
719
.

128

Willer
 
CJ
,
Schmidt
 
EM
,
Sengupta
 
S
,
Peloso
 
GM
,
Gustafsson
 
S
,
Kanoni
 
S
,
Ganna
 
A
,
Chen
 
J
,
Buchkovich
 
ML
,
Mora
 
S
,
Beckmann
 
JS
,
Bragg-Gresham
 
JL
,
Chang
 
H-Y
,
Demirkan
 
A
,
Den Hertog
 
HM
,
Do
 
R
,
Donnelly
 
LA
,
Ehret
 
GB
,
Esko
 
T
,
Feitosa
 
MF
,
Ferreira
 
T
,
Fischer
 
K
,
Fontanillas
 
P
,
Fraser
 
RM
,
Freitag
 
DF
,
Gurdasani
 
D
,
Heikkilä
 
K
,
Hyppönen
 
E
,
Isaacs
 
A
,
Jackson
 
AU
,
Johansson
 
Å
,
Johnson
 
T
,
Kaakinen
 
M
,
Kettunen
 
J
,
Kleber
 
ME
,
Li
 
X
,
Luan
 
J
,
Lyytikäinen
 
L-P
,
Magnusson
 
PKE
,
Mangino
 
M
,
Mihailov
 
E
,
Montasser
 
ME
,
Müller-Nurasyid
 
M
,
Nolte
 
IM
,
O'Connell
 
JR
,
Palmer
 
CD
,
Perola
 
M
,
Petersen
 
A-K
,
Sanna
 
S
,
Saxena
 
R
,
Service
 
SK
,
Shah
 
S
,
Shungin
 
D
,
Sidore
 
C
,
Song
 
C
,
Strawbridge
 
RJ
,
Surakka
 
I
,
Tanaka
 
T
,
Teslovich
 
TM
,
Thorleifsson
 
G
,
Van den Herik
 
EG
,
Voight
 
BF
,
Volcik
 
KA
,
Waite
 
LL
,
Wong
 
A
,
Wu
 
Y
,
Zhang
 
W
,
Absher
 
D
,
Asiki
 
G
,
Barroso
 
I
,
Been
 
LF
,
Bolton
 
JL
,
Bonnycastle
 
LL
,
Brambilla
 
P
,
Burnett
 
MS
,
Cesana
 
G
,
Dimitriou
 
M
,
Doney
 
ASF
,
Döring
 
A
,
Elliott
 
P
,
Epstein
 
SE
,
Ingi Eyjolfsson
 
G
,
Gigante
 
B
,
Goodarzi
 
MO
,
Grallert
 
H
,
Gravito
 
ML
,
Groves
 
CJ
,
Hallmans
 
G
,
Hartikainen
 
A-L
,
Hayward
 
C
,
Hernandez
 
D
,
Hicks
 
AA
,
Holm
 
H
,
Hung
 
Y-J
,
Illig
 
T
,
Jones
 
MR
,
Kaleebu
 
P
,
Kastelein
 
JJP
,
Khaw
 
K-T
,
Kim
 
E
,
Klopp
 
N
,
Komulainen
 
P
,
Kumari
 
M
,
Langenberg
 
C
,
Lehtimäki
 
T
,
Lin
 
S-Y
,
Lindström
 
J
,
Loos
 
RJF
,
Mach
 
F
,
McArdle
 
WL
,
Meisinger
 
C
,
Mitchell
 
BD
,
Müller
 
G
,
Nagaraja
 
R
,
Narisu
 
N
,
Nieminen
 
TVM
,
Nsubuga
 
RN
,
Olafsson
 
I
,
Ong
 
KK
,
Palotie
 
A
,
Papamarkou
 
T
,
Pomilla
 
C
,
Pouta
 
A
,
Rader
 
DJ
,
Reilly
 
MP
,
Ridker
 
PM
,
Rivadeneira
 
F
,
Rudan
 
I
,
Ruokonen
 
A
,
Samani
 
N
,
Scharnagl
 
H
,
Seeley
 
J
,
Silander
 
K
,
Stančáková
 
A
,
Stirrups
 
K
,
Swift
 
AJ
,
Tiret
 
L
,
Uitterlinden
 
AG
,
van Pelt
 
LJ
,
Vedantam
 
S
,
Wainwright
 
N
,
Wijmenga
 
C
,
Wild
 
SH
,
Willemsen
 
G
,
Wilsgaard
 
T
,
Wilson
 
JF
,
Young
 
EH
,
Zhao
 
JH
,
Adair
 
LS
,
Arveiler
 
D
,
Assimes
 
TL
,
Bandinelli
 
S
,
Bennett
 
F
,
Bochud
 
M
,
Boehm
 
BO
,
Boomsma
 
DI
,
Borecki
 
IB
,
Bornstein
 
SR
,
Bovet
 
P
,
Burnier
 
M
,
Campbell
 
H
,
Chakravarti
 
A
,
Chambers
 
JC
,
Chen
 
Y-DI
,
Collins
 
FS
,
Cooper
 
RS
,
Danesh
 
J
,
Dedoussis
 
G
,
de Faire
 
U
,
Feranil
 
AB
,
Ferrières
 
J
,
Ferrucci
 
L
,
Freimer
 
NB
,
Gieger
 
C
,
Groop
 
LC
,
Gudnason
 
V
,
Gyllensten
 
U
,
Hamsten
 
A
,
Harris
 
TB
,
Hingorani
 
A
,
Hirschhorn
 
JN
,
Hofman
 
A
,
Hovingh
 
GK
,
Hsiung
 
CA
,
Humphries
 
SE
,
Hunt
 
SC
,
Hveem
 
K
,
Iribarren
 
C
,
Järvelin
 
M-R
,
Jula
 
A
,
Kähönen
 
M
,
Kaprio
 
J
,
Kesäniemi
 
A
,
Kivimaki
 
M
,
Kooner
 
JS
,
Koudstaal
 
PJ
,
Krauss
 
RM
,
Kuh
 
D
,
Kuusisto
 
J
,
Kyvik
 
KO
,
Laakso
 
M
,
Lakka
 
TA
,
Lind
 
L
,
Lindgren
 
CM
,
Martin
 
NG
,
März
 
W
,
McCarthy
 
MI
,
McKenzie
 
CA
,
Meneton
 
P
,
Metspalu
 
A
,
Moilanen
 
L
,
Morris
 
AD
,
Munroe
 
PB
,
Njølstad
 
I
,
Pedersen
 
NL
,
Power
 
C
,
Pramstaller
 
PP
,
Price
 
JF
,
Psaty
 
BM
,
Quertermous
 
T
,
Rauramaa
 
R
,
Saleheen
 
D
,
Salomaa
 
V
,
Sanghera
 
DK
,
Saramies
 
J
,
Schwarz
 
PEH
,
Sheu
 
WH-H
,
Shuldiner
 
AR
,
Siegbahn
 
A
,
Spector
 
TD
,
Stefansson
 
K
,
Strachan
 
DP
,
Tayo
 
BO
,
Tremoli
 
E
,
Tuomilehto
 
J
,
Uusitupa
 
M
,
van Duijn
 
CM
,
Vollenweider
 
P
,
Wallentin
 
L
,
Wareham
 
NJ
,
Whitfield
 
JB
,
Wolffenbuttel
 
BHR
,
Ordovas
 
JM
,
Boerwinkle
 
E
,
Palmer
 
CNA
,
Thorsteinsdottir
 
U
,
Chasman
 
DI
,
Rotter
 
JI
,
Franks
 
PW
,
Ripatti
 
S
,
Cupples
 
LA
,
Sandhu
 
MS
,
Rich
 
SS
,
Boehnke
 
M
,
Deloukas
 
P
,
Kathiresan
 
S
,
Mohlke
 
KL
,
Ingelsson
 
E
,
Abecasis
 
GR
; Global Lipids Genetics Consortium.
Discovery and refinement of loci associated with lipid levels
.
Nat Genet
 
2013
;
45
:
1274
1283
.

129

Binder
 
CJ
,
Papac-Milicevic
 
N
,
Witztum
 
JL.
 
Innate sensing of oxidation-specific epitopes in health and disease
.
Nat Rev Immunol
 
2016
;
16
:
485
497
.

130

Bochkov
 
VN
,
Oskolkova
 
OV
,
Birukov
 
KG
,
Levonen
 
AL
,
Binder
 
CJ
,
Stockl
 
J.
 
Generation and biological activities of oxidized phospholipids
.
Antioxid Redox Signal
 
2010
;
12
:
1009
1059
.

131

Weber
 
C
,
Noels
 
H.
 
Atherosclerosis: current pathogenesis and therapeutic options
.
Nat Med
 
2011
;
17
:
1410
1422
.

132

Que
 
X
,
Hung
 
MY
,
Yeang
 
C
,
Gonen
 
A
,
Prohaska
 
TA
,
Sun
 
X
,
Diehl
 
C
,
Maatta
 
A
,
Gaddis
 
DE
,
Bowden
 
K
,
Pattison
 
J
,
MacDonald
 
JG
,
Yla-Herttuala
 
S
,
Mellon
 
PL
,
Hedrick
 
CC
,
Ley
 
K
,
Miller
 
YI
,
Glass
 
CK
,
Peterson
 
KL
,
Binder
 
CJ
,
Tsimikas
 
S
,
Witztum
 
JL.
 
Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice
.
Nature
 
2018
;
558
:
301
306
.

133

Moore
 
KJ
,
Koplev
 
S
,
Fisher
 
EA
,
Tabas
 
I
,
Bjorkegren
 
JLM
,
Doran
 
AC
,
Kovacic
 
JC.
 
Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (Part 2)
.
J Am Coll Cardiol
 
2018
;
72
:
2181
2197
.

134

Kruth
 
HS
,
Jones
 
NL
,
Huang
 
W
,
Zhao
 
B
,
Ishii
 
I
,
Chang
 
J
,
Combs
 
CA
,
Malide
 
D
,
Zhang
 
WY.
 
Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein
.
J Biol Chem
 
2005
;
280
:
2352
2360
.

135

Anzinger
 
JJ
,
Chang
 
J
,
Xu
 
Q
,
Buono
 
C
,
Li
 
Y
,
Leyva
 
FJ
,
Park
 
BC
,
Greene
 
LE
,
Kruth
 
HS.
 
Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis
.
Arterioscler Thromb Vasc Biol
 
2010
;
30
:
2022
2031
.

136

Williams
 
JW
,
Giannarelli
 
C
,
Rahman
 
A
,
Randolph
 
GJ
,
Kovacic
 
JC.
 
Macrophage biology, classification, and phenotype in cardiovascular disease: JACC macrophage in CVD series (Part 1)
.
J Am Coll Cardiol
 
2018
;
72
:
2166
2180
.

137

Pourcet
 
B
,
Staels
 
B.
 
Alternative macrophages in atherosclerosis: not always protective!
 
J Clin Invest
 
2018
;
128
:
910
912
.

138

Chinetti-Gbaguidi
 
G
,
Colin
 
S
,
Staels
 
B.
 
Macrophage subsets in atherosclerosis
.
Nat Rev Cardiol
 
2015
;
12
:
10
17
.

139

Stewart
 
CR
,
Stuart
 
LM
,
Wilkinson
 
K
,
van Gils
 
JM
,
Deng
 
J
,
Halle
 
A
,
Rayner
 
KJ
,
Boyer
 
L
,
Zhong
 
R
,
Frazier
 
WA
,
Lacy-Hulbert
 
A
,
El Khoury
 
J
,
Golenbock
 
DT
,
Moore
 
KJ.
 
CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer
.
Nat Immunol
 
2010
;
11
:
155
161
.

140

van der Vorst
 
EPC
,
Döring
 
Y
,
Weber
 
C.
 
Chemokines
.
Arterioscler Thromb Vasc Biol
 
2015
;
35
:
e52
6
.

141

Shankman
 
LS
,
Gomez
 
D
,
Cherepanova
 
OA
,
Salmon
 
M
,
Alencar
 
GF
,
Haskins
 
RM
,
Swiatlowska
 
P
,
Newman
 
AA
,
Greene
 
ES
,
Straub
 
AC
,
Isakson
 
B
,
Randolph
 
GJ
,
Owens
 
GK.
 
KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis
.
Nat Med
 
2015
;
21
:
628
637
.

142

Duewell
 
P
,
Kono
 
H
,
Rayner
 
KJ
,
Sirois
 
CM
,
Vladimer
 
G
,
Bauernfeind
 
FG
,
Abela
 
GS
,
Franchi
 
L
,
Nunez
 
G
,
Schnurr
 
M
,
Espevik
 
T
,
Lien
 
E
,
Fitzgerald
 
KA
,
Rock
 
KL
,
Moore
 
KJ
,
Wright
 
SD
,
Hornung
 
V
,
Latz
 
E.
 
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
.
Nature
 
2010
;
464
:
1357
1361
.

143

Sheedy
 
FJ
,
Grebe
 
A
,
Rayner
 
KJ
,
Kalantari
 
P
,
Ramkhelawon
 
B
,
Carpenter
 
SB
,
Becker
 
CE
,
Ediriweera
 
HN
,
Mullick
 
AE
,
Golenbock
 
DT
,
Stuart
 
LM
,
Latz
 
E
,
Fitzgerald
 
KA
,
Moore
 
KJ.
 
CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation
.
Nat Immunol
 
2013
;
14
:
812
820
.

144

Baumer
 
Y
,
McCurdy
 
S
,
Weatherby
 
TM
,
Mehta
 
NN
,
Halbherr
 
S
,
Halbherr
 
P
,
Yamazaki
 
N
,
Boisvert
 
WA.
 
Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis
.
Nat Commun
 
2017
;
8
:
1129.

145

Kovanen
 
PT
,
Bot
 
I.
 
Mast cells in atherosclerotic cardiovascular disease—activators and actions
.
Eur J Pharmacol
 
2017
;
816
:
37
46
.

146

Tabas
 
I
,
Lichtman
 
AH.
 
Monocyte-macrophages and T cells in atherosclerosis
.
Immunity
 
2017
;
47
:
621
634
.

147

Wolf
 
D
,
Ley
 
K.
 
Immunity and inflammation in atherosclerosis
.
Circ Res
 
2019
;
124
:
315
327
.

148

Ait-Oufella
 
H
,
Sage
 
AP
,
Mallat
 
Z
,
Tedgui
 
A.
 
Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis
.
Circ Res
 
2014
;
114
:
1640
1660
.

149

Kyaw
 
T
,
Winship
 
A
,
Tay
 
C
,
Kanellakis
 
P
,
Hosseini
 
H
,
Cao
 
A
,
Li
 
P
,
Tipping
 
P
,
Bobik
 
A
,
Toh
 
BH.
 
Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice
.
Circulation
 
2013
;
127
:
1028
1039
.

150

Sage
 
AP
,
Tsiantoulas
 
D
,
Binder
 
CJ
,
Mallat
 
Z.
 
The role of B cells in atherosclerosis
.
Nat Rev Cardiol
 
2019
;
16
:
180
196
.

151

Tsiantoulas
 
D
,
Diehl
 
CJ
,
Witztum
 
JL
,
Binder
 
CJ.
 
B cells and humoral immunity in atherosclerosis
.
Circ Res
 
2014
;
114
:
1743
1756
.

152

Yin
 
C
,
Ackermann
 
S
,
Ma
 
Z
,
Mohanta
 
SK
,
Zhang
 
C
,
Li
 
Y
,
Nietzsche
 
S
,
Westermann
 
M
,
Peng
 
L
,
Hu
 
D
,
Bontha
 
SV
,
Srikakulapu
 
P
,
Beer
 
M
,
Megens
 
RTA
,
Steffens
 
S
,
Hildner
 
M
,
Halder
 
LD
,
Eckstein
 
HH
,
Pelisek
 
J
,
Herms
 
J
,
Roeber
 
S
,
Arzberger
 
T
,
Borodovsky
 
A
,
Habenicht
 
L
,
Binder
 
CJ
,
Weber
 
C
,
Zipfel
 
PF
,
Skerka
 
C
,
Habenicht
 
AJR.
 
ApoE attenuates unresolvable inflammation by complex formation with activated C1q
.
Nat Med
 
2019
;
25
:
496
506
.

153

Jukema
 
RA
,
Ahmed
 
TAN
,
Tardif
 
JC.
 
Does low-density lipoprotein cholesterol induce inflammation? If so, does it matter? Current insights and future perspectives for novel therapies
.
BMC Med
 
2019
;
17
:
197.

154

Ridker
 
PM
,
Everett
 
BM
,
Thuren
 
T
,
MacFadyen
 
JG
,
Chang
 
WH
,
Ballantyne
 
C
,
Fonseca
 
F
,
Nicolau
 
J
,
Koenig
 
W
,
Anker
 
SD
,
Kastelein
 
JJP
,
Cornel
 
JH
,
Pais
 
P
,
Pella
 
D
,
Genest
 
J
,
Cifkova
 
R
,
Lorenzatti
 
A
,
Forster
 
T
,
Kobalava
 
Z
,
Vida-Simiti
 
L
,
Flather
 
M
,
Shimokawa
 
H
,
Ogawa
 
H
,
Dellborg
 
M
,
Rossi
 
PRF
,
Troquay
 
RPT
,
Libby
 
P
,
Glynn
 
RJ
CANTOS Trial Group.
Antiinflammatory therapy with canakinumab for atherosclerotic disease
.
N Engl J Med
 
2017
;
377
:
1119
1131
.

155

Arandjelovic
 
S
,
Ravichandran
 
KS.
 
Phagocytosis of apoptotic cells in homeostasis
.
Nat Immunol
 
2015
;
16
:
907
917
.

156

Poon
 
IK
,
Lucas
 
CD
,
Rossi
 
AG
,
Ravichandran
 
KS.
 
Apoptotic cell clearance: basic biology and therapeutic potential
.
Nat Rev Immunol
 
2014
;
14
:
166
180
.

157

Kojima
 
Y
,
Volkmer
 
JP
,
McKenna
 
K
,
Civelek
 
M
,
Lusis
 
AJ
,
Miller
 
CL
,
Direnzo
 
D
,
Nanda
 
V
,
Ye
 
J
,
Connolly
 
AJ
,
Schadt
 
EE
,
Quertermous
 
T
,
Betancur
 
P
,
Maegdefessel
 
L
,
Matic
 
LP
,
Hedin
 
U
,
Weissman
 
IL
,
Leeper
 
NJ.
 
CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis
.
Nature
 
2016
;
536
:
86
90
.

158

Voll
 
RE
,
Herrmann
 
M
,
Roth
 
EA
,
Stach
 
C
,
Kalden
 
JR
,
Girkontaite
 
I.
 
Immunosuppressive effects of apoptotic cells
.
Nature
 
1997
;
390
:
350
351
.

159

Dalli
 
J
,
Serhan
 
CN.
 
Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators
.
Blood
 
2012
;
120
:
e60
–e
72
.

160

Yurdagul
 
A
 Jr ,
Doran
 
AC
,
Cai
 
B
,
Fredman
 
G
,
Tabas
 
IA.
 
Mechanisms and consequences of defective efferocytosis in atherosclerosis
.
Front Cardiovasc Med
 
2018
;
4
:
86
.

161

Ait-Oufella
 
H
,
Pouresmail
 
V
,
Simon
 
T
,
Blanc-Brude
 
O
,
Kinugawa
 
K
,
Merval
 
R
,
Offenstadt
 
G
,
Leseche
 
G
,
Cohen
 
PL
,
Tedgui
 
A
,
Mallat
 
Z.
 
Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis
.
Arterioscler Thromb Vasc Biol
 
2008
;
28
:
1429
1431
.

162

Thorp
 
E
,
Cui
 
D
,
Schrijvers
 
DM
,
Kuriakose
 
G
,
Tabas
 
I.
 
Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice
.
Arterioscler Thromb Vasc Biol
 
2008
;
28
:
1421
1428
.

163

Cai
 
B
,
Thorp
 
EB
,
Doran
 
AC
,
Sansbury
 
BE
,
Daemen
 
MJ
,
Dorweiler
 
B
,
Spite
 
M
,
Fredman
 
G
,
Tabas
 
I.
 
MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis
.
J Clin Invest
 
2017
;
127
:
564
568
.

164

Ait-Oufella
 
H
,
Kinugawa
 
K
,
Zoll
 
J
,
Simon
 
T
,
Boddaert
 
J
,
Heeneman
 
S
,
Blanc-Brude
 
O
,
Barateau
 
V
,
Potteaux
 
S
,
Merval
 
R
,
Esposito
 
B
,
Teissier
 
E
,
Daemen
 
MJ
,
Leseche
 
G
,
Boulanger
 
C
,
Tedgui
 
A
,
Mallat
 
Z.
 
Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice
.
Circulation
 
2007
;
115
:
2168
2177
.

165

Lewis
 
MJ
,
Malik
 
TH
,
Ehrenstein
 
MR
,
Boyle
 
JJ
,
Botto
 
M
,
Haskard
 
DO.
 
Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice
.
Circulation
 
2009
;
120
:
417
426
.

166

Yancey
 
PG
,
Blakemore
 
J
,
Ding
 
L
,
Fan
 
D
,
Overton
 
CD
,
Zhang
 
Y
,
Linton
 
MF
,
Fazio
 
S.
 
Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation
.
Arterioscler Thromb Vasc Biol
 
2010
;
30
:
787
795
.

167

Yancey
 
PG
,
Ding
 
Y
,
Fan
 
D
,
Blakemore
 
JL
,
Zhang
 
Y
,
Ding
 
L
,
Zhang
 
J
,
Linton
 
MF
,
Fazio
 
S.
 
Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent
.
Circulation
 
2011
;
124
:
454
464
.

168

Overton
 
CD
,
Yancey
 
PG
,
Major
 
AS
,
Linton
 
MF
,
Fazio
 
S.
 
Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse
.
Circ Res
 
2007
;
100
:
670
677
.

169

Gruber
 
S
,
Hendrikx
 
T
,
Tsiantoulas
 
D
,
Ozsvar-Kozma
 
M
,
Goderle
 
L
,
Mallat
 
Z
,
Witztum
 
JL
,
Shiri-Sverdlov
 
R
,
Nitschke
 
L
,
Binder
 
CJ.
 
Sialic Acid-binding immunoglobulin-like Lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells
.
Cell Rep
 
2016
;
14
:
2348
2361
.

170

Vengrenyuk
 
Y
,
Nishi
 
H
,
Long
 
X
,
Ouimet
 
M
,
Savji
 
N
,
Martinez
 
FO
,
Cassella
 
CP
,
Moore
 
KJ
,
Ramsey
 
SA
,
Miano
 
JM
,
Fisher
 
EA.
 
Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype
.
Arterioscler Thromb Vasc Biol
 
2015
;
35
:
535
546
.

171

Wirka
 
RC
,
Wagh
 
D
,
Paik
 
DT
,
Pjanic
 
M
,
Nguyen
 
T
,
Miller
 
CL
,
Kundu
 
R
,
Nagao
 
M
,
Coller
 
J
,
Koyano
 
TK
,
Fong
 
R
,
Woo
 
YJ
,
Liu
 
B
,
Montgomery
 
SB
,
Wu
 
JC
,
Zhu
 
K
,
Chang
 
R
,
Alamprese
 
M
,
Tallquist
 
MD
,
Kim
 
JB
,
Quertermous
 
T.
 
Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis
.
Nat Med
 
2019
;
25
:
1280
1289
.

172

Abela
 
GS
,
Aziz
 
K
,
Vedre
 
A
,
Pathak
 
DR
,
Talbott
 
JD
,
Dejong
 
J.
 
Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes
.
Am J Cardiol
 
2009
;
103
:
959
968
.

173

Falk
 
E
,
Nakano
 
M
,
Bentzon
 
JF
,
Finn
 
AV
,
Virmani
 
R.
 
Update on acute coronary syndromes: the pathologists' view
.
Eur Heart J
 
2013
;
34
:
719
728
.

174

Dai
 
J
,
Xing
 
L
,
Jia
 
H
,
Zhu
 
Y
,
Zhang
 
S
,
Hu
 
S
,
Lin
 
L
,
Ma
 
L
,
Liu
 
H
,
Xu
 
M
,
Ren
 
X
,
Yu
 
H
,
Li
 
L
,
Zou
 
Y
,
Zhang
 
S
,
Mintz
 
GS
,
Hou
 
J
,
Yu
 
B.
 
In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study
.
Eur Heart J
 
2018
;
39
:
2077
2085
.

175

Iannaccone
 
M
,
Quadri
 
G
,
Taha
 
S
,
D'Ascenzo
 
F
,
Montefusco
 
A
,
Omede
 
P
,
Jang
 
IK
,
Niccoli
 
G
,
Souteyrand
 
G
,
Yundai
 
C
,
Toutouzas
 
K
,
Benedetto
 
S
,
Barbero
 
U
,
Annone
 
U
,
Lonni
 
E
,
Imori
 
Y
,
Biondi-Zoccai
 
G
,
Templin
 
C
,
Moretti
 
C
,
Luscher
 
TF
,
Gaita
 
F.
 
Prevalence and predictors of culprit plaque rupture at OCT in patients with coronary artery disease: a meta-analysis
.
Eur Heart J Cardiovasc Imaging
 
2016
;
17
:
1128
1137
.

176

Pasterkamp
 
G
,
den Ruijter
 
HM
,
Libby
 
P.
 
Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease
.
Nat Rev Cardiol
 
2017
;
14
:
21
29
.

177

Franck
 
G
,
Mawson
 
T
,
Sausen
 
G
,
Salinas
 
M
,
Masson
 
GS
,
Cole
 
A
,
Beltrami-Moreira
 
M
,
Chatzizisis
 
Y
,
Quillard
 
T
,
Tesmenitsky
 
Y
,
Shvartz
 
E
,
Sukhova
 
GK
,
Swirski
 
FK
,
Nahrendorf
 
M
,
Aikawa
 
E
,
Croce
 
KJ
,
Libby
 
P.
 
Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion
.
Circ Res
 
2017
;
121
:
31
42
.

178

Virmani
 
R
,
Burke
 
AP
,
Farb
 
A
,
Kolodgie
 
FD.
 
Pathology of the vulnerable plaque
.
J Am Coll Cardiol
 
2006
;
47
(8 Suppl):
C13
–C1
8
.

179

Kwak
 
BR
,
Back
 
M
,
Bochaton-Piallat
 
ML
,
Caligiuri
 
G
,
Daemen
 
MJ
,
Davies
 
PF
,
Hoefer
 
IE
,
Holvoet
 
P
,
Jo
 
H
,
Krams
 
R
,
Lehoux
 
S
,
Monaco
 
C
,
Steffens
 
S
,
Virmani
 
R
,
Weber
 
C
,
Wentzel
 
JJ
,
Evans
 
PC.
 
Biomechanical factors in atherosclerosis: mechanisms and clinical implications
.
Eur Heart J
 
2014
;
35
:
3013
320
, 3020a–3020d.

180

Vervueren
 
PL
,
Elbaz
 
M
,
Dallongeville
 
J
,
Arveiler
 
D
,
Ruidavets
 
JB
,
Montaye
 
M
,
Wagner
 
A
,
Amouyel
 
P
,
Haas
 
B
,
Bongard
 
V
,
Ferrieres
 
J.
 
Relationships between chronic use of statin therapy, presentation of acute coronary syndromes and one-year mortality after an incident acute coronary event
.
Int J Cardiol
 
2013
;
163
:
102
104
.

181

Stary
 
HC
,
Chandler
 
AB
,
Dinsmore
 
RE
,
Fuster
 
V
,
Glagov
 
S
,
Insull
 
W
 Jr
,
Rosenfeld
 
ME
,
Schwartz
 
CJ
,
Wagner
 
WD
,
Wissler
 
RW.
 
A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association
.
Circulation
 
1995
;
92
:
1355
1374
.

182

Burke
 
AP
,
Farb
 
A
,
Malcom
 
GT
,
Liang
 
YH
,
Smialek
 
J
,
Virmani
 
R.
 
Coronary risk factors and plaque morphology in men with coronary disease who died suddenly
.
N Engl J Med
 
1997
;
336
:
1276
1282
.

183

Kataoka
 
Y
,
Hammadah
 
M
,
Puri
 
R
,
Duggal
 
B
,
Uno
 
K
,
Kapadia
 
SR
,
Murat Tuzcu
 
E
,
Nissen
 
SE
,
Nicholls
 
SJ.
 
Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels
.
Atherosclerosis
 
2015
;
242
:
490
495
.

184

Chappell
 
J
,
Harman
 
JL
,
Narasimhan
 
VM
,
Yu
 
H
,
Foote
 
K
,
Simons
 
BD
,
Bennett
 
MR
,
Jorgensen
 
HF.
 
Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models
.
Circ Res
 
2016
;
119
:
1313
1323
.

185

Jacobsen
 
K
,
Lund
 
MB
,
Shim
 
J
,
Gunnersen
 
S
,
Fuchtbauer
 
EM
,
Kjolby
 
M
,
Carramolino
 
L
,
Bentzon
 
JF.
 
Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs
.
JCI Insight
 
2017
;
2
:
e95890
.

186

Chung
 
IM
,
Schwartz
 
SM
,
Murry
 
CE.
 
Clonal architecture of normal and atherosclerotic aorta: implications for atherogenesis and vascular development
.
Am J Pathol
 
1998
;
152
:
913
923
.

187

Grootaert
 
MOJ
,
Moulis
 
M
,
Roth
 
L
,
Martinet
 
W
,
Vindis
 
C
,
Bennett
 
MR
,
De Meyer
 
G.
 
Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis
.
Cardiovasc Res
 
2018
;
114
:
622
634
.

188

Johnson
 
JL.
 
Metalloproteinases in atherosclerosis
.
Eur J Pharmacol
 
2017
;
816
:
93
106
.

189

Childs
 
BG
,
Baker
 
DJ
,
Wijshake
 
T
,
Conover
 
CA
,
Campisi
 
J
,
van Deursen
 
JM.
 
Senescent intimal foam cells are deleterious at all stages of atherosclerosis
.
Science
 
2016
;
354
:
472
477
.

190

Childs
 
BG
,
Gluscevic
 
M
,
Baker
 
DJ
,
Laberge
 
RM
,
Marquess
 
D
,
Dananberg
 
J
,
van Deursen
 
JM.
 
Senescent cells: an emerging target for diseases of ageing
.
Nat Rev Drug Discov
 
2017
;
16
:
718
735
.

191

Postmus
 
AC
,
Sturmlechner
 
I
,
Jonker
 
JW
,
van Deursen
 
JM
,
van de Sluis
 
B
,
Kruit
 
JK.
 
Senescent cells in the development of cardiometabolic disease
.
Curr Opin Lipidol
 
2019
;
30
:
177
185
.

192

Abedin
 
M
,
Tintut
 
Y
,
Demer
 
LL.
 
Vascular calcification: mechanisms and clinical ramifications
.
Arterioscler Thromb Vasc Biol
 
2004
;
24
:
1161
1170
.

193

Liu
 
Y
,
Shanahan
 
CM.
 
Signalling pathways and vascular calcification
.
Front Biosci (Landmark Ed)
 
2011
;
16
:
1302
1314
.

194

Budoff
 
MJ
,
Shaw
 
LJ
,
Liu
 
ST
,
Weinstein
 
SR
,
Mosler
 
TP
,
Tseng
 
PH
,
Flores
 
FR
,
Callister
 
TQ
,
Raggi
 
P
,
Berman
 
DS.
 
Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients
.
J Am Coll Cardiol
 
2007
;
49
:
1860
1870
.

195

Hou
 
ZH
,
Lu
 
B
,
Gao
 
Y
,
Jiang
 
SL
,
Wang
 
Y
,
Li
 
W
,
Budoff
 
MJ.
 
Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients
.
JACC Cardiovasc Imaging
 
2012
;
5
:
990
999
.

196

Parhami
 
F
,
Morrow
 
AD
,
Balucan
 
J
,
Leitinger
 
N
,
Watson
 
AD
,
Tintut
 
Y
,
Berliner
 
JA
,
Demer
 
LL.
 
Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients
.
Arterioscler Thromb Vasc Biol
 
1997
;
17
:
680
687
.

197

Proudfoot
 
D
,
Davies
 
JD
,
Skepper
 
JN
,
Weissberg
 
PL
,
Shanahan
 
CM.
 
Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis
.
Circulation
 
2002
;
106
:
3044
3050
.

198

Tintut
 
Y
,
Patel
 
J
,
Territo
 
M
,
Saini
 
T
,
Parhami
 
F
,
Demer
 
LL.
 
Monocyte/macrophage regulation of vascular calcification in vitro
.
Circulation
 
2002
;
105
:
650
655
.

199

Tintut
 
Y
,
Patel
 
J
,
Parhami
 
F
,
Demer
 
LL.
 
Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway
.
Circulation
 
2000
;
102
:
2636
2642
.

200

Al-Aly
 
Z
,
Shao
 
JS
,
Lai
 
CF
,
Huang
 
E
,
Cai
 
J
,
Behrmann
 
A
,
Cheng
 
SL
,
Towler
 
DA.
 
Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr-/- mice
.
Arterioscler Thromb Vasc Biol
 
2007
;
27
:
2589
2596
.

201

Morris
 
TG
,
Borland
 
SJ
,
Clarke
 
CJ
,
Wilson
 
C
,
Hannun
 
YA
,
Ohanian
 
V
,
Canfield
 
AE
,
Ohanian
 
J.
 
Sphingosine 1-phosphate activation of ERM contributes to vascular calcification
.
J Lipid Res
 
2018
;
59
:
69
78
.

202

Cholesterol Treatment Trialists Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials
.
Lancet
 
2019
;
393
:
407
415
.

203

Dykun
 
I
,
Lehmann
 
N
,
Kalsch
 
H
,
Mohlenkamp
 
S
,
Moebus
 
S
,
Budde
 
T
,
Seibel
 
R
,
Gronemeyer
 
D
,
Jockel
 
KH
,
Erbel
 
R
,
Mahabadi
 
AA.
 
Statin medication enhances progression of coronary artery calcification: the Heinz Nixdorf Recall Study
.
J Am Coll Cardiol
 
2016
;
68
:
2123
2125
.

204

Puri
 
R
,
Libby
 
P
,
Nissen
 
SE
,
Wolski
 
K
,
Ballantyne
 
CM
,
Barter
 
PJ
,
Chapman
 
MJ
,
Erbel
 
R
,
Raichlen
 
JS
,
Uno
 
K
,
Kataoka
 
Y
,
Tuzcu
 
EM
,
Nicholls
 
SJ.
 
Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: insights from SATURN
.
Eur Heart J Cardiovasc Imaging
 
2014
;
15
:
380
388
.

205

Puri
 
R
,
Nicholls
 
SJ
,
Shao
 
M
,
Kataoka
 
Y
,
Uno
 
K
,
Kapadia
 
SR
,
Tuzcu
 
EM
,
Nissen
 
SE.
 
Impact of statins on serial coronary calcification during atheroma progression and regression
.
J Am Coll Cardiol
 
2015
;
65
:
1273
1282
.

206

Lee
 
SE
,
Chang
 
HJ
,
Sung
 
JM
,
Park
 
HB
,
Heo
 
R
,
Rizvi
 
A
,
Lin
 
FY
,
Kumar
 
A
,
Hadamitzky
 
M
,
Kim
 
YJ
,
Conte
 
E
,
Andreini
 
D
,
Pontone
 
G
,
Budoff
 
MJ
,
Gottlieb
 
I
,
Lee
 
BK
,
Chun
 
EJ
,
Cademartiri
 
F
,
Maffei
 
E
,
Marques
 
H
,
Leipsic
 
JA
,
Shin
 
S
,
Choi
 
JH
,
Chinnaiyan
 
K
,
Raff
 
G
,
Virmani
 
R
,
Samady
 
H
,
Stone
 
PH
,
Berman
 
DS
,
Narula
 
J
,
Shaw
 
LJ
,
Bax
 
JJ
,
Min
 
JK.
 
Effects of statins on coronary atherosclerotic plaques: the PARADIGM study
.
JACC Cardiovasc Imaging
 
2018
;
11
:
1475
1484
.

207

Aengevaeren
 
VL
,
Mosterd
 
A
,
Braber
 
TL
,
Prakken
 
NHJ
,
Doevendans
 
PA
,
Grobbee
 
DE
,
Thompson
 
PD
,
Eijsvogels
 
TMH
,
Velthuis
 
BK.
 
Relationship between lifelong exercise volume and coronary atherosclerosis in athletes
.
Circulation
 
2017
;
136
:
138
148
.

208

Merghani
 
A
,
Maestrini
 
V
,
Rosmini
 
S
,
Cox
 
AT
,
Dhutia
 
H
,
Bastiaenan
 
R
,
David
 
S
,
Yeo
 
TJ
,
Narain
 
R
,
Malhotra
 
A
,
Papadakis
 
M
,
Wilson
 
MG
,
Tome
 
M
,
AlFakih
 
K
,
Moon
 
JC
,
Sharma
 
S.
 
Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile
.
Circulation
 
2017
;
136
:
126
137
.

209

DeFina
 
LF
,
Radford
 
NB
,
Barlow
 
CE
,
Willis
 
BL
,
Leonard
 
D
,
Haskell
 
WL
,
Farrell
 
SW
,
Pavlovic
 
A
,
Abel
 
K
,
Berry
 
JD
,
Khera
 
A
,
Levine
 
BD.
 
Association of all-cause and cardiovascular mortality with high levels of physical activity and concurrent coronary artery calcification
.
JAMA Cardiol
 
2019
;
4
:
174
.

210

Hoshino
 
T
,
Chow
 
LA
,
Hsu
 
JJ
,
Perlowski
 
AA
,
Abedin
 
M
,
Tobis
 
J
,
Tintut
 
Y
,
Mal
 
AK
,
Klug
 
WS
,
Demer
 
LL
.
Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability
.
Am J Physiol Heart Circ Physiol
 
2009
;
297
:
H802
H810
.

211

Duer
 
MJ
,
Friscic
 
T
,
Proudfoot
 
D
,
Reid
 
DG
,
Schoppet
 
M
,
Shanahan
 
CM
,
Skepper
 
JN
,
Wise
 
ER
,
Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization
.
Arterioscler Thromb Vasc Biol
 
2008
;
28
:
2030
2034
.

212

Mauriello
 
A
,
Servadei
 
F
,
Zoccai
 
GB
,
Giacobbi
 
E
,
Anemona
 
L
,
Bonanno
 
E
,
Casella
 
S
.
Coronary calcification identifies the vulnerable patient rather than the vulnerable plaque
.
Atherosclerosis
 
2013
;
229
:
124
129
.

213

Motoyama
 
S
,
Kondo
 
T
,
Sarai
 
M
,
Sugiura
 
A
,
Harigaya
 
H
,
Sato
 
T
,
Inoue
 
K
,
Okumura
 
M
,
Ishii
 
J
,
Anno
 
H
,
Virmani
 
R
,
Ozaki
 
Y
,
Hishida
 
H
,
Narula
 
J
.
Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes
.
J Am Coll Cardiol
 
2007
;
50
:
319
326
.

214

Nerlekar
 
N
,
Ha
 
FJ
,
Cheshire
 
C
,
Rashid
 
H
,
Cameron
 
JD
,
Wong
 
DT
,
Seneviratne
 
S
,
Brown
 
AJ
.
Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events: a systematic review and meta-analysis
.
Circ Cardiovasc Imaging
 
2018
;
11
:
e006973.

215

Williams
 
MC
,
Moss
 
AJ
,
Dweck
 
M
,
Adamson
 
PD
,
Alam
 
S
,
Hunter
 
A
,
Shah
 
ASV
,
Pawade
 
T
,
Weir-McCall
 
JR
,
Roditi
 
G
,
van Beek
 
EJR
,
Newby
 
DE
,
Nicol
 
ED
.
Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study
.
J Am Coll Cardiol
 
2019
;
73
:
291
301
.

216

van der Wall
 
EE
,
de Graaf
 
FR
,
van Velzen
 
JE
,
Jukema
 
JW
,
Bax
 
JJ
,
Schuijf
 
JD
.
IVUS detects more coronary calcifications than MSCT; matter of both resolution and cross-sectional assessment?
 
Int J Cardiovasc Imaging
 
2011
;
27
:
1011
1014
.

217

Pontone
 
G
,
Bertella
 
E
,
Mushtaq
 
S
,
Loguercio
 
M
,
Cortinovis
 
S
,
Baggiano
 
A
,
Conte
 
E
,
Annoni
 
A
,
Formenti
 
A
,
Beltrama
 
V
,
Guaricci
 
AI
,
Andreini
 
D
.
Coronary artery disease: diagnostic accuracy of CT coronary angiography—a comparison of high and standard spatial resolution scanning
.
Radiology
 
2014
;
271
:
688
694
.

218

Irkle
 
A
,
Vesey
 
AT
,
Lewis
 
DY
,
Skepper
 
JN
,
Bird
 
JL
,
Dweck
 
MR
,
Joshi
 
FR
,
Gallagher
 
FA
,
Warburton
 
EA
,
Bennett
 
MR
,
Brindle
 
KM
,
Newby
 
DE
,
Rudd
 
JH
,
Davenport
 
AP
.
Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography
.
Nat Commun
 
2015
;
6
:
7495.

219

Hsu
 
JJ
,
Lu
 
J
,
Umar
 
S
,
Lee
 
JT
,
Kulkarni
 
RP
,
Ding
 
Y
,
Chang
 
CC
,
Hsiai
 
TK
,
Hokugo
 
A
,
Gkouveris
 
I
,
Tetradis
 
S
,
Nishimura
 
I
,
Demer
 
LL
,
Tintut
 
Y
.
Effects of teriparatide on morphology of aortic calcification in aged hyperlipidemic mice
.
Am J Physiol Heart Circ Physiol
 
2018
;
314
:
H1203
H1213
.

220

Joshi
 
NV
,
Vesey
 
AT
,
Williams
 
MC
,
Shah
 
AS
,
Calvert
 
PA
,
Craighead
 
FH
,
Yeoh
 
SE
,
Wallace
 
W
,
Salter
 
D
,
Fletcher
 
AM
,
van Beek
 
EJ
,
Flapan
 
AD
,
Uren
 
NG
,
Behan
 
MW
,
Cruden
 
NL
,
Mills
 
NL
,
Fox
 
KA
,
Rudd
 
JH
,
Dweck
 
MR
,
Newby
 
DE
.
18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial
.
Lancet
 
2014
;
383
:
705
713
.

221

Creager
 
MD
,
Hohl
 
T
,
Hutcheson
 
JD
,
Moss
 
AJ
,
Schlotter
 
F
,
Blaser
 
MC
,
Park
 
MA
,
Lee
 
LH
,
Singh
 
SA
,
Alcaide-Corral
 
CJ
,
Tavares
 
AAS
,
Newby
 
DE
,
Kijewski
 
MF
,
Aikawa
 
M
,
Di Carli
 
M
,
Dweck
 
MR
,
Aikawa
 
E
.
(18)F-fluoride signal amplification identifies microcalcifications associated with atherosclerotic plaque instability in Positron emission tomography/computed tomography images
.
Circ Cardiovasc Imaging
 
2019
;
12
:
e007835.

222

Mori
 
H
,
Torii
 
S
,
Kutyna
 
M
,
Sakamoto
 
A
,
Finn
 
AV
,
Virmani
 
R
.
Coronary artery calcification and its progression: what does it really mean?
 
JACC Cardiovasc Imaging
 
2018
;
11
:
127
142
.

223

Raggi
 
P
,
Senior
 
P
,
Shahbaz
 
S
,
Kaul
 
P
,
Hung
 
R
,
Coulden
 
R
,
Yeung
 
R
,
Abele
 
J
.
(18)F-sodium fluoride imaging of coronary atherosclerosis in ambulatory patients with diabetes mellitus
.
Arterioscler Thromb Vasc Biol
 
2019
;
39
:
276
284
.

224

Akers
 
EJ
,
Nicholls
 
SJ
,
Di Bartolo
 
BA
.
Plaque calcification: do lipoproteins have a role?
 
Arterioscler Thromb Vasc Biol
 
2019
;
39
:
1902
1910
.

225

Pohle
 
K
,
MäFfert
 
R
,
Ropers
 
D
,
Moshage
 
W
,
Stilianakis
 
N
,
Daniel
 
WG
,
Achenbach
 
S
.
Progression of aortic valve calcification: association with coronary atherosclerosis and cardiovascular risk factors
.
Circulation
 
2001
;
104
:
1927
1932
.

226

Luegmayr
 
E
,
Glantschnig
 
H
,
Wesolowski
 
GA
,
Gentile
 
MA
,
Fisher
 
JE
,
Rodan
 
GA
,
Reszka
 
AA
.
Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins
.
Cell Death Differ
 
2004
;
11
(Suppl 1):
S108
–S1
18
.

227

Greif
 
M
,
Arnoldt
 
T
,
von Ziegler
 
F
,
Ruemmler
 
J
,
Becker
 
C
,
Wakili
 
R
,
D'Anastasi
 
M
,
Schenzle
 
J
,
Leber
 
AW
,
Becker
 
A
.
Lipoprotein (a) is independently correlated with coronary artery calcification
.
Eur J Intern Med
 
2013
;
24
:
75
79
.

228

Boffa
 
MB
,
Koschinsky
 
ML
.
Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease
.
Nat Rev Cardiol
 
2019
;
16
:
305
318
.

229

Erdmann
 
J
,
Kessler
 
T
,
Munoz Venegas
 
L
,
Schunkert
 
H
.
A decade of genome-wide association studies for coronary artery disease: the challenges ahead
.
Cardiovasc Res
 
2018
;
114
:
1241
1257
.

230

Schunkert
 
H
,
Konig
 
IR
,
Kathiresan
 
S
,
Reilly
 
MP
,
Assimes
 
TL
,
Holm
 
H
,
Preuss
 
M
,
Stewart
 
AF
,
Barbalic
 
M
,
Gieger
 
C
,
Absher
 
D
,
Aherrahrou
 
Z
,
Allayee
 
H
,
Altshuler
 
D
,
Anand
 
SS
,
Andersen
 
K
,
Anderson
 
JL
,
Ardissino
 
D
,
Ball
 
SG
,
Balmforth
 
AJ
,
Barnes
 
TA
,
Becker
 
DM
,
Becker
 
LC
,
Berger
 
K
,
Bis
 
JC
,
Boekholdt
 
SM
,
Boerwinkle
 
E
,
Braund
 
PS
,
Brown
 
MJ
,
Burnett
 
MS
,
Buysschaert
 
I
,
Cardiogenics
,
Carlquist
 
JF
,
Chen
 
L
,
Cichon
 
S
,
Codd
 
V
,
Davies
 
RW
,
Dedoussis
 
G
,
Dehghan
 
A
,
Demissie
 
S
,
Devaney
 
JM
,
Diemert
 
P
,
Do
 
R
,
Doering
 
A
,
Eifert
 
S
,
Mokhtari
 
NE
,
Ellis
 
SG
,
Elosua
 
R
,
Engert
 
JC
,
Epstein
 
SE
,
de Faire
 
U
,
Fischer
 
M
,
Folsom
 
AR
,
Freyer
 
J
,
Gigante
 
B
,
Girelli
 
D
,
Gretarsdottir
 
S
,
Gudnason
 
V
,
Gulcher
 
JR
,
Halperin
 
E
,
Hammond
 
N
,
Hazen
 
SL
,
Hofman
 
A
,
Horne
 
BD
,
Illig
 
T
,
Iribarren
 
C
,
Jones
 
GT
,
Jukema
 
JW
,
Kaiser
 
MA
,
Kaplan
 
LM
,
Kastelein
 
JJ
,
Khaw
 
KT
,
Knowles
 
JW
,
Kolovou
 
G
,
Kong
 
A
,
Laaksonen
 
R
,
Lambrechts
 
D
,
Leander
 
K
,
Lettre
 
G
,
Li
 
M
,
Lieb
 
W
,
Loley
 
C
,
Lotery
 
AJ
,
Mannucci
 
PM
,
Maouche
 
S
,
Martinelli
 
N
,
McKeown
 
PP
,
Meisinger
 
C
,
Meitinger
 
T
,
Melander
 
O
,
Merlini
 
PA
,
Mooser
 
V
,
Morgan
 
T
,
Muhleisen
 
TW
,
Muhlestein
 
JB
,
Munzel
 
T
,
Musunuru
 
K
,
Nahrstaedt
 
J
,
Nelson
 
CP
,
Nothen
 
MM
,
Olivieri
 
O
,
Patel
 
RS
,
Patterson
 
CC
,
Peters
 
A
,
Peyvandi
 
F
,
Qu
 
L
,
Quyyumi
 
AA
,
Rader
 
DJ
,
Rallidis
 
LS
,
Rice
 
C
,
Rosendaal
 
FR
,
Rubin
 
D
,
Salomaa
 
V
,
Sampietro
 
ML
,
Sandhu
 
MS
,
Schadt
 
E
,
Schafer
 
A
,
Schillert
 
A
,
Schreiber
 
S
,
Schrezenmeir
 
J
,
Schwartz
 
SM
,
Siscovick
 
DS
,
Sivananthan
 
M
,
Sivapalaratnam
 
S
,
Smith
 
A
,
Smith
 
TB
,
Snoep
 
JD
,
Soranzo
 
N
,
Spertus
 
JA
,
Stark
 
K
,
Stirrups
 
K
,
Stoll
 
M
,
Tang
 
WH
,
Tennstedt
 
S
,
Thorgeirsson
 
G
,
Thorleifsson
 
G
,
Tomaszewski
 
M
,
Uitterlinden
 
AG
,
van Rij
 
AM
,
Voight
 
BF
,
Wareham
 
NJ
,
Wells
 
GA
,
Wichmann
 
HE
,
Wild
 
PS
,
Willenborg
 
C
,
Witteman
 
JC
,
Wright
 
BJ
,
Ye
 
S
,
Zeller
 
T
,
Ziegler
 
A
,
Cambien
 
F
,
Goodall
 
AH
,
Cupples
 
LA
,
Quertermous
 
T
,
Marz
 
W
,
Hengstenberg
 
C
,
Blankenberg
 
S
,
Ouwehand
 
WH
,
Hall
 
AS
,
Deloukas
 
P
,
Thompson
 
JR
,
Stefansson
 
K
,
Roberts
 
R
,
Thorsteinsdottir
 
U
,
O'Donnell
 
CJ
,
McPherson
 
R
,
Erdmann
 
J
CARDIoGRAM Consortium
Samani
 
NJ
.
Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
.
Nat Genet
 
2011
;
43
:
333
338
.

231

Ntalla
 
I
,
Kanoni
 
S
,
Zeng
 
L
,
Giannakopoulou
 
O
,
Danesh
 
J
,
Watkins
 
H
,
Samani
 
NJ
,
Deloukas
 
P
,
Schunkert
 
H
UK Biobank CardioMetabolic Consortium CHD Working Group.
Genetic risk score for coronary disease identifies predispositions to cardiovascular and noncardiovascular diseases
.
J Am Coll Cardiol
 
2019
;
73
:
2932
2942
.

232

Chen
 
S
,
Wang
 
X
,
Wang
 
J
,
Zhao
 
Y
,
Wang
 
D
,
Tan
 
C
,
Fa
 
J
,
Zhang
 
R
,
Wang
 
F
,
Xu
 
C
,
Huang
 
Y
,
Li
 
S
,
Yin
 
D
,
Xiong
 
X
,
Li
 
X
,
Chen
 
Q
,
Tu
 
X
,
Yang
 
Y
,
Xia
 
Y
,
Xu
 
C
,
Wang
 
QK
.
Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction
.
Atherosclerosis
 
2016
;
246
:
148
156
.

233

Samani
 
NJ
,
Erdmann
 
J
,
Hall
 
AS
,
Hengstenberg
 
C
,
Mangino
 
M
,
Mayer
 
B
,
Dixon
 
RJ
,
Meitinger
 
T
,
Braund
 
P
,
Wichmann
 
H-E
,
Barrett
 
JH
,
König
 
IR
,
Stevens
 
SE
,
Szymczak
 
S
,
Tregouet
 
D-A
,
Iles
 
MM
,
Pahlke
 
F
,
Pollard
 
H
,
Lieb
 
W
,
Cambien
 
F
,
Fischer
 
M
,
Ouwehand
 
W
,
Blankenberg
 
S
,
Balmforth
 
AJ
,
Baessler
 
A
,
Ball
 
SG
,
Strom
 
TM
,
Brænne
 
I
,
Gieger
 
C
,
Deloukas
 
P
,
Tobin
 
MD
,
Ziegler
 
A
,
Thompson
 
JR
,
Schunkert
 
H
WTCCC and the Cardiogenics Consortium.
Genomewide association analysis of coronary artery disease
.
N Engl J Med
 
2007
;
357
:
443
453
.

234

Brænne
 
I
,
Civelek
 
M
,
Vilne
 
B
,
Di Narzo
 
A
,
Johnson
 
AD
,
Zhao
 
Y
,
Reiz
 
B
,
Codoni
 
V
,
Webb
 
TR
,
Foroughi Asl
 
H
,
Hamby
 
SE
,
Zeng
 
L
,
Trégouët
 
D-A
,
Hao
 
K
,
Topol
 
EJ
,
Schadt
 
EE
,
Yang
 
X
,
Samani
 
NJ
,
Björkegren
 
JLM
,
Erdmann
 
J
,
Schunkert
 
H
,
Lusis
 
AJ
; Leducq Consortium CAD Genomics.
Prediction of causal candidate genes in coronary artery disease loci
.
Arterioscler Thromb Vasc Biol
 
2015
;
35
:
2207
2217
.

235

Howson
 
JMM
,
Zhao
 
W
,
Barnes
 
DR
,
Ho
 
WK
,
Young
 
R
,
Paul
 
DS
,
Waite
 
LL
,
Freitag
 
DF
,
Fauman
 
EB
,
Salfati
 
EL
,
Sun
 
BB
,
Eicher
 
JD
,
Johnson
 
AD
,
Sheu
 
WHH
,
Nielsen
 
SF
,
Lin
 
WY
,
Surendran
 
P
,
Malarstig
 
A
,
Wilk
 
JB
,
Tybjaerg-Hansen
 
A
,
Rasmussen
 
KL
,
Kamstrup
 
PR
,
Deloukas
 
P
,
Erdmann
 
J
,
Kathiresan
 
S
,
Samani
 
NJ
,
Schunkert
 
H
,
Watkins
 
H
CARDIoGRAMplusC4D
Do
 
R
,
Rader
 
DJ
,
Johnson
 
JA
,
Hazen
 
SL
,
Quyyumi
 
AA
,
Spertus
 
JA
,
Pepine
 
CJ
,
Franceschini
 
N
,
Justice
 
A
,
Reiner
 
AP
,
Buyske
 
S
,
Hindorff
 
LA
,
Carty
 
CL
,
North
 
KE
,
Kooperberg
 
C
,
Boerwinkle
 
E
,
Young
 
K
,
Graff
 
M
,
Peters
 
U
,
Absher
 
D
,
Hsiung
 
CA
,
Lee
 
WJ
,
Taylor
 
KD
,
Chen
 
YH
,
Lee
 
IT
,
Guo
 
X
,
Chung
 
RH
,
Hung
 
YJ
,
Rotter
 
JI
,
Juang
 
JJ
,
Quertermous
 
T
,
Wang
 
TD
,
Rasheed
 
A
,
Frossard
 
P
,
Alam
 
DS
,
Majumder
 
AAS
,
Di Angelantonio
 
E
,
Chowdhury
 
R
,
Epic
 
CVD
,
Chen
 
YI
,
Nordestgaard
 
BG
,
Assimes
 
TL
,
Danesh
 
J
,
Butterworth
 
AS
,
Saleheen
 
D
.
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
.
Nat Genet
 
2017
;
49
:
1113
1119
.

236

van der Harst
 
P
,
Verweij
 
N
.
Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease
.
Circ Res
 
2018
;
122
:
433
443
.

237

Klarin
 
D
,
Zhu
 
QM
,
Emdin
 
CA
,
Chaffin
 
M
,
Horner
 
S
,
McMillan
 
BJ
,
Leed
 
A
,
Weale
 
ME
,
Spencer
 
CCA
,
Aguet
 
F
,
Segre
 
AV
,
Ardlie
 
KG
,
Khera
 
AV
,
Kaushik
 
VK
,
Natarajan
 
P
CARDIoGRAMplusC4D Consortium
Kathiresan
 
S
.
Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease
.
Nat Genet
 
2017
;
49
:
1392
1397
.

238

Nelson
 
CP
,
Goel
 
A
,
Butterworth
 
AS
,
Kanoni
 
S
,
Webb
 
TR
,
Marouli
 
E
,
Zeng
 
L
,
Ntalla
 
I
,
Lai
 
FY
,
Hopewell
 
JC
,
Giannakopoulou
 
O
,
Jiang
 
T
,
Hamby
 
SE
,
Di Angelantonio
 
E
,
Assimes
 
TL
,
Bottinger
 
EP
,
Chambers
 
JC
,
Clarke
 
R
,
Palmer
 
CNA
,
Cubbon
 
RM
,
Ellinor
 
P
,
Ermel
 
R
,
Evangelou
 
E
,
Franks
 
PW
,
Grace
 
C
,
Gu
 
D
,
Hingorani
 
AD
,
Howson
 
JMM
,
Ingelsson
 
E
,
Kastrati
 
A
,
Kessler
 
T
,
Kyriakou
 
T
,
Lehtimaki
 
T
,
Lu
 
X
,
Lu
 
Y
,
Marz
 
W
,
McPherson
 
R
,
Metspalu
 
A
,
Pujades-Rodriguez
 
M
,
Ruusalepp
 
A
,
Schadt
 
EE
,
Schmidt
 
AF
,
Sweeting
 
MJ
,
Zalloua
 
PA
,
AlGhalayini
 
K
,
Keavney
 
BD
,
Kooner
 
JS
,
Loos
 
RJF
,
Patel
 
RS
,
Rutter
 
MK
,
Tomaszewski
 
M
,
Tzoulaki
 
I
,
Zeggini
 
E
,
Erdmann
 
J
,
Dedoussis
 
G
,
Bjorkegren
 
JLM
EPIC-CVD Consortium; CARDIoGRAMplusC4D; UK Biobank CardioMetabolic Consortium CHD working group
Schunkert
 
H
,
Farrall
 
M
,
Danesh
 
J
,
Samani
 
NJ
,
Watkins
 
H
,
Deloukas
 
P
.
Association analyses based on false discovery rate implicate new loci for coronary artery disease
.
Nat Genet
 
2017
;
49
:
1385
1391
.

239

van Rijssel
 
J
,
van Buul
 
JD
.
The many faces of the guanine-nucleotide exchange factor trio
.
Cell Adh Migr
 
2012
;
6
:
482
487
.

240

Samson
 
T
,
van Buul
 
JD
,
Kroon
 
J
,
Welch
 
C
,
Bakker
 
EN
,
Matlung
 
HL
,
van den Berg
 
TK
,
Sharek
 
L
,
Doerschuk
 
C
,
Hahn
 
K
,
Burridge
 
K
.
The guanine-nucleotide exchange factor SGEF plays a crucial role in the formation of atherosclerosis
.
PLoS One
 
2013
;
8
:
e55202.

241

van Buul
 
JD
,
Allingham
 
MJ
,
Samson
 
T
,
Meller
 
J
,
Boulter
 
E
,
García-Mata
 
R
,
Burridge
 
K
.
RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration
.
J Cell Biol
 
2007
;
178
:
1279
1293
.

242

Chai
 
JT
,
Ruparelia
 
N
,
Goel
 
A
,
Kyriakou
 
T
,
Biasiolli
 
L
,
Edgar
 
L
,
Handa
 
A
,
Farrall
 
M
,
Watkins
 
H
,
Choudhury
 
RP
.
Differential gene expression in macrophages from human atherosclerotic plaques shows convergence on pathways implicated by genome-wide association study risk variants
.
Arterioscler Thromb Vasc Biol
 
2018
;
38
:
2718
2730
.

243

Bellosta
 
S
,
Mahley
 
RW
,
Sanan
 
DA
,
Murata
 
J
,
Newland
 
DL
,
Taylor
 
JM
,
Pitas
 
RE
.
Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice
.
J Clin Invest
 
1995
;
96
:
2170
2179
.

244

Boyle
 
EA
,
Li
 
YI
,
Pritchard
 
JK
.
An expanded view of complex traits: from polygenic to omnigenic
.
Cell
 
2017
;
169
:
1177
1186
.

245

Schaar
 
JA
,
Muller
 
JE
,
Falk
 
E
,
Virmani
 
R
,
Fuster
 
V
,
Serruys
 
PW
,
Colombo
 
A
,
Stefanadis
 
C
,
Ward Casscells
 
S
,
Moreno
 
PR
,
Maseri
 
A
,
van der Steen
 
AF
.
Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece
.
Eur Heart J
 
2004
;
25
:
1077
1082
.

246

Virmani
 
R
,
Kolodgie
 
FD
,
Burke
 
AP
,
Farb
 
A
,
Schwartz
 
SM
.
Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions
.
Arterioscler Thromb Vasc Biol
 
2000
;
20
:
1262
1275
.

247

Elia
 
E
,
Montecucco
 
F
,
Portincasa
 
P
,
Sahebkar
 
A
,
Mollazadeh
 
H
,
Carbone
 
F
.
Update on pathological platelet activation in coronary thrombosis
.
J Cell Physiol
 
2019
;
234
:
2121
2133
.

248

Badimon
 
L
,
Vilahur
 
G
.
Thrombosis formation on atherosclerotic lesions and plaque rupture
.
J Intern Med
 
2014
;
276
:
618
632
.

249

Owens
 
AP
 3rd ,
Passam
 
FH
,
Antoniak
 
S
,
Marshall
 
SM
,
McDaniel
 
AL
,
Rudel
 
L
,
Williams
 
JC
,
Hubbard
 
BK
,
Dutton
 
JA
,
Wang
 
J
,
Tobias
 
PS
,
Curtiss
 
LK
,
Daugherty
 
A
,
Kirchhofer
 
D
,
Luyendyk
 
JP
,
Moriarty
 
PM
,
Nagarajan
 
S
,
Furie
 
BC
,
Furie
 
B
,
Johns
 
DG
,
Temel
 
RE
,
Mackman
 
N
.
Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin
.
J Clin Invest
 
2012
;
122
:
558
568
.

250

Obermayer
 
G
,
Afonyushkin
 
T
,
Binder
 
CJ
.
Oxidized low-density lipoprotein in inflammation-driven thrombosis
.
J Thromb Haemost
 
2018
;
16
:
418
428
.

251

Lesnik
 
P
,
Rouis
 
M
,
Skarlatos
 
S
,
Kruth
 
HS
,
Chapman
 
MJ
.
Uptake of exogenous free cholesterol induces upregulation of tissue factor expression in human monocyte-derived macrophages
.
Proc Natl Acad Sci USA
 
1992
;
89
:
10370
10374
.

252

Petit
 
L
,
Lesnik
 
P
,
Dachet
 
C
,
Moreau
 
M
,
Chapman
 
MJ
.
Tissue factor pathway inhibitor is expressed by human monocyte-derived macrophages: relationship to tissue factor induction by cholesterol and oxidized LDL
.
Arterioscler Thromb Vasc Biol
 
1999
;
19
:
309
315
.

253

Doi
 
H
,
Kugiyama
 
K
,
Oka
 
H
,
Sugiyama
 
S
,
Ogata
 
N
,
Koide
 
S-I
,
Nakamura
 
S-I
,
Yasue
 
H
.
Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism
.
Circulation
 
2000
;
102
:
670
676
.

254

Owens
 
AP
 3rd ,
Mackman
 
N
.
Tissue factor and thrombosis: the clot starts here
.
Thromb Haemost
 
2010
;
104
:
432
439
.

255

Chatterjee
 
M
,
Rath
 
D
,
Schlotterbeck
 
J
,
Rheinlaender
 
J
,
Walker-Allgaier
 
B
,
Alnaggar
 
N
,
Zdanyte
 
M
,
Müller
 
I
,
Borst
 
O
,
Geisler
 
T
,
Schäffer
 
TE
,
Lämmerhofer
 
M
,
Gawaz
 
M
.
Regulation of oxidized platelet lipidome: implications for coronary artery disease
.
Eur Heart J
 
2017
;
38
:
1993
2005
.

256

Chen
 
K
,
Febbraio
 
M
,
Li
 
W
,
Silverstein
 
RL
.
A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein
.
Circ Res
 
2008
;
102
:
1512
1519
.

257

Chan
 
HC
,
Ke
 
LY
,
Chu
 
CS
,
Lee
 
AS
,
Shen
 
MY
,
Cruz
 
MA
,
Hsu
 
JF
,
Cheng
 
KH
,
Chan
 
HC
,
Lu
 
J
,
Lai
 
WT
,
Sawamura
 
T
,
Sheu
 
SH
,
Yen
 
JH
,
Chen
 
CH
.
Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation
.
Blood
 
2013
;
122
:
3632
3641
.

258

Otsuka
 
F
,
Finn
 
AV
,
Yazdani
 
SK
,
Nakano
 
M
,
Kolodgie
 
FD
,
Virmani
 
R
.
The importance of the endothelium in atherothrombosis and coronary stenting
.
Nat Rev Cardiol
 
2012
;
9
:
439
453
.

259

Brown
 
GT
,
McIntyre
 
TM
.
Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles
.
J Immunol
 
2011
;
186
:
5489
5496
.

260

Ardlie
 
NG
,
Selley
 
ML
,
Simons
 
LA
.
Platelet activation by oxidatively modified low density lipoproteins
.
Atherosclerosis
 
1989
;
76
:
117
124
.

261

Chen
 
YC
,
Huang
 
AL
,
Kyaw
 
TS
,
Bobik
 
A
,
Peter
 
K
.
Atherosclerotic plaque rupture: identifying the straw that breaks the Camel's back
.
Arterioscler Thromb Vasc Biol
 
2016
;
36
:
e63
72
.

262

Falk
 
E
,
Shah
 
PK
,
Fuster
 
V
.
Coronary plaque disruption
.
Circulation
 
1995
;
92
:
657
671
.

263

Bentzon
 
JF
,
Otsuka
 
F
,
Virmani
 
R
,
Falk
 
E
.
Mechanisms of plaque formation and rupture
.
Circ Res
 
2014
;
114
:
1852
1866
.

264

Ambrose
 
JA
,
Tannenbaum
 
MA
,
Alexopoulos
 
D
,
Hjemdahl-Monsen
 
CE
,
Leavy
 
J
,
Weiss
 
M
,
Borrico
 
S
,
Gorlin
 
R
,
Fuster
 
V
.
Angiographic progression of coronary artery disease and the development of myocardial infarction
.
J Am Coll Cardiol
 
1988
;
12
:
56
62
.

265

Little
 
WC
,
Constantinescu
 
M
,
Applegate
 
RJ
,
Kutcher
 
MA
,
Burrows
 
MT
,
Kahl
 
FR
,
Santamore
 
WP
.
Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?
 
Circulation
 
1988
;
78
(5 Pt 1):
1157
1166
.

266

Vergallo
 
R
,
Porto
 
I
,
D’Amario
 
D
,
Annibali
 
G
,
Galli
 
M
,
Benenati
 
S
,
Bendandi
 
F
,
Migliaro
 
S
,
Fracassi
 
F
,
Aurigemma
 
C
,
Leone
 
AM
,
Buffon
 
A
,
Burzotta
 
F
,
Trani
 
C
,
Niccoli
 
G
,
Liuzzo
 
G
,
Prati
 
F
,
Fuster
 
V
,
Jang
 
I-K
,
Crea
 
F
.
Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study
.
JAMA Cardiol
 
2019
;
4
:
321.

267

Niccoli
 
G
,
Montone
 
RA
,
Di Vito
 
L
,
Gramegna
 
M
,
Refaat
 
H
,
Scalone
 
G
,
Leone
 
AM
,
Trani
 
C
,
Burzotta
 
F
,
Porto
 
I
,
Aurigemma
 
C
,
Prati
 
F
,
Crea
 
F
.
Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome
.
Eur Heart J
 
2015
;
36
:
1377
1384
.

268

Stone
 
GW
,
Maehara
 
A
,
Lansky
 
AJ
,
de Bruyne
 
B
,
Cristea
 
E
,
Mintz
 
GS
,
Mehran
 
R
,
McPherson
 
J
,
Farhat
 
N
,
Marso
 
SP
,
Parise
 
H
,
Templin
 
B
,
White
 
R
,
Zhang
 
Z
,
Serruys
 
PW
,
Investigators
 
P
.
A prospective natural-history study of coronary atherosclerosis
.
N Engl J Med
 
2011
;
364
:
226
235
.

269

Brown
 
G
,
Albers
 
JJ
,
Fisher
 
LD
,
Schaefer
 
SM
,
Lin
 
JT
,
Kaplan
 
C
,
Zhao
 
XQ
,
Bisson
 
BD
,
Fitzpatrick
 
VF
,
Dodge
 
HT
.
Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B
.
N Engl J Med
 
1990
;
323
:
1289
1298
.

270

Almeida
 
SO
,
Budoff
 
M
.
Effect of statins on atherosclerotic plaque
.
Trends Cardiovasc Med
 
2019
;
29
:
431
455
.

271

Andelius
 
L
,
Mortensen
 
MB
,
Norgaard
 
BL
,
Abdulla
 
J
.
Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: a systematic review and meta-analysis
.
Eur Heart J Cardiovasc Imaging
 
2018
;
19
:
850
858
.

272

Hattori
 
K
,
Ozaki
 
Y
,
Ismail
 
TF
,
Okumura
 
M
,
Naruse
 
H
,
Kan
 
S
,
Ishikawa
 
M
,
Kawai
 
T
,
Ohta
 
M
,
Kawai
 
H
,
Hashimoto
 
T
,
Takagi
 
Y
,
Ishii
 
J
,
Serruys
 
PW
,
Narula
 
J
.
Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS
.
JACC Cardiovasc Imaging
 
2012
;
5
:
169
177
.

273

Sabatine
 
MS
,
Giugliano
 
RP
,
Keech
 
AC
,
Honarpour
 
N
,
Wiviott
 
SD
,
Murphy
 
SA
,
Kuder
 
JF
,
Wang
 
H
,
Liu
 
T
,
Wasserman
 
SM
,
Sever
 
PS
,
Pedersen
 
TR
FOURIER Steering Committee and Investigators.
.Evolocumab and clinical outcomes in patients with cardiovascular disease
.
N Engl J Med
 
2017
;
376
:
1713
1722
.

274

Nicholls
 
SJ
,
Puri
 
R
,
Anderson
 
T
,
Ballantyne
 
CM
,
Cho
 
L
,
Kastelein
 
JJ
,
Koenig
 
W
,
Somaratne
 
R
,
Kassahun
 
H
,
Yang
 
J
,
Wasserman
 
SM
,
Scott
 
R
,
Ungi
 
I
,
Podolec
 
J
,
Ophuis
 
AO
,
Cornel
 
JH
,
Borgman
 
M
,
Brennan
 
DM
,
Nissen
 
SE
.
Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial
.
JAMA
 
2016
;
316
:
2373
2384
.

275

Nicholls
 
SJ
,
Puri
 
R
,
Anderson
 
T
,
Ballantyne
 
CM
,
Cho
 
L
,
Kastelein
 
JJP
,
Koenig
 
W
,
Somaratne
 
R
,
Kassahun
 
H
,
Yang
 
J
,
Wasserman
 
SM
,
Honda
 
S
,
Shishikura
 
D
,
Scherer
 
DJ
,
Borgman
 
M
,
Brennan
 
DM
,
Wolski
 
K
,
Nissen
 
SE
.
Effect of evolocumab on coronary plaque composition
.
J Am Coll Cardiol
 
2018
;
72
:
2012
2021
.

276

Barter
 
PJ
,
Nicholls
 
S
,
Rye
 
KA
,
Anantharamaiah
 
GM
,
Navab
 
M
,
Fogelman
 
AM
.
Antiinflammatory properties of HDL
.
Circ Res
 
2004
;
95
:
764
772
.

277

Camont
 
L
,
Chapman
 
MJ
,
Kontush
 
A
.
Biological activities of HDL subpopulations and their relevance to cardiovascular disease
.
Trends Mol Med
 
2011
;
17
:
594
603
.

278

Rye
 
KA
,
Barter
 
PJ
.
Cardioprotective functions of HDLs
.
J Lipid Res
 
2014
;
55
:
168
179
.

279

Orsoni
 
A
,
Therond
 
P
,
Tan
 
R
,
Giral
 
P
,
Robillard
 
P
,
Kontush
 
A
,
Meikle
 
PJ
,
Chapman
 
MJ
.
Statin action enriches HDL3 in polyunsaturated phospholipids and plasmalogens and reduces LDL-derived phospholipid hydroperoxides in atherogenic mixed dyslipidemia
.
J Lipid Res
 
2016
;
57
:
2073
2087
.

280

Speer
 
T
,
Zewinger
 
S
.
High-density lipoprotein (HDL) and infections: a versatile culprit
.
Eur Heart J
 
2018
;
39
:
1191
1193
.

281

Genest
 
G
,
Genest
 
J
.
High-density lipoproteins and inflammatory diseases: full circle ahead
.
Clin Chem
 
2019
;
65
:
607
608
.

282

Huang
 
Y
,
DiDonato
 
JA
,
Levison
 
BS
,
Schmitt
 
D
,
Li
 
L
,
Wu
 
Y
,
Buffa
 
J
,
Kim
 
T
,
Gerstenecker
 
GS
,
Gu
 
X
,
Kadiyala
 
CS
,
Wang
 
Z
,
Culley
 
MK
,
Hazen
 
JE
,
Didonato
 
AJ
,
Fu
 
X
,
Berisha
 
SZ
,
Peng
 
D
,
Nguyen
 
TT
,
Liang
 
S
,
Chuang
 
CC
,
Cho
 
L
,
Plow
 
EF
,
Fox
 
PL
,
Gogonea
 
V
,
Tang
 
WH
,
Parks
 
JS
,
Fisher
 
EA
,
Smith
 
JD
,
Hazen
 
SL
.
An abundant dysfunctional apolipoprotein A1 in human atheroma
.
Nat Med
 
2014
;
20
:
193
203
.

283

Besler
 
C
,
Heinrich
 
K
,
Rohrer
 
L
,
Doerries
 
C
,
Riwanto
 
M
,
Shih
 
DM
,
Chroni
 
A
,
Yonekawa
 
K
,
Stein
 
S
,
Schaefer
 
N
,
Mueller
 
M
,
Akhmedov
 
A
,
Daniil
 
G
,
Manes
 
C
,
Templin
 
C
,
Wyss
 
C
,
Maier
 
W
,
Tanner
 
FC
,
Matter
 
CM
,
Corti
 
R
,
Furlong
 
C
,
Lusis
 
AJ
,
von Eckardstein
 
A
,
Fogelman
 
AM
,
Luscher
 
TF
,
Landmesser
 
U
.
Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease
.
J Clin Invest
 
2011
;
121
:
2693
–2
708
.

284

Huang
 
Y
,
Wu
 
Z
,
Riwanto
 
M
,
Gao
 
S
,
Levison
 
BS
,
Gu
 
X
,
Fu
 
X
,
Wagner
 
MA
,
Besler
 
C
,
Gerstenecker
 
G
,
Zhang
 
R
,
Li
 
XM
,
DiDonato
 
AJ
,
Gogonea
 
V
,
Tang
 
WH
,
Smith
 
JD
,
Plow
 
EF
,
Fox
 
PL
,
Shih
 
DM
,
Lusis
 
AJ
,
Fisher
 
EA
,
DiDonato
 
JA
,
Landmesser
 
U
,
Hazen
 
SL
.
Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex
.
J Clin Invest
 
2013
;
123
:
3815
3828
.

285

Libby
 
P
.
Inflammation in atherosclerosis
.
Nature
 
2002
;
420
:
868
874
.

286

Hansson
 
GK
.
Inflammation, atherosclerosis, and coronary artery disease
.
N Engl J Med
 
2005
;
352
:
1685
1695
.

287

Do
 
R
,
Willer
 
CJ
,
Schmidt
 
EM,
,
Sengupta
 
S
,
Gao
 
C
,
Peloso
 
GM
,
Gustafsson
 
S
,
Kanoni
 
S
,
Ganna
 
A
,
Chen
 
J,
,
Buchkovich
 
ML
,
Mora
 
S
,
Beckmann
 
JS
,
Bragg-Gresham
 
JL,
,
Chang
 
HY,
,
Demirkan
 
A,
,
Den Hertog
 
HM
,
Donnelly
 
LA
,
Ehret
 
GB
,
Esko
 
T
,
Feitosa
 
MF
,
Ferreira
 
T
,
Fischer
 
K
,
Fontanillas
 
P
,
Fraser
 
RM,
,
Freitag
 
DF
,
Gurdasani
 
D
,
Heikkila
 
K
,
Hypponen
 
E
,
Isaacs
 
A
,
Jackson
 
AU
,
Johansson
 
A
,
Johnson
 
T
,
Kaakinen
 
M
,
Kettunen
 
J
,
Kleber
 
ME
,
Li
 
X
,
Luan
 
J
,
Lyytikainen
 
LP
,
Magnusson
 
PK
,
Mangino
 
M
,
Mihailov
 
E
,
Montasser
 
ME
,
Muller-Nurasyid
 
M
,
Nolte
 
IM,
,
O'Connell
 
JR
,
Palmer
 
CD,
,
Perola
 
M,
,
Petersen
 
AK
,
Sanna
 
S
,
Saxena
 
R
,
Service
 
SK
,
Shah
 
S
,
Shungin
 
D
,
Sidore
 
C
,
Song
 
C
,
Strawbridge
 
RJ
,
Surakka
 
I
,
Tanaka
 
T
,
Teslovich
 
TM
,
Thorleifsson
 
G
,
Van den Herik
 
EG
,
Voight
 
BF
,
Volcik
 
KA
,
Waite
 
LL
,
Wong
 
A
,
Wu
 
Y
,
Zhang
 
W
,
Absher
 
D
,
Asiki
 
G,
,
Barroso
 
I
,
Been
 
LF
,
Bolton
 
JL
,
Bonnycastle
 
LL
,
Brambilla
 
P
,
Burnett
 
MS
,
Cesana
 
G
,
Dimitriou
 
M
,
Doney
 
AS
,
Doring
 
A
,
Elliott
 
P,
,
Epstein
 
SE
,
Eyjolfsson
 
GI
,
Gigante
 
B
,
Goodarzi
 
MO
,
Grallert
 
H
,
Gravito
 
ML
,
Groves
 
CJ,
,
Hallmans
 
G
,
Hartikainen
 
AL
,
Hayward
 
C
,
Hernandez
 
D
,
Hicks
 
AA
,
Holm
 
H
,
Hung
 
YJ,
,
Illig
 
T
,
Jones
 
MR
,
Kaleebu
 
P
,
Kastelein
 
JJ
,
Khaw
 
KT
,
Kim
 
E
,
Klopp
 
N
,
Komulainen
 
P
,
Kumari
 
M
,
Langenberg
 
C
,
Lehtimaki
 
T,
,
Lin
 
SY
,
Lindstrom
 
J
,
Loos
 
RJ,
,
Mach
 
F
,
McArdle
 
WL
,
Meisinger
 
C,
,
Mitchell
 
BD
,
Muller
 
G
,
Nagaraja
 
R,
,
Narisu
 
N
,
Nieminen
 
TV
,
Nsubuga
 
RN
,
Olafsson
 
I
,
Ong
 
KK
,
Palotie
 
A
,
Papamarkou
 
T
,
Pomilla
 
C
,
Pouta
 
A,
,
Rader
 
DJ,
,
Reilly
 
MP
,
Ridker
 
PM,
,
Rivadeneira
 
F
,
Rudan
 
I
,
Ruokonen
 
A
,
Samani
 
N
,
Scharnagl
 
H
,
Seeley
 
J
,
Silander
 
K
,
Stancakova
 
A
,
Stirrups
 
K
,
Swift
 
AJ
,
Tiret
 
L
,
Uitterlinden
 
AG
,
van Pelt
 
LJ
,
Vedantam
 
S
,
Wainwright
 
N
,
Wijmenga
 
C
,
Wild
 
SH
,
Willemsen
 
G
,
Wilsgaard
 
T
,
Wilson
 
JF
,
Young
 
EH
,
Zhao
 
JH
,
Adair
 
LS
,
Arveiler
 
D
,
Assimes
 
TL
,
Bandinelli
 
S
,
Bennett
 
F
,
Bochud
 
M
,
Boehm
 
BO
,
Boomsma
 
DI
,
Borecki
 
IB
,
Bornstein
 
SR
,
Bovet
 
P
,
Burnier
 
M
,
Campbell
 
H
,
Chakravarti
 
A
,
Chambers
 
JC
,
Chen
 
YD
,
Collins
 
FS
,
Cooper
 
RS
,
Danesh
 
J
,
Dedoussis
 
G
,
de Faire
 
U
,
Feranil
 
AB,
,
Ferrieres
 
J,
,
Ferrucci
 
L,
,
Freimer
 
NB
,
Gieger
 
C
,
Groop
 
LC
,
Gudnason
 
V
,
Gyllensten
 
U
,
Hamsten
 
A
,
Harris
 
TB,
,
Hingorani
 
A
,
Hirschhorn
 
JN
,
Hofman
 
A
,
Hovingh
 
GK
,
Hsiung
 
CA
,
Humphries
 
SE,
,
Hunt
 
SC
,
Hveem
 
K
,
Iribarren
 
C,
,
Jarvelin
 
MR,
,
Jula
 
A
,
Kahonen
 
M
,
Kaprio
 
J
,
Kesaniemi
 
A
,
Kivimaki
 
M
,
Kooner
 
JS
,
Koudstaal
 
PJ
,
Krauss
 
RM
,
Kuh
 
D,
,
Kuusisto
 
J
,
Kyvik
 
KO
,
Laakso
 
M
,
Lakka
 
TA,
,
Lind
 
L,
,
Lindgren
 
CM
,
Martin
 
NG,
,
Marz
 
W
,
McCarthy
 
MI,
,
McKenzie
 
CA
,
Meneton
 
P
,
Metspalu
 
A
,
Moilanen
 
L
,
Morris
 
AD
,
Munroe
 
PB
,
Njolstad
 
I
,
Pedersen
 
NL,
,
Power
 
C
,
Pramstaller
 
PP,
,
Price
 
JF
,
Psaty
 
BM
,
Quertermous
 
T
,
Rauramaa
 
R
,
Saleheen
 
D
,
Salomaa
 
V
,
Sanghera
 
DK
,
Saramies
 
J
,
Schwarz
 
PE
,
Sheu
 
WH
,
Shuldiner
 
AR
,
Siegbahn
 
A
,
Spector
 
TD
,
Stefansson
 
K
,
Strachan
 
DP
,
Tayo
 
BO
,
Tremoli
 
E
,
Tuomilehto
 
J
,
Uusitupa
 
M
,
van Duijn
 
CM
,
Vollenweider
 
P,
,
Wallentin
 
L
,
Wareham
 
NJ
,
Whitfield
 
JB
,
Wolffenbuttel
 
BH
,
Altshuler
 
D
,
Ordovas
 
JM
,
Boerwinkle
 
E
,
Palmer
 
CN
,
Thorsteinsdottir
 
U
,
Chasman
 
DI
,
Rotter
 
JI
,
Franks
 
PW
,
Ripatti
 
S
,
Cupples
 
LA
,
Sandhu
 
MS,
,
Rich
 
SS
,
Boehnke
 
M
,
Deloukas
 
P
,
Mohlke
 
KL
,
Ingelsson
 
E
,
Abecasis
 
GR
,
Daly
 
MJ
,
Neale
 
BM
,
Kathiresan
 
S
.
Common variants associated with plasma triglycerides and risk for coronary artery disease
.
Nat Genet
 
2013
;
45
:
1345
–13
52
.

288

Madsen
 
CM
,
Varbo
 
A
,
Nordestgaard
 
BG
.
Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies
.
Eur Heart J
 
2017
;
38
:
2478
2486
.

289

Ko
 
DT
,
Alter
 
DA
,
Guo
 
H
,
Koh
 
M
,
Lau
 
G
,
Austin
 
PC
,
Booth
 
GL
,
Hogg
 
W
,
Jackevicius
 
CA
,
Lee
 
DS
,
Wijeysundera
 
HC
,
Wilkins
 
JT
,
Tu
 
JV
.
High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART Study
.
J Am Coll Cardiol
 
2016
;
68
:
2073
2083
.

290

Gordon
 
DJ
,
Rifkind
 
BM
.
High-density lipoprotein–the clinical implications of recent studies
.
N Engl J Med
 
1989
;
321
:
1311
1316
.

291

Barter
 
P
,
Gotto
 
AM
,
LaRosa
 
JC
,
Maroni
 
J
,
Szarek
 
M
,
Grundy
 
SM
,
Kastelein
 
JJ
,
Bittner
 
V
,
Fruchart
 
JC
; Treating to New Targets Investigators.
HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events
.
N Engl J Med
 
2007
;
357
:
1301
1310
.

292

Voight
 
BF
,
Peloso
 
GM
,
Orho-Melander
 
M
,
Frikke-Schmidt
 
R
,
Barbalic
 
M
,
Jensen
 
MK
,
Hindy
 
G
,
Holm
 
H
,
Ding
 
EL
,
Johnson
 
T
,
Schunkert
 
H
,
Samani
 
NJ
,
Clarke
 
R
,
Hopewell
 
JC
,
Thompson
 
JF
,
Li
 
M
,
Thorleifsson
 
G
,
Newton-Cheh
 
C
,
Musunuru
 
K
,
Pirruccello
 
JP
,
Saleheen
 
D
,
Chen
 
L
,
Stewart
 
A
,
Schillert
 
A
,
Thorsteinsdottir
 
U
,
Thorgeirsson
 
G
,
Anand
 
S
,
Engert
 
JC
,
Morgan
 
T
,
Spertus
 
J
,
Stoll
 
M
,
Berger
 
K
,
Martinelli
 
N
,
Girelli
 
D
,
McKeown
 
PP
,
Patterson
 
CC
,
Epstein
 
SE
,
Devaney
 
J
,
Burnett
 
MS
,
Mooser
 
V
,
Ripatti
 
S
,
Surakka
 
I
,
Nieminen
 
MS
,
Sinisalo
 
J
,
Lokki
 
ML
,
Perola
 
M
,
Havulinna
 
A
,
de Faire
 
U
,
Gigante
 
B
,
Ingelsson
 
E
,
Zeller
 
T
,
Wild
 
P
,
de Bakker
 
PI
,
Klungel
 
OH
,
Maitland-van der Zee
 
AH
,
Peters
 
BJ
,
de Boer
 
A
,
Grobbee
 
DE
,
Kamphuisen
 
PW
,
Deneer
 
VH
,
Elbers
 
CC
,
Onland-Moret
 
NC
,
Hofker
 
MH
,
Wijmenga
 
C
,
Verschuren
 
WM
,
Boer
 
JM
,
van der Schouw
 
YT
,
Rasheed
 
A
,
Frossard
 
P
,
Demissie
 
S
,
Willer
 
C
,
Do
 
R
,
Ordovas
 
JM
,
Abecasis
 
GR
,
Boehnke
 
M
,
Mohlke
 
KL
,
Daly
 
MJ
,
Guiducci
 
C
,
Burtt
 
NP
,
Surti
 
A
,
Gonzalez
 
E
,
Purcell
 
S
,
Gabriel
 
S
,
Marrugat
 
J
,
Peden
 
J
,
Erdmann
 
J
,
Diemert
 
P
,
Willenborg
 
C
,
Konig
 
IR
,
Fischer
 
M
,
Hengstenberg
 
C
,
Ziegler
 
A
,
Buysschaert
 
I
,
Lambrechts
 
D
,
Van de Werf
 
F
,
Fox
 
KA
,
El Mokhtari
 
NE
,
Rubin
 
D
,
Schrezenmeir
 
J
,
Schreiber
 
S
,
Schafer
 
A
,
Danesh
 
J
,
Blankenberg
 
S
,
Roberts
 
R
,
McPherson
 
R
,
Watkins
 
H
,
Hall
 
AS
,
Overvad
 
K
,
Rimm
 
E
,
Boerwinkle
 
E
,
Tybjaerg-Hansen
 
A
,
Cupples
 
LA
,
Reilly
 
MP
,
Melander
 
O
,
Mannucci
 
PM
,
Ardissino
 
D
,
Siscovick
 
D
,
Elosua
 
R
,
Stefansson
 
K
,
O'Donnell
 
CJ
,
Salomaa
 
V
,
Rader
 
DJ
,
Peltonen
 
L
,
Schwartz
 
SM
,
Altshuler
 
D
,
Kathiresan
 
S
.
Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study
.
Lancet
 
2012
;
380
:
572
580
.

293

Frikke-Schmidt
 
R
,
Nordestgaard
 
BG
,
Stene
 
MC
,
Sethi
 
AA
,
Remaley
 
AT
,
Schnohr
 
P
,
Grande
 
P
,
Tybjaerg-Hansen
 
A
.
Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease
.
JAMA
 
2008
;
299
:
2524
2532
.

294

Varbo
 
A
,
Benn
 
M
,
Tybjærg-Hansen
 
A
,
Jørgensen
 
AB
,
Frikke-Schmidt
 
R
,
Nordestgaard
 
BG
.
Remnant cholesterol as a causal risk factor for ischemic heart disease
.
J Am Coll Cardiol
 
2013
;
61
:
427
436
.

295

Badimon
 
JJ
,
Badimon
 
L
,
Galvez
 
A
,
Dische
 
R
,
Fuster
 
V
.
High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits
.
Lab Invest
 
1989
;
60
:
455
461
.

296

Badimon
 
JJ
,
Badimon
 
L
,
Fuster
 
V
.
Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit
.
J Clin Invest
 
1990
;
85
:
1234
1241
.

297

Nicholls
 
SJ
,
Cutri
 
B
,
Worthley
 
SG
,
Kee
 
P
,
Rye
 
KA
,
Bao
 
S
,
Barter
 
PJ
.
Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits
.
Arterioscler Thromb Vasc Biol
 
2005
;
25
:
2416
2421
.

298

Plump
 
AS
,
Scott
 
CJ
,
Breslow
 
JL
.
Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse
.
Proc Natl Acad Sci USA
 
1994
;
91
:
9607
9611
.

299

Rubin
 
EM
,
Krauss
 
RM
,
Spangler
 
EA
,
Verstuyft
 
JG
,
Clift
 
SM
.
Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI
.
Nature
 
1991
;
353
:
265
267
.

300

Rong
 
JX
,
Li
 
J
,
Reis
 
ED
,
Choudhury
 
RP
,
Dansky
 
HM
,
Elmalem
 
VI
,
Fallon
 
JT
,
Breslow
 
JL
,
Fisher
 
EA
.
Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content
.
Circulation
 
2001
;
104
:
2447
2452
.

301

Khera
 
AV
,
Cuchel
 
M
,
de la Llera-Moya
 
M
,
Rodrigues
 
A
,
Burke
 
MF
,
Jafri
 
K
,
French
 
BC
,
Phillips
 
JA
,
Mucksavage
 
ML
,
Wilensky
 
RL
,
Mohler
 
ER
,
Rothblat
 
GH
,
Rader
 
DJ
.
Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis
.
N Engl J Med
 
2011
;
364
:
127
135
.

302

Li
 
XM
,
Tang
 
WH
,
Mosior
 
MK
,
Huang
 
Y
,
Wu
 
Y
,
Matter
 
W
,
Gao
 
V
,
Schmitt
 
D
,
Didonato
 
JA
,
Fisher
 
EA
,
Smith
 
JD
,
Hazen
 
SL
.
Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks
.
Arterioscler Thromb Vasc Biol
 
2013
;
33
:
1696
1705
.

303

Khera
 
AV
,
Rader
 
DJ
.
Cholesterol efflux capacity: full steam ahead or a bump in the road?
 
Arterioscler Thromb Vasc Biol
 
2013
;
33
:
1449
1451
.

304

Shea
 
S
,
Stein
 
JH
,
Jorgensen
 
NW
,
McClelland
 
RL
,
Tascau
 
L
,
Shrager
 
S
,
Heinecke
 
JW
,
Yvan-Charvet
 
L
,
Tall
 
AR
.
Cholesterol mass efflux capacity, incident cardiovascular disease, and progression of carotid plaque
.
Arterioscler Thromb Vasc Biol
 
2019
;
39
:
89
96
.

305

Nicholls
 
SJ
,
Tuzcu
 
EM
,
Sipahi
 
I
,
Grasso
 
AW
,
Schoenhagen
 
P
,
Hu
 
T
,
Wolski
 
K
,
Crowe
 
T
,
Desai
 
MY
,
Hazen
 
SL
,
Kapadia
 
SR
,
Nissen
 
SE
.
Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis
.
JAMA
 
2007
;
297
:
499
508
.

306

Cui
 
Y
,
Watson
 
DJ
,
Girman
 
CJ
,
Shapiro
 
DR
,
Gotto
 
AM
,
Hiserote
 
P
,
Clearfield
 
MB
.
Effects of increasing high-density lipoprotein cholesterol and decreasing low-density lipoprotein cholesterol on the incidence of first acute coronary events (from the Air Force/Texas Coronary Atherosclerosis Prevention Study)
.
Am J Cardiol
 
2009
;
104
:
829
834
.

307

Honda
 
S
,
Sidharta
 
SL
,
Shishikura
 
D
,
Takata
 
K
,
Di Giovanni
 
GA
,
Nguyen
 
T
,
Janssan
 
A
,
Kim
 
SW
,
Andrews
 
J
,
Psaltis
 
PJ
,
Worthley
 
MI
,
Nicholls
 
SJ
.
High-density lipoprotein cholesterol associated with change in coronary plaque lipid burden assessed by near infrared spectroscopy
.
Atherosclerosis
 
2017
;
265
:
110
116
.

308

Madsen
 
CM
,
Varbo
 
A
,
Tybjærg-Hansen
 
A
,
Frikke-Schmidt
 
R
,
Nordestgaard
 
BG
.
U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies
.
Eur Heart J
 
2018
;
39
:
1181
1190
.

309

Madsen
 
CM
,
Varbo
 
A
,
Nordestgaard
 
BG
.
Low HDL cholesterol and high risk of autoimmune disease: two population-based cohort studies including 117341 individuals
.
Clin Chem
 
2019
;
65
:
644
652
.

310

Stahlman
 
M
,
Fagerberg
 
B
,
Adiels
 
M
,
Ekroos
 
K
,
Chapman
 
JM
,
Kontush
 
A
,
Boren
 
J
.
Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: impact on small HDL particles
.
Biochim Biophys Acta
 
2013
;
1831
:
1609
1617
.

311

Nordestgaard
 
BG
,
Nicholls
 
SJ
,
Langsted
 
A
,
Ray
 
KK
,
Tybjærg-Hansen
 
A
.
Advances in lipid-lowering therapy through gene-silencing technologies
.
Nat Rev Cardiol
 
2018
;
15
:
261
272
.

312

Nordestgaard
 
BG
,
Varbo
 
A
.
Triglycerides and cardiovascular disease
.
Lancet
 
2014
;
384
:
626
635
.

313

Mead
 
JR
,
Ramji
 
DP
.
The pivotal role of lipoprotein lipase in atherosclerosis
.
Cardiovasc Res
 
2002
;
55
:
261
269
.

314

Pentikainen
 
MO
,
Oksjoki
 
R
,
Oorni
 
K
,
Kovanen
 
PT
.
Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more
.
Arterioscler Thromb Vasc Biol
 
2002
;
22
:
211
217
.

315

Bhatt
 
DL
,
Steg
 
PG
,
Miller
 
M
,
Brinton
 
EA
,
Jacobson
 
TA
,
Ketchum
 
SB
,
Doyle
 
RT
 Jr
,
Juliano
 
RA
,
Jiao
 
L
,
Granowitz
 
C
,
Tardif
 
JC
,
Ballantyne
 
CM
; REDUCE-IT Investigators.
Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia
.
N Engl J Med
 
2019
;
380
:
11
22
.

316

Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators

Stitziel
 
NO
,
Stirrups
 
KE
,
Masca
 
NG
,
Erdmann
 
J
,
Ferrario
 
PG,
,
Konig
 
IR
,
Weeke
 
PE
,
Webb
 
TR
,
Auer
 
PL
,
Schick
 
UM
,
Lu
 
Y
,
Zhang
 
H
,
Dube
 
MP,
,
Goel
 
A
,
Farrall
 
M,
,
Peloso
 
GM
,
Won
 
HH
,
Do
 
R
,
van Iperen
 
E
,
Kanoni
 
S
,
Kruppa
 
J
,
Mahajan
 
A,
,
Scott
 
RA
,
Willenberg
 
C
,
Braund
 
PS
,
van Capelleveen
 
JC
,
Doney
 
AS
,
Donnelly
 
LA
,
Asselta
 
R
,
Merlini
 
PA,
,
Duga
 
S
,
Marziliano
 
N
,
Denny
 
JC
,
Shaffer
 
CM
,
El-Mokhtari
 
NE
,
Franke
 
A
,
Gottesman
 
O
,
Heilmann
 
S
,
Hengstenberg
 
C
,
Hoffman
 
P
,
Holmen
 
OL
,
Hveem
 
K
,
Jansson
 
JH
,
Jockel
 
KH
,
Kessler
 
T
,
Kriebel
 
J
,
Laugwitz
 
KL
,
Marouli
 
E
,
Martinelli
 
N
,
McCarthy
 
MI
,
Van Zuydam
 
NR
,
Meisinger
 
C
,
Esko
 
T
,
Mihailov
 
E
,
Escher
 
SA
,
Alver
 
M
,
Moebus
 
S
,
Morris
 
AD,
,
Muller-Nurasyid
 
M
,
Nikpay
 
M
,
Olivieri
 
O,
,
Lemieux Perreault
 
A
,
AlQarawi
 
LP
,
Robertson
 
NR
,
Akinsanya
 
KO
,
Reilly
 
DF
,
Vogt
 
TF
,
Yin
 
W
,
Asselbergs
 
FW
,
Kooperberg
 
C,
,
Jackson
 
RD
,
Stahl
 
E
,
Strauch
 
K
,
Varga
 
TV
,
Waldenberger
 
M
,
Zeng
 
L
,
Kraja
 
AT
,
Liu
 
C
,
Ehret
 
GB
,
Newton-Cheh
 
C
,
Chasman
 
DI
,
Chowdhury
 
R
,
Ferrario
 
M
,
Ford
 
I
,
Jukema
 
JW
,
Kee
 
F
,
Kuulasmaa
 
K
,
Nordestgaard
 
BG
,
Perola
 
M
,
Saleheen
 
D
,
Sattar
 
N
,
Surendran
 
P
,
Tregouet
 
D
,
Young
 
R
,
Howson
 
JM
,
Butterworth
 
AS
,
Danesh
 
J
,
Ardissino
 
D
,
Bottinger
 
EP,
,
Erbel
 
R
,
Franks
 
PW
,
Girelli
 
D
,
Hall
 
AS
,
Hovingh
 
GK
,
Kastrati
 
A
,
Lieb
 
W
,
Meitinger
 
T
,
Kraus
 
WE
,
Shah
 
SH
,
McPherson
 
R
,
Orho-Melander
 
M
,
Melander
 
O
,
Metspalu
 
A,
,
Palmer
 
CN
,
Peters
 
A
,
Rader
 
D
,
Reilly
 
MP,
,
Loos
 
RJ,
,
Reiner
 
AP
,
Roden
 
DM
,
Tardif
 
JC
,
Thompson
 
JR
,
Wareham
 
NJ,
,
Watkins
 
H
,
Willer
 
CJ
,
Kathiresan
 
S
,
Deloukas
 
P,
,
Samani
 
NJ
,
Schunkert
 
H
.
Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease
.
N Engl J Med
 
2016
;
374
:
1134
1144
.

317

Do
 
R
,
Stitziel
 
NO
,
Won
 
HH
,
Jorgensen
 
AB
,
Duga
 
S
,
Angelica Merlini
 
P
,
Kiezun
 
A
,
Farrall
 
M
,
Goel
 
A
,
Zuk
 
O
,
Guella
 
I
,
Asselta
 
R
,
Lange
 
LA
,
Peloso
 
GM
,
Auer
 
PL
NHLBI Exome Sequencing Project
Girelli
 
D
,
Martinelli
 
N
,
Farlow
 
DN
,
DePristo
 
MA
,
Roberts
 
R
,
Stewart
 
AF
,
Saleheen
 
D
,
Danesh
 
J
,
Epstein
 
SE
,
Sivapalaratnam
 
S
,
Hovingh
 
GK
,
Kastelein
 
JJ
,
Samani
 
NJ
,
Schunkert
 
H
,
Erdmann
 
J
,
Shah
 
SH
,
Kraus
 
WE
,
Davies
 
R
,
Nikpay
 
M
,
Johansen
 
CT
,
Wang
 
J
,
Hegele
 
RA
,
Hechter
 
E
,
Marz
 
W
,
Kleber
 
ME
,
Huang
 
J
,
Johnson
 
AD
,
Li
 
M
,
Burke
 
GL
,
Gross
 
M
,
Liu
 
Y
,
Assimes
 
TL
,
Heiss
 
G
,
Lange
 
EM
,
Folsom
 
AR
,
Taylor
 
HA
,
Olivieri
 
O
,
Hamsten
 
A
,
Clarke
 
R
,
Reilly
 
DF
,
Yin
 
W
,
Rivas
 
MA
,
Donnelly
 
P
,
Rossouw
 
JE
,
Psaty
 
BM
,
Herrington
 
DM
,
Wilson
 
JG
,
Rich
 
SS
,
Bamshad
 
MJ
,
Tracy
 
RP
,
Cupples
 
LA
,
Rader
 
DJ
,
Reilly
 
MP
,
Spertus
 
JA
,
Cresci
 
S
,
Hartiala
 
J
,
Tang
 
WH
,
Hazen
 
SL
,
Allayee
 
H
,
Reiner
 
AP
,
Carlson
 
CS
,
Kooperberg
 
C
,
Jackson
 
RD
,
Boerwinkle
 
E
,
Lander
 
ES
,
Schwartz
 
SM
,
Siscovick
 
DS
,
McPherson
 
R
,
Tybjaerg-Hansen
 
A
,
Abecasis
 
GR
,
Watkins
 
H
,
Nickerson
 
DA
,
Ardissino
 
D
,
Sunyaev
 
SR
,
O'Donnell
 
CJ
,
Altshuler
 
D
,
Gabriel
 
S
,
Kathiresan
 
S
.
Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction
.
Nature
 
2015
;
518
:
102
106
.

318

Pradhan
 
AD
,
Paynter
 
NP
,
Everett
 
BM
,
Glynn
 
RJ
,
Amarenco
 
P
,
Elam
 
M
,
Ginsberg
 
H
,
Hiatt
 
WR
,
Ishibashi
 
S
,
Koenig
 
W
,
Nordestgaard
 
BG
,
Fruchart
 
JC
,
Libby
 
P
,
Ridker
 
PM
.
Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study
.
Am Heart J
 
2018
;
206
:
80
93
.

319

Gaudet
 
D
,
Alexander
 
VJ
,
Baker
 
BF
,
Brisson
 
D
,
Tremblay
 
K
,
Singleton
 
W
,
Geary
 
RS
,
Hughes
 
SG
,
Viney
 
NJ
,
Graham
 
MJ
,
Crooke
 
RM
,
Witztum
 
JL
,
Brunzell
 
JD
,
Kastelein
 
JJ
.
Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia
.
N Engl J Med
 
2015
;
373
:
438
447
.

320

Dewey
 
FE
,
Gusarova
 
V
,
Dunbar
 
RL
,
O'Dushlaine
 
C
,
Schurmann
 
C
,
Gottesman
 
O
,
McCarthy
 
S
,
Van Hout
 
CV
,
Bruse
 
S
,
Dansky
 
HM
,
Leader
 
JB
,
Murray
 
MF
,
Ritchie
 
MD
,
Kirchner
 
HL
,
Habegger
 
L
,
Lopez
 
A
,
Penn
 
J
,
Zhao
 
A
,
Shao
 
W
,
Stahl
 
N
,
Murphy
 
AJ
,
Hamon
 
S
,
Bouzelmat
 
A
,
Zhang
 
R
,
Shumel
 
B
,
Pordy
 
R
,
Gipe
 
D,
,
Herman
 
GA
,
Sheu
 
WHH,
,
Lee
 
IT
,
Liang
 
KW
,
Guo
 
X
,
Rotter
 
JI
,
Chen
 
YI
,
Kraus
 
WE
,
Shah
 
SH
,
Damrauer
 
S
,
Small
 
A,
,
Rader
 
DJ
,
Wulff
 
AB
,
Nordestgaard
 
BG
,
Tybjaerg-Hansen
 
A
,
van den Hoek
 
AM
,
Princen
 
HMG
,
Ledbetter
 
DH
,
Carey
 
DJ
,
Overton
 
JD
,
Reid
 
JG
,
Sasiela
 
WJ
,
Banerjee
 
P
,
Shuldiner
 
AR
,
Borecki
 
IB
,
Teslovich
 
TM
,
Yancopoulos
 
GD
,
Mellis
 
SJ,
,
Gromada
 
J
,
Baras
 
A
.
Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease
.
N Engl J Med
 
2017
;
377
:
211
221
.

321

Graham
 
MJ
,
Lee
 
RG
,
Brandt
 
TA
,
Tai
 
LJ
,
Fu
 
W
,
Peralta
 
R
,
Yu
 
R
,
Hurh
 
E
,
Paz
 
E
,
McEvoy
 
BW
,
Baker
 
BF
,
Pham
 
NC
,
Digenio
 
A
,
Hughes
 
SG
,
Geary
 
RS
,
Witztum
 
JL
,
Crooke
 
RM
,
Tsimikas
 
S
.
Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides
.
N Engl J Med
 
2017
;
377
:
222
232
.

322

Varbo
 
A
,
Benn
 
M
,
Tybjærg-Hansen
 
A
,
Nordestgaard
 
BG
.
Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation
.
Circulation
 
2013
;
128
:
1298
1309
.

323

Utermann
 
G
.
The mysteries of lipoprotein (a)
.
Science
 
1989
;
246
:
904
910
.

324

Kronenberg
 
F
,
Utermann
 
G
.
Lipoprotein(a): resurrected by genetics
.
J Intern Med
 
2013
;
273
:
6
30
.

325

Boffa
 
MB
,
Koschinsky
 
ML
.
Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease?
 
J Lipid Res
 
2016
;
57
:
745
757
.

326

Kamstrup
 
PR
,
Tybjærg-Hansen
 
A
,
Nordestgaard
 
BG
.
Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population
.
J Am Coll Cardiol
 
2014
;
63
:
470
477
.

327

Smolders
 
B
,
Lemmens
 
R
,
Thijs
 
V
.
Lipoprotein (a) and stroke: a meta-analysis of observational studies
.
Stroke
 
2007
;
38
:
1959
1966
.

328

Beheshtian
 
A
,
Shitole
 
SG
,
Segal
 
AZ
,
Leifer
 
D
,
Tracy
 
RP
,
Rader
 
DJ
,
Devereux
 
RB
,
Kizer
 
JR
.
Lipoprotein (a) level, apolipoprotein (a) size, and risk of unexplained ischemic stroke in young and middle-aged adults
.
Atherosclerosis
 
2016
;
253
:
47
53
.

329

Clarke
 
R
,
Peden
 
JF
,
Hopewell
 
JC
,
Kyriakou
 
T
,
Goel
 
A
,
Heath
 
SC
,
Parish
 
S
,
Barlera
 
S
,
Franzosi
 
MG
,
Rust
 
S
,
Bennett
 
D
,
Silveira
 
A
,
Malarstig
 
A
,
Green
 
FR
,
Lathrop
 
M
,
Gigante
 
B
,
Leander
 
K
,
de Faire
 
U
,
Seedorf
 
U
,
Hamsten
 
A
,
Collins
 
R
,
Watkins
 
H
,
Farrall
 
M
; PROCARDIS Consortium.
Genetic variants associated with Lp(a) lipoprotein level and coronary disease
.
N Engl J Med
 
2009
;
361
:
2518
2528
.

330

Langsted
 
A
,
Kamstrup
 
PR
,
Nordestgaard
 
BG
.
High lipoprotein(a) and high risk of mortality
.
Eur Heart J
 
2019
;
40
:
2760
2770
.

331

Viney
 
NJ
,
van Capelleveen
 
JC
,
Geary
 
RS
,
Xia
 
S
,
Tami
 
JA
,
Yu
 
RZ
,
Marcovina
 
SM
,
Hughes
 
SG
,
Graham
 
MJ
,
Crooke
 
RM
,
Crooke
 
ST
,
Witztum
 
JL
,
Stroes
 
ES
,
Tsimikas
 
S
.
Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials
.
Lancet
 
2016
;
388
:
2239
2253
.

332

Gaudet
 
D
,
Watts
 
GF
,
Robinson
 
JG
,
Minini
 
P
,
Sasiela
 
WJ
,
Edelberg
 
J
,
Louie
 
MJ
,
Raal
 
FJ
.
Effect of alirocumab on lipoprotein(a) over ≥1.5 years (from the Phase 3 ODYSSEY Program)
.
Am J Cardiol
 
2017
;
119
:
40
46
.

333

O'Donoghue
 
ML
,
Fazio
 
S
,
Giugliano
 
RP
,
Stroes
 
ESG
,
Kanevsky
 
E
,
Gouni-Berthold
 
I
,
Im
 
K
,
Lira Pineda
 
A
,
Wasserman
 
SM
,
Ceska
 
R
,
Ezhov
 
MV
,
Jukema
 
JW
,
Jensen
 
HK
,
Tokgozoglu
 
SL
,
Mach
 
F
,
Huber
 
K
,
Sever
 
PS
,
Keech
 
AC
,
Pedersen
 
TR
,
Sabatine
 
MS
.
Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk
.
Circulation
 
2019
;
139
:
1483
1492
.

334

Ference
 
BA
,
Graham
 
I
,
Tokgozoglu
 
L
,
Catapano
 
AL
.
Impact of lipids on cardiovascular health: JACC health promotion series
.
J Am Coll Cardiol
 
2018
;
72
:
1141
1156
.

335

Luirink
 
IK
,
Wiegman
 
A
,
Kusters
 
DM
,
Hof
 
MH
,
Groothoff
 
JW
,
de Groot
 
E
,
Kastelein
 
JJ
,
Hutten
 
BA
.
20-year follow-up of statins in children with familial hypercholesterolemia
.
N Engl J Med
 
2019
;
381
:
1547
1556
.

336

Landmesser
 
U
,
Chapman
 
MJ
,
Farnier
 
M
,
Gencer
 
B
,
Gielen
 
S
,
Hovingh
 
GK
,
Luscher
 
TF
,
Sinning
 
D
,
Tokgozoglu
 
L
,
Wiklund
 
O
,
Zamorano
 
JL
,
Pinto
 
FJ
,
Catapano
 
AL
; European Society of Cardiology (ESC); European Atherosclerosis Society (EAS).
European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk
.
Eur Heart J
 
2017
;
38
:
2245
2255
.

337

Schwartz
 
GG
,
Bessac
 
L
,
Berdan
 
LG
,
Bhatt
 
DL
,
Bittner
 
V
,
Diaz
 
R
,
Goodman
 
SG
,
Hanotin
 
C
,
Harrington
 
RA
,
Jukema
 
JW
,
Mahaffey
 
KW
,
Moryusef
 
A
,
Pordy
 
R
,
Roe
 
MT
,
Rorick
 
T
,
Sasiela
 
WJ
,
Shirodaria
 
C
,
Szarek
 
M
,
Tamby
 
JF
,
Tricoci
 
P
,
White
 
H
,
Zeiher
 
A
,
Steg
 
PG
.
Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial
.
Am Heart J
 
2014
;
168
:
682
689
.

338

Koren
 
MJ
,
Sabatine
 
MS
,
Giugliano
 
RP
,
Langslet
 
G
,
Wiviott
 
SD
,
Ruzza
 
A
,
Ma
 
Y
,
Hamer
 
AW
,
Wasserman
 
SM
,
Raal
 
FJ
.
Long-term efficacy and safety of evolocumab in patients with hypercholesterolemia
.
J Am Coll Cardiol
 
2019
;
74
:
2132
2146
.

339

Grundy
 
SM
,
Stone
 
NJ
,
Bailey
 
AL
,
Beam
 
C
,
Birtcher
 
KK
,
Blumenthal
 
RS
,
Braun
 
LT
,
de Ferranti
 
S
,
Faiella-Tommasino
 
J
,
Forman
 
DE
,
Goldberg
 
R
,
Heidenreich
 
PA
,
Hlatky
 
MA
,
Jones
 
DW
,
Lloyd-Jones
 
D
,
Lopez-Pajares
 
N
,
Ndumele
 
CE
,
Orringer
 
CE
,
Peralta
 
CA
,
Saseen
 
JJ
,
Smith
 
SC
 Jr
,
Sperling
 
L
,
Virani
 
SS
,
Yeboah
 
J
.
2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol
.
Circulation
 
2019
;
139
:
e1082
e1143
.

340

Authors/Task Force Members,

Catapano
 
AL
,
Graham
 
I
,
De Backer
 
G
,
Wiklund
 
O
,
Chapman
 
MJ
,
Drexel
 
H
,
Hoes
 
AW
,
Jennings
 
CS
,
Landmesser
 
U
,
Pedersen
 
TR
,
Reiner
 
Z
,
Riccardi
 
G
,
Taskinen
 
MR
,
Tokgozoglu
 
L
,
Verschuren
 
WM
,
Vlachopoulos
 
C
,
Wood
 
DA
,
Zamorano
 
JL
.
2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: the Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR
).
Atherosclerosis
 
2016
;
253
:
281
344
.

341

Catapano
 
AL
,
Graham
 
I
,
De Backer
 
G
,
Wiklund
 
O
,
Chapman
 
MJ
,
Drexel
 
H
,
Hoes
 
AW
,
Jennings
 
CS
,
Landmesser
 
U
,
Pedersen
 
TR
,
Reiner
 
Z
,
Riccardi
 
G
,
Taskinen
 
MR
,
Tokgozoglu
 
L
,
Verschuren
 
WMM
,
Vlachopoulos
 
C
,
Wood
 
DA
,
Zamorano
 
JL
,
Cooney
 
MT
; ESC Scientific Document Group.
2016 ESC/EAS guidelines for the management of dyslipidaemias
.
Eur Heart J
 
2016
;
37
:
2999
3058
.

342

Mach
 
F
ESC Scientific Document Group
Baigent
 
C
,
Catapano
 
AL
,
Koskinas
 
KC
,
Casula
 
M
,
Badimon
 
L
,
Chapman
 
MJ
,
De Backer
 
GG
,
Delgado
 
V
,
Ference
 
BA
,
Graham
 
IM
,
Halliday
 
A
,
Landmesser
 
U
,
Mihaylova
 
B
,
Pedersen
 
TR
,
Riccardi
 
G
,
Richter
 
DJ
,
Sabatine
 
MS
,
Taskinen
 
M-R
,
Tokgozoglu
 
L
,
Wiklund
 
O
,
Mueller
 
C
,
Drexel
 
H
,
Aboyans
 
V
,
Corsini
 
A
,
Doehner
 
W
,
Farnier
 
M
,
Gigante
 
B
,
Kayikcioglu
 
M
,
Krstacic
 
G
,
Lambrinou
 
E
,
Lewis
 
BS
,
Masip
 
J
,
Moulin
 
P
,
Petersen
 
S
,
Petronio
 
AS
,
Piepoli
 
MF
,
Pintó
 
X
,
Räber
 
L
,
Ray
 
KK
,
Reiner
 
Ž
,
Riesen
 
WF
,
Roffi
 
M
,
Schmid
 
J-P
,
Shlyakhto
 
E
,
Simpson
 
IA
,
Stroes
 
E
,
Sudano
 
I
,
Tselepis
 
AD
,
Viigimaa
 
M
,
Vindis
 
C
,
Vonbank
 
A
,
Vrablik
 
M
,
Vrsalovic
 
M
,
Zamorano
 
JL
,
Collet
 
J-P
,
Koskinas
 
KC
,
Casula
 
M
,
Badimon
 
L
,
John Chapman
 
M
,
De Backer
 
GG
,
Delgado
 
V
,
Ference
 
BA
,
Graham
 
IM
,
Halliday
 
A
,
Landmesser
 
U
,
Mihaylova
 
B
,
Pedersen
 
TR
,
Riccardi
 
G
,
Richter
 
DJ
,
Sabatine
 
MS
,
Taskinen
 
M-R
,
Tokgozoglu
 
L
,
Wiklund
 
O
,
Windecker
 
S
,
Aboyans
 
V
,
Baigent
 
C
,
Collet
 
J-P
,
Dean
 
V
,
Delgado
 
V
,
Fitzsimons
 
D
,
Gale
 
CP
,
Grobbee
 
D
,
Halvorsen
 
S
,
Hindricks
 
G
,
Iung
 
B
,
Jüni
 
P
,
Katus
 
HA
,
Landmesser
 
U
,
Leclercq
 
C
,
Lettino
 
M
,
Lewis
 
BS
,
Merkely
 
B
,
Mueller
 
C
,
Petersen
 
S
,
Petronio
 
AS
,
Richter
 
DJ
,
Roffi
 
M
,
Shlyakhto
 
E
,
Simpson
 
IA
,
Sousa-Uva
 
M
,
Touyz
 
RM
,
Nibouche
 
D
,
Zelveian
 
PH
,
Siostrzonek
 
P
,
Najafov
 
R
,
van de Borne
 
P
,
Pojskic
 
B
,
Postadzhiyan
 
A
,
Kypris
 
L
,
Špinar
 
J
,
Larsen
 
ML
,
Eldin
 
HS
,
Viigimaa
 
M
,
Strandberg
 
TE
,
Ferrières
 
J
,
Agladze
 
R
,
Laufs
 
U
,
Rallidis
 
L
,
Bajnok
 
L
,
Gudjónsson
 
T
,
Maher
 
V
,
Henkin
 
Y
,
Gulizia
 
MM
,
Mussagaliyeva
 
A
,
Bajraktari
 
G
,
Kerimkulova
 
A
,
Latkovskis
 
G
,
Hamoui
 
O
,
Slapikas
 
R
,
Visser
 
L
,
Dingli
 
P
,
Ivanov
 
V
,
Boskovic
 
A
,
Nazzi
 
M
,
Visseren
 
F
,
Mitevska
 
I
,
Retterstøl
 
K
,
Jankowski
 
P
,
Fontes-Carvalho
 
R
,
Gaita
 
D
,
Ezhov
 
M
,
Foscoli
 
M
,
Giga
 
V
,
Pella
 
D
,
Fras
 
Z
,
de Isla
 
LP
,
Hagström
 
E
,
Lehmann
 
R
,
Abid
 
L
,
Ozdogan
 
O
,
Mitchenko
 
O
,
Patel
 
RS
.
2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)
.
Eur Heart J
 
2020
;
41
:
111
188
.

343

Currie
 
G
,
Delles
 
C
.
Precision medicine and personalized medicine in cardiovascular disease
.
Adv Exp Med Biol
 
2018
;
1065
:
589
605
.

Author notes

Jan Borén and M. John Chapman contributed equally as senior authors.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com