This commentaryrefers to ‘Intestinal cholesterol and phytosterol absorption and the risk of coronary artery disease’ by J. Plat et al., 2021;42:281–282.

We appreciate the interest of Plat et al. in our paper.1 They argue that the coronary artery disease (CAD) risk associated with ABCG5/8 variants that is not accounted for by non-HDL cholesterol could be explained by several other lipid-related parameters including LDL sub-fractions and oxidized LDL. We note that genome-wide association studies (GWAS) of NMR-based measures2  ,  3 demonstrate that ABCG5/8 variants have similar patterns of effects on LDL and VLDL sub-fractions as many non-HDL/LDL cholesterol associated variants in other genes including PCSK9, LDLR, and CELSR2. Differences in sub-fraction profiles of ABCG5/8 and other variants are therefore unlikely to account for the excess CAD risk. Also, a GWAS study on oxidized LDL levels4 did not show association with ABCG5/8 variants, while a missense variant in APOB associated with oxidized LDL, but not with cardiovascular events. Thus, the excess CAD risk for ABCG5/8 variants is also unlikely driven by their association with oxidized LDL. Plat et al. also argue that our study lacks consideration of other essential proteins in sterol transport. However, not investigating other proteins does not invalidate our results on genetic variation in ABCG5/8.

While our results do not prove a causal role of phytosterols in atherosclerotic disease, we consider elevated phytosterol levels driven through the ABCG5/8 variants the simplest and most plausible explanation for the excess CAD risk, for reasons thoroughly discussed in the manuscript. We do not agree that our conclusion and the translational perspective of our study needs revising.

Phytosterols have a log-normal distribution. In our data (N = 3039) (Table 1), the mean absolute stigmasterol, sitosterol, and campesterol levels were 0.033 [interquartile range (IQR) 0.020–0.066], 0.267 (IQR 0.172–0.414), and 1.618 (IQR 1.045–2.455) µg/mL, respectively (calculated on log-transformed values and transformed back to the original scale). One SD change in log-transformed phytosterol levels corresponds to 218%, 96%, and 96% change in absolute levels of stigmasterol, sitosterol, and campesterol, respectively. Thus, for example, the increasing sitosterol levels of 0.27 SD conferred by each allele of the intronic variant, corresponds to ∼26% change in absolute levels.

Table 1

The mean absolute levels of phytosterols per genotype group (N = 3039)

ABCG-[5/8]Coding changersName[EA]N per genotype (0/1/2)Stigmasterol mean (µmol/mL)Sitosterol mean (µmol/mL)Campesterol mean (µmol/mL)
5p.Phe624Leurs150401285[G]3020/19/00.033/0.095/-0.266/0.500/-1.611/2.981/-
5p.His250Tyrrs776502883[A]2989/50/00.033/0.102/-0.263/0.580/-1.601/2.946/-
5p.Arg198Glnrs141828689[T]2985/54/00.033/0.045/-0.266/0.315/-1.612/1.910/-
5p.Gly27Alars56204478[G]2988/51/00.033/0.068/-0.265/0.383/-1.609/2.248/-
8p.Asp19Hisrs11887534[C]2773/259/70.034/0.023/0.0280.273/0.215/0.1801.645/1.361/1.101
8Intronicrs4299376[G]1520/1276/2420.028/0.037/0.0540.239/0.285/0.3821.461/1.728/2.160
8p.Gln271Argrs770309304[G]2999/40/00.033/0.146/-0.263/0.834/-1.593/5.058/-
8p.Arg263Glnrs137852990[A]2967/70/20.032/0.093/3.8790.264/0.420/12.6501.599/2.566/13.333
8p.Trp361Terrs137852987[A]2980/59/00.033/0.065/-0.266/0.331/-1.609/2.116/-
8p.Thr400Lysrs4148217[A] 1990/926/1230.035/0.030/0.0300.278/0.248/0.2371.669/1.536/1.435
ABCG-[5/8]Coding changersName[EA]N per genotype (0/1/2)Stigmasterol mean (µmol/mL)Sitosterol mean (µmol/mL)Campesterol mean (µmol/mL)
5p.Phe624Leurs150401285[G]3020/19/00.033/0.095/-0.266/0.500/-1.611/2.981/-
5p.His250Tyrrs776502883[A]2989/50/00.033/0.102/-0.263/0.580/-1.601/2.946/-
5p.Arg198Glnrs141828689[T]2985/54/00.033/0.045/-0.266/0.315/-1.612/1.910/-
5p.Gly27Alars56204478[G]2988/51/00.033/0.068/-0.265/0.383/-1.609/2.248/-
8p.Asp19Hisrs11887534[C]2773/259/70.034/0.023/0.0280.273/0.215/0.1801.645/1.361/1.101
8Intronicrs4299376[G]1520/1276/2420.028/0.037/0.0540.239/0.285/0.3821.461/1.728/2.160
8p.Gln271Argrs770309304[G]2999/40/00.033/0.146/-0.263/0.834/-1.593/5.058/-
8p.Arg263Glnrs137852990[A]2967/70/20.032/0.093/3.8790.264/0.420/12.6501.599/2.566/13.333
8p.Trp361Terrs137852987[A]2980/59/00.033/0.065/-0.266/0.331/-1.609/2.116/-
8p.Thr400Lysrs4148217[A] 1990/926/1230.035/0.030/0.0300.278/0.248/0.2371.669/1.536/1.435

The mean absolute levels (calculated on log-transformed values and transformed back to the original scale) for non-carriers/heterozygous/homozygous carriers of the effect allele (EA).

Table 1

The mean absolute levels of phytosterols per genotype group (N = 3039)

ABCG-[5/8]Coding changersName[EA]N per genotype (0/1/2)Stigmasterol mean (µmol/mL)Sitosterol mean (µmol/mL)Campesterol mean (µmol/mL)
5p.Phe624Leurs150401285[G]3020/19/00.033/0.095/-0.266/0.500/-1.611/2.981/-
5p.His250Tyrrs776502883[A]2989/50/00.033/0.102/-0.263/0.580/-1.601/2.946/-
5p.Arg198Glnrs141828689[T]2985/54/00.033/0.045/-0.266/0.315/-1.612/1.910/-
5p.Gly27Alars56204478[G]2988/51/00.033/0.068/-0.265/0.383/-1.609/2.248/-
8p.Asp19Hisrs11887534[C]2773/259/70.034/0.023/0.0280.273/0.215/0.1801.645/1.361/1.101
8Intronicrs4299376[G]1520/1276/2420.028/0.037/0.0540.239/0.285/0.3821.461/1.728/2.160
8p.Gln271Argrs770309304[G]2999/40/00.033/0.146/-0.263/0.834/-1.593/5.058/-
8p.Arg263Glnrs137852990[A]2967/70/20.032/0.093/3.8790.264/0.420/12.6501.599/2.566/13.333
8p.Trp361Terrs137852987[A]2980/59/00.033/0.065/-0.266/0.331/-1.609/2.116/-
8p.Thr400Lysrs4148217[A] 1990/926/1230.035/0.030/0.0300.278/0.248/0.2371.669/1.536/1.435
ABCG-[5/8]Coding changersName[EA]N per genotype (0/1/2)Stigmasterol mean (µmol/mL)Sitosterol mean (µmol/mL)Campesterol mean (µmol/mL)
5p.Phe624Leurs150401285[G]3020/19/00.033/0.095/-0.266/0.500/-1.611/2.981/-
5p.His250Tyrrs776502883[A]2989/50/00.033/0.102/-0.263/0.580/-1.601/2.946/-
5p.Arg198Glnrs141828689[T]2985/54/00.033/0.045/-0.266/0.315/-1.612/1.910/-
5p.Gly27Alars56204478[G]2988/51/00.033/0.068/-0.265/0.383/-1.609/2.248/-
8p.Asp19Hisrs11887534[C]2773/259/70.034/0.023/0.0280.273/0.215/0.1801.645/1.361/1.101
8Intronicrs4299376[G]1520/1276/2420.028/0.037/0.0540.239/0.285/0.3821.461/1.728/2.160
8p.Gln271Argrs770309304[G]2999/40/00.033/0.146/-0.263/0.834/-1.593/5.058/-
8p.Arg263Glnrs137852990[A]2967/70/20.032/0.093/3.8790.264/0.420/12.6501.599/2.566/13.333
8p.Trp361Terrs137852987[A]2980/59/00.033/0.065/-0.266/0.331/-1.609/2.116/-
8p.Thr400Lysrs4148217[A] 1990/926/1230.035/0.030/0.0300.278/0.248/0.2371.669/1.536/1.435

The mean absolute levels (calculated on log-transformed values and transformed back to the original scale) for non-carriers/heterozygous/homozygous carriers of the effect allele (EA).

When our study was performed, we did not measure cholesterol and cholestanol with the phytosterols. Cholesterol absorption biomarkers such as phytosterols or cholestanol provide information about whether elevated cholesterol levels are due to hyperabsorption, as opposed to hypersynthesis. In our study, the phytosterols are used for this purpose, so data on additional absorption biomarkers are not necessary. We also point out that cholestanol data would not inform about the ABCG5/8 associated CAD risk not explained by non-HDL cholesterol. In addition to the use of phytosterol levels as indicators of cholesterol absorption, previous studies support the atherogenic impact of these sterols themselves. The CAD risk that is not accounted for by non-HDL cholesterol for ABCG5/8 variants, may thus ‘relate to cholesterol absorption as such’, through their correlation with phytosterols.

Conflict of interest: none declared.

References

1

Plat J, Strandberg TE, Gylling H. Intestinal cholesterol and phytosterol absorption and the risk of coronary artery disease. Eur Heart J 2021;42:281–282.

2

Chasman
 
DI
,
Paré
 
G
,
Mora
 
S
,
Hopewell
 
JC
,
Peloso
 
G
,
Clarke
 
R
,
Cupples
 
LA
,
Hamsten
 
A
,
Kathiresan
 
S
,
Mälarstig
 
A
,
Ordovas
 
J
,
Ripatti
 
S
,
Parker
 
AN
,
Miletich
 
JP
,
Ridker
 
PM.
 
Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis
.
PLoS Genet
 
2009
;
5
:
e1000730
.

3

Tukiainen
 
T
,
Kettunen
 
J
,
Kangas
 
AJ
,
Lyytikainen
 
L-P
,
Soininen
 
P
,
Sarin
 
A-P
,
Tikkanen
 
E
,
O'Reilly
 
PF
,
Savolainen
 
MJ
,
Kaski
 
K
,
Pouta
 
A
,
Jula
 
A
,
Lehtimaki
 
T
,
Kahonen
 
M
,
Viikari
 
J
,
Taskinen
 
M-R
,
Jauhiainen
 
M
,
Eriksson
 
JG
,
Raitakari
 
O
,
Salomaa
 
V
,
Jarvelin
 
M-R
,
Perola
 
M
,
Palotie
 
A
,
Ala-Korpela
 
M
,
Ripatti
 
S.
 
Detailed metabolic and genetic characterization reveals new associations for 30 known lipid loci
.
Hum Mol Genet Hum Mol Genet
 
2012
;
21
:
1444
1455
.

4

Mäkelä
 
K-M
,
Seppälä
 
I
,
Hernesniemi
 
JA
,
Lyytikäinen
 
L-P
,
Oksala
 
N
,
Kleber
 
ME
,
Scharnagl
 
H
,
Grammer
 
TB
,
Baumert
 
J
,
Thorand
 
B
,
Jula
 
A
,
Hutri-Kähönen
 
N
,
Juonala
 
M
,
Laitinen
 
T
,
Laaksonen
 
R
,
Karhunen
 
PJ
,
Nikus
 
KC
,
Nieminen
 
T
,
Laurikka
 
J
,
Kuukasjärvi
 
P
,
Tarkka
 
M
,
Viik
 
J
,
Klopp
 
N
,
Illig
 
T
,
Kettunen
 
J
,
Ahotupa
 
M
,
Viikari
 
JSA
,
Kähönen
 
M
,
Raitakari
 
OT
,
Karakas
 
M
,
Koenig
 
W
,
Boehm
 
BO
,
Winkelmann
 
BR
,
März
 
W
,
Lehtimäki
 
T.
 
Genome-wide association study pinpoints a new functional apolipoprotein B variant influencing oxidized low-density lipoprotein levels but not cardiovascular events: atheroRemo consortium
.
Circ Cardiovasc Genet Circ Cardiovasc Genet
 
2013
;
6
:
73
81
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]