Background

Han is the largest nationality and Zhuang is the largest minority among 56 nationalities in China. Hei Yi (means black-worship and black dressing) Zhuang is a special subgroup of 43 ethnic subgroups of Zhuang. There are limited data about the effect of environmental factors on the prevalence of hyperlipidemia in this population. The aim of this study was to determine the effects of demographic, dietary, and other lifestyle factors on the prevalence of hyperlipidemia in Hei Yi Zhuang and Han populations.

Design

We performed a cross-sectional study of 1166 randomly selected people of Hei Yi Zhuang aged 7–84 years from seven villages in Napo County, Guangxi, China; and 1018 people of Han aged 6–89 years from nine villages in the same region.

Methods

Information on demographic characteristics, dietary patterns, and other lifestyle factors was collected by standard questionnaires. Blood pressure, height, weight, waist circumference, serum lipids and apolipoproteins were measured, and body mass index (BMI) was calculated as a measure of weight relative to height.

Results

The prevalence rates of hypercholesterolemia, hypertriglyceridemia and hyperlipidemia in Hei Yi Zhuang and Han were 23.6 versus 27.0% (P > 0.05), 12.3 versus 14.4% (P > 0.05) and 29.9 versus 34.2% (P < 0.05), respectively. The prevalence of hyperlipidemia was positively correlated with age, BMI and blood pressure (P < 0.05- 0.001) in Hei Yi Zhuang, whereas it was positively associated with age, BMI, blood pressure and alcohol consumption in Han (P < 0.01-0.001). There was no significant correlation between the prevalence of hyperlipidemia and sex or cigarette smoking in Hei Yi Zhuang, Han or a combined population of Hei Yi Zhuang and Han (P > 0.05), and alcohol consumption in Hei Yi Zhuang (P > 0.05).

Conclusion

The current study reveals that there is a significant difference in the prevalence of hyperlipidemia and its risk factors between Hei Yi Zhuang and Han, which might result from different demographic characteristics, dietary habits and other lifestyle factors.

Introduction

The roles of plasma or serum cholesterol [1], triglyceride (TG) [2], low-density lipoprotein cholesterol (LDL-C) [3] and apolipoprotein (Apo) B [4] in atherogenesis and coronary artery disease have been clearly documented. Furthermore, it has been noted that the strength of the relationships between blood lipid levels and atherosclerosis might be influenced by several lifestyle-related factors, such as cigarette smoking, physical activity and psychosocial conditions. In particular, the Framingham Heart Study first reported that glucose intolerance, blood pressure levels and smoking habits modify the effect of total cholesterol (TC) on cardiovascular risk [5]. It is also well known that dietary patterns, such as the Mediterranean diet, are strongly related with blood lipid levels, as well as with the prevalence and the management of dyslipidemia [6]. Recently, although Yusuf et al. [7] reported that, among others, smoking, dietary habits and alcohol intake, as well as a lack of regular physical activity, account for most of the risk of myocardial infarction worldwide in both sexes and at all ages in all regions, very few studies have evaluated the role of diet and other lifestyle-related factors in the prevalence of hyperlipidemia in minority groups.

There are 56 nationalities in China. Han is the largest nationality, and Zhuang is the largest minority. Geographically and linguistically, Zhuang can be classified into 43 ethnic subgroups, among which Hei Yi (means black-worship and black dressing) Zhuang proved to be the most conservative subgroup. They hold that the color black is beautiful, and like to wear black garments and pants. Black color has become the mark of Hei Yi Zhuang. The population of Hei Yi Zhuang is 51655. Because of their remoteness, due to continuous mountain ranges, blocking of passes, an abominable environment, as well as strict intra-nationality marriages, the special customs and culture of this population are still preserved [8]. Little information is available about the associations between lifestyle factors, such as nutrient intakes and lipid profile, in this population. Therefore, the present study was undertaken to compare the effects of demographic characteristics, dietary patterns and other lifestyle factors on the prevalence of hyperlipidemia between Hei Yi Zhuang and Han populations from the same region.

Methods

Subjects

A total of 1166 people of Hei Yi Zhuang from seven villages in Napo County, Guangxi Zhuang Autonomous Region, China were randomly selected according to the population register of each village. The ages of the subjects ranged from 7 to 84 years, with an average age of 44.00 ± 17.54 years. There were 541 males (46.40%) and 625 females (53.60%). All subjects were peasants. There were 98 people aged < 20 years (8.40%), 156 people aged 20–29 years (13.38%), 255 people aged 30–39 years (21.87%), 177 people aged 40–49 years (15.18%), 196 people aged 50–59 years (16.81%), 196 people aged 60–69 years (16.81%), 76 people aged 70–79 years (6.52%) and 12 people aged 80 years and over (1.03%). The subjects accounted for 2.26% of the total Hei Yi Zhuang population. At the same time, a total of 1018 people of Han from nine villages in the same county were also surveyed by the same method. The mean age of the subjects was 42.95 ± 17.11 years (range 6–89 years). There were 426 men (41.85%) and 592 women (58.15%). All of them were also peasants. There were 85 people aged < 20 years (8.35%), 183 people aged 20–29 years (17.98%), 230 people aged 30–39 years (22.59%), 173 people aged 40–49 years (16.99%), 149 people aged 50–59 years (14.64%), 117 people aged 60–69 years (11.49%), 73 people aged 70–79 years (7.17%) and eight people aged 80 years or older (0.79%). All of these subjects were essentially healthy and had no evidence of any chronic illness, including hepatic, renal, thyroid, or cardiac dysfunction. They were not taking medications known to affect serum lipid levels (lipid-lowering drugs such as statins or fibrates, beta-blockers, diuretics or hormones). This study was approved by our institutional ethics committee, and the study participants gave informed consent.

Epidemiological survey

The survey was performed using internationally standardized methods. The medical and family history, socioeconomic and personal information including demography, habitual diet, physical activity, drug use, alcohol consumption, cigarette smoking, occupation, education and other lifestyle behaviors were obtained by standard questionnaires. Dietary information about each subject was obtained using a 24-h dietary recall method [9]. Detailed descriptions of all foods, beverages and supplements consumed during the 24-h period before the interview, including the quantity, cooking method and brand names, were recorded by a chief physician. Quantitative estimate of cumulative nutrient intake per day in each food was based on food tables derived from the 2002 Chinese food composition tables [10]. Overall physical activity was ascertained with the use of a modified version of the Harvard Alumni Physical Activity Questionnaire [11], which included questions about the number of hours per day (mean of a regular weekday and a regular weekend day) spent sleeping and in sedentary, light, moderate and vigorous activities; the interviewer ensured that the total time added up to 24h. The physical examination included blood pressure, height, weight and waist circumference. Systolic and diastolic blood pressure readings were taken with a standard mercury sphygmomanometer after at least 5 min of rest, while the subject was in a sitting position. The values used in the current analysis are means of three measurements taken by the same investigator at about 0.5-h intervals. Systolic blood pressure was determined by the first Korotkoff sound, and diastolic blood pressure by the fifth Korotkoff sound. Body weight, to the nearest 100 g, was measured using a portable balance scale. Subjects were weighed without shoes and in a minimum of clothing. Height was measured, to the nearest 0.5 cm, using a portable steel measuring device. From these two measurements body mass index (BMI, kg/m2) was calculated. Waist circumference was measured with a nonstretchable measuring tape, at the level of the smallest area of the waist, to the nearest 0.1 cm.

Measurements of lipids and apolipoproteins

Blood samples were obtained from an antecubital vein in all subjects after an overnight fast. The blood was transferred into glass tubes and allowed to clot at room temperature. Immediately following clotting, serum was separated by centrifugation for 15 min at 3000 rpm. The levels of TC, TG, high-density lipoprotein cholesterol (HDL-C) and LDL-C in samples were determined enzymatically using commercially available kits, Tcho-1, TG-LH (Randox Laboratories Ltd., Antrim, Northern Ireland), Cholestest N HDL and Cholestest LDL (Daiichi Pure Chemicals Co. Ltd., Tokyo, Japan), respectively. Apo A1 and Apo B levels were measured by an immunoturbidimetric assay (Randox Laboratories Ltd.). All determinations were performed with an autoanalyzer (Type 7170A; Hitachi Ltd., Tokyo, Japan) in our Clinical Science Experiment Center, the First Affiliated Hospital, Guangxi Medical University.

Diagnostic criteria

The normal values of serum TC, TG, HDL-C, LDL-C, Apo A1, Apo B, and the ratio of Apo A1 to Apo B in our Clinical Science Experiment Center were 3.10–5.17, 0.56–1.70, 0.91–1.81, 1.70–3.20 mmol/l, 1.00–1.76, 0.63–1.14 g/l, and 1.00–2.50, respectively. Individuals with TC > 5.17 mmol/l and/or TG > 1.70 mmol/l were defined as hyperlipidemic [8]. Hypertension was defined as a systolic pressure of 140 mmHg or higher and a diastolic pressure of 90 mm Hg or higher [12]. The subjects with BMI > 24 kg/m2 were diagnosed as overweight, and > 28 kg/m2 as obese [13].

Statistical analysis

The data were organized and analyzed using Excel XP (Microsoft, Seattle, Washington, USA) and SPSS for Windows version 10.0 (SPSS Inc., Chicago, Illinois, USA). Means and standard deviation (SD) as well as frequency distributions of participant characteristics were calculated. The difference of two parameters was tested by the Student's unpaired t-test. One-way analysis of variance (ANOVA) was performed to assess the differences of three and more parameters. Significant differences were then subjected to multiple comparison using the New-man-Keuls test. Differences of percentage were tested by the chi-squared test. In order to evaluate the association of hyperlipidemia and sex (female = 0; male = 1), age (< 20 = 1; 20–29 = 2; 30–39 = 3; 40–49 = 4; 50–59 = 5; 60–69 = 6; 70–79 = 7; ≥ 80 = 8), BMI (≤ 24 kg/m2 = 0; > 24 kg/m2 = 1), blood pressure (normotensives = 0; hypertensives = 1), alcohol consumption (nondrinkers = 0; < 250 g wine/day = 1; 250–499 g/day = 2; ≥ 500 g/day = 3), cigarette smoking (nonsmokers = 0; < 10 cigarettes/day = 1; 10–19 cigarettes/day = 2; 20–39 cigarettes/day = 3; ≥ 40 cigarettes/day = 4), or nationality (Hei Yi Zhuang = 0; Han = 1), unconditional logistic regression analysis was also performed in combined population of Hei Yi Zhuang and Han, Hei Yi Zhuang, and Han; respectively. The backward multiple logistic regression method was used to select the risk factors significantly associated with hyperlipidemia. Total intake of each nutrient was summed over all foods consumed. Matlab5.0 software was used for processing these procedures by the method of multiplication of matrix [14]. A P value of less than 0.05 was considered significant.

Results

Demographic, dietary and other lifestyle factors between Hei Yi Zhuang and Han

The demographic, dietary and other lifestyle characteristics between Hei Yi Zhuang and Han are shown in Table 1. Systolic blood pressure, pulse pressure, prevalence of hypertension, intakes of carbohydrate and table salt were significantly higher in Hei Yi Zhuang than in Han (P < 0.01–0.001), whereas the education level, waist circumference, body weight, BMI, and the intakes of total energy, fat, protein and cholesterol were significantly higher in Han than in Hei Yi Zhuang (P < 0.001 for all). There were no significant differences of physical activity level, body height, diastolic blood pressure, alcohol consumption, cigarette smoking and age between the two ethnic groups (P > 0.05).

Prevalence of hyperlipidemia between Hei Yi Zhuang and Han

As shown in Table 2, the increased rates of TC, TG, HDL-C, LDL-C, Apo B, the ratio of Apo A1 to Apo B, and the decreased rate of Apo A1 were 23.6% (hyper-cholesterolemia), 12.3% (hypertriglyceridemia), 70.7, 9.5, 9.3, 6.4 and 0.9% in Hei Yi Zhuang, and 27.0% (hypercholesterolemia, P > 0.05), 14.4% (hypertriglyceridemia, P > 0.05), 63.5% (P < 0.001), 13.5% (P < 0.001), 14.4% (P < 0.001), 2.4% (P < 0.001) and 0.9% (P > 0.05) in Han, respectively. The increased rate of both TC and TG was 6.0% (70/1166) in Hei Yi Zhuang and 7.3% (74/1018, P > 0.05) in Han. Thus, the prevalence of hyperlipidemia in Hei Yi Zhuang and Han was 29.9% (349/1166) versus 34.2% (348/1018, P < 0.05). The effects of sex, BMI, hypertension, alcohol consumption, cigarette smoking and age on the prevalence of hyperlipidemia between Hei Yi Zhuang and Han are also shown in Table 2.

Risk factors of hyperlipidemia between Hei Yi Zhuang and Han

Unconditional multiple logistic regression analysis shows that the prevalence of hyperlipidemia was positively correlated with age, BMI, blood pressure, alcohol consumption and nationality (Han) in combined population of Hei Yi Zhuang and Han (P < 0.01–0.001); positively correlated with age, BMI, blood pressure and alcohol consumption in Han (P < 0.01–0.001); and positively associated with age, BMI and blood pressure in Hei Yi Zhuang (P < 0.05–0.001) (Table 3). No significant correlation of the prevalence of hyperlipidemia was observed with sex or cigarette smoking in Hei Yi Zhuang, Han or combined population of Hei Yi Zhuang and Han (P > 0.05), and alcohol consumption in Hei Yi Zhuang (P > 0.05).

Table 1

Comparison of demographic, dietary and lifestyle characteristics between Hei Yi Zhuang and Han


CharacteristicsHei Yi Zhuang (n = 1166)Han nationality (n = 1018)t2)P

Age (years) 44.00 ± 17.54 42.95 ± 17.11 1.4116 0.1582 
Education status (years) 2.86 ± 0.97 4.13 ± 1.82 20.6978 0.0000 
Physical activity (h/week) 39.25 ± 13.75 38.61 ± 14.47 1.0589 0.2898 
Height (cm) 152.41 ± 9.05 152.24 ± 8.65 0.4470 0.6549 
Weight (kg) 49.22 ± 8.13 51.71 ± 8.56 6.9660 0.0000 
Body mass index (kg/m221.08 ± 2.35 22.22 ± 2.62 10.7186 0.0000 
  > 24 kg/m2 [n (%)] 127 (10.9) 210 (20.6) 39.4848 0.0000 
Waist circumference (cm) 72.16 ± 6.77 73.72 ± 7.54 5.0941 0.0000 
Systolic blood pressure (mmHg) 124.01 ± 18.64 120.90 ± 16.06 4.1466 0.0000 
Diastolic blood pressure (mmHg) 75.85 ± 11.17 76.26 ± 10.12 0.8939 0.3715 
Pulse pressure (mmHg) 48.18 ± 14.53 44.69 ± 11.00 6.2565 0.0000 
Hypertension [n (%)] 271 (23.2) 163 (16.0) 17.8425 0.0000 
Alcohol intake [n (%)] 608 (52.1) 468 (46.0) 8.2821 0.0040 
  (g wine/day) 337.38 ± 252.96 353.63 ± 128.08 1.2700 0.2044 
Cigarette smokers [n (%)] 343 (29.4) 276 (27.1) 1.4216 0.2326 
  (cigarettes/day) 21.08 ± 8.99 22.39 ± 9.30 1.7745 0.0765 
Energy (kJ/day) 8746.72 ± 274.89 8894.68 ± 323.53 11.5539 0.0000 
  Fat (% of energy) 17.5 ± 1.9 28.0 ± 2.1 122.6558 0.0000 
  Carbohydrate (% of energy) 69.0 ± 2.8 53.1 ± 2.3 143.7258 0.0000 
  Protein (% of energy) 10.2 ± 1.2 15.2 ± 1.8 77.2145 0.0000 
  Alcohol (% of energy) 3.3 ± 0.7 3.7 ± 0.8 12.4623 0.0000 
Carbohydrate (g/day) 368.67 ± 18.37 283.55 ± 16.49 113.2719 0.0000 
Protein (g/day) 56.88 ± 2.68 81.64 ± 3.72 179.9916 0.0000 
  Animal (%) 15.1 ± 1.3 23.8 ± 1.6 140.1111 0.0000 
  Vegetable (%) 84.9 ± 2.7 76.2 ± 2.2 81.7987 0.0000 
Total fat (g/day) 45.56 ± 1.63 72.38 ± 2.15 330.7780 0.0000 
  Saturated (g/day) 5.68 ± 0.74 12.76 ± 1.42 148.6934 0.0000 
  Monounsaturated (g/day) 10.81 ± 1.27 28.85 ± 1.87 266.4685 0.0000 
  Polyunsaturated (g/day) 23.38 ± 1.16 26.46 ± 1.37 56.8864 0.0000 
Dietary cholesterol (mg/day) 176.82 ± 102.25 197.44 ± 115.73 4.4207 0.0000 
Total dietary fiber (g/day) 8.76 ± 3.59 6.69 ± 2.37 15.6576 0.0000 
Sodium intake (g/day) 8.83 ± 3.78 6.47 ± 2.71 16.5498 0.0000 

 

CharacteristicsHei Yi Zhuang (n = 1166)Han nationality (n = 1018)t2)P

Age (years) 44.00 ± 17.54 42.95 ± 17.11 1.4116 0.1582 
Education status (years) 2.86 ± 0.97 4.13 ± 1.82 20.6978 0.0000 
Physical activity (h/week) 39.25 ± 13.75 38.61 ± 14.47 1.0589 0.2898 
Height (cm) 152.41 ± 9.05 152.24 ± 8.65 0.4470 0.6549 
Weight (kg) 49.22 ± 8.13 51.71 ± 8.56 6.9660 0.0000 
Body mass index (kg/m221.08 ± 2.35 22.22 ± 2.62 10.7186 0.0000 
  > 24 kg/m2 [n (%)] 127 (10.9) 210 (20.6) 39.4848 0.0000 
Waist circumference (cm) 72.16 ± 6.77 73.72 ± 7.54 5.0941 0.0000 
Systolic blood pressure (mmHg) 124.01 ± 18.64 120.90 ± 16.06 4.1466 0.0000 
Diastolic blood pressure (mmHg) 75.85 ± 11.17 76.26 ± 10.12 0.8939 0.3715 
Pulse pressure (mmHg) 48.18 ± 14.53 44.69 ± 11.00 6.2565 0.0000 
Hypertension [n (%)] 271 (23.2) 163 (16.0) 17.8425 0.0000 
Alcohol intake [n (%)] 608 (52.1) 468 (46.0) 8.2821 0.0040 
  (g wine/day) 337.38 ± 252.96 353.63 ± 128.08 1.2700 0.2044 
Cigarette smokers [n (%)] 343 (29.4) 276 (27.1) 1.4216 0.2326 
  (cigarettes/day) 21.08 ± 8.99 22.39 ± 9.30 1.7745 0.0765 
Energy (kJ/day) 8746.72 ± 274.89 8894.68 ± 323.53 11.5539 0.0000 
  Fat (% of energy) 17.5 ± 1.9 28.0 ± 2.1 122.6558 0.0000 
  Carbohydrate (% of energy) 69.0 ± 2.8 53.1 ± 2.3 143.7258 0.0000 
  Protein (% of energy) 10.2 ± 1.2 15.2 ± 1.8 77.2145 0.0000 
  Alcohol (% of energy) 3.3 ± 0.7 3.7 ± 0.8 12.4623 0.0000 
Carbohydrate (g/day) 368.67 ± 18.37 283.55 ± 16.49 113.2719 0.0000 
Protein (g/day) 56.88 ± 2.68 81.64 ± 3.72 179.9916 0.0000 
  Animal (%) 15.1 ± 1.3 23.8 ± 1.6 140.1111 0.0000 
  Vegetable (%) 84.9 ± 2.7 76.2 ± 2.2 81.7987 0.0000 
Total fat (g/day) 45.56 ± 1.63 72.38 ± 2.15 330.7780 0.0000 
  Saturated (g/day) 5.68 ± 0.74 12.76 ± 1.42 148.6934 0.0000 
  Monounsaturated (g/day) 10.81 ± 1.27 28.85 ± 1.87 266.4685 0.0000 
  Polyunsaturated (g/day) 23.38 ± 1.16 26.46 ± 1.37 56.8864 0.0000 
Dietary cholesterol (mg/day) 176.82 ± 102.25 197.44 ± 115.73 4.4207 0.0000 
Total dietary fiber (g/day) 8.76 ± 3.59 6.69 ± 2.37 15.6576 0.0000 
Sodium intake (g/day) 8.83 ± 3.78 6.47 ± 2.71 16.5498 0.0000 

 
Table 1

Comparison of demographic, dietary and lifestyle characteristics between Hei Yi Zhuang and Han


CharacteristicsHei Yi Zhuang (n = 1166)Han nationality (n = 1018)t2)P

Age (years) 44.00 ± 17.54 42.95 ± 17.11 1.4116 0.1582 
Education status (years) 2.86 ± 0.97 4.13 ± 1.82 20.6978 0.0000 
Physical activity (h/week) 39.25 ± 13.75 38.61 ± 14.47 1.0589 0.2898 
Height (cm) 152.41 ± 9.05 152.24 ± 8.65 0.4470 0.6549 
Weight (kg) 49.22 ± 8.13 51.71 ± 8.56 6.9660 0.0000 
Body mass index (kg/m221.08 ± 2.35 22.22 ± 2.62 10.7186 0.0000 
  > 24 kg/m2 [n (%)] 127 (10.9) 210 (20.6) 39.4848 0.0000 
Waist circumference (cm) 72.16 ± 6.77 73.72 ± 7.54 5.0941 0.0000 
Systolic blood pressure (mmHg) 124.01 ± 18.64 120.90 ± 16.06 4.1466 0.0000 
Diastolic blood pressure (mmHg) 75.85 ± 11.17 76.26 ± 10.12 0.8939 0.3715 
Pulse pressure (mmHg) 48.18 ± 14.53 44.69 ± 11.00 6.2565 0.0000 
Hypertension [n (%)] 271 (23.2) 163 (16.0) 17.8425 0.0000 
Alcohol intake [n (%)] 608 (52.1) 468 (46.0) 8.2821 0.0040 
  (g wine/day) 337.38 ± 252.96 353.63 ± 128.08 1.2700 0.2044 
Cigarette smokers [n (%)] 343 (29.4) 276 (27.1) 1.4216 0.2326 
  (cigarettes/day) 21.08 ± 8.99 22.39 ± 9.30 1.7745 0.0765 
Energy (kJ/day) 8746.72 ± 274.89 8894.68 ± 323.53 11.5539 0.0000 
  Fat (% of energy) 17.5 ± 1.9 28.0 ± 2.1 122.6558 0.0000 
  Carbohydrate (% of energy) 69.0 ± 2.8 53.1 ± 2.3 143.7258 0.0000 
  Protein (% of energy) 10.2 ± 1.2 15.2 ± 1.8 77.2145 0.0000 
  Alcohol (% of energy) 3.3 ± 0.7 3.7 ± 0.8 12.4623 0.0000 
Carbohydrate (g/day) 368.67 ± 18.37 283.55 ± 16.49 113.2719 0.0000 
Protein (g/day) 56.88 ± 2.68 81.64 ± 3.72 179.9916 0.0000 
  Animal (%) 15.1 ± 1.3 23.8 ± 1.6 140.1111 0.0000 
  Vegetable (%) 84.9 ± 2.7 76.2 ± 2.2 81.7987 0.0000 
Total fat (g/day) 45.56 ± 1.63 72.38 ± 2.15 330.7780 0.0000 
  Saturated (g/day) 5.68 ± 0.74 12.76 ± 1.42 148.6934 0.0000 
  Monounsaturated (g/day) 10.81 ± 1.27 28.85 ± 1.87 266.4685 0.0000 
  Polyunsaturated (g/day) 23.38 ± 1.16 26.46 ± 1.37 56.8864 0.0000 
Dietary cholesterol (mg/day) 176.82 ± 102.25 197.44 ± 115.73 4.4207 0.0000 
Total dietary fiber (g/day) 8.76 ± 3.59 6.69 ± 2.37 15.6576 0.0000 
Sodium intake (g/day) 8.83 ± 3.78 6.47 ± 2.71 16.5498 0.0000 

 

CharacteristicsHei Yi Zhuang (n = 1166)Han nationality (n = 1018)t2)P

Age (years) 44.00 ± 17.54 42.95 ± 17.11 1.4116 0.1582 
Education status (years) 2.86 ± 0.97 4.13 ± 1.82 20.6978 0.0000 
Physical activity (h/week) 39.25 ± 13.75 38.61 ± 14.47 1.0589 0.2898 
Height (cm) 152.41 ± 9.05 152.24 ± 8.65 0.4470 0.6549 
Weight (kg) 49.22 ± 8.13 51.71 ± 8.56 6.9660 0.0000 
Body mass index (kg/m221.08 ± 2.35 22.22 ± 2.62 10.7186 0.0000 
  > 24 kg/m2 [n (%)] 127 (10.9) 210 (20.6) 39.4848 0.0000 
Waist circumference (cm) 72.16 ± 6.77 73.72 ± 7.54 5.0941 0.0000 
Systolic blood pressure (mmHg) 124.01 ± 18.64 120.90 ± 16.06 4.1466 0.0000 
Diastolic blood pressure (mmHg) 75.85 ± 11.17 76.26 ± 10.12 0.8939 0.3715 
Pulse pressure (mmHg) 48.18 ± 14.53 44.69 ± 11.00 6.2565 0.0000 
Hypertension [n (%)] 271 (23.2) 163 (16.0) 17.8425 0.0000 
Alcohol intake [n (%)] 608 (52.1) 468 (46.0) 8.2821 0.0040 
  (g wine/day) 337.38 ± 252.96 353.63 ± 128.08 1.2700 0.2044 
Cigarette smokers [n (%)] 343 (29.4) 276 (27.1) 1.4216 0.2326 
  (cigarettes/day) 21.08 ± 8.99 22.39 ± 9.30 1.7745 0.0765 
Energy (kJ/day) 8746.72 ± 274.89 8894.68 ± 323.53 11.5539 0.0000 
  Fat (% of energy) 17.5 ± 1.9 28.0 ± 2.1 122.6558 0.0000 
  Carbohydrate (% of energy) 69.0 ± 2.8 53.1 ± 2.3 143.7258 0.0000 
  Protein (% of energy) 10.2 ± 1.2 15.2 ± 1.8 77.2145 0.0000 
  Alcohol (% of energy) 3.3 ± 0.7 3.7 ± 0.8 12.4623 0.0000 
Carbohydrate (g/day) 368.67 ± 18.37 283.55 ± 16.49 113.2719 0.0000 
Protein (g/day) 56.88 ± 2.68 81.64 ± 3.72 179.9916 0.0000 
  Animal (%) 15.1 ± 1.3 23.8 ± 1.6 140.1111 0.0000 
  Vegetable (%) 84.9 ± 2.7 76.2 ± 2.2 81.7987 0.0000 
Total fat (g/day) 45.56 ± 1.63 72.38 ± 2.15 330.7780 0.0000 
  Saturated (g/day) 5.68 ± 0.74 12.76 ± 1.42 148.6934 0.0000 
  Monounsaturated (g/day) 10.81 ± 1.27 28.85 ± 1.87 266.4685 0.0000 
  Polyunsaturated (g/day) 23.38 ± 1.16 26.46 ± 1.37 56.8864 0.0000 
Dietary cholesterol (mg/day) 176.82 ± 102.25 197.44 ± 115.73 4.4207 0.0000 
Total dietary fiber (g/day) 8.76 ± 3.59 6.69 ± 2.37 15.6576 0.0000 
Sodium intake (g/day) 8.83 ± 3.78 6.47 ± 2.71 16.5498 0.0000 

 

Prevalence of hyperlipidemia in different villages between Hei Yi Zhuang and Han

There were significant differences of the increased rates of TC, TG, HDL-C, LDL-C, Apo B and the ratio of Apo A1 to Apo B in seven villages of Hei Yi Zhuang (P < 0.05–0.001) and TC, HDL-C, LDL–C and Apo B in nine villages of Han (P < 0.05–0.001) (Table 4).

Discussion

Cholesterol and TG are the main components of blood lipids. An excessive source (including intake from food or synthesis in the liver) or a catabolic obstacle, or both, can increase serum levels. The present study shows that the prevalence of hyperlipidemia in Hei Yi Zhuang is significantly lower than that in Han. The effects of genetic factors [15] as well as environmental factors, such as socio-economic milieu [16], dietary constituents [6, 17], alcohol consumption [18], cigarette smoking [18, 19], physical activity [20], and different races [17, 21] on the prevalence of hyperlipidemia have been clearly documented. Although Hei Yi Zhuang and Han live in the same region, the risk factors as mentioned above might be dissimilar. The great majority of Hei Yi Zhuang people live in mountaneous areas. The staple food is corn gruel or corn tortillas. On ordinary days, they are vegetarians. Corn wine and rum comprise about 95% of their beverages. The Han population mostly takes rice as the staple food. The standard of living in Han is higher than that in Hei Yi Zhuang. The intake of animal fat in Han is higher than that in Hei Yi Zhuang, and body weight and BMI are also significantly higher than those in Hei Yi Zhuang. For nearly 50 years it has been widely accepted that high-fat diets, particularly those that contain large quantities of saturated fatty acids, raise blood cholesterol concentrations and predispose individuals to cardiovascular disease [22]. In addition, the other major cause of different lipid levels between Hei Yi Zhuang and Han may relate to the excessive intake of corn in the former. Corn contains abundant dietary fiber and high-quality plant protein [23]. Consumption of dietary fiber, specifically the soluble type, such as pectins and guar gum, can result in a decrease of serum cholesterol levels in healthy and hyperlipidemic subjects [24]. Plant protein might raise the serum levels of HDL-C, and promote the transportation and excretion of free cholesterol. Corn oil is a kind of edible oil that is enriched with polyunsaturated fatty acid and monounsaturated fatty acids [25], and it is mostly used for cooking by Hei Yi Zhuang. A great deal of research has indicated that suitable intakes of polyunsaturated and monounsaturated fatty acids can lower the serum levels of cholesterol and LDL-C [25, 26]. A potential beneficial effect of dietary monounsaturated fatty acid on HDL-C has been suggested [27]. Corn oil could increase the ratio of HDL-C to TC and decrease the ratio of LDL-C to HDL-C [25].

Table 2

Effects of demographic, dietary and lifestyle characteristics on the prevalence of hyperlipidemia between Hei Yi Zhuang and Han


CharacteristicsnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/B > 2.50

Hei Yi Zhuang 1166 275 (23.6) 144 (12.3) 824 (70.7) 111 (9.5) 10 (0.9) 109 (9.3) 75 (6.4) 
  men 541 120 (22.2) 79 (14.6) 363 (67.1) 46 (8.5) 6 (1.1) 47 (8.7) 45 (8.3) 
  women 625 155 (24.8) 65 (10.4) 461 (73.8) 65 (10.4) 4 (0.6) 62 (9.9) 30 (4.8) 
BMI ≤ 24 (kg/m21039 233 (22.4) 115 (11.1) 737 (70.9) 89 (8.6) 9 (0.9) 87 (8.4) 72 (6.9) 
  BMI > 24 (kg/m2127 42 (33.1)∗∗ 29 (22.8)∗∗∗ 87 (68.5) 22 (17.3)∗∗ 1 (0.8) 22 (17.3)∗∗ 3 (2.4) 
  Normotensive 895 190 (21.2) 96 (10.7) 626 (69.9) 80 (8.9) 8 (0.9) 78 (8.7) 66 (7.4) 
  Hypertensive 271 85 (31.4)∗∗∗ 48 (17.7)∗∗ 198 (73.1) 31 (11.4) 2 (0.7) 31 (11.4) 9 (3.3) 
  No drinking 558 131 (23.5) 54 (9.7) 373 (66.8) 60 (10.8) 5 (0.9) 54 (9.7) 29 (5.2) 
  Alcohol intake 608 144 (23.7) 90 (14.8)∗∗ 451 (74.2)∗∗ 51 (8.4) 5 (0.8) 55 (9.0) 46 (7.6) 
  Nonsmoker 823 201 (24.4) 87 (10.6) 590 (71.7) 80 (9.7) 5 (0.6) 76 (9.2) 46 (5.6) 
  Cigarette smoking 343 74 (21.6) 57 (16.6)∗∗ 234 (68.2) 31 (9.0) 5 (1.5) 33 (9.6) 29 (8.5) 
  < 20 98 8 (8.2) 11 (11.2) 38 (38.8) 2 (2.0) 3 (3.1) 3 (3.1) 10 (10.2) 
  20–29 156 27 (17.3) 21 (13.5) 101 (64.7) 13 (8.3) 3 (1.9) 8 (5.1) 13 (8.3) 
  30–39 255 50 (19.6) 25 (9.8) 191 (74.9) 19 (7.5) 2 (0.8) 17 (6.7) 20 (7.8) 
  40–49 177 42 (23.7) 21 (11.9) 131 (74.0) 13 (7.3) 1 (0.6) 14 (7.9) 18 (10.2) 
  50–59 196 61 (31.1) 24 (12.2) 153 (78.1) 30 (15.3) 30 (15.3) 8 (4.1) 
  60–69 196 55 (28.1) 27 (13.8) 148 (75.5) 20 (10.2) 1 (0.5) 23 (11.7) 5 (2.6) 
  70–79 76 26 (34.2) 12 (15.8) 44 (57.9) 10 (13.2) 1 (1.3) 10 (13.2) 1 (1.3) 
  ≥ 80 12 6 (50.0) 3 (25.0) 8 (66.7) 4 (33.3) 4 (33.3) 
χ2 for 8 age subgroups − 36.348 4.833 65.835 25.652 9.133 29.423 19.040 
P for 8 age subgroups − < 0.001 > 0.05 < 0.001 < 0.001 > 0.05 < 0.001 < 0.01 
Han nationality 1018 275 (27.0) 147 (14.4) 646 (63.5)c 137 (13.5)c 9 (0.9) 147 (14.4)c 24 (2.4)c 
  men 426 113 (26.5) 67 (15.7) 245 (57.5)b 61 (14.3)b 7 (1.6) 61 (14.3)b 15 (3.5)b 
  women 592 162 (27.4) 80 (13.5) 401 (67.7)∗∗∗, a 76 (12.8) 2 (0.3) 86 (14.5)a 9 (1.5), b 
BMI ≤ 24 (kg/m2808 183 (22.6) 98 (12.1) 525 (65.0)b 90 (11.1) 8 (1.0) 93 (11.5)a 22 (2.7)c 
BMI > 24 (kg/m2210 92 (43.8)∗∗∗ 49 (23.3)∗∗∗ 121 (576), a 47 (22.4)∗∗∗ 1 (0.5) 54 (25.7)∗∗∗ 2 (1.0) 
  Normotensive 855 203 (23.7) 108 (12.6) 540 (63.2)b 102 (11.9)a 7 (0.8) 103 (12.0)a 20 (2.3)c 
  Hypertensive 163 72 (44.2)∗∗∗  b 39 (23.9)∗∗∗ 106 (65.0) 35 (21.5)∗∗∗  b 2 (1.2) 44 (27.0)∗∗∗  c 4 (2.5) 
  No drinking 550 129 (23.5) 67 (12.2) 329 (59.8)a 72 (13.1) 5 (0.9) 69 (12.5) 11 (2.0)b 
  Alcohol intake 468 146 (31.2)∗∗, b 80 (17.1) 317 (67.7)∗∗, a 65 (13.9)b 4 (0.9) 78 (16.7)c 13 (2.8) 
  Nonsmoker 742 202 (27.2) 104 (14.0)a 484 (65.2)b 101 (13.6)a 4 (0.5) 108 (14.6)b 12 (1.6)c 
  Cigarette smoking 276 73 (26.4) 43 (15.6) 162 (58.7)a 36 (13.0) 5 (1.8) 39 (14.1) 12 (4.3), a 
  < 20 85 7 (8.2) 13 (15.3) 41 (48.2) 4 (4.7) 2 (2.4) 3 (3.5) 4 (4.7) 
  20–29 183 32 (17.5) 15 (8.2) 104 (56.8) 18 (9.8) 3 (1.6) 13 (7.1) 2 (1.1)b 
  30–39 230 50 (21.7) 32 (13.9) 146 (63.5)b 23 (10.0) 1 (0.4) 25 (10.9) 8 (3.5)a 
  40–49 173 56 (32.4) 27 (15.6) 110 (63.6)a 27 (15.6)a 1 (0.6) 27 (15.6)a 4 (2.3)b 
  50–59 149 59 (39.6) 25 (16.8) 109 (73.2) 32 (21.5) 1 (0.7) 35 (23.5) 4 (2.7) 
  60–69 117 45 (38.5) 18 (15.4) 83 (70.9) 25 (21.4)b 29 (24.8)b 1 (0.9) 
  70–79 73 24 (32.9) 17 (23.3) 49 (67.1) 7 (9.6) 1 (1.4) 13 (17.8) 1 (1.4) 
  ≥ 80 2 (25.0) 4 (50.0) 1 (12.5) 2 (25.0) 
χ2 for 8 age subgroups − 50.423 12.786 21.875 26.154 5.388 40.132 6.284 
P for 8 age subgroups − < 0.001 > 0.05 < 0.01 < 0.001 > 0.05 < 0.001 > 0.05 

 

CharacteristicsnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/B > 2.50

Hei Yi Zhuang 1166 275 (23.6) 144 (12.3) 824 (70.7) 111 (9.5) 10 (0.9) 109 (9.3) 75 (6.4) 
  men 541 120 (22.2) 79 (14.6) 363 (67.1) 46 (8.5) 6 (1.1) 47 (8.7) 45 (8.3) 
  women 625 155 (24.8) 65 (10.4) 461 (73.8) 65 (10.4) 4 (0.6) 62 (9.9) 30 (4.8) 
BMI ≤ 24 (kg/m21039 233 (22.4) 115 (11.1) 737 (70.9) 89 (8.6) 9 (0.9) 87 (8.4) 72 (6.9) 
  BMI > 24 (kg/m2127 42 (33.1)∗∗ 29 (22.8)∗∗∗ 87 (68.5) 22 (17.3)∗∗ 1 (0.8) 22 (17.3)∗∗ 3 (2.4) 
  Normotensive 895 190 (21.2) 96 (10.7) 626 (69.9) 80 (8.9) 8 (0.9) 78 (8.7) 66 (7.4) 
  Hypertensive 271 85 (31.4)∗∗∗ 48 (17.7)∗∗ 198 (73.1) 31 (11.4) 2 (0.7) 31 (11.4) 9 (3.3) 
  No drinking 558 131 (23.5) 54 (9.7) 373 (66.8) 60 (10.8) 5 (0.9) 54 (9.7) 29 (5.2) 
  Alcohol intake 608 144 (23.7) 90 (14.8)∗∗ 451 (74.2)∗∗ 51 (8.4) 5 (0.8) 55 (9.0) 46 (7.6) 
  Nonsmoker 823 201 (24.4) 87 (10.6) 590 (71.7) 80 (9.7) 5 (0.6) 76 (9.2) 46 (5.6) 
  Cigarette smoking 343 74 (21.6) 57 (16.6)∗∗ 234 (68.2) 31 (9.0) 5 (1.5) 33 (9.6) 29 (8.5) 
  < 20 98 8 (8.2) 11 (11.2) 38 (38.8) 2 (2.0) 3 (3.1) 3 (3.1) 10 (10.2) 
  20–29 156 27 (17.3) 21 (13.5) 101 (64.7) 13 (8.3) 3 (1.9) 8 (5.1) 13 (8.3) 
  30–39 255 50 (19.6) 25 (9.8) 191 (74.9) 19 (7.5) 2 (0.8) 17 (6.7) 20 (7.8) 
  40–49 177 42 (23.7) 21 (11.9) 131 (74.0) 13 (7.3) 1 (0.6) 14 (7.9) 18 (10.2) 
  50–59 196 61 (31.1) 24 (12.2) 153 (78.1) 30 (15.3) 30 (15.3) 8 (4.1) 
  60–69 196 55 (28.1) 27 (13.8) 148 (75.5) 20 (10.2) 1 (0.5) 23 (11.7) 5 (2.6) 
  70–79 76 26 (34.2) 12 (15.8) 44 (57.9) 10 (13.2) 1 (1.3) 10 (13.2) 1 (1.3) 
  ≥ 80 12 6 (50.0) 3 (25.0) 8 (66.7) 4 (33.3) 4 (33.3) 
χ2 for 8 age subgroups − 36.348 4.833 65.835 25.652 9.133 29.423 19.040 
P for 8 age subgroups − < 0.001 > 0.05 < 0.001 < 0.001 > 0.05 < 0.001 < 0.01 
Han nationality 1018 275 (27.0) 147 (14.4) 646 (63.5)c 137 (13.5)c 9 (0.9) 147 (14.4)c 24 (2.4)c 
  men 426 113 (26.5) 67 (15.7) 245 (57.5)b 61 (14.3)b 7 (1.6) 61 (14.3)b 15 (3.5)b 
  women 592 162 (27.4) 80 (13.5) 401 (67.7)∗∗∗, a 76 (12.8) 2 (0.3) 86 (14.5)a 9 (1.5), b 
BMI ≤ 24 (kg/m2808 183 (22.6) 98 (12.1) 525 (65.0)b 90 (11.1) 8 (1.0) 93 (11.5)a 22 (2.7)c 
BMI > 24 (kg/m2210 92 (43.8)∗∗∗ 49 (23.3)∗∗∗ 121 (576), a 47 (22.4)∗∗∗ 1 (0.5) 54 (25.7)∗∗∗ 2 (1.0) 
  Normotensive 855 203 (23.7) 108 (12.6) 540 (63.2)b 102 (11.9)a 7 (0.8) 103 (12.0)a 20 (2.3)c 
  Hypertensive 163 72 (44.2)∗∗∗  b 39 (23.9)∗∗∗ 106 (65.0) 35 (21.5)∗∗∗  b 2 (1.2) 44 (27.0)∗∗∗  c 4 (2.5) 
  No drinking 550 129 (23.5) 67 (12.2) 329 (59.8)a 72 (13.1) 5 (0.9) 69 (12.5) 11 (2.0)b 
  Alcohol intake 468 146 (31.2)∗∗, b 80 (17.1) 317 (67.7)∗∗, a 65 (13.9)b 4 (0.9) 78 (16.7)c 13 (2.8) 
  Nonsmoker 742 202 (27.2) 104 (14.0)a 484 (65.2)b 101 (13.6)a 4 (0.5) 108 (14.6)b 12 (1.6)c 
  Cigarette smoking 276 73 (26.4) 43 (15.6) 162 (58.7)a 36 (13.0) 5 (1.8) 39 (14.1) 12 (4.3), a 
  < 20 85 7 (8.2) 13 (15.3) 41 (48.2) 4 (4.7) 2 (2.4) 3 (3.5) 4 (4.7) 
  20–29 183 32 (17.5) 15 (8.2) 104 (56.8) 18 (9.8) 3 (1.6) 13 (7.1) 2 (1.1)b 
  30–39 230 50 (21.7) 32 (13.9) 146 (63.5)b 23 (10.0) 1 (0.4) 25 (10.9) 8 (3.5)a 
  40–49 173 56 (32.4) 27 (15.6) 110 (63.6)a 27 (15.6)a 1 (0.6) 27 (15.6)a 4 (2.3)b 
  50–59 149 59 (39.6) 25 (16.8) 109 (73.2) 32 (21.5) 1 (0.7) 35 (23.5) 4 (2.7) 
  60–69 117 45 (38.5) 18 (15.4) 83 (70.9) 25 (21.4)b 29 (24.8)b 1 (0.9) 
  70–79 73 24 (32.9) 17 (23.3) 49 (67.1) 7 (9.6) 1 (1.4) 13 (17.8) 1 (1.4) 
  ≥ 80 2 (25.0) 4 (50.0) 1 (12.5) 2 (25.0) 
χ2 for 8 age subgroups − 50.423 12.786 21.875 26.154 5.388 40.132 6.284 
P for 8 age subgroups − < 0.001 > 0.05 < 0.01 < 0.001 > 0.05 < 0.001 > 0.05 

 

TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo A1, apolipoprotein A1; Apo B, apolipoprotein B; Apo A1/Apo B, the ratio of apolipoprotein A1 to apolipoprotein B; BMI, body mass index;

P < 0.05,

∗∗P < 0.01 and

∗∗∗P < 0.001 in comparison with men, BMI ≤ 24 (kg/m2), normotensive, no drinking, or nonsmoker of same nationality;

a  P < 0.05,

b  P < 0.01 and

c  P < 0.001 in comparison with same subgroup of Hei Yi Zhuang.

Table 2

Effects of demographic, dietary and lifestyle characteristics on the prevalence of hyperlipidemia between Hei Yi Zhuang and Han


CharacteristicsnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/B > 2.50

Hei Yi Zhuang 1166 275 (23.6) 144 (12.3) 824 (70.7) 111 (9.5) 10 (0.9) 109 (9.3) 75 (6.4) 
  men 541 120 (22.2) 79 (14.6) 363 (67.1) 46 (8.5) 6 (1.1) 47 (8.7) 45 (8.3) 
  women 625 155 (24.8) 65 (10.4) 461 (73.8) 65 (10.4) 4 (0.6) 62 (9.9) 30 (4.8) 
BMI ≤ 24 (kg/m21039 233 (22.4) 115 (11.1) 737 (70.9) 89 (8.6) 9 (0.9) 87 (8.4) 72 (6.9) 
  BMI > 24 (kg/m2127 42 (33.1)∗∗ 29 (22.8)∗∗∗ 87 (68.5) 22 (17.3)∗∗ 1 (0.8) 22 (17.3)∗∗ 3 (2.4) 
  Normotensive 895 190 (21.2) 96 (10.7) 626 (69.9) 80 (8.9) 8 (0.9) 78 (8.7) 66 (7.4) 
  Hypertensive 271 85 (31.4)∗∗∗ 48 (17.7)∗∗ 198 (73.1) 31 (11.4) 2 (0.7) 31 (11.4) 9 (3.3) 
  No drinking 558 131 (23.5) 54 (9.7) 373 (66.8) 60 (10.8) 5 (0.9) 54 (9.7) 29 (5.2) 
  Alcohol intake 608 144 (23.7) 90 (14.8)∗∗ 451 (74.2)∗∗ 51 (8.4) 5 (0.8) 55 (9.0) 46 (7.6) 
  Nonsmoker 823 201 (24.4) 87 (10.6) 590 (71.7) 80 (9.7) 5 (0.6) 76 (9.2) 46 (5.6) 
  Cigarette smoking 343 74 (21.6) 57 (16.6)∗∗ 234 (68.2) 31 (9.0) 5 (1.5) 33 (9.6) 29 (8.5) 
  < 20 98 8 (8.2) 11 (11.2) 38 (38.8) 2 (2.0) 3 (3.1) 3 (3.1) 10 (10.2) 
  20–29 156 27 (17.3) 21 (13.5) 101 (64.7) 13 (8.3) 3 (1.9) 8 (5.1) 13 (8.3) 
  30–39 255 50 (19.6) 25 (9.8) 191 (74.9) 19 (7.5) 2 (0.8) 17 (6.7) 20 (7.8) 
  40–49 177 42 (23.7) 21 (11.9) 131 (74.0) 13 (7.3) 1 (0.6) 14 (7.9) 18 (10.2) 
  50–59 196 61 (31.1) 24 (12.2) 153 (78.1) 30 (15.3) 30 (15.3) 8 (4.1) 
  60–69 196 55 (28.1) 27 (13.8) 148 (75.5) 20 (10.2) 1 (0.5) 23 (11.7) 5 (2.6) 
  70–79 76 26 (34.2) 12 (15.8) 44 (57.9) 10 (13.2) 1 (1.3) 10 (13.2) 1 (1.3) 
  ≥ 80 12 6 (50.0) 3 (25.0) 8 (66.7) 4 (33.3) 4 (33.3) 
χ2 for 8 age subgroups − 36.348 4.833 65.835 25.652 9.133 29.423 19.040 
P for 8 age subgroups − < 0.001 > 0.05 < 0.001 < 0.001 > 0.05 < 0.001 < 0.01 
Han nationality 1018 275 (27.0) 147 (14.4) 646 (63.5)c 137 (13.5)c 9 (0.9) 147 (14.4)c 24 (2.4)c 
  men 426 113 (26.5) 67 (15.7) 245 (57.5)b 61 (14.3)b 7 (1.6) 61 (14.3)b 15 (3.5)b 
  women 592 162 (27.4) 80 (13.5) 401 (67.7)∗∗∗, a 76 (12.8) 2 (0.3) 86 (14.5)a 9 (1.5), b 
BMI ≤ 24 (kg/m2808 183 (22.6) 98 (12.1) 525 (65.0)b 90 (11.1) 8 (1.0) 93 (11.5)a 22 (2.7)c 
BMI > 24 (kg/m2210 92 (43.8)∗∗∗ 49 (23.3)∗∗∗ 121 (576), a 47 (22.4)∗∗∗ 1 (0.5) 54 (25.7)∗∗∗ 2 (1.0) 
  Normotensive 855 203 (23.7) 108 (12.6) 540 (63.2)b 102 (11.9)a 7 (0.8) 103 (12.0)a 20 (2.3)c 
  Hypertensive 163 72 (44.2)∗∗∗  b 39 (23.9)∗∗∗ 106 (65.0) 35 (21.5)∗∗∗  b 2 (1.2) 44 (27.0)∗∗∗  c 4 (2.5) 
  No drinking 550 129 (23.5) 67 (12.2) 329 (59.8)a 72 (13.1) 5 (0.9) 69 (12.5) 11 (2.0)b 
  Alcohol intake 468 146 (31.2)∗∗, b 80 (17.1) 317 (67.7)∗∗, a 65 (13.9)b 4 (0.9) 78 (16.7)c 13 (2.8) 
  Nonsmoker 742 202 (27.2) 104 (14.0)a 484 (65.2)b 101 (13.6)a 4 (0.5) 108 (14.6)b 12 (1.6)c 
  Cigarette smoking 276 73 (26.4) 43 (15.6) 162 (58.7)a 36 (13.0) 5 (1.8) 39 (14.1) 12 (4.3), a 
  < 20 85 7 (8.2) 13 (15.3) 41 (48.2) 4 (4.7) 2 (2.4) 3 (3.5) 4 (4.7) 
  20–29 183 32 (17.5) 15 (8.2) 104 (56.8) 18 (9.8) 3 (1.6) 13 (7.1) 2 (1.1)b 
  30–39 230 50 (21.7) 32 (13.9) 146 (63.5)b 23 (10.0) 1 (0.4) 25 (10.9) 8 (3.5)a 
  40–49 173 56 (32.4) 27 (15.6) 110 (63.6)a 27 (15.6)a 1 (0.6) 27 (15.6)a 4 (2.3)b 
  50–59 149 59 (39.6) 25 (16.8) 109 (73.2) 32 (21.5) 1 (0.7) 35 (23.5) 4 (2.7) 
  60–69 117 45 (38.5) 18 (15.4) 83 (70.9) 25 (21.4)b 29 (24.8)b 1 (0.9) 
  70–79 73 24 (32.9) 17 (23.3) 49 (67.1) 7 (9.6) 1 (1.4) 13 (17.8) 1 (1.4) 
  ≥ 80 2 (25.0) 4 (50.0) 1 (12.5) 2 (25.0) 
χ2 for 8 age subgroups − 50.423 12.786 21.875 26.154 5.388 40.132 6.284 
P for 8 age subgroups − < 0.001 > 0.05 < 0.01 < 0.001 > 0.05 < 0.001 > 0.05 

 

CharacteristicsnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/B > 2.50

Hei Yi Zhuang 1166 275 (23.6) 144 (12.3) 824 (70.7) 111 (9.5) 10 (0.9) 109 (9.3) 75 (6.4) 
  men 541 120 (22.2) 79 (14.6) 363 (67.1) 46 (8.5) 6 (1.1) 47 (8.7) 45 (8.3) 
  women 625 155 (24.8) 65 (10.4) 461 (73.8) 65 (10.4) 4 (0.6) 62 (9.9) 30 (4.8) 
BMI ≤ 24 (kg/m21039 233 (22.4) 115 (11.1) 737 (70.9) 89 (8.6) 9 (0.9) 87 (8.4) 72 (6.9) 
  BMI > 24 (kg/m2127 42 (33.1)∗∗ 29 (22.8)∗∗∗ 87 (68.5) 22 (17.3)∗∗ 1 (0.8) 22 (17.3)∗∗ 3 (2.4) 
  Normotensive 895 190 (21.2) 96 (10.7) 626 (69.9) 80 (8.9) 8 (0.9) 78 (8.7) 66 (7.4) 
  Hypertensive 271 85 (31.4)∗∗∗ 48 (17.7)∗∗ 198 (73.1) 31 (11.4) 2 (0.7) 31 (11.4) 9 (3.3) 
  No drinking 558 131 (23.5) 54 (9.7) 373 (66.8) 60 (10.8) 5 (0.9) 54 (9.7) 29 (5.2) 
  Alcohol intake 608 144 (23.7) 90 (14.8)∗∗ 451 (74.2)∗∗ 51 (8.4) 5 (0.8) 55 (9.0) 46 (7.6) 
  Nonsmoker 823 201 (24.4) 87 (10.6) 590 (71.7) 80 (9.7) 5 (0.6) 76 (9.2) 46 (5.6) 
  Cigarette smoking 343 74 (21.6) 57 (16.6)∗∗ 234 (68.2) 31 (9.0) 5 (1.5) 33 (9.6) 29 (8.5) 
  < 20 98 8 (8.2) 11 (11.2) 38 (38.8) 2 (2.0) 3 (3.1) 3 (3.1) 10 (10.2) 
  20–29 156 27 (17.3) 21 (13.5) 101 (64.7) 13 (8.3) 3 (1.9) 8 (5.1) 13 (8.3) 
  30–39 255 50 (19.6) 25 (9.8) 191 (74.9) 19 (7.5) 2 (0.8) 17 (6.7) 20 (7.8) 
  40–49 177 42 (23.7) 21 (11.9) 131 (74.0) 13 (7.3) 1 (0.6) 14 (7.9) 18 (10.2) 
  50–59 196 61 (31.1) 24 (12.2) 153 (78.1) 30 (15.3) 30 (15.3) 8 (4.1) 
  60–69 196 55 (28.1) 27 (13.8) 148 (75.5) 20 (10.2) 1 (0.5) 23 (11.7) 5 (2.6) 
  70–79 76 26 (34.2) 12 (15.8) 44 (57.9) 10 (13.2) 1 (1.3) 10 (13.2) 1 (1.3) 
  ≥ 80 12 6 (50.0) 3 (25.0) 8 (66.7) 4 (33.3) 4 (33.3) 
χ2 for 8 age subgroups − 36.348 4.833 65.835 25.652 9.133 29.423 19.040 
P for 8 age subgroups − < 0.001 > 0.05 < 0.001 < 0.001 > 0.05 < 0.001 < 0.01 
Han nationality 1018 275 (27.0) 147 (14.4) 646 (63.5)c 137 (13.5)c 9 (0.9) 147 (14.4)c 24 (2.4)c 
  men 426 113 (26.5) 67 (15.7) 245 (57.5)b 61 (14.3)b 7 (1.6) 61 (14.3)b 15 (3.5)b 
  women 592 162 (27.4) 80 (13.5) 401 (67.7)∗∗∗, a 76 (12.8) 2 (0.3) 86 (14.5)a 9 (1.5), b 
BMI ≤ 24 (kg/m2808 183 (22.6) 98 (12.1) 525 (65.0)b 90 (11.1) 8 (1.0) 93 (11.5)a 22 (2.7)c 
BMI > 24 (kg/m2210 92 (43.8)∗∗∗ 49 (23.3)∗∗∗ 121 (576), a 47 (22.4)∗∗∗ 1 (0.5) 54 (25.7)∗∗∗ 2 (1.0) 
  Normotensive 855 203 (23.7) 108 (12.6) 540 (63.2)b 102 (11.9)a 7 (0.8) 103 (12.0)a 20 (2.3)c 
  Hypertensive 163 72 (44.2)∗∗∗  b 39 (23.9)∗∗∗ 106 (65.0) 35 (21.5)∗∗∗  b 2 (1.2) 44 (27.0)∗∗∗  c 4 (2.5) 
  No drinking 550 129 (23.5) 67 (12.2) 329 (59.8)a 72 (13.1) 5 (0.9) 69 (12.5) 11 (2.0)b 
  Alcohol intake 468 146 (31.2)∗∗, b 80 (17.1) 317 (67.7)∗∗, a 65 (13.9)b 4 (0.9) 78 (16.7)c 13 (2.8) 
  Nonsmoker 742 202 (27.2) 104 (14.0)a 484 (65.2)b 101 (13.6)a 4 (0.5) 108 (14.6)b 12 (1.6)c 
  Cigarette smoking 276 73 (26.4) 43 (15.6) 162 (58.7)a 36 (13.0) 5 (1.8) 39 (14.1) 12 (4.3), a 
  < 20 85 7 (8.2) 13 (15.3) 41 (48.2) 4 (4.7) 2 (2.4) 3 (3.5) 4 (4.7) 
  20–29 183 32 (17.5) 15 (8.2) 104 (56.8) 18 (9.8) 3 (1.6) 13 (7.1) 2 (1.1)b 
  30–39 230 50 (21.7) 32 (13.9) 146 (63.5)b 23 (10.0) 1 (0.4) 25 (10.9) 8 (3.5)a 
  40–49 173 56 (32.4) 27 (15.6) 110 (63.6)a 27 (15.6)a 1 (0.6) 27 (15.6)a 4 (2.3)b 
  50–59 149 59 (39.6) 25 (16.8) 109 (73.2) 32 (21.5) 1 (0.7) 35 (23.5) 4 (2.7) 
  60–69 117 45 (38.5) 18 (15.4) 83 (70.9) 25 (21.4)b 29 (24.8)b 1 (0.9) 
  70–79 73 24 (32.9) 17 (23.3) 49 (67.1) 7 (9.6) 1 (1.4) 13 (17.8) 1 (1.4) 
  ≥ 80 2 (25.0) 4 (50.0) 1 (12.5) 2 (25.0) 
χ2 for 8 age subgroups − 50.423 12.786 21.875 26.154 5.388 40.132 6.284 
P for 8 age subgroups − < 0.001 > 0.05 < 0.01 < 0.001 > 0.05 < 0.001 > 0.05 

 

TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo A1, apolipoprotein A1; Apo B, apolipoprotein B; Apo A1/Apo B, the ratio of apolipoprotein A1 to apolipoprotein B; BMI, body mass index;

P < 0.05,

∗∗P < 0.01 and

∗∗∗P < 0.001 in comparison with men, BMI ≤ 24 (kg/m2), normotensive, no drinking, or nonsmoker of same nationality;

a  P < 0.05,

b  P < 0.01 and

c  P < 0.001 in comparison with same subgroup of Hei Yi Zhuang.

Strict intra-nationality marriages have taken place from time immemorial in this population. Namely, only partners who are both Hei Yi Zhuang can marry, and individuals can not intermarry with members of the other groups of Zhuang or other nationalities [8]. Therefore, the hereditary characteristics and gene phenotypes of lipids in Hei Yi Zhuang may be different from those in Han, but this still needs to be determined.

Currently it is thought that androgens induce disadvantageous effects on lipids, whereas estrogens are held to have opposite effects [28]. In the present study, we show that the increased rates of TG and the ratio of Apo A1 to Apo B in Hei Yi Zhuang are higher in males than in females, but the increased rate of HDL-C is lower in males than in females; the increased rate of the ratio of Apo A1 to Apo B in Han is higher in males than in females, but the increased rate of HDL-C is also lower in males than in females. However, there is no significant correlation between the prevalence of hyperlipidemia and sex in both Hei Yi Zhuang and Han. The reason for this discrepancy is unclear.

Epidemiological studies have provided abundant evidence that lipid levels are closely related to age [29]. In the present study, we show that the increased rates of TC, HDL-C, LDL-C, Apo B and the ratio of Apo A1 to Apo B in Hei Yi Zhuang and TC, HDL-C, LDL-C and Apo B in Han increase with increasing age. The prevalence of hyperlipidemia is positively correlated with age in both Hei Yi Zhuang and Han. This is in agreement with previous studies. The exact mechanisms of age on the prevalence of hyperlipidemia are not known. It may due, in part, to the hereditary characteristics and aging of the population.

Table 3

The risk factors of the prevalence of hyperlipidemia between Hei Yi Zhuang and Han


PopulationsRisk factorsRegression coefficientStandard errorWaldPOR

Han plus Hei Age (years) 0.457 0.043 150.156 0.000 1.577 
 Body mass index (kg/m20.442 0.128 12.132 0.000 1.556 
 Blood pressure (mmHg) 0.571 0.134 9.986 0.002 1.223 
 Alcohol consumption (g/day) 0.198 0.064 8.388 0.004 1.236 
 Nationality 0.398 0.127 11.042 0.001 1.496 
Han nationality Age (years) 0.455 0.058 61.458 0.000 1.568 
 Body mass index (kg/m20.624 0.198 10.345 0.001 1.871 
 Blood pressure (mmHg) 0.543 0.207 7.221 0.008 1.734 
 Alcohol consumption (g/day) 0.273 0.106 7.604 0.006 1.312 
Hei Yi Zhuang Age (years) 0.453 0.049 92.314 0.000 1.565 
 Body mass index (kg/m20.422 0.223 3.968 0.043 1.526 
 Blood pressure (mmHg) 0.628 0.182 12.239 0.000 1.846 

 

PopulationsRisk factorsRegression coefficientStandard errorWaldPOR

Han plus Hei Age (years) 0.457 0.043 150.156 0.000 1.577 
 Body mass index (kg/m20.442 0.128 12.132 0.000 1.556 
 Blood pressure (mmHg) 0.571 0.134 9.986 0.002 1.223 
 Alcohol consumption (g/day) 0.198 0.064 8.388 0.004 1.236 
 Nationality 0.398 0.127 11.042 0.001 1.496 
Han nationality Age (years) 0.455 0.058 61.458 0.000 1.568 
 Body mass index (kg/m20.624 0.198 10.345 0.001 1.871 
 Blood pressure (mmHg) 0.543 0.207 7.221 0.008 1.734 
 Alcohol consumption (g/day) 0.273 0.106 7.604 0.006 1.312 
Hei Yi Zhuang Age (years) 0.453 0.049 92.314 0.000 1.565 
 Body mass index (kg/m20.422 0.223 3.968 0.043 1.526 
 Blood pressure (mmHg) 0.628 0.182 12.239 0.000 1.846 

 

Wald, the value of the Wald test; OR, odds ratio.

Table 3

The risk factors of the prevalence of hyperlipidemia between Hei Yi Zhuang and Han


PopulationsRisk factorsRegression coefficientStandard errorWaldPOR

Han plus Hei Age (years) 0.457 0.043 150.156 0.000 1.577 
 Body mass index (kg/m20.442 0.128 12.132 0.000 1.556 
 Blood pressure (mmHg) 0.571 0.134 9.986 0.002 1.223 
 Alcohol consumption (g/day) 0.198 0.064 8.388 0.004 1.236 
 Nationality 0.398 0.127 11.042 0.001 1.496 
Han nationality Age (years) 0.455 0.058 61.458 0.000 1.568 
 Body mass index (kg/m20.624 0.198 10.345 0.001 1.871 
 Blood pressure (mmHg) 0.543 0.207 7.221 0.008 1.734 
 Alcohol consumption (g/day) 0.273 0.106 7.604 0.006 1.312 
Hei Yi Zhuang Age (years) 0.453 0.049 92.314 0.000 1.565 
 Body mass index (kg/m20.422 0.223 3.968 0.043 1.526 
 Blood pressure (mmHg) 0.628 0.182 12.239 0.000 1.846 

 

PopulationsRisk factorsRegression coefficientStandard errorWaldPOR

Han plus Hei Age (years) 0.457 0.043 150.156 0.000 1.577 
 Body mass index (kg/m20.442 0.128 12.132 0.000 1.556 
 Blood pressure (mmHg) 0.571 0.134 9.986 0.002 1.223 
 Alcohol consumption (g/day) 0.198 0.064 8.388 0.004 1.236 
 Nationality 0.398 0.127 11.042 0.001 1.496 
Han nationality Age (years) 0.455 0.058 61.458 0.000 1.568 
 Body mass index (kg/m20.624 0.198 10.345 0.001 1.871 
 Blood pressure (mmHg) 0.543 0.207 7.221 0.008 1.734 
 Alcohol consumption (g/day) 0.273 0.106 7.604 0.006 1.312 
Hei Yi Zhuang Age (years) 0.453 0.049 92.314 0.000 1.565 
 Body mass index (kg/m20.422 0.223 3.968 0.043 1.526 
 Blood pressure (mmHg) 0.628 0.182 12.239 0.000 1.846 

 

Wald, the value of the Wald test; OR, odds ratio.

Table 4

The prevalence of hyperlipidemia in different villages between Hei Yi Zhuang and Han [n (%)]


VillagesnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/Apo B > 2.50

Hei Yi Zhuang 
  Longhua 343 76 (22.2) 48 (14.0) 221 (64.4) 29 (8.5) 2 (0.6) 30 (8.7) 18 (5.2) 
  Gonghe 109 38 (34.9) 23 (21.1) 91 (83.5) 10 (9.2) 1 (0.9) 8 (7.3) 6 (5.5) 
  Guotao 182 23 (12.6) 13 (7.1) 140 (76.9) 7 (3.8) 2 (1.1) 5 (2.7) 13 (7.1) 
  Tuanjie 201 56 (27.9) 24 (11.9) 139 (69.2) 30 (14.9) 2 (1.0) 30 (14.9) 7 (3.5) 
  Yongan 141 29 (20.6) 9 (6.4) 104 (73.8) 11 (7.8) 1 (0.7) 11 (7.8) 18 (12.8) 
  Nianyan 80 15 (18.8) 10 (12.5) 48 (60.0) 9 (11.3) 12 (15.0) 6 (7.5) 
  Shanhe 110 38 (34.5) 17 (15.5) 81 (73.6) 15 (13.6) 2 (1.8) 13 (11.8) 7 (6.4) 
χ2 − 31.304 18.777 24.244 17.013 2.400 21.607 13.564 
P − < 0.001 < 0.01 < 0.001 < 0.01 > 0.05 < 0.01 < 0.05 
Han nationality 
  Yongle 150 56 (37.3) 27 (18.0) 92 (61.3) 26 (17.3) 22 (14.7) 3 (2.0) 
  Zhemiao 78 27 (34.6) 17 (21.8) 37 (47.4) 18 (23.1) 1 (1.3) 24 (30.8) 
  Dala 72 19 (26.4) 11 (15.3) 49 (68.1) 5 (6.9) 8 (11.1) 
  Xiaoguola 149 28 (18.8) 18 (12.1) 104 (69.8) 9 (6.0) 1 (0.7) 15 (10.1) 4 (2.7) 
  Longdi 184 48 (26.1) 20 (10.9) 122 (66.3) 26 (14.1) 2 (1.1) 23 (12.5) 7 (3.8) 
  Nianyan 70 12 (17.1) 7 (10.0) 47 (67.1) 9 (12.9) 6 (8.6) 1 (1.4) 
  Pohe 13 8 (61.5) 1 (7.7) 10 (76.9) 3 (23.1) 5 (38.5) 
  Chaoqun 86 21 (24.4) 9 (10.5) 49 (57.0) 12 (14.0) 2 (2.3) 11 (12.8) 2 (2.3) 
  Longping 216 56 (25.9) 37 (17.1) 136 (63.0) 29 (13.4) 3 (1.4) 33 (15.3) 7 (3.2) 
χ2 − 27.333 11.525 15.816 18.937 5.693 28.688 6.756 
P − < 0.001 > 0.05 < 0.05 < 0.05 > 0.05 < 0.001 > 0.05 

 

VillagesnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/Apo B > 2.50

Hei Yi Zhuang 
  Longhua 343 76 (22.2) 48 (14.0) 221 (64.4) 29 (8.5) 2 (0.6) 30 (8.7) 18 (5.2) 
  Gonghe 109 38 (34.9) 23 (21.1) 91 (83.5) 10 (9.2) 1 (0.9) 8 (7.3) 6 (5.5) 
  Guotao 182 23 (12.6) 13 (7.1) 140 (76.9) 7 (3.8) 2 (1.1) 5 (2.7) 13 (7.1) 
  Tuanjie 201 56 (27.9) 24 (11.9) 139 (69.2) 30 (14.9) 2 (1.0) 30 (14.9) 7 (3.5) 
  Yongan 141 29 (20.6) 9 (6.4) 104 (73.8) 11 (7.8) 1 (0.7) 11 (7.8) 18 (12.8) 
  Nianyan 80 15 (18.8) 10 (12.5) 48 (60.0) 9 (11.3) 12 (15.0) 6 (7.5) 
  Shanhe 110 38 (34.5) 17 (15.5) 81 (73.6) 15 (13.6) 2 (1.8) 13 (11.8) 7 (6.4) 
χ2 − 31.304 18.777 24.244 17.013 2.400 21.607 13.564 
P − < 0.001 < 0.01 < 0.001 < 0.01 > 0.05 < 0.01 < 0.05 
Han nationality 
  Yongle 150 56 (37.3) 27 (18.0) 92 (61.3) 26 (17.3) 22 (14.7) 3 (2.0) 
  Zhemiao 78 27 (34.6) 17 (21.8) 37 (47.4) 18 (23.1) 1 (1.3) 24 (30.8) 
  Dala 72 19 (26.4) 11 (15.3) 49 (68.1) 5 (6.9) 8 (11.1) 
  Xiaoguola 149 28 (18.8) 18 (12.1) 104 (69.8) 9 (6.0) 1 (0.7) 15 (10.1) 4 (2.7) 
  Longdi 184 48 (26.1) 20 (10.9) 122 (66.3) 26 (14.1) 2 (1.1) 23 (12.5) 7 (3.8) 
  Nianyan 70 12 (17.1) 7 (10.0) 47 (67.1) 9 (12.9) 6 (8.6) 1 (1.4) 
  Pohe 13 8 (61.5) 1 (7.7) 10 (76.9) 3 (23.1) 5 (38.5) 
  Chaoqun 86 21 (24.4) 9 (10.5) 49 (57.0) 12 (14.0) 2 (2.3) 11 (12.8) 2 (2.3) 
  Longping 216 56 (25.9) 37 (17.1) 136 (63.0) 29 (13.4) 3 (1.4) 33 (15.3) 7 (3.2) 
χ2 − 27.333 11.525 15.816 18.937 5.693 28.688 6.756 
P − < 0.001 > 0.05 < 0.05 < 0.05 > 0.05 < 0.001 > 0.05 

 

TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo A1, apolipoprotein A1; Apo B, apolipoprotein B; Apo A1/Apo B, the ratio of apolipoprotein A1 to apolipoprotein B.

Table 4

The prevalence of hyperlipidemia in different villages between Hei Yi Zhuang and Han [n (%)]


VillagesnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/Apo B > 2.50

Hei Yi Zhuang 
  Longhua 343 76 (22.2) 48 (14.0) 221 (64.4) 29 (8.5) 2 (0.6) 30 (8.7) 18 (5.2) 
  Gonghe 109 38 (34.9) 23 (21.1) 91 (83.5) 10 (9.2) 1 (0.9) 8 (7.3) 6 (5.5) 
  Guotao 182 23 (12.6) 13 (7.1) 140 (76.9) 7 (3.8) 2 (1.1) 5 (2.7) 13 (7.1) 
  Tuanjie 201 56 (27.9) 24 (11.9) 139 (69.2) 30 (14.9) 2 (1.0) 30 (14.9) 7 (3.5) 
  Yongan 141 29 (20.6) 9 (6.4) 104 (73.8) 11 (7.8) 1 (0.7) 11 (7.8) 18 (12.8) 
  Nianyan 80 15 (18.8) 10 (12.5) 48 (60.0) 9 (11.3) 12 (15.0) 6 (7.5) 
  Shanhe 110 38 (34.5) 17 (15.5) 81 (73.6) 15 (13.6) 2 (1.8) 13 (11.8) 7 (6.4) 
χ2 − 31.304 18.777 24.244 17.013 2.400 21.607 13.564 
P − < 0.001 < 0.01 < 0.001 < 0.01 > 0.05 < 0.01 < 0.05 
Han nationality 
  Yongle 150 56 (37.3) 27 (18.0) 92 (61.3) 26 (17.3) 22 (14.7) 3 (2.0) 
  Zhemiao 78 27 (34.6) 17 (21.8) 37 (47.4) 18 (23.1) 1 (1.3) 24 (30.8) 
  Dala 72 19 (26.4) 11 (15.3) 49 (68.1) 5 (6.9) 8 (11.1) 
  Xiaoguola 149 28 (18.8) 18 (12.1) 104 (69.8) 9 (6.0) 1 (0.7) 15 (10.1) 4 (2.7) 
  Longdi 184 48 (26.1) 20 (10.9) 122 (66.3) 26 (14.1) 2 (1.1) 23 (12.5) 7 (3.8) 
  Nianyan 70 12 (17.1) 7 (10.0) 47 (67.1) 9 (12.9) 6 (8.6) 1 (1.4) 
  Pohe 13 8 (61.5) 1 (7.7) 10 (76.9) 3 (23.1) 5 (38.5) 
  Chaoqun 86 21 (24.4) 9 (10.5) 49 (57.0) 12 (14.0) 2 (2.3) 11 (12.8) 2 (2.3) 
  Longping 216 56 (25.9) 37 (17.1) 136 (63.0) 29 (13.4) 3 (1.4) 33 (15.3) 7 (3.2) 
χ2 − 27.333 11.525 15.816 18.937 5.693 28.688 6.756 
P − < 0.001 > 0.05 < 0.05 < 0.05 > 0.05 < 0.001 > 0.05 

 

VillagesnTC > 5.17 mmol/lTG > 1.70 mmol/lHDL-C > 1.81 mmol/lLDL-C > 3.20 mmol/lApo A1 < 1.0 g/lApo B > 1.14 g/lApo A1/Apo B > 2.50

Hei Yi Zhuang 
  Longhua 343 76 (22.2) 48 (14.0) 221 (64.4) 29 (8.5) 2 (0.6) 30 (8.7) 18 (5.2) 
  Gonghe 109 38 (34.9) 23 (21.1) 91 (83.5) 10 (9.2) 1 (0.9) 8 (7.3) 6 (5.5) 
  Guotao 182 23 (12.6) 13 (7.1) 140 (76.9) 7 (3.8) 2 (1.1) 5 (2.7) 13 (7.1) 
  Tuanjie 201 56 (27.9) 24 (11.9) 139 (69.2) 30 (14.9) 2 (1.0) 30 (14.9) 7 (3.5) 
  Yongan 141 29 (20.6) 9 (6.4) 104 (73.8) 11 (7.8) 1 (0.7) 11 (7.8) 18 (12.8) 
  Nianyan 80 15 (18.8) 10 (12.5) 48 (60.0) 9 (11.3) 12 (15.0) 6 (7.5) 
  Shanhe 110 38 (34.5) 17 (15.5) 81 (73.6) 15 (13.6) 2 (1.8) 13 (11.8) 7 (6.4) 
χ2 − 31.304 18.777 24.244 17.013 2.400 21.607 13.564 
P − < 0.001 < 0.01 < 0.001 < 0.01 > 0.05 < 0.01 < 0.05 
Han nationality 
  Yongle 150 56 (37.3) 27 (18.0) 92 (61.3) 26 (17.3) 22 (14.7) 3 (2.0) 
  Zhemiao 78 27 (34.6) 17 (21.8) 37 (47.4) 18 (23.1) 1 (1.3) 24 (30.8) 
  Dala 72 19 (26.4) 11 (15.3) 49 (68.1) 5 (6.9) 8 (11.1) 
  Xiaoguola 149 28 (18.8) 18 (12.1) 104 (69.8) 9 (6.0) 1 (0.7) 15 (10.1) 4 (2.7) 
  Longdi 184 48 (26.1) 20 (10.9) 122 (66.3) 26 (14.1) 2 (1.1) 23 (12.5) 7 (3.8) 
  Nianyan 70 12 (17.1) 7 (10.0) 47 (67.1) 9 (12.9) 6 (8.6) 1 (1.4) 
  Pohe 13 8 (61.5) 1 (7.7) 10 (76.9) 3 (23.1) 5 (38.5) 
  Chaoqun 86 21 (24.4) 9 (10.5) 49 (57.0) 12 (14.0) 2 (2.3) 11 (12.8) 2 (2.3) 
  Longping 216 56 (25.9) 37 (17.1) 136 (63.0) 29 (13.4) 3 (1.4) 33 (15.3) 7 (3.2) 
χ2 − 27.333 11.525 15.816 18.937 5.693 28.688 6.756 
P − < 0.001 > 0.05 < 0.05 < 0.05 > 0.05 < 0.001 > 0.05 

 

TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo A1, apolipoprotein A1; Apo B, apolipoprotein B; Apo A1/Apo B, the ratio of apolipoprotein A1 to apolipoprotein B.

The relationship between obesity and dyslipidemia has been clearly documented [30]. Obesity not only increases the prevalence of hyperlipidemia, but is also associated directly with diabetes, high blood pressure and coronary artery disease. The current study shows that the increased rates of TC, TG, LDL-C and Apo B in subjects with BMI > 24 kg/m2 are higher than those in subjects with BMI ≤ 24 kg/m2 in both Hei Yi Zhuang and Han. The prevalence of hyperlipidemia is also positively correlated with BMI in both ethnic groups. This is in agreement with previous studies [30, 31]. Dyslipidemia in obesity may result from insulin resistance [32]. The liver is an important target organ of insulin effects. Insulin resistance can lower the repression by insulin of the concentrations of plasma free fatty acids, increase the plasma levels of free fatty acids, promote free fatty acids transport into the liver, and stimulate the synthesis and release of very low-density lipoprotein (VLDL) in the liver. At the same time, insulin resistance can also lower the activity of lipoprotein lipase, reducing the metabolism of VLDL, and increasing the levels of plasma VLDL.

The association between serum lipids and blood pressure is not well known. Studies have shown that the levels of triglyceride, VLDL cholesterol and Apo E were significantly higher and the levels of Apo A1, Apo AII and Apo CII significantly lower in untreated hypertensives than those in controls [33]. TC and non-HDL-C levels increased significantly with increasing systolic or diastolic blood pressure in both sexes [34]. Some authors thought that this relation may be a kind of random phenomenon [35], but our study reveals that the increased rates of TC and TG in subjects with hypertension are higher than those in subjects without hypertension in Hei Yi Zhuang, and the increased rates of TC, TG, LDL-C and Apo B in hypertensives are higher than those in normotensives in Han. The prevalence of hyperlipidemia is also positively correlated with blood pressure in both Hei Yi Zhuang and Han. We suggest that there may be a biological interrelation between blood pressure and lipids [36].

The effects of alcohol consumption [18] and cigarette smoking [18, 19] on plasma or serum lipid concentrations and their effects on cardiovascular health have been studied extensively. Low amounts of alcohol, when taken on a regular basis, have been shown to protect against cardiovascular disease and death [37], whereas heavy drinking and cigarette smoking constitute a severe risk condition. In the present study, we show that the increased rates of TG and HDL-C in Hei Yi Zhuang are higher in drinkers than in nondrinkers, and the increased rate of TG is higher in smokers than in nonsmokers; also the increased rates of TC, TG and HDL-C in Han are higher in drinkers than in nondrinkers; but there is no significant correlation between the prevalence of hyperlipidemia and alcohol consumption or cigarette smoking in either Hei Yi Zhuang or Han, suggesting that alcohol consumption and cigarette smoking may not be independent risk factors for hyperlipidemia in these populations.

In the present study, we also show that there are significant differences of the increased rates of TC, TG, HDL-C, LDL-C, Apo B and the ratio of Apo A1 to Apo B in seven villages of Hei Yi Zhuang and TC, HDL-C, LDL-C and Apo B in nine villages of Han. The reason for these differences is not well understood.

In conclusion, the present study indicates that the prevalence of hyperlipidemia is significantly lower in Hei Yi Zhuang than in Han. The prevalence of hyperlipidemia is positively correlated with age, BMI and blood pressure in Hei Yi Zhuang, whereas it is positively associated with age, BMI, blood pressure and alcohol consumption in Han, which might result from different demographic characteristics, dietary habits and other lifestyle factors.

References

1

Shekelle
 
RB
,
Shryock
 
AM
,
Paul
 
O
,
Lepper
 
M
,
Stamler
 
J
,
Liu
 
S
 et al.   
Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study
.
N Engl J Med
 
1981
;
304
:
65
70
.

2

Hokanson
 
JE
,
Austin
 
MA
.
Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies
.
J Cardiovasc Risk
 
1996
;
3
:
213
219
.

3

Marz
 
W
,
Scharnagl
 
H
,
Winkler
 
K
,
Tiran
 
A
,
Nauck
 
M
,
Boehm
 
BO
 et al.   
Low-density lipoprotein triglycerides associated with low-grade systemic inflammation, adhesion molecules, and angiographic coronary artery disease: the Ludwigshafen Risk and Cardiovascular Health study
.
Circulation
 
2004
;
110
:
3068
3074
.

4

Kwiterovich
 
PO
 Jr,
Coresh
 
J
,
Smith
 
HH
,
Bachorik
 
PS
,
Derby
 
CA
,
Pearson
 
TA
.
Comparison of the plasma levels of apolipoproteins B and A-1, and other risk factors in men and women with premature coronary artery disease
.
Am J Cardiol
 
1992
;
69
:
1015
1021
.

5

Gotto
 
AM
 Jr.  
Lipid and lipoprotein disorders
. In:
Pearson
 
TA
,
Criqui
 
MH
,
Luepker
 
RV
,
Oberman
 
A
,
Wilson
 
M
, editors.
Primer in preventive cardiology
.
Dallas, Texas
:
American Heart Association
;
1994
. pp.
107
129
.

6

de Lorgeril
 
M
,
Salen
 
P
,
Martin
 
JL
,
Monjaud
 
I
,
Delaye
 
J
,
Mamelle
 
N
.
Mediterranean diet, traditional risk factors and the rate of cardiovascular complications after myocardial infarction. Final report of the Lyon Diet Heart Study
.
Circulation
 
1999
;
99
:
779
785
.

7

Yusuf
 
S
,
Hawken
 
S
,
Ounpuu
 
S
,
Dans
 
T
,
Avezum
 
A
,
Lanas
 
F
 et al.   
Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study
.
Lancet
 
2004
;
364
:
937
952
.

8

Li
 
RS
,
Yin
 
RX
,
Lin
 
WX
,
Yang
 
DZ
.
Relationship between the polymorphism of microsomal triglyceride transfer protein gene and the level of serum lipids in Guangxi Heiyi Zhuang population
.
Zhonghua Yi Xue Za Zhi [Natl Med J China]
 
2005
;
85
:
2492
2496
.

9

Lyu
 
LC
,
Yeh
 
CY
,
Lichtenstein
 
AH
,
Li
 
Z
,
Ordovas
 
JM
,
Schaefer
 
EJ
.
Association of sex, adiposity, and diet with HDL subclasses in middle-aged Chinese
.
Am J Clin Nutr
 
2001
;
74
:
64
71
.

10

Yang
 
YX
,
Wang
 
GY
,
Pan
 
XC
.
The 2002 Chinese food composition table
.
Beijing
:
Medical Publishing House of Beijing University
;
2002
.

11

Paffenbarger
 
RS
,
Wing
 
AL
,
Hyde
 
RT
.
Physical activity as an index of heart attack risk in college alumni
.
Am J Epidemiol
 
1978
;
108
:
161
175
.

12

Chalmers
 
J
,
MacMahon
 
S
,
Mancia
 
G
,
Whitworth
 
J
,
Beilin
 
L
,
Hansson
 
L
 et al.   
1999 World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines sub-committee of the World Health Organization
.
Clin Exp Hypertens
 
1999
;
21
:
1009
1060
.

13

Cooperative Meta-analysis Group of China Obesity Task Force.
 
Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population
.
Zhonghua Liu Xing Bing Xue Za Zhi [Chin J Epidemiol]
 
2002
;
23
:
5
10
.

14

Xiao
 
JS
,
Wang
 
MR
.
Matlab5.X and scientific calculation
.
Beijing
:
Tsinghua Publishing House
;
2000
. pp.
28
36
.

15

Austin
 
MA
,
King
 
MC
,
Bawol
 
RD
,
Hulley
 
SB
,
Friedman
 
GD
.
Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences
.
Am J Epidemiol
 
1987
;
125
:
308
318
.

16

Linn
 
S
,
Fulwood
 
R
,
Rifkind
 
B
,
Carroll
 
M
,
Muesing
 
R
,
Williams
 
OD
 et al.   
High density lipoprotein cholesterol levels among US adults by selected demographic and socioeconomic variables. The Second National Health and Nutrition Examination Survey 1976–1980
.
Am J Epidemiol
 
1989
;
129
:
281
294
.

17

Bermudez
 
OI
,
Velez-Carrasco
 
W
,
Schaefer
 
EJ
,
Tucker
 
KL
.
Dietary and plasma lipid, lipoprotein, and apolipoprotein profiles among elderly Hispanics and non-Hispanics and their association with diabetes
.
Am J Clin Nutr
 
2002
;
76
:
1214
1221
.

18

Berg
 
CM
,
Lissner
 
L
,
Aires
 
N
,
Lappas
 
G
,
Toren
 
K
,
Wilhelmsen
 
L
 et al.   
Trends in blood lipid levels, blood pressure, alcohol and smoking habits from 1985 to 2002: results from INTERGENE and GOT-MONICA
.
Eur J Cardiovasc Prev Rehabil
 
2005
;
12
:
115
125
.

19

Craig
 
WY
,
Palomaki
 
GE
,
Haddow
 
JE
.
Cigarette smoking and serum lipid and lipoprotein concentrations: an analysis of published data
.
BMJ
 
1989
;
298
:
784
788
.

20

Schieken
 
RM
.
Effect of exercise on lipids
.
Ann NY Acad Sci
 
1991
;
623
:
269
274
.

21

Kesteloot
 
H
,
Huang
 
DX
,
Yang
 
XS
,
Claes
 
J
,
Rosseneu
 
M
,
Geboers
 
J
 et al.   
Serum lipids in the People's Republic of China. Comparison of Western and Eastern populations
.
Arteriosclerosis
 
1985
;
5
:
427
433
.

22

Hegsted
 
DM
,
McGandy
 
RB
,
Myers
 
ML
,
Stare
 
FJ
.
Quantitative effect of dietary fat on serum cholesterol in man
.
Am J Clin Nutr
 
1965
;
17
:
281
295
.

23

Dong
 
W
,
Ma
 
X
,
Zhang
 
D
,
Yu
 
S
.
Effect of maize embryo on delaying aging
.
Food Sci
 
2002
;
23
:
95
97
.

24

Lairon
 
D
.
Dietary fibres: effects on lipid metabolism and mechanisms of action
.
Eur J Clin Nutr
 
1996
;
50
:
125
133
.

25

Liu
 
Y
,
Zhang
 
L
,
Wu
 
Y
.
The dietary therapy for hyperlipidemia complicated with NIDDM
.
Chin J Clin Nutr
 
1995
;
3
:
174
176
.

26

Zhang
 
Y
,
Zhou
 
Y
,
Wu
 
F
,
Zhang
 
M
.
The comparative effects of maize oil and lard on blood lipids serum glucose and brain lipofuscin in rats
.
Acta Nutrimenta Sinica
 
1996
;
18
:
274
279
.

27

Grundy
 
SM
,
Denke
 
MA
.
Dietary influences on serum lipids and lipoproteins
.
J Lipid Res
 
1990
;
31
:
1149
1172
.

28

Mudali
 
S
,
Dobs
 
AS
,
Ding
 
J
,
Cauley
 
JA
,
Szklo
 
M
,
Golden
 
SH
.
Endogenous postmenopausal hormones and serum lipids: the atherosclerosis risk in communities study
.
J Clin Endocrinol Metab
 
2005
;
90
:
1202
1209
.

29

Karki
 
DB
,
Neopane
 
A
,
Pradhan
 
B
,
Magar
 
A
.
Lipid levels in Nepalese population
.
Kathmandu Univ Med J (KUMJ)
 
2004
;
2
:
349
353
.

30

Mataix
 
J
,
Lopez-Frias
 
M
,
Martinez-de-Victoria
 
E
,
Lopez-Jurado
 
M
,
Aranda
 
P
,
Llopis
 
J
.
Factors associated with obesity in an adult Mediterranean population: influence on plasma lipid profile
.
J Am Coll Nutr
 
2005
;
24
:
456
465
.

31

Kawada
 
T
.
Body mass index is a good predictor of hypertension and hyperlipidemia in a rural Japanese population
.
Int J Obes Relat Metab Disord
 
2002
;
26
:
725
729
.

32

Houston
 
MC
,
Basile
 
J
,
Bestermann
 
WH
,
Egan
 
B
,
Lackland
 
D
,
Hawkins
 
RG
 et al.   
Addressing the global cardiovascular risk of hypertension, dyslipidemia, and insulin resistance in the southeastern United States
.
Am J Med Sci
 
2005
;
329
:
276
291
.

33

Catalano
 
M
,
Aronica
 
A
,
Carzaniga
 
G
,
Seregni
 
R
,
Libretti
 
A
.
Serum lipids and apolipoproteins in patients with essential hypertension
.
Atherosclerosis
 
1991
;
87
:
17
22
.

34

Bonaa
 
KH
,
Thelle
 
DS
.
Association between blood pressure and serum lipids in a population. The Tromso Study
.
Circulation
 
1991
;
83
:
1305
1314
.

35

Li
 
J
,
Niu
 
Q
,
Li
 
P
,
Wang
 
S
,
Zhao
 
S
.
The levels of serum lipids, lipoprotein, and apolipoprotein in patients with essential hypertension
.
Zhonghua Xin Xue Guan Bing Za Zhi [Chin J Cardiol]
 
1991
;
19
:
317
319
.

36

Borghi
 
C
,
Dormi
 
A
,
Veronesi
 
M
,
Sangiorgi
 
Z
,
Gaddi
 
A
,
Brisighella Heart Study Working Party. Association between different lipid-lowering treatment strategies and blood pressure control in the Brisighella Heart Study
 
Am Heart J
 
2004
;
148
:
285
292
.

37

Doll
 
R
,
Peto
 
R
,
Hall
 
E
,
Wheatley
 
K
,
Gray
 
R
.
Mortality in relation to consumption of alcohol
.
BMJ
 
1994
;
309
:
911
918
.

Author notes

Sponsorship: This study was supported by the National Natural Science Foundation of China (No. 30360038).

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.