Abstract

Four microbial mat-forming, non-axenic, strains of the non-heterocystous, filamentous, cyanobacterial genus Microcoleus were maintained in culture and examined for the ability to fix atmospheric nitrogen (N2). Each was tested for nitrogenase activity using the acetylene reduction assay (ARA) and for the presence of the dinitrogenase reductase gene (nifH), an essential gene for N2 fixation, using the polymerase chain reaction (PCR). The Microcoleus spp. cultures were incapable of growth without an exogenous nitrogen source and never exhibited nitrogenase activity. Attempts to amplify a 360-bp segment of the nifH gene using DNA purified from the cyanobacterial cultures did not produce any cyanobacteria-specific nifH sequences. However, several non-cyanobacterial homologous nifH sequences were obtained. Phylogenetic analysis showed these sequences to be most similar to sequences from heterotrophic bacteria isolated from a marine microbial mat in Tomales Bay (California, USA), and bulk DNA extracted from a cryptobiotic soil crust in Moab (Utah, USA). Microcoleus spp. dominated the biomass of both systems. Cyanobacteria-specific 16S rDNA sequences obtained from the cultured cyanobacterial strains demonstrate that the lack of cyanobacteria-specific nifH sequences was not due to inefficiency of extracting Microcoleus DNA. Hence, both the growth and genetic data indicate that, contrary to earlier reports, Microcoleus spp. appear incapable of fixing N2 because they lack at least one of the requisite genes for this process. Furthermore, our study suggests epiphytic N2-fixing bacteria form a diazotrophic consortium with these Microcoleus spp. and are likely key sources of fixed N2 generated within soil crusts and marine microbial mats.

References

[1]
Belnap
J.
(
1995
)
Surface Disturbances: Their role in accelerating desertification
J. Environ. Monitor. Assess.
 ,
37
,
1
19
.
[2]
Stal
L.J.
Grossberger
S.
Krumbein
W.E.
(
1984
)
Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem
Mar. Biol.
 ,
82
,
217
224
.
[3]
Capone
D.G.
(
1983
)
Benthic nitrogen fixation
In:
Nitrogen in the Marine Environment
 
Carpenter
E.
Capone
D.G.
, Eds) pp
105
137
Academic Press
,
New York, NY
.
[4]
Postgate
J.
(
1982
)
The Fundamentals of Nitrogen Fixation
  Cambridge, UK.
[5]
Belnap
J.
Gardner
J.S.
(
1993
)
Soil microstructure of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus
Great Basin Naturalist
 ,
53
,
40
47
.
[6]
Bauld
J.
(
1984
)
Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia
In:
Microbial Mats: Stromatolites
 
Cohen
Y.
Castenhholz
R.W.
Halverson
H.O.
, Eds) pp
39
58
Alan R. Liss
,
New York, NY
.
[7]
Cohen
Y.
(
1984
)
The Solar Lake cyanobacterial mats: Strategies of photosynthetic life under sulfide
In:
Microbial Mats: Stromatolites
 
Cohen
Y.
Castenhholz
R.W.
Halverson
H.O.
, Eds) pp
133
148
Alan R. Liss
,
New York, NY
.
[8]
Guerrero
R.
Urmenta
J.
Rampone
G.
(
1993
)
Distribution and types of microbial mats at the Ebro Delta
Spain. BioSystems
 ,
31
,
135
144
.
[9]
Javor
B.J.
Castenholz
R.W.
(
1984
)
Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico
In:
Microbial Mats: Stromatolites
 
Cohen
Y.
Castenhholz
R.W.
Halverson
H.O.
, Eds) pp
149
170
Alan R. Liss
,
New York, NY
.
[10]
Zhang
Y.
Hoffmann
L.
(
1992
)
Blue-green algal mats of the salinas in San-ya, Hai-nan Island (China): Structure, taxonomic composition, and implications for the interpretation of Precambrian stromatolites
Precambrian Res.
 ,
56
,
275
290
.
[11]
Paling
E.I.
McComb
A.J.
Pate
J.
(
1989
)
Nitrogen fixation (Acetylene Reduction) in nonheterocystous cyanobacterial mats from the Dampier, Archipelago, Western Australia
Aust. J. Mar. Freshwater Res.
 ,
40
,
147
153
.
[12]
Paerl
H.W.
(
1990
)
Physiological ecology and regulation of N2 fixation in natural waters
Marshall
K.C.
, Ed)
2nd edn.
,
II
, In:
Advances in Microbial Ecology
 , pp
305
343
Plenum Press
,
New York, NY
.
[13]
Potts
M.
Krumbein
W.E.
Metzger
J.
(
1978
)
Nitrogen fixation in anaerobic sediments determined by acetylene reduction, a new 15N field assay, and simultaneous total 15N determination
In:
Environmental Biogeochemistry and Geomicrobiology: Methods, Metals, and Assessment
 
Krumbein
W.E.
, Ed) pp
753
769
Ann Arbor Science
,
Ann Arbor, MI
.
[14]
Pearson
H.W.
Malin
G.
Howsley
R.
(
1981
)
Physiological studies on in vivo nitrogenase activity by axenic cultures of the blue-green alga Microcoleus chthonoplastes
Br. Phycol. J.
 ,
16
,
139
.
[15]
Rippka
R.
Deruelles
J.
Waterbury
J.B.
Herdman
M.
Stanier
R.Y.
(
1979
)
Generic assignments, strain histories, and properties of pure cultures of cyanobacteria
J. Gen. Microbiol.
 ,
111
,
1
61
.
[16]
Guillard
R.D.C.
Ryther
J.H.
(
1962
)
Studies of marine planktonic diatoms 1. Cyclolella nana Husedt and Detonula confervacea (Cleve)
Gran. Can. J. Microb.
 ,
8
,
229
339
.
[17]
Chu
S.D.
(
1942
)
Influence of mineral composition of the medium of the growth of planktonic algae. 1. Methods and culture media
J. Ecol.
 ,
31
,
109
148
.
[18]
Tibbles
B.J.
Rawlings
D.E.
(
1994
)
Characterization of N2-fixing organisms from a temperate salt marsh lagoon including isolates that produce ethane from acetylene
Microb. Ecol.
 ,
27
,
65
80
.
[19]
Strickland
J.D.H.
Parsons
T.R.
(
1968
)
A practical handbook of seawater analysis
, In:
Bulletin of the Fisheries Research Board of Canada
  pp
167
.
[20]
Hardy
R.W.F.
Holsten
F.
Jackson
R.D.
Burns
E.K.
(
1968
)
The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation
Plant Physiol.
 ,
43
,
1185
1207
.
[21]
Giovannoni
S.J.
DeLong
E.J.
Schmidt
T.M.
Pace
N.R.
(
1990
)
Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton
Appl. Environ. Microbiol.
 ,
56
,
2572
2575
.
[22]
Zehr
J.P.
McReynolds
L.A.
(
1989
)
Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii
Appl. Environ. Microbiol.
 ,
55
,
2522
2526
.
[23]
Reysenbach
A.L.
Wickham
G.S.
Pace
N.R.
(
1994
)
Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park
Appl. Environ Microbiol.
 ,
60
,
2113
2119
.
[24]
Reysenbach
A.L.
Giver
L.J.
Wickham
G.S.
Pace
N.R.
(
1992
)
Differential amplification of rDNA genes by Polymerase Chain Reaction
Appl. Environ. Microbiol.
 ,
58
,
3417
3418
.
[25]
Program Manual for the Wisconsin Package
 
1994
,
Genetics Computer Group
,
Madison, WI
(8c).
[26]
Felsenstein
J.
(
1995
)
PHYLIP (Phylogeny Inference Package)
 
University of Washington
(3.57c).
[27]
Currin
C.A.H.
Paerl
H.W.
Suba
G.
Alberte
R.S.
(
1991
)
Immunofluorescence detection and characterization of N2-fixing microorganisms from aquatic environments
Limnol. Oceanogr.
 ,
35
,
59
71
.
[28]
Prufert-Bebout
L.
Garcia-Pinchel
F.
(
1994
)
Field cultivated Microcoleus chthonopastes: The search for clues to its prevalence in marine microbial mats
In:
Microbial Mats: Structure, Development, and Environmental Significance
 
Stal
L.
Caumette
P.
, Eds) pp
111
116
Springer-Verlag
,
Berlin
.
[29]
Young
J.P.W.
(
1992
)
Phylogenetic classification of nitrogen-fixing organisms
In:
Biological Nitrogen Fixation
 
Stacey
G.B.
Burris
R.H.
Evans
H.J.
, Eds) pp
43
86
Chapman and Hall
,
London
.
[30]
Zehr
J.P.
Mellon
M.
Braun
S.
Litaker
W.
Steppe
T.
Paerl
H.W.
(
1995
)
Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat
Appl. Environ. Microbiol.
 ,
61
,
2527
2532
.
[31]
Kirshtein
J.D.
Zehr
J.P.
Paerl
H.W.
(
1993
)
Determination of N2 fixation potential in the marine environment: Application of the Polymerase Chain Reaction
Mar. Ecol. Prog. Ser. 95
 ,
305
309
.
[32]
Joye
S.
Paerl
H.W.
(
1993
)
Contemporaneous nitrogen fixation and denitrification in the intertidal and subtidal environments of Tomales Bay
California. Mar. Ecol. Prog. Ser. 94
 ,
267
274
.
[33]
Paerl
H.W.
Pinckney
J.L.
(
1996
)
Microbial consortia: Their roles in aquatic production and biogeochemical cycling
Microb. Ecol.
 , in press.
[34]
Paerl
H.W.
Bland
P.T.
(
1982
)
Localized tetrazolium reduction in relation to N2 fixation, CO2 fixation, and H2 uptake in aquatic filamentous cyanobacteria
Appl. Environ. Microbiol.
 ,
43
,
218
226
.
[35]
Bebout
B.
Fitzpatrick
M.
Paerl
H.W.
(
1993
)
Identification of the sources of energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of a marine microbial mat community
Appl. Environ. Microbiol.
 ,
59
,
1495
1503
.
[36]
Paerl
H.W.
Carlton
R.G.
(
1988
)
Control of N2 Fixation by oxygen depletion in surface associated microzones
Nature
 ,
332
,
260
262
.
[37]
Bebout
B.M.
Paerl
H.W.
Crocker
K.M.
Prufert
L.
(
1987
)
Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community
Appl. Environ. Microbiol.
 ,
53
,
2353
2362
.
[38]
Paerl
H.W.
Galluci
K.K.
(
1985
)
Role of chemotaxis in establishing a specific nitrogen-fixing cyanobacterial association
Science
 ,
227
,
647
649
.