Summary

From enrichment cultures in the presence of 1 mM NiCl2 200 strains of aerobic bacteria were isolated from 50 samples collected in the metal-processing industry, waste water treatment plants and from solid waste, highly polluted by heavy metals. The strains isolated were characterized with respect to their substrate spectrum and resistance to nickel, cobalt, zinc and cadmium salts and assigned to 21 groups. One representative of each group was described with respect to cell morphology. All strains were Gram-negative, non-sporing rods or cocci. The highest concentrations of nickel, cobalt, zinc, cadmium, copper, mercury, and silver allowing growth on solid media were estimated. Two strains were able to grow at 20 mM NiCl2 and CoCl2, one strain tolerated 12 mM and one 7.5 mM concentrations of these salts.

Fifteen out of 21 strains contained at least one plasmid two contained two plasmids. The plasmid sizes varied between 50 and 340 kbp, except strain 10A, which contained a miniplasmid (2.6 kbp). Attempts to cure four selected strains by exposure to mitomycin C or growth at elevated temperature failed.

By helper-assisted and unassisted conjugation the plasmids of strain 31A were shown to carry nickel and cobalt resistance determinants. Alcaligenes eutrophus strains H16 and N9A and denative of strain CH34 lacking one or both of its native metal resistance plasmids were used as recipients. Both plasmids, p TOM8 and pTOM9, of strain 31A carried resistance properties which were expressed in all recipients except. A. eutrophus H16, in which only nickel resistance was expressed.

Plasmid pTOM3 residing in strain 10A could not be transferred as such. However, transconjugants derived from helper (pULB113)-assisted matings carried co-integrates of various sizes and were resistant to nickel and cobalt.

References

[1]
Hausinger
R.P.
(
1987
)
Nickel utilization by microorganisms
Microbiol. Rev.
 ,
51
,
22
42
.
[2]
Babich
H.
Stotzky
G.
(
1983
)
Toxicity of nickel to microbes: Environmental aspects
Adv. Appl. Microbiol.
 ,
29
,
195
265
.
[3]
Passow
H.
Rothstein
A.
Clarkson
T.W.
(
1961
)
The general pharmacology of heavy metals
Pharmacol. Rev.
 ,
130
,
93
95
.
[4]
Nriagu
J.O.
(
1980
) In
Global cycle and properties of nickel, in Nickel in the environment
 
Nriagu
J.O.
, Ed) pp
1
26
John Wiley and Sons, Inc
,
New York
.
[5]
Mergeay
M.
Houba
C.
Gerits
J.
(
1978
)
Extrachromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions: evidence from curing in a Pseudomonas
Arch. Int. Physiol. Biochem.
 ,
86
,
440
441
.
[6]
Gerstenberg
C.
Friedrich
B.
Schlegel
H.G.
(
1982
)
Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria
Arch. Microbiol.
 ,
133
,
90
96
.
[7]
Mergeay
M.
Nies
D.
Schlegel
H.G.
Gerits
J.
Charles
P.
van Gijsegem
F.
(
1985
)
Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals
J. Bacteriol.
 ,
162
,
328
334
.
[8]
Siddiqui
R.A.
Schlegel
H.G.
Meyer
M.
(
1988
)
Inducible and constitutive pMOL28-encoded nickel-resistance in Alcaligenes eutrophus N9A
J. Bacteriol.
 ,
170
,
4188
4193
.
[9]
Siddiqui
R.A.
Schlegel
H.G.
(
1987
)
Plasmid pMOL28-mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34
FEMS Microbiol. Lett.
 ,
43
,
9
13
.
[10]
Timotius
K.
Schlegel
H.G.
(
1987
)
Aus Abwässern isolierte nickelresistente Bakterien. Nachrichten der Akademie der Wissenschaften in Göttingen; II.
Mathematisch-Physikal. Klasse
 ,
(Nr. 3)
,
15
23
.
[11]
Wilde
E.
(
1962
)
Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas
Arch. Mikrobiol.
 ,
43
,
109
137
.
[12]
Schuster
E.
(
1967
)
Chemolithotrophes Wachstum von Hydrogenomonas H16 im Chemostaten mit elektrolytischer Knallgaserzeugung
, In
Dissertation
 
Universität Göttingen
.
[13]
Lejeune
P.
Mergeay
M.
van Gijsegem
F.
Faelen
M.
Gerits
J.
Toussaint
A.
(
1983
)
Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4:Mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2
J. Bacteriol.
 ,
155
,
1015
1026
.
[14]
Simon
R.
Priefer
U.
Pühler
A.
(
1983
)
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria
Biotechnology
 ,
1
,
784
791
.
[15]
Simon
R.
(
1984
)
High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon
Mol. Gen. Genet.
 ,
196
,
413
420
.
[16]
Bolivar
F.
Rodriguez
R.L.
Greene
P.J.
Betlach
M.C.
Heyneker
H.L.
Boyer
H.W.
(
1977
)
Construction and characterization of new cloning vehicles. II. A multipurpose cloning system
Gene
 ,
2
,
95
113
.
[17]
Vieira
J.
Messing
J.
(
1982
)
The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers
Gene
 ,
19
,
259
268
.
[18]
Biebl
H.
Pfennig
N.
(
1981
)
Isolation of members of the family Rhodospirillaceae
In
The prokaryotes, a handbook on habitats, isolation and identification of bacteria
 
Starr
M.P.
Stolp
H.
Trüper
H.G.
Balows
A.
Schlegel
H.G.
, Eds)
Volume 1
,
Springer-Verlag
,
Berlin
.
[19]
Maniatis
T.
Fritsch
E.F.
Sambrook
J.
(
1982
)
Molecular cloning. A laboratory manual
 
Cold Spring Harbor Laboratory
.
[20]
Kado
C.I.
Liu
S.-T.
(
1981
)
Rapid procedure for detection and isolation of large and small plasmids
J. Bacteriol.
 ,
145
,
1365
1373
.
[21]
Nies
D.
Mergeay
M.
Friedrich
B.
Schlegel
H.G.
(
1987
)
Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34
J. Bacteriol.
 ,
169
,
4865
4868
.
[22]
Hogrefe
C.
Friedrich
B.
(
1984
)
Isolation and characterization of megaplasmid DNA from lithotrophic bacteria
Plasmid
 ,
12
,
161
169
.
[23]
Haefeli
C.
Franklin
C.
Hardy
K.
(
1984
)
Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine
J. Bacteriol.
 ,
158
,
389
392
.
[24]
van Gijsegem
F.
Toussaint
A.
(
1982
)
Chromosome transfer and R-prime formation by an RP4:mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis
Plasmid
 ,
7
,
30
44
.
[25]
Duxbury
T.
(
1981
)
Toxicity of heavy metals to soil bacteria
FEMS Microbiol. Lett.
 ,
11
,
217
220
.
[26]
Duxbury
T.
Bicknell
B.
(
1983
)
Metal-tolerant bacterial populations from natural and metal-polluted soils
Soil Biol. Biochem.
 ,
15
,
243
250
.
[27]
Austin
B.
Allen
D.A.
Mills
A.L.
(
1977
)
Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary
Can. J. Microbiol.
 ,
23
,
1433
1447
.
[28]
Baker
A.
Brooks
R.P.
Reeves
R.
(
1988
)
Growing for gold… and copper… and zinc
New Scientist
 ,
44
48
10 March 1988.
[29]
Brooks
R.R.
(
1987
)
Serpentine and its vegetation. A multidisciplinary approach
 
Groom Helm
London
.
[30]
Atri
F.R.
(
1987
)
Elemente in der aquatischen Umwelt. 1. Nickel
 
Gustav Fischer Verlag
Stuttgart
.
[31]
Foster
T.J.
(
1983
)
Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria
Microbiol. Rev.
 ,
47
,
361
409
.
[32]
Summers
A.O.
(
1986
)
Organization, expression, and evolution of genes for mercuric resistance
Annu. Rev. Microbiol.
 ,
40
,
607
634
.
[33]
Tynecka
Z.
Gos
Z.
Zajac
J.
(
1981
)
Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus
J. Bacteriol.
 ,
147
,
305
312
.
[34]
Sensfuβ
C.
Schlegel
H.G.
(
1988
)
Plasmid pMOL28-encoded resistance to nickel is due to specific efflux
FEMS Microbiol. Lett.
 ,
55
,
295
298
.
[35]
Rosen
B.P.
(
1986
)
Recent advances in bacterial ion transport
Annu. Rev. Microbiol.
 ,
40
,
263
286
.