Abstract

The utilization of quinaldine (2-methylquinoline) by Arthrobacter sp. Rü61a proceeds via 1H-4-oxoquinaldine, 1H-3-hydroxy-4-oxoquinaldine, and N-acetyl-anthranilic acid. By analogy, 1H-4-oxoquinoline is degraded by Pseudomonas putida 33/1 via 1H-3-hydroxy-4-oxoquinoline and N-formylanthranilic acid. Using the purified enzymes from both organisms, the mode of N-heterocyclic ring cleavage was investigated. The conversions of 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinoline to N-acetyl- and N-formylanthranilic acid, respectively, were both accompanied by the release of carbon monoxide. The enzyme-catalysed transformations were performed in an [18O]O2 atmosphere and resulted in the incorporation of two oxygen atoms into the respective products, N-acetyl- and N-formylanthranilic acid, indicating an oxygenolytic attack at C-2 and C-4 of both 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinolone.

References

1
Hund
H.-K.
de Beyer
A.
Lingens
F.
(
1990
)
Microbial metabolism of quinoline and related compounds. VI. Degradation of quinaldine by Arthrobacter sp.
Biol. Chem. Hoppe-Seyler
 ,
371
,
1005
1008
.
2
de Beyer
A.
Lingens
F.
(
1993
)
Microbial Metabolism of quinoline and related compounds. XVI. Quinaldine oxidoreductase from Arthrobacter spec. Rü61a: a molybdenum-containing enzyme catalysing the hydroxylation at C-4 of the heterocycle
Biol. Chem. Hoppe-Seyler
 ,
374
,
101
110
.
3
Bott
G.
Schmidt
M.
Rommel
T.O.
Lingens
F.
(
1990
)
Microbial metabolism of quinoline and related compounds. V. Degradation of 1H-4-oxoquinoline by Pseudomonas putida 33/1
Biol. Chem. Hoppe-Seyler
 ,
371
,
999
1003
.
4
Block
D.W.
Lingens
F.
(
1992
)
Microbial metabolism of quinoline and related compounds. XVI. Purification and properties of 1H-3-hydroxy-4-oxoquinoline oxygenase, a new extradiol cleavage enzyme from Pseudomonas putida strain 33/1
Biol. Chem. Hoppe-Seyler
 ,
373
,
343
349
.
5
Evans
D.J.
Eastwood
F.W.
(
1974
)
Synthesis of an Arylhydroxytetronimide and of 3-hydroxy-4(1H)-quinolone derivatives
Aust. J. Chem.
 ,
27
,
537
542
.
6
Cornforth
J.W.
James
A.T.
(
1956
)
Structure of a naturally occurring antagonist of dihydrostreptomycin
Biochem. J.
 ,
63
,
124
130
.
7
Eiden
F.
Wendt
R.
Fenner
H.
(
1978
)
Chinolyliden-Derivate
Arch. Pharm.
 ,
311
,
561
568
.
8
Arendt
R.
Dörmer
L.
(
1972
)
Kohlenmonoxid
9th edn.
, In
Technik der Experimentalchemie
 , pp
238
239
Quelle & Meyer
,
Heidelberg
.
9
Röger
P.
Erben
A.
Lingens
F.
(
1990
)
Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7
Biol. Chem. Hoppe-Seyler
 ,
371
,
511
513
.
10
Block
D.W.
Lingens
F.
(
1992
)
Microbial Metabolism of quinoline and related compounds. XIII. Purification and properties of 1H-4-oxoquinoline monooxygenase from Pseudomonas putida strain 33/1
Biol. Chem. Hoppe-Seyler
 ,
373
,
249
254
.
11
Bauder
R.
Tshisuaka
B.
Lingens
F.
(
1990
)
Microbial metabolism of quinoline and related compounds. VII. Quinoline oxidoreductase from Pseudomonas putida: a molybdenum-containing enzyme
Biol. Chem. Hoppe-Seyler
 ,
371
,
1137
1144
.
12
Simpson
F.J.
Talbot
G.
Westlake
D.W.S.
(
1960
)
Production of carbon monoxide in the enzymatic degradation of rutin
Biochem. Biophys. Res. Commun.
 ,
2
,
15
18
.
13
Krishnamurty
H.G.
Simpson
F.J.
(
1970
)
Degradation of rutin by Aspergillus flavus
J. Biol. Chem.
 ,
245
,
1467
1471
.
14
Oka
T.
Simpson
F.J.
Krishnamurty
H.G.
(
1972
)
Degradation of rutin by Aspergillus flavus. Studies on specificity, inhibition, and possible reaction mechanism of quercetinase
Can. J. Microbiol.
 ,
18
,
493
508
.
15
Oka
T.
Simpson
F.J.
Child
J.J.
Sister Mills
C.
(
1971
)
Degradation of rutin by Aspergillus flavus. Purification of the dioxygenase, quercentinase
Can. J. Microbiol.
 ,
17
,
111
118
.
16
Oka
T.
Simpson
F.J.
(
1971
)
Quercetinase, a dioxygenase containing copper
Biochem. Biophys. Res. Commun.
 ,
43
,
1
5
.
17
Wray
J.W.
Abeles
R.H.
(
1993
)
A bacterial enzyme that catalyzes formation of carbon monoxide
J. Biol. Chem.
 ,
268
,
21466
21469
.