Abstract

The CcpA protein has been identified as a key regulator of carbon metabolism in Bacillus subtilis. CcpA is a DNA binding protein in the LacI/GalR transcriptional repressor family, and genes which respond to CcpA contain icommon cis-acting target sequences (Ccp boxes). A number of pathways involved in carbon source utilization are repressed by CcpA, while at least one gene which is involved in excretion of excess carbon is activated by CcpA. Genes repressed by CcpA generally contain Ccp boxes within or downstream of the promoter, while ackA, which is activated by CcpA, contains Ccp boxes upstream of the promoter. It therefore appears that CcpA acts globally to direct carbon flow in B. subtilis.

References

[1]
Magasanik
B.
Neidhardt
F.C.
(
1987
)
Regutation of carbon and nitrogen utilization
. In:
Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology
  (
Neidhardt
F.C.
Ingraham
J.L.
Low
K.B.
Magasanik
B.
Schaechter
M.
Umbarger
H.E.
, Eds.), pp.
1318
1325
.
American Society for Microbiology
,
Washington, D.C
.
[2]
Ebright
R.
(
1993
)
Transcription activation at class I CAP-dependent promoters
Mol. Microbiol.
 
8
,
797
802
.
[3]
Setlow
P.
(
1973
)
Inability to detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium
Biochem. Biophys. Res. Commun.
 
52
,
365
372
.
[4]
Mach
H.
Hecker
M.
Mach
F.
(
1984
)
Evidence for the presence of cyclic adenosine monophosphate in Bacillus subtilis
FEMS Microbiol. Lett.
 
22
,
27
30
.
[5]
Stewart
G.C.
(
1993
)
Catabolite repression in the gram-positive bacteria: generation of negative regulators of transcription
J. Cell. Biochem.
 
51
,
25
28
.
[6]
Chambliss
G.H.
(
1993
)
Carbon source-mediated catabolite repression
. In:
Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics
  (
Sonenshein
A.L.
Hoch
J.A.
Losick
R.
, Eds.), pp.
213
219
.
American Society for Microbiology
,
Washington, D.C.
[7]
Henkin
T.M.
Grundy
F.J.
Nicholson
W.L.
Chambliss
G.H.
(
1991
)
Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors
Mol. Microbiol.
 
5
,
575
584
.
[8]
Grundy
F.J.
Turinsky
A.J.
Henkin
T.M.
(
1994
)
Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA
J. Bacteriol.
 
176
,
4527
4533
.
[9]
Miwa
Y.
Fujita
Y.
(
1993
)
Promoter-independent catabolite repression of the Bacilllus subtilis gnt operon
J. Biochem.
 
113
,
667
671
.
[10]
Fujita
Y.
Miwa
Y.
(
1994
)
Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein
J. Bacteriol.
 
176
,
511
513
.
[11]
Wray
L.V.
Jr.
Pettengill
F.K.
Fisher
S.H.
(
1994
)
Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site
J. Bacteriol.
 
176
,
1894
1902
.
[12]
Martin
I.
Debarbouille
M.
Klier
A.
Rapoport
G.
(
1989
)
Induction and metabolite regulation of levanase synthesis in Bacillus subtilis
J. Bacteriol.
 
171
,
1885
1892
.
[13]
Kraus
A.
Hueck
C.
Gartner
D.
Hillen
W.
(
1994
)
Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression
J. Bacteriol.
 
176
,
1738
1745
.
[14]
Grundy
F.J.
Waters
D.A.
Allen
S.H.G.
Henkin
T.M.
(
1993
)
Regulation of the Bacillus subtilis acetate kinase gene by CcpA
J. Bacteriol.
 
175
,
7348
7355
.
[15]
Nicholson
W.L.
Park
Y.-K.
Henkin
T.M.
Won
M.
Weickert
M.J.
Gaskell
J.A.
Chambliss
G.H.
(
1987
)
Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence
J. Mol. Biol.
 
198
,
609
618
.
[16]
Weickert
M.J.
Chambliss
G.H.
(
1990
)
Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis
.
Proc. Natl. Acad. Sci. USA
 
87
,
6238
6242
.
[17]
Hueck
C.
Hillen
W.
Saier
M.H.
Jr.
(
1994
)
Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria
Res. Microbiol.
 
145
,
503
518
.
[18]
Hueck
C.J.
Kraus
A.
Hillen
W.
(
1994
)
Sequences of ccpA and two downstream Bacillus megaterium genes with homology to the motAB operon from Bacillus subtilis
Gene
 
143
,
147
148
.
[19]
Davison
S.P.
Santangelo
J.D.
Reid
S.J.
Woods
D.R.
(
1995
)
A Clostridium acelobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis
Microbiology
 
141
,
989
996
.
[20]
Hueck
C.J.
Hillen
W.
(
1995
)
Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?
Mol. Microbiol.
 
15
,
395
401
.
[21]
Priest
F.
(
1975
)
Effect of glucose and cyclic nucleotides on the transcription of α-amylase mRNA in Bacillus subtilis
Biochem. Biophys. Res. Commun.
 
63
,
606
610
.
[22]
Hueck
C.
Kraus
A.
Schmiedel
D.
Hillen
W.
(
1995
)
Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium
Mol. Microbiol.
 
16
,
855
864
.
[23]
Grundy
F.J.
Waters
D.A.
Takova
T.Y.
Henkin
T.M.
(
1993
)
Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis
Mol. Microbiol.
 
10
,
259
271
.
[24]
Blair
D.F.
Berg
H.C.
(
1990
)
The MotA protein of E. coli is a proton-conducting component of the flagellar motor
Cell
 
60
,
439
449
.
[25]
Mirel
D.B.
Lustre
V.M.
Chamberlin
M.J.
(
1992
)
An operon of Bacillus subtilis motility genes transcribed by the σD form of RNA polymerase
J. Bacteriol.
 
174
,
4197
4204
.
[26]
Nicholson
W.L.
Chambliss
G.H.
(
1985
)
Isolation and characterization of a cis-acting mutation conferring catabolite resistance to α-amylase synthesis in Bacillus. stibtilis
J. Bacteriol.
 
161
,
875
881
.
[27]
Kim
J.H.
Guvener
Z.T.
Cho
J.Y.
Chung
K.-C.
Chambliss
G.H.
(
1995
)
Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA
J. Bacteriol.
 
177
,
5129
5134
.
[28]
Collado-Vides
B.J.
Magasanik
B.
Gralla
J.D.
(
1991
)
Control site location and transcriptional regulation in Escherichia coli
Microbiol. Rev.
 
55
,
371
394
.
[29]
Zahler
S.A.
Benjamin
L.G.
Glatz
B.S.
Winter
P.F.
Goldstein
B.J.
(
1976
)
Genetic mapping of the alsA, alsR, thyA, kauA, and citD markers in Bacillus subtilis
. In:
Microbiology 1976
  (
Schlessinger
D.
. Ed.). pp.
35
43
.
American Society for Microbiology
,
Washington, D.C
.
[30]
Renna
M.C.
Najimudin
N.
Winik
L.R.
Zahler
S.A.
(
1993
)
Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin
J. Bacteriol.
 
175
,
3863
3875
.
[31]
Reizer
J.
Sutrina
S.L.
Saier
M.H.
Jr.
Stewart
G.C.
Peterkofsky
A.
Reddy
P.
(
1989
)
Mechanistic and physiological consequences of HPKser) phosphorylation on the activities of the phosphoenolpyruvate:sugar: phospho-transferase system in gram-positive bacteria: studies with site-specific mutants of HPr
EMBO J.
 
8
,
2111
2120
.
[32]
Deutscher
J.
Reizer
J.
Fischer
C.
Galinier
A.
Saier
M.H.
Jr.
Steinmetz
M.
(
1994
)
Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis
J. Bacteriol.
 
176
,
3336
3344
.
[33]
Deutscher
J.
Kister
E.
Bergstedt
U.
Charrier
V.
Hillen
W.
(
1995
)
Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria
Mol. Microbiol.
 
15
,
1049
1053
.
[34]
Li
M.
Moyle
H.
Susskind
M.M.
(
1994
)
Target of the transcriptional activation function of phage λ cI protein
Science
 
263
,
75
77
.
[35]
Ramseier
T.R.
Bledig
S.
Michotey
V.
Feghall
R.
Saier
M.H.
Jr.
(
1995
)
The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli
Mol. Microbiol.
 
16
,
1157
1169
.

Author notes

*
Tel.: + 1 (614) 688 3831: Fax: 1 (614) 292 8120; E-mail: henkin.3@osu.edu.