Abstract

Anaerobic metabolism of the simplest, best understood enteric bacteria such as Escherichia coli is unexpectedly complex. Recent studies of the biochemistry and genetics of nitrate reduction via nitrite to ammonia by enteric bacteria have provided insights into the reasons for this complexity. An NADH-dependent nitrite reductase in the cytoplasm works in partnership with the respiratory nitrate reductase on the cytoplasmic side of the membrane when nitrate is abundant. There is also an electrogenic, formate-dependent nitrite reductase ready to work in partnership with a periplasmic nitrate reductase when nitrite is available but nitrate is scarce. A third E. coli nitrate reductase, NarZYWV, and the poorly expressed formate dehydrogenase O possibly facilitate rapid adaptation to oxygen starvation pending the synthesis of the major respiratory formate-nitrate oxidoreductase. Although most anaerobically expressed genes are subject to transcription control, none of them are totally switched off. This enables the bacteria to be ready for a change in fortune: when growing anaerobically with nitrate, they can respond equally rapidly whether times get better with the arrival of oxygen, or get worse when the nitrate is depleted. Far from being redundant, the complexity is essential for survival in a changing environment.

References

[1]
Enoch
H.G.
Lester
R.L.
(
1975
)
The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli
.
J. Biol. Chem.
 
250
,
6693
6705
.
[2]
Chaudhry
G.R.
MacGregor
C.H.
(
1983
)
Cytochrome b from Escherichia coli nitrate reductase: its properties and association with enzyme complex
.
J. Biol. Chem.
 
258
,
5819
5827
.
[3]
Sondergen
E.J.
DeMoss
J.A.
(
1988
)
narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes
.
J. Bacteriol.
 
170
,
1721
1729
.
[4]
Blasco
F.
Pommier
J.
Augier
V.
Chippaux
M.
Giordano
G.
(
1992
)
Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli
.
Mol. Microbiol.
 
6
,
221
230
.
[5]
Blasco
F.
Iobbi
C.
Ratouchniak
J.
Bonnefoy
V.
Chippaux
M.
(
1990
)
Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon
.
Mol. Gen. Genet.
 
222
,
104
111
.
[6]
Blasco
F.
Ninzi
F.
Pommier
J.
Brasseur
R.
Chippaux
M.
Giordano
G.
(
1990
)
Formation of active heterologous nitrate reductases between nitrate reductases A and Z of Escherichia coli
.
Mol. Microbiol.
 
6
,
209
219
.
[7]
Guigliarelli
B.
Asso
M.
More
C.
Augier
V.
Blasco
F.
Pommier
J.
Giordano
G.
Bertrand
P.
(
1992
)
EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli
.
Eur. J. Biochem.
 
207
,
61
68
.
[8]
Peakman
T.
Crouzet
J.
Mayaux
J.
Busby
S.
Mohan
S.
Harborne
N.
Wootton
J.
Nicolson
R.
Cole
J.
(
1990
)
Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli chromosome
.
Eur. J. Biochem.
 
191
,
315
323
.
[9]
Jackson
R.
Cornish-Bowden
A.
Cole
J.
(
1981
)
Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K-12
.
Biochem. J.
 
193
,
861
867
.
[10]
DeMoss
J.A.
Hsu
P.-Y.
(
1991
)
NarK enhances nitrate uptake and nitrite excretion in Escherichia coli
.
J. Bacteriol.
 
173
,
3303
3310
.
[11]
Rowe
J.J.
Ubbink-Kok
T.
Molenaar
D.
Konings
W.N.
Driessen
J.M.
(
1994
)
NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration in Escherichia coli
.
Mol. Microbiol.
 
12
,
579
586
.
[12]
Jayaraman
P.-S.
Peakman
T.
Busby
S.
Quincey
R.
Cole
J.
(
1987
)
Location and sequence of the promoter of the gene for the NADH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the FNR protein and nitrite
.
J. Mol. Biol.
 
196
,
781
788
.
[13]
Li
S.-F.
DeMoss
J.A.
(
1988
)
Location of sequences in the nar promoter of Escherichia coli required for regulation by Fnr and NarL
.
J. Biol. Chem.
 
263
,
13700
13705
.
[14]
Spiro
S.
Guest
J.R.
(
1990
)
FNR and its role in oxygenregulated gene expression in Escherichia coli
.
FEMS Microbiol. Rev.
 
75
,
399
428
.
[15]
Melville
S.B.
Gunsalus
R.P.
(
1990
)
Mutations in jnr that alter anaerobic regulation of electron transport-associated genes in Escherichia coli
.
J. Biol. Chem.
 
265
,
18733
18736
.
[16]
Green
J.
Guest
J.R.
(
1993
)
A role for iron in transcriptional activation by FNR
.
FEBS Lett.
 
329
,
55
58
.
[17]
Stewart
V.
(
1993
)
Nitrate regulation of anaerobic respiratory gene expression
.
Mol. Microbiol.
 
9
,
425
434
.
[18]
Tyson
K.
Bell
A.
Cole
J.
Busby
S.
(
1993
)
Definition of nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL
.
Mol. Microbiol.
 
7
,
151
157
.
[19]
Rabin
R.S.
Stewart
V.
(
1992
)
Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K-12
.
Proc. Natl. Acad. Sci. USA
 
89
,
8419
8423
.
[20]
Knappe
J.
Sawers
G.
(
1990
)
A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate lyase system of Escherichia coli
.
FEMS Microbiol. Rev.
 
75
,
383
398
.
[21]
Sawers
G.
Suppmann
B.
(
1992
)
Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins
.
J. Bacteriol.
 
174
,
3474
3478
.
[22]
Berg
B.L.
Stewart
V.
(
1990
)
Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12
.
Genetics
 
125
,
691
702
.
[23]
Li
J.
Stewart
V.
(
1992
)
Localization of upstream sequence elements required for nitrate and anaerobic induction of fdn (formate dehydrogenase N) operon expression in Escherichia coli K-12
.
J. Bacteriol.
 
174
,
4935
4942
.
[24]
Pommier
J.
Mandrand
M.-A.
Holt
S.E.
Boxer
D.H.
Giordano
G.
(
1992
)
A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli
.
Biochim. Biophys. Acta
 
1107
,
305
313
.
[25]
Pecher
A.
Zinoni
F.
Jatisatienr
C.
Wirth
R.
Hennecke
H.
Bock
A.
(
1993
)
On the redox control of synthesis of anaerobically induced enzymes in Enterobacteriaceae
.
Arch. Microbiol.
 
136
,
131
136
.
[26]
Rossmann
R.
Sawers
G.
Bock
A.
(
1991
)
Mechanism of regulation of the formate hydrogen-lyase pathway by oxygen, nitrate and pH: definition of the formate regulon
.
Mol. Microbiol.
 
5
,
2807
2814
.
[27]
Abou-Jaoudé
A.
Chippaux
M.
Pascal
M.-C.
(
1979
)
Formate-nitrite reduction in Escherichia coli K12 1. Physiological study of the system
.
Eur. J. Biochem.
 
95
,
309
314
.
[28]
Pope
N.R.
Cole
J.A.
(
1982
)
Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli
.
J. Gen. Microbiol.
 
128
,
219
222
.
[29]
Bilous
P.T.
Cole
S.T.
Anderson
W.F.
Weiner
J.H.
(
1988
)
Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli HB101
.
Mol. Microbiol.
 
2
,
785
796
.
[30]
Méjean
V.
Iobbi-Nivol
C.
Lepelletier
M.
Giordano
G.
Chippaux
M.
Pascal
M.C.
(
1994
)
TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon
.
Mol. Microbiol.
 
11
,
1169
1179
.
[31]
Bender
R.A.
Friedrich
B.
(
1990
)
Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70
.
J. Bacteriol.
 
172
,
7256
7259
.
[32]
Lin
J.T.
Goldman
B.S.
Stewart
V.
(
1994
)
The nas-FEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al
.
J. Bacteriol.
 
176
,
2551
2559
.
[33]
Darwin
A.
Hussain
H.
Griffiths
L.
Grove
J.
Sambongi
Y.
Bushy
S.
Cole
J.
(
1993
)
Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli, not a hexahaem but a 50 kDa tetrahaem nitrite reductase
.
Mol. Microbiol.
 
9
,
1255
1265
.
[34]
Tyson
K.L.
Cole
J.A.
Busby
S.W.J.
(
1994
)
Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase
.
Mol. Microbiol.
 
13
,
1045
1055
.
[35]
Rabin
R.S.
Stewart
V.
(
1993
)
Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12
.
J. Bacteriol.
 
175
,
3259
3268
.
[36]
Fujita
T.
(
1966
)
Studies on soluble cytochromes in Enterobacteriaceae. 1. Detection, purification and properties of cytochrome c552 in anaerobically grown cells
.
J. Biochem.
 
60
,
201
215
.
[37]
Hussain
H.
Grove
J.
Griffiths
L.
Busby
S.
Cole
J.
(
1994
)
A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria
.
Mol. Microbiol.
 
12
,
153
163
.
[38]
Kerby
R.L.
Hong
S.S.
Ensign
S.A.
Coppoc
L.J.
Ludden
P.W.
Roberts
G.P.
(
1992
)
Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system
.
J. Bacteriol.
 
174
,
5284
5294
.
[39]
Cammack
R.
Weiner
J.H.
(
1990
)
Electron paramagnetic resonance spectroscopic characterisation of dimethylsulfoxide reduction of Escherichia coli
.
Biochemistry
 
29
,
8410
8416
.
[40]
Rothery
R.A.
Weiner
J.H.
(
1991
)
Alteration of the iron-sulphur cluster composition of Escherichia coli dimethylsulfoxide reductase by site-directed mutagenesis
.
Biochemistry
 
30
,
8296
8305
.
[41]
Richterich
P.
Lakey
N.
Gryan
G.
Jaehn
L.
Mintz
L.
Robison
K.
Church
G.M.
(
1993
)
Unpublished DNA sequence
 .
Genebank accession number U00008
.
[42]
McEwan
A.G.
Jackson
J.B.
Ferguson
S.J.
(
1984
)
Rationalisation of properties of nitrate reductases in Rhodopseudomonas capsulata
.
Arch. Microbiol.
 
137
,
344
349
.
[43]
Berks
B.C.
Richardson
D.J.
Reilly
A.
Willis
A.C.
Ferguson
S.J.
(
1995
)
The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha
.
Biochem. J.
 ,
in press
.
[44]
Siddiqui
R.A.
Warnecke
Eberz U.
Hengsberger
A.
Schneider
B.
Kostka
S.
Friedrich
B.
(
1993
)
Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16
.
J. Bacteriol.
 
175
,
5867
5876
.
[45]
Grove
J.
Tanapongpipat
S.
Thomas
G.
Griffiths
L.
Crooke
H.
Cole
J.
(
1995
)
Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm
.
Mol. Microbiol.
 ,
in press
.
[46]
Darwin
A.
Tormay
P.
Page
L.
Griffiths
L.
Cole
J.
(
1993
)
Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K-12
.
J. Gen. Microbiol.
 
139
,
1829
1840
.
[47]
Thnöy-Meyer
L.
Ritz
D.
Hennecke
H.
(
1994
)
Cytochrome r biogenesis in bacteria: a possible pathway begins to emerge
.
Mol. Microbiol.
 
12
,
1
9
.
[48]
Thnöy-Meyer
L.
Fischer
F.
Kunzler
P.
Ritz
D.
Hennecke
H.
(
1995
)
Escherichia coli genes required for cytochrome c maturation
.
J. Bacteriol.
 
177
,
4321
4326
.
[49]
Trumpower
B.L.
Gennis
R.B.
(
1994
)
Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration
.
Annu. Rev. Biochem.
 
63
,
675
716
.

Author notes

*
Tel.: +44 (121) 414 5440; Fax: +44 (121) 414 3982.