Abstract

Burkholderia cepacia has attracted attention because of its extraordinary degradative abilities and its potential as a pathogen for plants and for humans. This bacterium was formerly considered to belong to the genus Pseudomonas in the γ-subclass of the Proteobacteria, but recently has been assigned to the β-subclass based on rrn gene sequence analyses and other key phenotypic characteristics. The B. cepacia genome is comprised of multiple chromosomes and is rich in insertion sequences. These two features may have played a key role in the evolution of novel degradative functions and the unusual adaptability of this bacterium.

References

[1]
Barsomian
G.
Lessie
T.G.
(
1986
)
Replicon fusions promoted by insertion sequences on Pseudomonas cepacia plasmid pTGL6
.
Mol. Gen. Genet.
 
204
,
273
280
.
[2]
Burkholder
W.H.
(
1950
)
Sour skin, a bacterial rot of onion bulbs
.
Phytopathology
 
40
,
115
117
.
[3]
Byrne
A.M.
Lessie
T.G.
(
1994
)
Characteristics of IS401, a new member of the IS3 family implicated in plasmid rearrangements in Pseudomonas cepacia
.
Plasmid
 
31
,
138
147
.
[4]
Cadiz
R.
Gaete
L.
Jedlicki
E.
Yates
J.
Holmes
D.S.
Orellana
O.
(
1994
)
Transposition of 1ST2 in Thiobacillus ferrooxidans
.
Mol. Microbiol.
 
12
,
165
170
.
[5]
Cantor
C.R.
Smith
C.L.
Mathew
M.K.
(
1988
)
Pulsed-field gel electrophoresis of very large DNA molecules
.
Annu. Rev. Biophys. Biophys. Chem.
 
17
,
287
304
.
[6]
Chandler
M.
Fayet
O.
(
1993
)
Translational frameshifting in the control of transposition in bacteria
.
Mol. Microbiol.
 
7
,
497
503
.
[7]
Cheng
H.-P.
Lessie
T.G.
(
1994
)
Multiple replicons constituting the genome of Pseudomonas cepacia 17616
.
J. Bacteriol.
 
176
,
4034
4042
.
[8]
Danagan
C.E.
Ye
R.W.
Daubaras
D.L.
Xun
L.
Chakrabarty
A.M.
(
1994
)
Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic oxygenase in Pseudomonas cepacia AC1100
.
Appl. Environ. Microbiol.
 
60
,
4100
4106
.
[9]
Daubaras
D.L.
Hershberger
C.D.
Kitano
K.
Chakrabarty
A.M.
(
1995
)
Sequence analysis of a gene cluster involved in metabolism of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100
.
Appl. Environ. Microbiol.
 
61
,
1279
1289
.
[10]
Dewhirst
F.D.
Paster
B.J.
Bright
P.L.
(
1989
)
Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella and Vitreoscilla species comprise a major branch of the β group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend)
.
Int. J. Syst. Bacteriol.
 
39
,
258
266
.
[11]
Eisen
J.A.
(
1995
)
The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species
.
J. Mol. Evol.
 
41
,
1105
1123
.
[12]
Fox
G.E.
Wisotzkey
J.D.
Jurtshuk
P.
Jr.
(
1992
)
How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity
.
Int. J. Syst. Bacteriol.
 
42
,
166
170
.
[13]
Ferrante
A.
Lessie
T.G.
(
1991
)
Nucleotide sequence of IS402 from Pseudomonas cepacia
.
Gene
 
102
,
143
144
.
[14]
Gaffney
T.D.
Lessie
T.G.
(
1987
)
Insertion-sequence-dependent rearrangements of Pseudomonas cepacia plasmid pTGL1
.
J. Bacteriol.
 
169
,
224
230
.
[15]
Haugland
R.A.
Sangodkar
U.M.X.
Chakrabarty
A.M.
(
1990
)
Repeated sequences including RS1100 from Pseudomonas cepacia AC1100 function as IS elements
.
Mol. Gen. Genet.
 
220
,
222
228
.
[16]
Hendrickson
W.
Huebner
A.
Kavanaugh-Black
A.
(
1996
)
Chromosome multiplicity in Burkholderia cepacia
. In
Molecular Biology of Pseudomonads
  (
Nakazawa
T.
Furukawa
K.
Haas
D.
Silver
S.
, Eds.), pp.
259
269
.
Proceedings of the Fifth International Symposium on Pseudomonads
.
American Society of Microbiology
,
Washington, DC
.
[17]
Holloway
B.W.
(
1993
)
Genetics for all bacteria
.
Annu. Rev. Microbiol.
 
47
,
659
684
.
[18]
Honeycutt
R.
McClelland
M.
Sobral
B.W.S.
(
1993
)
Physical map of the genome of Rhizobiutn meliloti 1021
.
J. Bacteriol.
 
175
,
6945
6952
.
[19]
Kellogg
S.T.
Chaterjee
D.K.
Chakrabarty
A.N.
(
1981
)
Plasmid assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals
.
Science
 
214
,
1133
1135
.
[20]
Keyser
P.
Pujar
B.F.
Eaton
R.W.
Ribbons
D.W.
(
1976
)
Biodegradation of the phthalates and their esters by bacteria
.
Environ. Health Perspect.
 
18
,
159
166
.
[21]
Lessie
T.G.
Gaffney
T.D.
(
1986
)
Catabolic potential of Pseudomonas cepacia
. In
The Bacteria, A Treatise on Structure and Function
 , Vol.
X
.
The Biology of Pseudomonas
(
Sokatch
J.R.
Ornston
L.N.
, Eds.), pp.
439
476
.
Academic Press
,
New York
.
[22]
Lessie
T.G.
Wood
M.S.
Byrne
A.
Ferrante
A.
(
1990
)
Transposable gene-activating elements in Pseudomonas cepacia
. In
Pseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology
  (
Silver
S.
Chakrabartry
A.M.
Iglewski
B.
Kaplan
S.
, Eds.), pp.
279
291
.
American Society for Microbiology
,
Washington, DC
.
[23]
Li
X.
Dorsch
M.
Del Tol
T.
Sly
L.I.
Stackebrandt
E.
Hayward
A.C.
(
1993
)
Phylogenetic studies of rRNA group II pseudomonads based on 16S rRNA gene sequences
.
J. Appl. Bacteriol.
 
74
,
324
329
.
[24]
Lieu
S.L.
Sanderson
K.E.
(
1995
)
I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium
.
J. Bacteriol.
 
177
,
3355
3357
.
[25]
Ludwig
W.
Rossello-Mora
R.
Aznar
R.
Klugbauer
S.
Spring
S.
Reetz
K.
Beimfohr
C.
Brockmann
E.
Kirchoff
G.
Dorn
S.
Bachleitner
M.
Klugbauer
N.
Springer
N.
Lane
D.
Nietupsky
R.
Weizenegger
M.
Schliefer
K.-H.
(
1995
)
Comparative sequence analysis of 23S RNA from Proteobacteria
.
Syst. Appl. Bacteriol.
 
18
,
164
188
.
[26]
Mariani
F.
Piccolella
E.
Colizzi
V.
Rappuoli
R.
Gross
R.
(
1993
)
Characterization of an IS-like element from Mycobacterium tuberculosis
.
J. Gen. Microbiol.
 
139
,
1767
1772
.
[27]
Martinez-Murcia
A.J.
Benlloch
S.
Collins
M.D.
(
1992
)
Phylogenetic relationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequences: lack of congruence with results of DNA-DNA hybridizations
.
Int. J. Syst. Bacteriol.
 
42
,
412
421
.
[28]
McKenney
D.
Brown
K.E.
Allison
D.G.
(
1995
)
Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication
.
J. Bacteriol.
 
177
,
6989
6992
.
[29]
Michaux
S.
Pallison
J.
Carles-Nuit
M.-J.
Bourg
G.
Allardet-Servent
A.
Ramuzz
M.
(
1993
)
Presence of two independent chromosomes in the Brucella melitensis 16M genome
.
J. Bacteriol.
 
175
,
701
705
.
[30]
Montgomery
S.O.
Lessie
T.G.
(
1995
)
Activation of a cryptic d-serine deaminase (dsd) gene from Pseudomonas cepacia 17616
.
Abstr. Annu. Meet. Am. Sot. Microbial.
 
H160
, p.
520
.
[31]
Mueller
J.G.
Devereux
R.
Santavy
D.L.
Lantz
S.E.
Willis
S.G.
Pritchard
P.H.
(
1996
)
Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soil
 .
Antonie van Leeuwenhoek
, (
in press
).
[32]
Palleroni
N.J.
(
1992
)
Present situation in the taxonomy of aerobic pseudomonads
. In
Pseudomonas: Molecular Biology and Biotechnology
  (
Galli
E.
Silver
S.
Witholt
B.
, Eds.), pp.
105
115
.
American Society for Microbiology
,
Washington, DC
.
[33]
Palleroni
N.J.
(
1993
)
Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria
.
Antonie van Leeuwenhoek
 
64
,
231
251
.
[34]
Palleroni
N.J.
Holmes
B.
(
1981
)
Pseudomonas cepacia sp. nov., nom. rev.
.
Int. J. Syst. Bacteriol.
 
31
,
479
481
.
[35]
Rodley
P.D.
Romling
U.
Tummler
B.
(
1995
)
A physical genome map of the Burkholderia cepacia type strain
.
Mol. Microbiol.
 
17
,
57
67
.
[36]
Romling
U.
Tummler
B.
(
1994
)
Bacterial genome mapping
.
J. Biotechnol.
 
35
,
155
164
.
[37]
Sage
A.
Linker
A.
Evans
L.R.
Lessie
T.G.
(
1990
)
Hexose phosphate metabolism and exopolysaccharide formation in Pseudomonas cepacia
.
Curr. Microbiol.
 
20
,
191
198
.
[38]
Scordilis
G.
Ree
H.-S.
Lessie
T.G.
(
1987
)
Identification of transposable elements which activate gene expression in Pseudomonas cepacia
.
J. Bacteriol.
 
169
,
8
13
.
[39]
Shields
M.S.
Montgomery
S.O.
Cuskey
S.M.
Chapman
P.J.
Pritchard
P.H.
(
1991
)
Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene
.
Appl. Environ. Microbiol.
 
57
,
1935
1941
.
[40]
Shields
M.S.
Reagin
M.J.
Gerger
R.R.
Campbell
R.
Somerville
C.
(
1995
)
TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4
.
Appl. Environ. Microbiol.
 
61
,
1352
1356
.
[41]
Sollinas
F.
Marconi
A.M.
Ruzzi
M.
Zennaro
E.
(
1995
)
Characterization and sequence of a novel insertion sequence, IS1162 from Pseudomonas fluorescens
.
Gene
 
155
,
77
82
.
[42]
Stanier
R.Y.
Palleroni
N.J.
Doudoroff
M.
(
1966
)
The aerobic pseudomonads: a taxonomic study
.
J. Gen. Microbiol.
 
43
,
159
271
.
[43]
Suwanto
A.
Kaplan
S.
(
1989
)
Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes
.
J. Bacteriol.
 
17
,
5840
5859
.
[44]
Tabacchioni
S.
Visca
P.
Chiarini
L.
Bevivino
A.
Di Serio
C.
Fancelli
S.
Fani
R.
(
1995
)
Molecular characterization of rhizosphere and clinical isolates of Burkholderia cepacia
.
Res. Microbiol.
 
146
,
531
542
.
[45]
Tailliez
P.
Erlich
S.D.
Chopin
M.C.
(
1994
)
Characterization of IS/207, an insertion sequence isolated from Lactobacillus helveticus
.
Gene
 
145
,
75
79
.
[46]
Tomasek
P.H.
Franz
B.
Sangodkar
U.M.X.
Haugland
R.A.
Chakrabarty
A.M.
(
1989
)
Characterization and nucleotide sequence of a element isolated from the 2,4,5-T degrading strain of Pseudomonas cepacia
.
Gene
 
76
,
227
238
.
[47]
Wood
M.S.
Lory
C.
Lessie
T.G.
(
1990
)
Activation of the lac genes of Tn957 by insertion sequences from Pseudomonas cepacia
.
J. Bacteriol.
 
172
,
1719
1724
.
[48]
Wood
M.S.
Byrne
A.
Lessie
T.G.
(
1991
)
IS406 and IS407, two gene-activating insertion sequences from Pseudomonas cepacia
.
Gene
 
105
,
101
105
.
[49]
Yakabuuchi
E.
Kosako
Y.
Oyaizu
H.
Yano
I.
Hotta
H.
Hashimoto
Y.
Ezaki
T.
Arakawa
M.
(
1992
)
Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.
.
Microbiol. Immunol.
 
36
,
1251
1275
.
[50]
Yabuuchi
E.
Kosako
Y.
Oyaizu
H.
Yano
I.
Hotta
H.
Nishiuchi
Y.
(
1992
)
Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni, Doudoroff 1973) comb, nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov.
.
Microbiol. Immunol.
 
39
,
897
904
.
[51]
Zylstra
G.J.
Olsen
R.H.
Ballou
D.P.
(
1989
)
Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3, 4-dioxygenase
.
J. Bacteriol.
 
171
,
5915
5921
.

Author notes

1
Present address: Biology Department, Yale University, New Haven, CT, USA.