Summary

Specifically radiolabeled [14C-lignin] lignocellulose and uniformly [U-14C] lignocellulose from the salt marsh grass Spartina alterniflora were incubated with the ascomycete Phaesphaeria s spartinicola. This fungus is the predominant one found on decaying standing dead S. alterniflora leaves in the salt marsh ecosystem. After 45 days of incubation at 20°C, 3.3% of the lignin moiety was mineralized to 14CO2 and 2.7% solubilized to DO14C. Mineralization of the polysaccharides was seven times faster than that of the lignin. About 22% of the radioactivity was evolved as 14CO2 but merely 4% was solubilized to DO14C within the incubation time. Experiments monitoring the ergosterol content of the mycelium incubated with S. alterniflora plant material were done to elucidate the carbon conversion efficiency of the fungus as well as the influence of the cinnamyl phenols p-coumaric and ferulic acid on lignocellulose degration. After 21 days of incubation, P. spartinicola showed a growth yield of 0.45 and 0.38 with and without the additional cinnamyl phenols, respectively. Grown on unextracted S. alterniflora the fungus caused a loss of organic plant material of about 50% with a corresponding growth yield of 0.38 during the incubation period. Investigation of cupric oxide oxidation products of sound and degraded lignocellulose revealed a preferential utilization of the syrinyl and cinnamly phenols compared with vanilly phenols.

References

[1]
Pomeroy
L.R.
Darley
W.M.
Dunn
E.L.
Gallagher
I.L.
Harkes
E.B.
Whitney
D.M.
(
1981
)
Primary production
. In:
The ecology of a salt marsh
  (
Pomeroy
L.R.
Wiegert
R.G.
, Eds.) pp.
39
67
.
Springer-Verlag
,
Berlin
.
[2]
Schubauer
J.P.
Hopkinson
C.S.
(
1984
)
Above- and below-ground emergent macrophyte production and turnover in a coastal marsh ecosystem
.
Gerogia. Limnol. Oceanogr.
 
29
,
1052
1065
.
[3]
Benner
R.
Maccubbin
A.E.
Hodson
R.E.
(
1984
)
Preparation, characterization, and microbial degradation of specifically radiolabeled [14C] lignocelluloses from marine and freshwater macrophytes
.
Appl. Environ. Microbiol.
 
47
,
381
389
.
[4]
Hodson
R.E.
Christian
R.R.
Muccubbin
A.E.
(
1984
)
Lignocellulose and lignin in the salt marsh grass Spartna alterniflora: initial concentrations and short-term, post depositional changes in detrital matter
.
Marine Biol.
 
81
,
1
7
.
[5]
Benner
R.
Newell
S.Y.
Maccubin
A.E.
Hodson
R.E.
(
1984
)
Relative contributions of bacteria and fungi to rates of degration of lignocellulosic detrius in salt-marsh sediments
.
Appl. Environ. Microbiol.
 
48
,
36
40
.
[6]
Benner
R.
Moran
M.A.
Hodson
R.E.
(
1986
)
Biochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eukaryotes
.
Limnol. Oceanogr.
 
31
,
89
100
.
[7]
Newell
S.Y.
Fallon
R.D.
(
1989
)
Litterbags, leaf tags, and decay of nonabscised intertidal leaves
.
Can. J. Bot.
 
67
,
2324
2327
.
[8]
Newell
S.Y.
Fallon
R.D.
Miller
J.D.
(
1989
)
Decomposition and microbial dynmics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora
.
Marine Biol.
 
101
,
471
481
.
[9]
Haddad
R.I.
Newell
S.Y.
Martens
C.S.
Fallon
R.D.
(
1992
)
Lignin diagenesis in the saltmarsh grass Spartina alterniflora Loisel.; implications for lignin geochemical studies
.
Geochim, Cosmochim. Acta
 , (
in press
.)
[10]
Gessner
R.V.
Kohlmeyer
J.
(
1976
)
Geographical distribution and taxonomy of fungi from salt-marsh Spartina
.
Can. J. Bot.
 
54
,
2023
2037
.
[11]
Gessner
R.V.
(
1977
)
Seasonal occurence and distribution of fungi associated with Spartina alternifora from Rhode Island estuary
.
Mycologia
 
69
,
477
491
.
[12]
Newell
S.Y.
Hicks
R.E.
(
1982
)
Direct-count estimates of fungal and bacteria biovolume in dead leaves of smooth cordgrass Spartina alterniflora Loisel.)
.
Estuaries
 
5
,
246
260
.
[13]
Leuchtmann
A.
Newell
S.Y.
(
1991
)
Phaeosphaeria spartinicola, a new species on Spartina
.
Mycotaxon
 
41
,
1
7
.
[14]
Sarkanen
K.V.
Ludwig
C.H.
(
1971
)
Lignins: occurrence, formation, structure, and reactions
 .
Wiley Interscience
,
New York
.
[15]
Hartley
R.D.
Jones
E.C.
(
1977
)
Phenolic components and degradability of cell walls of grass and legume species
.
Phytochemistry
 
16
,
1531
1534
.
[16]
Hedges
J.I.
Ertel
J.R.
(
1982
)
Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products
.
Analyt. Chem.
 
54
,
174
178
.
[17]
Hedges
J.I.
Blachette
R.A.
Weliky
K.
Devol
A.H.
(
1988
)
Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study
.
Geochim. Cosmochim. Acta
 
52
,
2717
2726
.
[18]
Newell
S.Y.
Arsuffi
T.L.
Fallon
R.D.
(
1988
)
Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography
.
Appl. Environ. Microbiol.
 
54
,
1876
1879
.
[19]
Wilson
I.O.
Bucksbaum
R.
Swam
T.
(
1986
)
Decomposition in salt marsh ecosystems: phenolic dynamics during decay of Spartina alterniflora
.
Mar. Ecol. Prog. Ser.
 
29
,
177
187
.
[20]
Newell
S.Y.
(
1992
)
Methods for determining biomass and productivity of mycelial marine fungi
. In:
The isolation and study of marine fungi
  (
Jones
E.B.G.
, Ed.),
Wiley
,
Chichester, UK
. (
in press.
)
[21]
Ertel
J.R.
Hedges
J.I.
Perdue
E.M.
(
1984
)
Lignin signature of aquatic substances
.
Science
 
223
,
485
487
.
[22]
Moran
M.A.
Hodson
R.E.
(
1990
)
Contributions of degrading Spartina alterniflora lignocellulose to the dissolved organic carbon pool of a salt marsh
.
Mar. Ecol. Prog. Ser.
 
62
,
161
168
.
[23]
Benner
R.
Moran
M.A.
Hodson
R.E.
(
1985
)
Effects of pH and plant source on lignocellulose biodegradation rates in two wetland ecosystems, the Okefenokee Swamp and a Georgia salt marsh
.
Limnol. Oceanogr.
 
30
,
489
499
.
[24]
Kirk
T.K.
Farrell
R.L.
(
1987
)
Enzymatic ‘combustion’: the microbial degradation of lignin
.
Ann. Rev. Microbiol.
 
41
,
465
505
.
[25]
Eriksson
K.-E.L.
Blanchette
R.A.
Ander
A.
(
1990
)
Microbial and enzymatic degradation of wood and wood components
 , pp.
407
.
Springer-Verlag
,
Berlin
.