Abstract

In this study, extracts from 50 Taiwanese folk medicinal plants were examined and screened for anti-Helicobacter pylori activity. Ninety-five percent ethanol was used for herbal extraction. Paederia scandens (Lour.) Merr. (PSM), Plumbago zeylanica L. (PZL), Anisomeles indica (L.) O. Kuntze (AIOK), Bombax malabaricum DC. (BMDC) and Alpinia speciosa (J. C. Wendl.) K. Schum. (ASKS) and Bombax malabaricum DC. (BMDC) all demonstrated strong anti-H. pylori activities. The minimum inhibitory concentration values of the anti-H. pylori activity given by the five ethanol herb extracts ranged from 0.64 to 10.24 mg ml−1. Twenty-six herbs, including Artemisia argvi Levl. et Vant (AALEV), Phyla nodiflora (Linn.) Greene (PNG) and others, showed moderate anti-H. pylori activity. The additional 19 herbs, including Areca catechu Linn. (ACL), Euphorbia hirta Linn. (EHL) and Gnaphalium adnatum Wall. ex DC. (GAWEDC), possessed lower anti-H. pylori effects. About half of the Taiwanese folk medicinal plants tested, demonstrated to possess higher anti-H. pylori activity.

1 Introduction

Infection with Helicobacter pylori is strongly associated with duodenal and gastric ulcers [1]. Substantial epidemiological data has revealed that high rates of H. pylori infection might be related to high rates of gastric cancer and gastric adenocarcinoma [2]. Various pharmacological regimens have been studied in the treatment of H. pylori infection. Antibiotics [3,4], proton–pump inhibitors [5,6], H2-blockers [7,8], and bismuth salts [9] are suggested standard treatment modalities, which are typically combined in dual, triple and quadruple therapy regimens in order to eradicate H. pylori infection [10,3]. Some problems may arise upon administration of these eradication regimens, i.e. the cost [10], the efficacy of antibiotics regarding the pH (for instance, amoxicillin is most active at a neutral pH and tetracycline has greater activity at a low pH) [10] and resistance to the antibiotics [11]. However, above 15% of the patients undergoing such drug regimens experienced therapeutic failure [10].

Hence, numerous studies have concentrated on the eradication of H. pylori infection using traditional herbal medicines. Garlic and Pteleopsis extracts exhibited weak and modest, respectively, anti-H. pylori activity [12,13]. Fifty-four Chinese herbs were screened for anti-H. pylori activity, exhibiting Rheum palmatum, Rhus javanica, Coptis japonica and Eugenia caryophyllata strong anti-H. pylori activity [14]. Cranberry juice possesses modest anti-H. pylori activity [15]. The anti-H. pylori activities of Aristolochia paucinervis, black myrobalan and cinnamon were also examined [1618]. Anti-H. pylori compounds from the Brazilian medicinal plant Myroxylon peruiferum have successfully isolated [19]. Extracts and fractions from seven Turkish plants were also demonstrated to elicit anti-H. pylori activity [20]. The leaves, roots and stems of Korean and Japanese wasabi exhibited bactericidal activities against H. pylori, having the leaves the highest bactericidal activity [21]. In addition, some flavonoids and isoflavonoids isolated from licorice such as licochalcone A, licoisoflavone B, and gancaonols have been reported to exhibit inhibitory activities against H. pylori[22].

In this study, 50 Taiwanese folk medicinal plants were examined and screened for anti-H. pylori activity. Ninety-five percent ethanol was used for herbal extraction. Inhibitory zone and minimum inhibitory concentration tests (MIC) were utilized for screening.

2 Materials and methods

2.1 Herbal plants and herbal extracts preparation

Fifty Taiwanese medicinal plants were purchased from local herbal markets. These herbs and its parts were used for drug showed in Table 1.

Table 1

The reference table of scientific name, abbreviation, parts were used for drug and extraction yield of 50 folk medicinal plants in Taiwan

Scientific nameAbbreviationPart using for drugExtraction yield (%, w/w)
Artemisia argvi Levl. et VantAALEVLeaf and stem6.19
Areca catechu Linn.ACLSeed4.03
Anisomeles indica (L.) O. KuntzeAIOKLeaf and stem4.52
Agrimonia pilosa Ledeb.APLWhole plant3.23
Alpinia speciosa (Wendl.) K. Schum.ASKSRoot7.03
Amaranthus spinosus L.ASLRoot7.85
Amaranthus virdis L.AVLStem13.36
Bidens bipinnata L.BBLWhole plant4.90
Bletilla formosana (Hayata) SchltrBFSStem4.15
Bischofia javanica BlumeBJBStem13.95
Bombax malabaricum DC.BMDCRoot10.04
Bidens pilosa L. var. minor (Blume) SherffBPLVMSWhole plant6.78
Chenopodium ambrosioides L.CALLeaf and stem11.20
Canarium album (Lour.) RaeuschelCARRoot1.91
Centella asiatica (L.) Urban.CAUWhole plant17.64
Cayratia japonica (Thunb.) Gagnep.CJGWhole plant16.20
Catharanthus roseus (L.) G. Don.CRGDWhole plant7.06
Cycas revoluta Thunb.CRTLeaf14.50
Ehretia acuminata R. Br.EARBRoot6.50
Euphorbia hirta Linn.EHLWhole plant4.53
Flemingia philippinensis Merr. & RolfeFPMRStem7.86
Gnaphalium adnatum Wall. ex DC.GAWEDCWhole plant3.72
Houttuynia cordata Thunb.HCTWhole plant6.56
Hibiscus muthtabilis Linn.HMLWhole plant2.72
Litsea cubeba (Lour.) PersoonLCPStem3.65
Ludwigia octovalvis (Jacq.) Raven.LORStem5.03
Murdannia bracteata (C. B. Clarke) O. Kuntze ex J. K. MortonMBOKEJKMWhole plant4.56
Melastoma candidum D. DonMCDDStem and root7.50
Milletia reticulata BenthamMRBWhole plant3.53
Polygonum chinense Linn.PCLRoot6.21
Psidium guajava L.PGLLeaf23.58
Phyla nodiflora (Linn.) GreenePNGWhole plant13.30
Polygonum senticosum (Meissn) Franch. et Sav.PSFESWhole plant4.73
Paederia scandens (Lour.) Merr.PSMWhole plant15.32
Phyllanthus urinaria Linn.PULWhole plant5.50
Plumbago zeylanica L.PZLStem6.28
Rhus semialata Merr. var. roxburghiana DC.RSMVRDCStem3.38
Sonchus arvensis Linn.SALWhole plant4.44
Sphenomeris chusana (L.) CopelSCCWhole plant5.55
Sambucus chinensis Lindl.SCLWhole plant3.25
Sophora flavescens Ait.SFARoot11.15
Solanum nigrum Linn.SNLWhole plant3.21
Setaria palmfolia Stapf.SPSWhole plant5.71
Sida rhombifolia Linn.SRLWhole plant2.05
Senecio scandens Buch-Ham.SSBHWhole plant5.36
Vernonia cinerea (L.) Less.VCLWhole plant7.75
Viola mandshuricaVMWhole plant8.06
Wikstroemia indica (L.) C. A. Mey.WICAMStem4.45
Xanthium strumarium Linn.XSLWhole plant2.05
Zanthoxylum nitidum (Roxb.) DC.ZNDCRoot5.57
Scientific nameAbbreviationPart using for drugExtraction yield (%, w/w)
Artemisia argvi Levl. et VantAALEVLeaf and stem6.19
Areca catechu Linn.ACLSeed4.03
Anisomeles indica (L.) O. KuntzeAIOKLeaf and stem4.52
Agrimonia pilosa Ledeb.APLWhole plant3.23
Alpinia speciosa (Wendl.) K. Schum.ASKSRoot7.03
Amaranthus spinosus L.ASLRoot7.85
Amaranthus virdis L.AVLStem13.36
Bidens bipinnata L.BBLWhole plant4.90
Bletilla formosana (Hayata) SchltrBFSStem4.15
Bischofia javanica BlumeBJBStem13.95
Bombax malabaricum DC.BMDCRoot10.04
Bidens pilosa L. var. minor (Blume) SherffBPLVMSWhole plant6.78
Chenopodium ambrosioides L.CALLeaf and stem11.20
Canarium album (Lour.) RaeuschelCARRoot1.91
Centella asiatica (L.) Urban.CAUWhole plant17.64
Cayratia japonica (Thunb.) Gagnep.CJGWhole plant16.20
Catharanthus roseus (L.) G. Don.CRGDWhole plant7.06
Cycas revoluta Thunb.CRTLeaf14.50
Ehretia acuminata R. Br.EARBRoot6.50
Euphorbia hirta Linn.EHLWhole plant4.53
Flemingia philippinensis Merr. & RolfeFPMRStem7.86
Gnaphalium adnatum Wall. ex DC.GAWEDCWhole plant3.72
Houttuynia cordata Thunb.HCTWhole plant6.56
Hibiscus muthtabilis Linn.HMLWhole plant2.72
Litsea cubeba (Lour.) PersoonLCPStem3.65
Ludwigia octovalvis (Jacq.) Raven.LORStem5.03
Murdannia bracteata (C. B. Clarke) O. Kuntze ex J. K. MortonMBOKEJKMWhole plant4.56
Melastoma candidum D. DonMCDDStem and root7.50
Milletia reticulata BenthamMRBWhole plant3.53
Polygonum chinense Linn.PCLRoot6.21
Psidium guajava L.PGLLeaf23.58
Phyla nodiflora (Linn.) GreenePNGWhole plant13.30
Polygonum senticosum (Meissn) Franch. et Sav.PSFESWhole plant4.73
Paederia scandens (Lour.) Merr.PSMWhole plant15.32
Phyllanthus urinaria Linn.PULWhole plant5.50
Plumbago zeylanica L.PZLStem6.28
Rhus semialata Merr. var. roxburghiana DC.RSMVRDCStem3.38
Sonchus arvensis Linn.SALWhole plant4.44
Sphenomeris chusana (L.) CopelSCCWhole plant5.55
Sambucus chinensis Lindl.SCLWhole plant3.25
Sophora flavescens Ait.SFARoot11.15
Solanum nigrum Linn.SNLWhole plant3.21
Setaria palmfolia Stapf.SPSWhole plant5.71
Sida rhombifolia Linn.SRLWhole plant2.05
Senecio scandens Buch-Ham.SSBHWhole plant5.36
Vernonia cinerea (L.) Less.VCLWhole plant7.75
Viola mandshuricaVMWhole plant8.06
Wikstroemia indica (L.) C. A. Mey.WICAMStem4.45
Xanthium strumarium Linn.XSLWhole plant2.05
Zanthoxylum nitidum (Roxb.) DC.ZNDCRoot5.57
Table 1

The reference table of scientific name, abbreviation, parts were used for drug and extraction yield of 50 folk medicinal plants in Taiwan

Scientific nameAbbreviationPart using for drugExtraction yield (%, w/w)
Artemisia argvi Levl. et VantAALEVLeaf and stem6.19
Areca catechu Linn.ACLSeed4.03
Anisomeles indica (L.) O. KuntzeAIOKLeaf and stem4.52
Agrimonia pilosa Ledeb.APLWhole plant3.23
Alpinia speciosa (Wendl.) K. Schum.ASKSRoot7.03
Amaranthus spinosus L.ASLRoot7.85
Amaranthus virdis L.AVLStem13.36
Bidens bipinnata L.BBLWhole plant4.90
Bletilla formosana (Hayata) SchltrBFSStem4.15
Bischofia javanica BlumeBJBStem13.95
Bombax malabaricum DC.BMDCRoot10.04
Bidens pilosa L. var. minor (Blume) SherffBPLVMSWhole plant6.78
Chenopodium ambrosioides L.CALLeaf and stem11.20
Canarium album (Lour.) RaeuschelCARRoot1.91
Centella asiatica (L.) Urban.CAUWhole plant17.64
Cayratia japonica (Thunb.) Gagnep.CJGWhole plant16.20
Catharanthus roseus (L.) G. Don.CRGDWhole plant7.06
Cycas revoluta Thunb.CRTLeaf14.50
Ehretia acuminata R. Br.EARBRoot6.50
Euphorbia hirta Linn.EHLWhole plant4.53
Flemingia philippinensis Merr. & RolfeFPMRStem7.86
Gnaphalium adnatum Wall. ex DC.GAWEDCWhole plant3.72
Houttuynia cordata Thunb.HCTWhole plant6.56
Hibiscus muthtabilis Linn.HMLWhole plant2.72
Litsea cubeba (Lour.) PersoonLCPStem3.65
Ludwigia octovalvis (Jacq.) Raven.LORStem5.03
Murdannia bracteata (C. B. Clarke) O. Kuntze ex J. K. MortonMBOKEJKMWhole plant4.56
Melastoma candidum D. DonMCDDStem and root7.50
Milletia reticulata BenthamMRBWhole plant3.53
Polygonum chinense Linn.PCLRoot6.21
Psidium guajava L.PGLLeaf23.58
Phyla nodiflora (Linn.) GreenePNGWhole plant13.30
Polygonum senticosum (Meissn) Franch. et Sav.PSFESWhole plant4.73
Paederia scandens (Lour.) Merr.PSMWhole plant15.32
Phyllanthus urinaria Linn.PULWhole plant5.50
Plumbago zeylanica L.PZLStem6.28
Rhus semialata Merr. var. roxburghiana DC.RSMVRDCStem3.38
Sonchus arvensis Linn.SALWhole plant4.44
Sphenomeris chusana (L.) CopelSCCWhole plant5.55
Sambucus chinensis Lindl.SCLWhole plant3.25
Sophora flavescens Ait.SFARoot11.15
Solanum nigrum Linn.SNLWhole plant3.21
Setaria palmfolia Stapf.SPSWhole plant5.71
Sida rhombifolia Linn.SRLWhole plant2.05
Senecio scandens Buch-Ham.SSBHWhole plant5.36
Vernonia cinerea (L.) Less.VCLWhole plant7.75
Viola mandshuricaVMWhole plant8.06
Wikstroemia indica (L.) C. A. Mey.WICAMStem4.45
Xanthium strumarium Linn.XSLWhole plant2.05
Zanthoxylum nitidum (Roxb.) DC.ZNDCRoot5.57
Scientific nameAbbreviationPart using for drugExtraction yield (%, w/w)
Artemisia argvi Levl. et VantAALEVLeaf and stem6.19
Areca catechu Linn.ACLSeed4.03
Anisomeles indica (L.) O. KuntzeAIOKLeaf and stem4.52
Agrimonia pilosa Ledeb.APLWhole plant3.23
Alpinia speciosa (Wendl.) K. Schum.ASKSRoot7.03
Amaranthus spinosus L.ASLRoot7.85
Amaranthus virdis L.AVLStem13.36
Bidens bipinnata L.BBLWhole plant4.90
Bletilla formosana (Hayata) SchltrBFSStem4.15
Bischofia javanica BlumeBJBStem13.95
Bombax malabaricum DC.BMDCRoot10.04
Bidens pilosa L. var. minor (Blume) SherffBPLVMSWhole plant6.78
Chenopodium ambrosioides L.CALLeaf and stem11.20
Canarium album (Lour.) RaeuschelCARRoot1.91
Centella asiatica (L.) Urban.CAUWhole plant17.64
Cayratia japonica (Thunb.) Gagnep.CJGWhole plant16.20
Catharanthus roseus (L.) G. Don.CRGDWhole plant7.06
Cycas revoluta Thunb.CRTLeaf14.50
Ehretia acuminata R. Br.EARBRoot6.50
Euphorbia hirta Linn.EHLWhole plant4.53
Flemingia philippinensis Merr. & RolfeFPMRStem7.86
Gnaphalium adnatum Wall. ex DC.GAWEDCWhole plant3.72
Houttuynia cordata Thunb.HCTWhole plant6.56
Hibiscus muthtabilis Linn.HMLWhole plant2.72
Litsea cubeba (Lour.) PersoonLCPStem3.65
Ludwigia octovalvis (Jacq.) Raven.LORStem5.03
Murdannia bracteata (C. B. Clarke) O. Kuntze ex J. K. MortonMBOKEJKMWhole plant4.56
Melastoma candidum D. DonMCDDStem and root7.50
Milletia reticulata BenthamMRBWhole plant3.53
Polygonum chinense Linn.PCLRoot6.21
Psidium guajava L.PGLLeaf23.58
Phyla nodiflora (Linn.) GreenePNGWhole plant13.30
Polygonum senticosum (Meissn) Franch. et Sav.PSFESWhole plant4.73
Paederia scandens (Lour.) Merr.PSMWhole plant15.32
Phyllanthus urinaria Linn.PULWhole plant5.50
Plumbago zeylanica L.PZLStem6.28
Rhus semialata Merr. var. roxburghiana DC.RSMVRDCStem3.38
Sonchus arvensis Linn.SALWhole plant4.44
Sphenomeris chusana (L.) CopelSCCWhole plant5.55
Sambucus chinensis Lindl.SCLWhole plant3.25
Sophora flavescens Ait.SFARoot11.15
Solanum nigrum Linn.SNLWhole plant3.21
Setaria palmfolia Stapf.SPSWhole plant5.71
Sida rhombifolia Linn.SRLWhole plant2.05
Senecio scandens Buch-Ham.SSBHWhole plant5.36
Vernonia cinerea (L.) Less.VCLWhole plant7.75
Viola mandshuricaVMWhole plant8.06
Wikstroemia indica (L.) C. A. Mey.WICAMStem4.45
Xanthium strumarium Linn.XSLWhole plant2.05
Zanthoxylum nitidum (Roxb.) DC.ZNDCRoot5.57

Ninety-five percent ethanol was used for the extraction of all herbs. Two hundred millilitres of 95% ethanol was added to 30 g of herb powder followed by the stirring of the mix at room temperature for 1 h. The mixture was then centrifuged at 9000 rpm for 15 min at 4 °C. The residue was extracted twice with 2 × 200 ml of 95% ethanol. The supernatants were mixed and concentrated to dryness in a rotary vacuum evaporator below 40 °C, and the concentrate was then weighed. Extraction yield (%, w/w) was calculated as the ratio of the weight of the concentrate to the weight of the herb powder.

2.2 Bacterial strains and cultivation

H. pylori BCRC 17021, BCRC 17023, BCRC 17026, BCRC 17027 and BCRC 15415 were obtained from the Bioresources Collection and Research Center (BCRC), Hsinchu, Taiwan, ROC. Five clinical isolates of H. pylori QU 108, QU 141, QU 144, QU 150 and QU 181 were isolated from the stomach of patients from Kaohsiung Chang-Gung Memorial Hospital (Kaohsiung, Taiwan, ROC). These isolates were identified using standard diagnostic procedures [23].

All H. pylori strains were cultured in 5-ml tryptic soy broth (TSB, Difco, USA; each liter contained: a pancreatic digest of casein [17 g], an enzymatic digest of soybean meal [3 g], dextrose [2.5 g], sodium chloride [5 g], dipotassium phosphate [2.5 g], pH 7.3), with a Columbia agar (bioMérieux, France; each liter contained: bio-polyone [10 g], bio-lysat [10 g], bio-myotone [3 g], corn starch [1 g], sodium chloride [5 g], agar [13.5 g], pH 7.3) slant containing 5% (v/v) of defibrinated sheep blood formed at the bottom of the test tube. The broth incubated in a microaerophilic jar system (BBL), featuring a gas composition of 5% O2 and 10% CO2-in-air (an OXOID BR 056A gas-generating kit was used for this purpose), at 37 °C for 72 h. The cell suspension was then diluted with 0.1% peptone to provide a cell concentration of 0.5–1.0 × 106 cfu ml−1 for antimicrobial testing.

2.3 Inhibitory-zone testing

Different strains of anti-H. pylori inhibitory zone testing for plant extracts were performed according to the method of Johnson and Christine [24]. A volume of 0.1 ml for each of the bacterial suspensions tested (0.5–1.0 × 106 cfu ml−1) was spread onto a Columbia agar plate containing 5% (v/v) defibrinated sheep blood. Wells sized 7-mm in diameter were punched on the plates with 30 µl of the herbal extract [0.2 g ml−1; dimethyl sulfoxide (DMSO) as solvent] to be individually incorporated into the wells. DMSO was used as control. The plates were diffused at 4 °C for 2 h, and incubated in a microaerophilic jar system (BBL), featuring a gas composition of 5% O2 and 10% CO2-in-air, at 37 °C for 72 h. The clear zone around each well was observed and its diameter was examined.

2.4 Minimum inhibitory concentration testing

A broth-dilution method [25] was used for MIC testing. A volume of 0.1-ml of cell suspensions (initial bacterial count 0.5–1.0 × 106 cfu ml−1) was spread onto Columbia agar plates containing 5% (v/v) defibrinated sheep blood. DMSO was used as control. Following incubation in a microaerophilic jar system, featuring a gas composition of 5% O2 and 10% CO2-in-air, at 37 °C for 72 h, the colonies that had formed on the plates were enumerated. The MIC was defined as the minimum concentration of the test sample (antibacterial agent) in a given culture medium above which bacteria are not able to form colonies.

3 Results and discussion

3.1 Extraction yield

Ethanol-extraction yields of product deriving from the 50 herbs tested, exhibited large differences from each other, and the yields ranged from 1.91% to 23.58% (w/w) (Table 1). Product-extraction yields greater than 10% (w/w) were found for a total of 11 herbs, which included PGL, PSM, CAU, CJG, etc. (see Table 1). While a yield of less than 5% (w/w) was observed for 20 herbs, being among them CAR, XSL, SRL, HML, etc. (see Table 1).

3.2 Inhibitory-zone testing

The inhibitory-zone testing results for the ethanol extracts of 50 herbs are given in Table 2. Fifty herbs were divided into three classes based on the relative effectiveness of anti-H. pylori actions. Strong anti-H. pylori-activity herbs, included PZL, PSM, AIOK, BMDC and ASKS, for which 9–10 H. pylori strains were inhibited from the ten strains tested by the ethanol extracts of herbs, with either large diameter of inhibitory zones or lower values of hazy zones.

Table 2

Anti-H. pylori activity spectra of ethanol extracts of fifty folk medicinal plants

Herb extractStrain
BCRC 17021BCRC 17023BCRC 17026BCRC 17027BCRC 15415Qu 108Qu 141Qu 144Qu 150Qu 181
AALEV+++++(H)++(H)+++++(H)++++
ACL++++
AIOK+++(H)++++++(H)+++++++++++(H)++(H)
APL++++++
ASKS++++++++++++(H)++++
ASL++++(H)+
AVL+++++
BBL++(H)+++++(H)+++
BFS++++++(H)+(H)+(H)+
BJB+++++++
BMDC++++++++++++(H)+++(H)+++++++
BPLVMS+(H)+++(H)+(H)
CAL++(H)++++++++(H)+
CAR+++++++++(H)++++(H)+++
CAU++(H)+++++++++
CJG+++(H)+++(H)+++++(H)
CRGD+++(H)++++
CRT+(H)+
EARB++++++++++
EHL+++++
FPMR++(H)+(H)++(H)
GAWEDC++++
HCT+++++++++(H)++(H)
HML+++
LCP+++++++++++
LOR+++++++++
MBOKEJKM++++(H)++(H)+++
MCDD+++++++++(H)++++(H)
MRB+++
PCL++++++++
PGL+++++++++++++
PNG+++++++++(H)++(H)
PSFES+++(H)++++(H)++++
PSM++++++++++++++++++++++
PUL+++(H)
PZL++++++++++(H)++++++++++++(H)++++++++++
RSMVRDC++(H)+++++(H)+++(H)++(H)++(H)
SAL++++++++++(H)+++
SCC++++++
SCL+(H)+(H)+(H)++++
SFA++(H)+(H)++(H)
SNL++(H)+++(H)
SPS++(H)++(H)+++(H)+++(H)
SRL+++(H)++(H)
SSBH++++++(H)+++++(H)+++(H)++++
VCL+++++++++++++
VM+(H)+++(H)+(H)
WICAM++++++++++
XSL++++++++(H)
ZNDC++++++(H)+++++++
Herb extractStrain
BCRC 17021BCRC 17023BCRC 17026BCRC 17027BCRC 15415Qu 108Qu 141Qu 144Qu 150Qu 181
AALEV+++++(H)++(H)+++++(H)++++
ACL++++
AIOK+++(H)++++++(H)+++++++++++(H)++(H)
APL++++++
ASKS++++++++++++(H)++++
ASL++++(H)+
AVL+++++
BBL++(H)+++++(H)+++
BFS++++++(H)+(H)+(H)+
BJB+++++++
BMDC++++++++++++(H)+++(H)+++++++
BPLVMS+(H)+++(H)+(H)
CAL++(H)++++++++(H)+
CAR+++++++++(H)++++(H)+++
CAU++(H)+++++++++
CJG+++(H)+++(H)+++++(H)
CRGD+++(H)++++
CRT+(H)+
EARB++++++++++
EHL+++++
FPMR++(H)+(H)++(H)
GAWEDC++++
HCT+++++++++(H)++(H)
HML+++
LCP+++++++++++
LOR+++++++++
MBOKEJKM++++(H)++(H)+++
MCDD+++++++++(H)++++(H)
MRB+++
PCL++++++++
PGL+++++++++++++
PNG+++++++++(H)++(H)
PSFES+++(H)++++(H)++++
PSM++++++++++++++++++++++
PUL+++(H)
PZL++++++++++(H)++++++++++++(H)++++++++++
RSMVRDC++(H)+++++(H)+++(H)++(H)++(H)
SAL++++++++++(H)+++
SCC++++++
SCL+(H)+(H)+(H)++++
SFA++(H)+(H)++(H)
SNL++(H)+++(H)
SPS++(H)++(H)+++(H)+++(H)
SRL+++(H)++(H)
SSBH++++++(H)+++++(H)+++(H)++++
VCL+++++++++++++
VM+(H)+++(H)+(H)
WICAM++++++++++
XSL++++++++(H)
ZNDC++++++(H)+++++++

All the plates were incubated in a microaerophilic jar system at 37 °C for 72 h, in which the gas composition was 5% O2 and 10% CO2-in-air.

Concentration of all extracts was 0.2 g ml−1 and 30 µl of extract was incorporated into each well.

++++, >20 mm (dia); +++, 16–20 mm (dia); ++, 11–15 mm (dia); +, 8–10 mm (dia);: ≤7 mm (dia).

Hazy zone.

Table 2

Anti-H. pylori activity spectra of ethanol extracts of fifty folk medicinal plants

Herb extractStrain
BCRC 17021BCRC 17023BCRC 17026BCRC 17027BCRC 15415Qu 108Qu 141Qu 144Qu 150Qu 181
AALEV+++++(H)++(H)+++++(H)++++
ACL++++
AIOK+++(H)++++++(H)+++++++++++(H)++(H)
APL++++++
ASKS++++++++++++(H)++++
ASL++++(H)+
AVL+++++
BBL++(H)+++++(H)+++
BFS++++++(H)+(H)+(H)+
BJB+++++++
BMDC++++++++++++(H)+++(H)+++++++
BPLVMS+(H)+++(H)+(H)
CAL++(H)++++++++(H)+
CAR+++++++++(H)++++(H)+++
CAU++(H)+++++++++
CJG+++(H)+++(H)+++++(H)
CRGD+++(H)++++
CRT+(H)+
EARB++++++++++
EHL+++++
FPMR++(H)+(H)++(H)
GAWEDC++++
HCT+++++++++(H)++(H)
HML+++
LCP+++++++++++
LOR+++++++++
MBOKEJKM++++(H)++(H)+++
MCDD+++++++++(H)++++(H)
MRB+++
PCL++++++++
PGL+++++++++++++
PNG+++++++++(H)++(H)
PSFES+++(H)++++(H)++++
PSM++++++++++++++++++++++
PUL+++(H)
PZL++++++++++(H)++++++++++++(H)++++++++++
RSMVRDC++(H)+++++(H)+++(H)++(H)++(H)
SAL++++++++++(H)+++
SCC++++++
SCL+(H)+(H)+(H)++++
SFA++(H)+(H)++(H)
SNL++(H)+++(H)
SPS++(H)++(H)+++(H)+++(H)
SRL+++(H)++(H)
SSBH++++++(H)+++++(H)+++(H)++++
VCL+++++++++++++
VM+(H)+++(H)+(H)
WICAM++++++++++
XSL++++++++(H)
ZNDC++++++(H)+++++++
Herb extractStrain
BCRC 17021BCRC 17023BCRC 17026BCRC 17027BCRC 15415Qu 108Qu 141Qu 144Qu 150Qu 181
AALEV+++++(H)++(H)+++++(H)++++
ACL++++
AIOK+++(H)++++++(H)+++++++++++(H)++(H)
APL++++++
ASKS++++++++++++(H)++++
ASL++++(H)+
AVL+++++
BBL++(H)+++++(H)+++
BFS++++++(H)+(H)+(H)+
BJB+++++++
BMDC++++++++++++(H)+++(H)+++++++
BPLVMS+(H)+++(H)+(H)
CAL++(H)++++++++(H)+
CAR+++++++++(H)++++(H)+++
CAU++(H)+++++++++
CJG+++(H)+++(H)+++++(H)
CRGD+++(H)++++
CRT+(H)+
EARB++++++++++
EHL+++++
FPMR++(H)+(H)++(H)
GAWEDC++++
HCT+++++++++(H)++(H)
HML+++
LCP+++++++++++
LOR+++++++++
MBOKEJKM++++(H)++(H)+++
MCDD+++++++++(H)++++(H)
MRB+++
PCL++++++++
PGL+++++++++++++
PNG+++++++++(H)++(H)
PSFES+++(H)++++(H)++++
PSM++++++++++++++++++++++
PUL+++(H)
PZL++++++++++(H)++++++++++++(H)++++++++++
RSMVRDC++(H)+++++(H)+++(H)++(H)++(H)
SAL++++++++++(H)+++
SCC++++++
SCL+(H)+(H)+(H)++++
SFA++(H)+(H)++(H)
SNL++(H)+++(H)
SPS++(H)++(H)+++(H)+++(H)
SRL+++(H)++(H)
SSBH++++++(H)+++++(H)+++(H)++++
VCL+++++++++++++
VM+(H)+++(H)+(H)
WICAM++++++++++
XSL++++++++(H)
ZNDC++++++(H)+++++++

All the plates were incubated in a microaerophilic jar system at 37 °C for 72 h, in which the gas composition was 5% O2 and 10% CO2-in-air.

Concentration of all extracts was 0.2 g ml−1 and 30 µl of extract was incorporated into each well.

++++, >20 mm (dia); +++, 16–20 mm (dia); ++, 11–15 mm (dia); +, 8–10 mm (dia);: ≤7 mm (dia).

Hazy zone.

Twenty-six herbs including AALEV, BBL, BFS, CAL, CAR, CAU, EARB, HCT, LCP, LOR, MBOKEJKM, MCDD, PCL, PGL, PNG, PSFES, RSMVRDC, SAL, SCC, SCL, SPS, SSBH, VCL, WICAM, XSL, and ZNDC were classified as moderate anti-H. pylori-activity herbs, being 6–9 H. pylori strains inhibited by their herbal extracts.

The additional 19 herbs were classified as lower-activity anti-H. pylori herbs. They included ACL, APL, ASL, AVL, BJB, BPLVMS, CJG, CRGD, CRT, EHL, FPMR, GAWEDC, HML, MRB, PUL, SFA, SNL, SRL and VM, for which 2–5 H. pylori strains were inhibited by the ethanol extracts of herbs. The inhibitory zones of ethanol extracts given by these herbs either exhibited small diameter or more haziness.

Results shown in Table 2 indicate that approximately half of the Taiwanese folk medicinal plants tested were demonstrated to possess higher anti-H. pylori activity. These herbs exhibit potentially a high therapeutic interest either to be used in food health or as novel drugs for the eradication of H. pylori infection in the future.

3.3 Minimum inhibitory concentration testing

The MIC values for the five stronger anti-H. pylori herbal extracts were determined. As shown in Table 3, the ethanol extract of PSM exhibited the lowest MIC, where values ranged from 0.64 to 5.12 mg ml−1. This was followed by the extract of PZL with a MIC ranged from 0.64 to 10.24 mg ml−1. The ethanol extracts of AIOK, BMDC and ASKS featured MIC values ranging from 1.28 to 5.12 mg ml−1 and gradually showed lower anti-H. pylori activity as compared with PSL and PZM extracts. Results in Table 3 show that for the five extracts having the stronger anti-H. pylori activity, PSM and PZL were demonstrated to possess the greatest anti-H. pylori activity, and consequently being the most commonly used as folk medicinal plants in Taiwan. The entire plant of PSM has been used for the treatment of rheumatic affections, diarrhoea in children and internal haemorrhages [26a]. Moreover, the roots of PZL have been used for the treatment of rheumatic pain, dysmenorrhea, carbuncles, ulcers and killing intestinal parasites [26b].

Table 3

Minimum inhibitory concentrations of ethanol extract of five folk medicinal plants against H. pylori.

Test strainMIC (mg ml−1)
AIOKASKSBMDCPSMPZL
Helicobacter pylori BCRC 170215.12>5.125.122.560.64
H. pylori BCRC 17023>5.12>5.12>5.120.642.56
H. pylori BCRC 170265.125.12>5.121.2810.24
H. pylori BCRC 170272.56>5.121.282.562.56
H. pylori BCRC 15415>5.12>5.12>5.125.120.64
Test strainMIC (mg ml−1)
AIOKASKSBMDCPSMPZL
Helicobacter pylori BCRC 170215.12>5.125.122.560.64
H. pylori BCRC 17023>5.12>5.12>5.120.642.56
H. pylori BCRC 170265.125.12>5.121.2810.24
H. pylori BCRC 170272.56>5.121.282.562.56
H. pylori BCRC 15415>5.12>5.12>5.125.120.64

All the plates were incubated in a microaerophilic jar system at 37 °C for 72 h, in which the gas composition of 5% O2 and 10% CO2-in-air.

Table 3

Minimum inhibitory concentrations of ethanol extract of five folk medicinal plants against H. pylori.

Test strainMIC (mg ml−1)
AIOKASKSBMDCPSMPZL
Helicobacter pylori BCRC 170215.12>5.125.122.560.64
H. pylori BCRC 17023>5.12>5.12>5.120.642.56
H. pylori BCRC 170265.125.12>5.121.2810.24
H. pylori BCRC 170272.56>5.121.282.562.56
H. pylori BCRC 15415>5.12>5.12>5.125.120.64
Test strainMIC (mg ml−1)
AIOKASKSBMDCPSMPZL
Helicobacter pylori BCRC 170215.12>5.125.122.560.64
H. pylori BCRC 17023>5.12>5.12>5.120.642.56
H. pylori BCRC 170265.125.12>5.121.2810.24
H. pylori BCRC 170272.56>5.121.282.562.56
H. pylori BCRC 15415>5.12>5.12>5.125.120.64

All the plates were incubated in a microaerophilic jar system at 37 °C for 72 h, in which the gas composition of 5% O2 and 10% CO2-in-air.

The literature has revealed that a large number of the anti-H. pylori components abound in plants and exhibit different degrees of anti-H. pylori activities. MICs for the aqueous garlic extract against nineteen strains of H. pylori ranged from 2 to 5 mg ml−1[12]. Both decoction and methanol eluted fractions of Pteleopsis suberosa have been shown to reveal anti-H. pylori activity against one America Type Culture Collection (ATCC), Rockville, MD, USA, strain and five clinical strains, presenting MICs ranging from 0.0625 to 0.5 mg ml−1[13]. Screening of Turkish anti-ulcerogenic folk remedies for anti-H. pylori activity, revealed that flowers of Cistus laurifolius and Spartium junceum, cones of Cedrus libani, herbs and flowers of Centaurea solstitialis ssp. solstitialis, fruits of Momordica charantia, herbaceous parts of Sambucus ebulus, and flowering herbs of Hypericum perforatum, showed anti-H. pylori activity, with MICs in the range of 1.95–250 µg ml−1[20]. The Greek herbal medicine extracts of Anthemis melanolepis, Cerastium candidissimum, Chamomilla recutita, Conyza albida, Dittrichia viscosa, Origanum vulgare and Stachys alopecuros have been proved to be active against one standard strain and 15 clinical isolates of H. pylori, with MICs ranging from 0.625 to 5 mg ml−1[27]. Capsicin, an active ingredient in chilli, inhibited H. pylori growth in a dose-dependent concentration, exhibiting a concentration greater than 10 µg ml−1 and a MIC90 of 0.5 mg ml−1[28]. The ethyl-acetate extract of Elephantopus scaber Linn. presenting MIC values ranging from 2.56 to 10.24 mg ml−1 against 8 strains of H. pylori have been reported in our previous study [29]. From the results obtained in this study, PSM and PZL exhibited lower MIC values when compared with other studies. Both herbs were shown to have strong anti-H. pylori activity.

References

[1]

Clyne
M.
Drumm
B.
(
1993
)
Adherence of Helicobater pylori to primary human gastrointestinal cells
.
Infect. Immun.
61
,
4051
4057
.

[2]

Forman
D.
Newekk
D.G.
Fullerton
F.
Yarnell
J.W.G.
Stacey
A.R.
Wald
N.
Sitas
F.
(
1991
)
Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation
.
Br. Med. J.
302
,
1302
1305
.

[3]

Fera
M.T.
Carbone
M.
Pallio
S.
Tortora
A.
Blandino
G.
Carbone
M.
(
2001
)
Antimicrobial activity and postantibiotic effect of flurithromycin against Helicobacter pylori strains
.
Int. J. Antimicrob. Ag.
17
,
151
154
.

[4]

Boyanova
L.
(
1999
)
Comparative evaluation of two methods for testing metronidazole susceptibility of Helicobacter pylori in routine practice
.
Diagn Micr. Infec. Dis.
35
,
33
36
.

[5]

Park
J.B.
Imamur
L.L.
Kobashi
K.
(
1996
)
Kinetic studies of Helicobacter pylori urease inhibition by a novel proton pump inhibitor, rabeprazole
.
Biol. Pharm. Bull.
19
,
182
187
.

[6]

Tuschiya
M.
Imamura
L.
Park
J.B.
Kobashi
K.
(
1995
)
Helicobacter pylori urease by rabeprazole, a proton pump inhibitor
.
Biol. Pharm. Bull.
18
,
1053
1056
.

[7]

Susan
M.
Mou
M.D.
(
1998
)
The relationship between Helicobacter infection and peptic ulcer disease
.
Prim Care Update Ob/Gyns
5
,
229
232
.

[8]

Sorba
G.
Bertinaria
M.
Stilo
A.D.
Gasco
A.
Scaltrito
M.M.
Brenciaglia
M.I.
Dubini
F.
(
2001
)
Anti-Helicobacter pylori agents endowed with H2-antagonist properties
.
Bioorg. Med. Chem. Lett.
11
,
403
406
.

[9]

Midolo
P.D.
Norton
A.
Itzstein
M.V.
Lambert
J.R.
(
1997
)
Novel bismuth compounds have in vitro activity against Helicobacter pylori
.
FEMS Microb. Lett.
157
,
229
232
.

[10]

Worrel
J.A.
Stoner
S.C.
(
1998
)
Eradication of Helicobacter pylori
.
Med. Update Psychiat.
4
,
99
104
.

[11]

Ferrero
M.
Ducons
J.A.
Sicilia
B.
Santolaria
S.
Sierra
E.
Gomollon
F.
(
2000
)
Factors affecting the variation in antibiotic resistance of Helicobacter pylori over a 3-year period
.
Int. J. Antimicrob. Agents
16
,
245
248
.

[12]

Cellini
L.
Campli
E.D.
Masulli
M.
Bartolomeo
S.D.
Allocati
N.
(
1996
)
Inhibition of Helicobacter pylori by garlic extract (Allium sativum)
.
FEMS Immunol. Med. Microb.
13
,
277
279
.

[13]

Germano
M.P.
Sanogo
R.
Guglielmo
M.
Pasquale
R.D.
Crisafi
G.
(
1998
)
Effects of Pteleopsis suberosa extracts on experimental gastric ulcers and Helicobacter pylori growth
.
J. Enthnopharm.
59
,
167
172
.

[14]

Bae
E.A.
Han
M.J.
Kim
N.J.
Kim
D.H.
(
1998
)
Anti-Helicobacter pylori activity of herbal medicines
.
Biol. Pharm. Bull.
21
,
990
992
.

[15]

Burger
O.
Ofek
I.
Tabak
M.
Weiss
E.I.
Sharon
N.
Neeman
I.
(
2000
)
A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus
.
FEMS Immunol. Med. Microb.
29
,
295
301
.

[16]

Gadhi
C.A.
Benharref
A.
Jana
M.
Lozniewski
A.
(
2001
)
Anti-Helicobacter pylori of Aristolochia paucinervis pomel extract
.
J. Enthnopharm.
75
,
203
205
.

[17]

Malekzadeh
F.
Ehsanifar
H.
Shahamat
M.
Levin
M.
Colwell
R.R.
(
2001
)
Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori
.
Int. J. Antimicrob. Agents
18
,
85
88
.

[18]

Tabak
M.
Armon
R.
Needman
I.
(
1999
)
Cinnamon extracts' inhibitory effect on Helicobacter pylori
.
J. Enthnopharm.
67
,
269
277
.

[19]

Ohsaki
A.
Takashima
J.
Chiba
N.
Kawamura
M.
(
1999
)
Microanalysis of a selective potent anti-Helicobacter pylori compound in a Brazillian medicinal plant, Myroxylon peruiferum and the activity of analogues
.
Bioorg. Med. Chem. Lett.
9
,
1109
1112
.

[20]

Yesilada
E.
Gurbuz
I.
Shibata
H.
(
1999
)
Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity
.
J. Enthnopharm.
66
,
289
293
.

[21]

Shin
I.S.
Masuda
H.
Naohide
K.
(
2004
)
Bactericidal activity of wasabi (Wasbia japonica) against Helicobacter pylori
.
Int. J. Food Microbiol.
94
,
255
261
.

[22]

Fukai
T.
Marumo
A.
Kaitou
K.
Kanda
T.
Terada
S.
Nomura
T.
(
2002
)
Anti-Helicobacter pylori flavonoids from licorice extract
.
Life Sci.
71
,
1449
1463
.

[23]

Hirata
I.
Ito
T.
Masubuchi
N.
Takaishi
S.
(
1993
)
Isolation, identification and quantitative culture of Helicobacter pylori from gastric mucosa
.
Nippon Rinsho
51
,
3170
3175
.

[24]

Johnson
T.R.
Christine
L.C.
(
1995
)
Laboratory Experiments in Microbiology
.
The Benjamin/Cummings Pub. Co. Inc.
,
New York
, pp.
177
179
.

[25]

Davidson
P.M.
Parish
M.E.
(
1989
)
Methods for testing the efficacy of food antimicrobials
.
Food Technol.
43
,
148
155
.

[26a]

Chiu
N.Y.
Chang
K.H.
(
2003
) fifth ed
The Illustrated Medicinal Plants of Taiwan
, vol.
2
,
SMC Publishing Inc.
,
Taipei
, pp.
152
153
;

[26b]

Chiu
N.Y.
Chang
K.H.
(
2003
)
The Illustrated Medicinal Plants of Taiwan
, fifth ed., vol.
3
.
SMC Publishing Inc.
,
Taipei
, p.
210
.

[27]

Stamatis
G.
Kyriazopoulos
P.
Golegou
S.
Basayiannis
A.
Skaltsas
S.
Skaltsas
H.
(
2003
)
In vitro anti-Helicobacter pylori activity of Greek herbal medicines
.
J. Enthnopharm.
88
,
175
179
.

[28]

Jones
N.L.
Shabob
S.
Sherman
P.M.
(
1997
)
Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori
.
FEMS Microb. Lett.
146
,
223
227
.

[29]

Wang
Y.C.
Xu
B.K.
(
2003
)
Studies on the anti-Helicobacter pylori activity of ethyl acetata of Elephantopus scaber Linn
.
Taiwanese J. Agr. Chem. Food Sci.
41
,
228
235
.