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Abstract

The enteric pathogen Salmonella enterica is exposed to a number of stressful environments during its life cycle within and

outside its various hosts. During intestinal colonisation Salmonella is successively exposed to acid pH in the stomach, to the

detergent-like activity of bile, to decreasing oxygen supply, to the presence of multiple metabolites produced by the normal

gut microflora and finally it is exposed to cationic antimicrobial peptides present on the surface of epithelial cells. There are

four major regulators controlling relevant stress responses in Salmonella, namely RpoS, PhoPQ, Fur and OmpR/EnvZ. Except

for Fur, inactivation of genes encoding the other stress regulators results in attenuated virulence and such mutants can there-

fore be considered as vaccine candidates. In contrast, a decrease in oxygen supply monitored by Fnr and ArcAB, or oxidative

stress controlled by OxyR and SoxRS is not regarded as a stress associated with host colonisation since inactivation of either of

these systems does not result in reductions in colonisation. The role of quorum-sensing through luxS and sdiA is also consid-

ered as a regulator of virulence and colonisation.

� 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

An enteric bacterial pathogen such as Salmonella is
exposed to a number of stressful environments during

its life cycle and the ways in which it responds to differ-

ent and multiple stresses are correspondingly complex.

Stress occurs when the bacterial cell experiences sudden

changes in its environment. Under laboratory condi-

tions Salmonella may experience stress naturally when

nutrients or electron acceptors become limited and Sal-

monella enters the stationary phase of growth. Outside
the laboratory, in the organism�s real life, this may hap-

pen whenever Salmonella enters a host from the environ-

ment but also when Salmonella leaves the host into the

environment. Genes and proteins identified as being cen-

tral to the mechanism employed by the bacterium to

cope with stress, particularly those involved in first con-

tact with the host, may act as potential targets for im-

mune intervention. The major stress factors and the
genes and proteins required for control of stress man-

agement by Salmonella are the subject of this review.

Naturally, different serotypes (or even different strains

within a given serotype) may respond differently to var-

ious stresses. Therefore, if not specifically stated, infor-

mation given in this review was obtained by

experiments with the two most frequent serovars

Typhimurium and Enteritidis and may not necessarily
be representative of other serotypes.
pril 2024
2. Stresses encountered by Salmonella on entering the host
– resistance to low pH

When Salmonella enters a host, it first senses an in-

crease in temperature followed by a dramatic change
in pH. In the stomach, the pH suddenly drops to values

which may approach 1–2, although locally the pH can

be higher as a result of the buffering capacity of feed.

From the point of view of acid stress adaptation, animal

hosts may be divided into those with simple or more

complex stomach systems, exemplified for the purposes

of this review by mice, pigs and humans, and on the

other hand gallinaceous birds. In non-ruminant mam-
mals, Salmonella and other bacteria pass immediately
to the stomach on ingestion. In gallinaceous birds

including the chicken, Salmonella first reaches the crop

where the pH is between 4 and 5, as a result of bacterial
lactic acid fermentation, a pH which enables Salmonella

to adapt to much higher DH+ and thereby resist the anti-

bacterial effects of the stomach.

Salmonella is relatively resistant to low pH when in

the stationary phase of growth [1]. When growing expo-

nentially, however, it is less acid resistant and can sur-

vive exposure only to moderately low pH values of

between 4 and 5. However, in both the cases, Salmonella

can become more acid resistant after a short period of

adaptation at moderate pH. This phenomenon is called

the acid tolerance response (ATR) [1–4]. When this oc-

curs in exponentially growing cells, there are two distinct

steps to adaptation. Transient adaptation is achieved

after 20 min exposure to moderate pH with a second le-

vel of sustained adaptation requiring �60 min of

exposure.
The proteins and genes induced by Salmonella in

response to low pH can be identified by a number

of techniques, including the generation of random

promoter fusions and selection of the promoters of

genes induced specifically under low pH. This ap-

proach has allowed the identification of genes coding

for proteins related to cell–surface structure and main-

tenance (aas, pbpA and cld), stress response (dps and
rna) and generalised efflux pump mar and emr [5].

However, although individual effector proteins are

important for acid survival, regulatory proteins are

equally important. Salmonella harbours several regu-

lons which enable it to adapt to acidification, espe-

cially those controlled by RpoS, Fur, PhoPQ, and

OmpR/EnvZ. Two of them, PhoPQ and OmpR/envZ,

are two-component signal transduction systems while
the other two genes/proteins operate apparently indi-

vidually in the bacterial cytoplasm. rpoS and fur are

essential for response to low pH induced by organic

acids in log phase while the phoPQ system is tuned

to response to inorganic low pH stress [6]. ompR/envZ

is necessary for acid resistance in stationary phase

cells [7,8]. An additional gene, oxrG is also involved

in regulation of the low pH response although almost
nothing is known about its function [9].
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2.1. RpoS and the acid stress response

RpoS is one of the sigma subunits of RNA polymer-

ase. It was first described in Escherichia coli and subse-

quently in Salmonella where, in addition to its

association with the starvation stress response and viru-
lence it was found to be associated with acid response

[10]. RpoS binds the core RNA polymerase primarily

under stress conditions and controls the expression of

a specific subset of genes which increases resistance to

a variety of stresses. In vitro RpoS is expressed in sta-

tionary phase during nutrient limitations [11] or in a

low pH environment [12–14]. RpoS is known to be ex-

pressed also in vivo in the eucaryotic intracellular envi-
ronment [13]. Genes known to belong to the RpoS

regulon in Salmonella include spv [15–17], ots [18], katE

[13], poxB and ogt [19], or narZYWV [20]. There are also

more than 10 other open reading frames (ORFs) of un-

known function regulated by RpoS in stationary phase

of growth [19] and 7 other loci regulated after exposure

to low pH [14]. As a consequence, rpoS mutants are

defective of prolonged survival in nutrient-depleted
media or survival in low pH environment. Genes regu-

lated by RpoS in E. coli are better described [21] and

it can be expected that majority of genes regulated by

RpoS in E. coli will be regulated in the same manner

in Salmonella.

The rpoS regulon in Salmonella in stationary phase is

responsible for stress tolerance including resistance to

pH. RpoS is also involved in the log phase Salmonella

acid tolerance response. To observe the log phase

rpoS-dependent acid resistance, the adaptation period

must last for at least 60 min. During such a period of

adaptation (upto 120 min), a subset of about 50 proteins

is induced [22], seven of which are RpoS-dependent [14].

Shorter moderate acid adaptation also increases total

acid resistance of Salmonella but this process is rpoS-

independent and requires functional Fur protein (see
below). During the adaptation period, the intracellular

level of RpoS increases. Because RpoS competes for

the core RNA polymerase with the other sigma subunits

[23], when more RpoS is available in the cytoplasm,

more RNA polymerase interacts with it resulting in

greater induction of the RpoS regulon.

Consistent with the central role of rpoS in the stress

response in Salmonella is its complex regulation. Total
rpoS expression is controlled at all levels starting from

transcription [24–26], regulation of mRNA stability,

translational efficiency, and regulation of RpoS proteol-

ysis. Stability and efficiency of translation of rpoS

mRNA is controlled by small regulatory RNAs such

as DsrA or RprA [27–29]. Interestingly, the DsrA

RNA in conjunction with Hfq can positively regulate

RpoS translation but suppress H-NS expression by sta-
bilisation of rpoS mRNA but increasing turnover of hns

mRNA [27]. In log phase acid-shocked Salmonella, the
level of RpoS can increase by increased translation

through a mechanism independent of DsrA and RprA.

The 566 nt untranslated 5 0 end region (UTR) of the rpoS

mRNA controls acid shock-induced translation. Except

for the initial 51 nucleotides of the mRNA, the remain-

ing part of the untranslated region is essential for acid
induced increases in translation, probably due to the

formation of competing stem loop structures of UTR

of rpoS mRNA in response to acid shock [30]. Thus,

on passage through the stomach transcription of the

whole set of rpoS-regulated genes is likely to be initiated,

with associated increases in resistance to a number of

other stresses. The pH of the small intestine is between

6 and 7, due to the presence of organic acids including
short chain fatty acids (SCFA) produced by the normal

microflora, mainly lactic acid bacteria and buffered by

bicarbonate ions. These acids can be toxic to Salmonella;

however, acid tolerance, induced in the stomach, also

protects Salmonella against their action [31]. As a corol-

lary, contact with increased concentrations of SCFA

also results into increased acid resistance in Salmonella

[32] which may, thus, maintain a degree of acid resis-
tance prior to entry of Salmonella into host cells and

the phagolysosome where pH values are around 5. Inter-

estingly, SCFA also induce expression of the spv genes

[33], known to be necessary for Salmonella intracellular

survival. Salmonella can therefore utilise changes in pH

to monitor the environment and modulate the infection

process.

RpoS levels can also increase by decreased protein
degradation. This is dependent on the ClpXP protease

complex and MviA (RssB) [12,34,35]. RssB is a response

regulator in which the phosphorylated form exhibits a

high affinity for RpoS and makes it available to proteo-

lytic degradation by ClpXP [36]. Mutants with inacti-

vated mviA (rssB) or clpP thus accumulate higher

levels of RpoS even in non-stressed cells and are gener-

ally more acid resistant [12].
rpoS null mutants are attenuated for mice both after

per oral and intraperitoneal routes of infection [37].

Nickerson and Curtiss found that RpoS-regulated genes

are essential for colonisation of gut-associated lymphoid

tissue despite the fact that the rpoS mutant colonised the

gut as efficiently as did the wild-type strain [38]. This

would indicate that rpoS mutants are attenuated mainly

due to the regulation of spv genes during the systemic
phase of disease and not due to decreased acid resistance

during passage through stomach. Consistent with this

are observations showing that ClpP or MviA mutants,

with increased RpoS levels and increased acid resistance,

are also of attenuated virulence for mice [12,39]. In

chickens the situation seems to be different from mice.

We did not find a difference in virulence of the wild-type

strain and rpoS mutants of S. typhimurium and S. ente-

ritidis for chickens after oral infection [40]. Another

experiment showed that of three wild-type strains with
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a naturally defective rpoS gene, only two were attenu-

ated for chickens while one of them was fully virulent

[41]. Whether acid pre-adaptation of Salmonella in the

crop of birds, which is missing in mammals, plays any

role in these apparently contradictory results in mice

and chicken remains unclear.

2.2. Fur and the acid stress response

The Fur protein is usually linked to the regulation of

bacterial iron metabolism. Upon complexing with Fe2+,

Fur recognises a specific DNA sequence, the fur box and

binds to it. The consensus fur box is 19 bp long GAT-

AATGATAATCATTATC sequence and it is most fre-
quently found between the �35 and �10 sequences of

sigma 70 promoters. When Fe2+–Fur is bound to the

fur box, gene transcription is prevented. If iron becomes

limiting, Fe2+ dissociates from the complex making Fur

unable to bind and thus allowing the transcription of

normally repressed genes. Because the Fur regulon in-

cludes genes for iron uptake and transport, such regula-

tion results in increased expression of genes for the
efficient iron uptake only when iron is a growth-limiting

factor [42]. Despite the fact that Fur is primarily a neg-

ative regulator, it can also act as a positive regulator

since at least nine proteins require the presence of both

Fur and iron for their expression and six proteins re-

quire a functional Fur free of iron for their expression

[43]. However, in such cases it is not clear whether Fur

directly regulates such genes or whether this may be
caused by the indirect action of Fur as a negative regu-

lator of a second negative regulator.

Surprisingly, it was found that fur mutants show re-

duced adaptation to acidification [2,43]. Proteins regu-

lated by Fur in response to iron starvation or low pH

form two distinct clusters with the exception of seven

proteins which are influenced by both these factors. Like

RpoS, Fur is also involved in the acid tolerance response
of log phase cells [14,43], and predominantly responds

to organic acid stress [6]. Unlike RpoS, Fur is essential

for rapid but transient induction of a set of proteins at

�pH 5 which allows Salmonella to survive subsequent

challenge at pH 3. This set of proteins is induced 20–

40 min post-exposure to pH 5 but it disappears after

60 min exposure, during which time RpoS-controlled

systems of ATR are induced [14,22].
Why Fur integrates the iron and pH responses is not

known. A possible explanation for this observation is

that in the acid environment, Fe3+ is more easily avail-

able and consequently, intracellular iron concentration

increases. However, experimental increases or decreases

of iron at neutral pH did not result in increased acid

resistance in either Salmonella or Helicobacter pylori

[44,45], and pH-regulated genes do not respond to iron
availability [9]. Finally, Hall and Foster showed that

the iron and acid regulation of Fur can be separated
genetically. Mutation H90R of the Fur protein sequence

resulted in the mutant showing a deregulated iron re-

sponse but still being capable of an acid tolerance re-

sponse. Histidine 90 of the Fur primary structure is

therefore indispensable for iron-dependent regulation

but is not necessary for pH-dependent regulation [45].
None of this, however, explains why evolution se-

lected for Fur sensing both iron concentration and pH.

Although iron is the fifth most important ion for the liv-

ing cell, its excess can be toxic. The primary reason for

this is Fenton�s reaction during which Fe2+ is responsible

for generation of toxic hydroxyl radicals from hydrogen

peroxide which can damage cellular structures [46]. Be-

cause exposure to low pH also leads to oxidative stress,
it is thus possible that the unifying action of Fur lies in

its protection against oxidative damage. This may be

supported by observations in E. coli where levels of fes

or ydiEmRNA, genes controlled by Fe–Fur, were found

to be the same in fur mutants as in the wild-type strain

when treated with H2O2 [47]. If oxidative stress is caused

by excess of iron, this could lead to the cell attempting to

limit iron uptake. Recently, Fur has been associated also
with the response and resistance to nitrosative stress

[47,48]. Furthermore, a number of Fur protein molecules

per bacterial cell (5000–10,000) is much more than that

of typical transcriptional regulators [49]. It is therefore

possible that the function of Fur is slightly different from

more usually understood regulatory proteins. Little is

known about identity of acid-induced Fur-regulated

genes [9]. As a result of this, it would be interesting to
compare the promoter sequences of known Fur-regu-

lated genes responsive to iron restriction, acid pH and

nitrosative stress and analyse the presence or absence

of fur boxes in them. And the most surprisingly, despite

the in vitro results showing clearly a role for Fur in

different stress responses, a furmutant of S. typhimurium

SL1344 was only weakly attenuated both after per oral

and intra-peritoneal application [50]. Although question
remains to what extent S. typhimurium SL1344 is suitable

for creating fur deletions since the SL1344 clone

available in our laboratory, at least, is of quite an unu-

sual morphology (Fig. 1) and since fur mutants are

known to form filamentous cells [46], it cannot be ex-

cluded that SL1344 is naturally fur deficient or fur mis-

regulated.

2.3. PhoPQ and the acid stress response

phoPQ is a two-component signal transduction sys-

tem present not only in Salmonella [51] but also in

E. coli, Shigella and Yersinia [52]. PhoQ is a mem-

brane-bound sensor protein and PhoP is the transcrip-

tional regulator. PhoQ senses Mg2+ and Ca2+

concentration and when these decrease to micromolar
levels, it phosphorylates PhoP [53,54]. The PhoPQ

regulon consists of �40 proteins, most of which are



Fig. 1. Phosphotungstic acid stained 24 h old cultures of S. typhimurium. Left panel: typical shape of S. typhimurium LT2 cell. Right panel: elongated

cell of S. typhimurium SL1344. Figures kindly provided by P. Kulich, VRI Brno, Czech Republic.
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positively regulated. PhoP-suppressed genes include
prgH and fliC [55–57], PhoP-activated genes include

pmrAB, another two-component signal transduction

system involved primarily in the protection of Salmo-

nella to cationic antimicrobial peptides (CAMP, see be-

low) [58], mgtA and mgtCB encoding Mg2+ transport

systems, phoN, a periplasmic non-specific acid phospha-

tase, pcgL encoding a periplasmic D-Ala–D-Ala dipepti-

dase, or pagL, pagP and pgtE which contribute to
increased resistance to CAMPs [59–62].

The phoPQ regulon is essential for Salmonella intra-

cellular survival where it increases resistance to antimi-

crobial peptides [63], suppresses SPI-1 encoded genes

necessary for Salmonella entry to non-professional

phagocytic cells [56,57] and contributes to the expression

of SPI-2 genes [64] although the SPI-2 regulation is con-

fusing and at least some of the SPI-2 genes can be ex-
pressed independently of PhoPQ [65].

Although the main signal which controls expression

of the phoPQ regulon is low Mg2+ concentration [62],

moderate pH and low ionic strength are also known to

influence expression of this regulon [66]. phoP was

among the first genes shown to be involved in the acid

tolerance response as a mutation in phoP eliminated

adaption to low pH [3]. Later it was shown that the
main role of the phoPQ-dependent acid tolerance re-

sponse is Salmonella protection to inorganic acid stress

[6]. This is consistent with PhoPQ activation within

the Salmonella-containing vacuole, the environment of

which is expected to be of relatively low complexity

and in which acid stress can be caused by an increase

in H+ concentration.

2.4. OmpR/EnvZ and the acid stress response

The OmpR/EnvZ signal transduction system is usu-

ally associated with osmolarity-dependent regulation

of the OmpC and OmpF porins. Under low osmolarity,

OmpF is preferentially synthesised and under high

osmolarity OmpC is one of the major outer membrane

proteins [67]. The changes in osmolarity are sensed by
EnvZ. In the presence of a signal, EnvZ autophosphory-
lates at histidine 243 and transfer the phosphate to
aspartate 55 of OmpR [68]. Phosphorylated OmpR

binds to DNA and activates transcription of target

genes. ompC was found to be induced also upon Salmo-

nella shift to low pH and such induction was dependent

on OmpR [9]. This effect is also common to E. coli [69].

Interestingly, EnvZ was not absolutely necessary for

OmpR-dependent acid induction of ompC and ompF

[69] suggesting that unlike osmolarity, the EnvZ sensor
is not required for full expression of the pH-dependent

OmpR regulon. In Salmonella, ompR has been shown

to be induced by low pH and the induction could be ob-

served at the mRNA as well as the protein level [8].

ompR can be transcribed from two promoters, one being

used primarily at neutral pH and the other at low pH [7].

Our results with a ompR-luxCDABE promoter fusion

also show that in S. typhimurium expression of OmpR
responds to increases in osmolarity only to a small ex-

tent while it is induced more than tenfold in response

to acidification (Rychlik and Gregorova, unpublished).

At moderate pH values of around 5.8, phosphorylation

of OmpR is dependent on EnvZ whereas at lower values

down to pH 4, phosphorylation becomes dependent

mainly on acetyl phosphate [8]. Besides regulation of

target genes, the phosphorylated OmpR also binds to
its own promoter and thus further stimulates its own

transcription [7]. Unlike RpoS and Fur which are

important to the adaptation of log phase Salmonella

cells to changes in external pH, OmpR is central to sta-

tionary phase-inducible acid tolerance [1]. ompR mu-

tants are capable of adapting to low pH in log phase

growth but are unable to improve their low pH fitness

in stationary phase [8,70].
Interestingly, OmpR/EnvZ also regulates both SPI1

and SPI2 encoded genes. SPI1 genes are regulated

through the regulator HilA [71] and SPI2 genes are reg-

ulated through the SsrAB regulators [72,73]. Acid shock

in the stomach can be translated through OmpR into the

induction of SPI1 genes essential for the invasion of epi-

thelial cells. pH values approaching 5 inside the Salmo-

nella containing vacuole can be translated by OmpR
into SPI2 induction. Organic acid acidification should



Table 1

Acid stress response regulators

Acid stress Status of a cell Adaptation Central regulator Role in

Inorganic acid PhoPQ Virulence

Organic acid Stationary phase OmpR Virulence

Exponential phase 20 min at pH 5 Fur Stress

60 min at pH 5 RpoS Stress

? ? ? OxrG ?

Acid induction of phoPQ and ompR influences also the regulation of Salmonella virulence factors.

1026 I. Rychlik, P.A. Barrow / FEMS Microbiology Reviews 29 (2005) 1021–1040

D
ow

nloaded from
 ht
lead primarily to OmpR activation of hilA while inor-

ganic acid stress should lead to ssrAB activation inside

the eucaryotic cell in the nutrient-deprived environment.

Thus OmpR/EnvZ, in addition to PhoPQ, seem to con-

vert pH decreases into the regulation of different viru-

lence factors while the primary role of rpoS and fur

appears to be protection against acid stress itself

(Table 1).
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3. Salmonella inside the gut

When Salmonella leaves the stomach it becomes ex-

posed to several new stresses to which it must respond
to survive. It is exposed to multiple external stress fac-

tors, including increase in osmotic pressure, which alters

folding of proteins present in the outer membrane and

periplasm. Outer and cytoplasmic membranes are sub-

jected to the action of bile secreted by the gall bladder

into the duodenum. In addition oxygen concentration

gradually decreases and enteric pathogens induce anaer-

obic respiration [74,75]. Inside the small and large intes-
tine, Salmonella has to cope increasingly with the

presence of other microorganisms, components of the

normal microflora. The microflora is able to passively

restrict Salmonella growth by creating a nutrient-

depleted environment, by releasing by-products of their

metabolic activities such as propionate or butyrate,

which can be harmful to Salmonella, or by production

of bacteriocins. Salmonella is also able to sense the pres-
ence of other bacterial species via quorum sensing com-

munication pathways.

3.1. Heat and outer membrane shock

Since the optimal growth temperature for Salmonella

is 37 �C, the mammalian body temperature probably

does not induce the expression of stress regulatory path-
ways. This may, however, be the case when Salmonella

infects avian hosts, including chickens, in which the

body temperature is nearer 42 �C. When Salmonella is

exposed to temperatures exceeding 40 �C, heat shock

proteins are induced. The promoters of genes coding

for the heat shock proteins differ considerably from

the sigma 70 promoters and contain the consensus se-

quence CTTGAAA at position �35 and CCCCAT at
�10 relative to the transcriptional start. Such promoters

are recognised by the alternative sigma factor, sigma H,

the heat shock-specific sigma subunit of RNA polymer-

ase [76–78]. Heat shock proteins belong to two main

classes – chaperones required for folding and/or refold-

ing of misfolded proteins, and proteases which degrade
misfolded proteins. The former group includes GroEL/

ES, DnaK/DnaJ and Ags chaperones [79–81], the latter

group includes proteases such as HtrA or ClpP [82,83].

Despite the different function of chaperones and prote-

ases, both help to maintain protein functionality under

stressful conditions. Although these proteins are fre-

quently linked with heat shock, they are in fact essential

for protein repair under all stressful conditions. It is not
surprising, therefore, that mutants in protein repair are

frequently attenuated in virulence for mice, primarily

because of their decreased ability to resist the bacterici-

dal agents produced by macrophages [80,84–86].

Heat shock can be understood as a stress inflicted on

the bacterial cell from the outside and thus occurring on

the outer side of cytoplasmic membrane. Besides sigma

H, Salmonella encodes another alternative sigma factor,
sigma E which is essential for Salmonella survival under

extra cytoplasmic stress. The origin of such stress can be

different, either heat or cold shock [87], activity of anti-

microbial peptides [88] or oxidative stress [89]. RpoE is

also necessary for the increased stress resistance associ-

ated with stationary phase cells [90] and consistent with

this, the amount of RpoE increases in stationary phase

cell. The signal for this is the presence of misfolded pro-
teins. RpoE is therefore upregulated in dsbA or sodCI

mutants [89] in which greater amount of misfolded pro-

teins are expected. rpoE mutants are strongly attenuated

for mice, both after per oral and intra-venous applica-

tion. The level of attenuation is so great that infection

with rpoE mutants does not even raise a protective

immunity against subsequent challenge with the wild-

type strain [88].

3.2. Osmotic shock

When Salmonella is shifted to an environment under

high osmotic pressure, the bacterium aims to increase

internal osmotic pressure to maintain cell turgor. This

happens by the cytoplasmic accumulation of solutes

which are tolerated by the whole cellular machinery.
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Potassium is the preferred ion for uptake by the cell [91].

The ionic balance is then balanced by intracellular syn-

thesis of glutamate [92–94]. If the environment is limited

in potassium or if the osmotic pressure cannot be regu-

lated by potassium alone, Salmonella can increase up-

take or biosynthesis of other osmoprotectants such as
betaine (N,N,N-trimethyl glycine), proline and trehalose

[92,95]. In a response to increased osmotic pressure, Sal-

monella can also modify the composition of its outer

membrane. This process is sensed by a two-component

signal transduction system consisting of EnvZ sensor

and OmpR response regulator. As a consequence, in

high salt concentration, the OmpF porin is replaced by

the OmpC porin which forms outer membrane pores
with a smaller diameter thus decreasing the influx of sol-

utes into the periplasm [96,97].

3.3. Response to bile

Bile is produced in the liver and consists mainly of

bile salts, cholesterol and bilirubin. Due to its strong

detergent action against lipids, it also has a strong anti-
microbial effect. Little is known about the effects of bile

on Salmonella. It is thought that lipopolysaccharide

(LPS) and active efflux of bile components out of the cell

are the primary defense barriers against its action. The

importance of LPS has been demonstrated [98,99]. Be-

sides this, only a limited number of genes are known

to contribute to bile resistance. This includes phoP

[100], tolR [98] and wec [99]. phoP is a member of a
two-component signal transduction system which is also

involved in low pH resistance and resistance to cationic

antimicrobial peptides. Resistance to these peptides is

mostly dependent on lipid A modification of the outer

leaflet of the outer membrane [101], which probably re-

duces permeability not only to CAMPs but also to com-

ponents of bile. The tol genes encode an outer

membrane protein the function of which is to maintain
membrane integrity [102,103]. Tol also serves as a recep-

tor for certain phages [104] and as a colicin transport

channel [105,106]. The WecA and WecB proteins are

responsible for the synthesis of the Enterobacterial com-

mon antigen, a glycolipid different from LPS present in

the outer membrane. These findings suggest that the

main defense of Salmonella is based on not allowing bile

components to pass through the outer membrane.
A limited amount of bile probably crosses both the

outer and cytoplasmic membranes and reaches the cyto-

plasm. Recently a mutant in acrAB, defective in an

efflux pump was shown to be sensitive to low concentra-

tions of bile [107] suggesting an alternative defense

mechanism against bile. Bile also serves as a signal sup-

pressing the invasion machinery of Salmonella [108]. It is

expected that such regulation results in Salmonella not
expressing genes from SPI1 as long as it remains local-

ised in the lumen of the gut. Once Salmonella have
efficiently interacted with the mucus layer where bile

concentration is expected to be lower, the SPI1-encoded

type III secretion system is induced and Salmonella be-

comes capable of invading epithelial cells.

In 1–3% of Salmonella-infected human individuals,

infection of Salmonella serovars Typhi and Paratyphi re-
sults in a carrier state. In these cases, one of the most

important sites for Salmonella survival appears to be

the gall bladder. Salmonella may colonise the surface

of gallstones forming a biofilm resistant to the inhibitory

activity of bile. Genes essential for such colonisation in-

clude galE, luxS and those coding for flagella [109,110].

For flagella, it is expected that these allow Salmonella to

come into contact with the gallstone as well as enabling
contact between different Salmonella cells forming a bio-

film. The function of the other two genes is unknown in

this context. Experimental work with S. Choleraesuis,

which does not generally colonise the chicken gut also

showed preferential localisation in the gall bladder in

the small number of chickens where establishment had

taken place [111].

3.4. Switch from aerobiosis to microaerobiosis and

anaerobiosis inside the gut

As Salmonella passes through the intestine, oxygen

availability decreases and in the large intestine the envi-

ronment is essentially anaerobic although this is less

likely to be the case close to the mucosa. Salmonella is

therefore required to gradually switch from aerobic to
a predominantly anaerobic metabolism, rather as a nat-

ural response to a gradually changing environment than

as a stress response. There are two major regulatory cir-

cuits, dependent on Fnr and ArcAB, respectively [112].

ArcAB represents a two-component signal transduction

system while Fnr is a cytoplasmic protein reacting to

subtle changes of oxygen concentration in the cyto-

plasm. Although the Fnr and ArcAB regulatory systems
can work independently, they frequently operate in a co-

ordinated fashion to control gene expression.

ArcB is an inner membrane sensor protein monitor-

ing changes in the redox status of membrane located

quinones [113]. After oxidation of two cysteine residues,

ArcB autophosphorylates, transfers the phosphate to

ArcA [114] and the activated ArcA-P controls gene tran-

scription. ArcA is most active under microaerobic and
anaerobic conditions [26,115] when it suppresses genes

encoding enzymes of TCA cycle, probably to decrease

respiration under less favourable conditions. This has

two consequences, a decrease in the production of harm-

ful oxygen radicals and saving endogenous energy

sources [116]. The ArcAB system can also act as a posi-

tive regulator by the induction of cydAB (cytochrome d

oxidase) involved in respiration under oxygen-limiting
conditions, and of the cob and pdu operons important

for cobalamin-dependent utilisation of 1,2-propanediol.
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In both these cases, ArcAB regulates expression of these

target genes in association with Fnr [117–120], although

in the case of pdu/cob the collaborative action of ArcAB

and Fnr is indirect. Salmonella can synthetise cobalamin

de novo generally only under anaerobic conditions and

under such conditions, propanediol can be utilised only
with tetrathionate as a final electron acceptor in anaero-

bic respiration. While the cob/pdu operons are controlled

by ArcAB, the ttr operon, which encodes enzymes essen-

tial for tetrathionate respiration, is positively regulated

by Fnr [120,121]. Propanediol utilisation under anaero-

bic conditions is therefore dependent on both ArcAB

and Fnr.

Fnr, in Salmonella also called OxrA, is a cytoplasmic
sensor of oxygen. It is a Fe–S [4Fe–4S] cluster protein

and in the presence of oxygen this cluster is oxidised

in two steps into the [2Fe–2S] form [122,123]. Fnr binds

at promoter sequences usually at position �41 relative

to the start of transcription, although it can also bind

at position �61, �71, �81 and �91 depending on the

particular promoter structure [124]. The sequence recog-

nised by Fnr is palindromic (TTGATN4ATCAA).
When bound to this sequence, Fnr interacts with the

RpoA subunit of RNA polymerase increasing the effi-

ciency of transcription [125]. In Salmonella grown under

anaerobic conditions, Fnr positively regulates expres-

sion of alternative terminal acceptors [126]. However,

besides its role in anaerobic respiration control, Fnr also

regulates expression of, amongst other things, the ami-

notripeptidase pepT [127] and one of the major porins
in outer membrane, ompD [128].

Both ArcAB and Fnr, due to their regulatory activi-

ties, regulate production of and defense against reactive

oxygen and nitrogen intermediates [116,129,130]. This

would suggest that mutants in arcAB or fnr should show

reduced virulence as such reactive species are experi-

enced by Salmonella in the Salmonella-containing vacu-

ole in eukaryotic cells. However, inactivation of neither
arcAB nor fnr reduces virulence or the ability to colonise

the host by S. typhimurium suggesting that these pro-

teins and their regulons probably are not highly ex-
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pressed in vivo [130,131]. Inactivation of fnr in S. typhi

even increased invasiveness [132].

3.5. Interaction with gut microflora

When Salmonella colonises the gut, it interacts with
the numerically dominant and highly complex micro-

flora. All bacteria produce metabolites which can be

inimical to other bacterial species. Such metabolites

may be (i) simple metabolic byproducts (e.g., short chain

fatty acids), (ii) metabolites produced deliberately to re-

duce growth of competing bacteria (e.g., colicins pro-

duced by E. coli and other related bacteria) and (iii)

metabolites which modify their own metabolism accord-
ing to the size of their own population (quorum sensing)

or the presence of other bacteria. In addition, the mere

presence of gut microflora may result in Salmonella

experiencing difficulties with nutrient uptake and induc-

tion of the stringent response.

3.5.1. Species-specific growth inhibition

It is a matter of debate whether Salmonella colonising
the gut resembles more closely exponentially growing

cells or a culture in a stationary phase. A Vibrio cholerae

culture inoculated into ligated ileal loops was replicating

exponentially for upto 8 h post-inoculation but soon

after, the culture appeared to be in stationary phase

[75]. Resistance to stresses associated with stationary-

phase growth has been largely associated to RpoS-depen-

dent mechanisms [21]. However, stationary-phase
growth, defined as the cessation of increase in numbers,

can be reached either by insufficient carbon source alloca-

tion or due to the lack of electron acceptors [26]. Actually,

in nutrient-rich media in vitro, stationary-phase metabo-

lism is usually rpoS-independent [133]. Instead, systems

involved in nutrient uptake (tdcC, fliM, yhjH, crp) and

microaerophilic respiration (nuo and cyd operons, arcA,

aroA, aroD) are central to stationary phase as inactiva-
tion of either of these genes results in growth non-sup-

pressive (GNS) phenotype [131,133–136]. GNS mutants

are unable to suppress multiplication of the wild-type
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strains when these are inoculated into the mutant�s sta-
tionary phase culture (Fig. 2). However, most of the

GNSmutants had no effect on the ability to compete with

a parental strain in the intestine of newly hatched chick-

ens [131] suggesting that the redox and nutritional condi-

tions in the gut were different and possibly more
anaerobic. Therefore, a further completely anaerobic

in vitro screen for such mutants was performed which

identified a role for flhA, aspA and dcuAB in S. typhimu-

rium [137] and dapF, aroD, sgaT or tatA inS. Hadar [138],

most of them related to nutrient uptake or anaerobic res-

piration. However, even in this case such mutants were

fully competitive in vivo (with the exception of dapF in

S. Hadar), suggesting that respiration is likely to be less
important in the gut of the newly hatched chicken than

substrate-level phosphorylation. A fermentative process

is thus likely to be a major contributor to energy balance

in the gut, as shown by the total inability of ackA and pta

mutants to colonise (Barrow & Lovell, unpublished re-

sults). What therefore is the role of electron transport in

the life of Salmonella since it is assumed, that little active

growth occurs in the environment? Given the non-lactose
fermenting nature of the vast majority of Salmonella ser-

ovars, the original source of these organisms may be rep-

tilian. Since respiration contributes considerably to

energy balance in the tissues of the warm blooded ani-

mals, it may be that this contributes to Salmonella stimu-

lating an active ejection process (gastro-enteritis) after

colonisation of the gut of apparently the ‘‘wrong’’ host.

3.5.2. Stringent response

When Salmonella experiences nutrient depletion

intracellular concentrations of ppGpp increase. This

metabolite serves as an alarmone and it is one of many

factors involved in the expression of rpoS. ppGpp is pro-

duced by RelA and SpoT. The RelA protein is associated

with 1–2% of ribosomes and senses the amounts of dis-

charged tRNAs coming into contact with the ribosome.
If the ratio of discharged:charged tRNAs increases,

RelA catalyses ppGpp production. The SpoT protein

also senses the ratio of charged:discharged tRNAs and

as a result of this, produces ppGpp. SpoT is also thought

to be involved in ppGpp degradation. When the concen-

tration of ppGpp increases, synthesis of non-coding

RNA (e.g., rRNAs and tRNAs) is suppressed and

expression of genes coding for enzymes catalysing amino
acid biosynthesis is induced [21,139]. ppGpp also stimu-

lates expression of the alternative sigma subunit of RNA

polymerase, RpoS [140]. Salmonella relA spoT double

mutants are highly attenuated for mice [141,142].

3.5.3. SCFA

Exposure to short chain fatty acids (SCFA), namely

acetate, propionate and butyrate is one of the stresses
which Salmonella experiences when colonising the intes-

tinal tract. Salmonella may experience these acids first in
the crop. Unlike the intestine, the pH in the crop is rela-

tively low (see above), and under these conditions, SCFA

may induce acid tolerance [32,143] prior to entry into the

gizzard (stomach). In E. coli, the genes induced by SCFA

overlap with those of the RpoS regulon although induc-

tion of rpoS itself is not enough for the increased acid
resistance observed since rpoS induced by osmotic shock

by NaCl or sodium acetate did not protect E. coli from

subsequent exposure to pH 3 [143]. PhoP, another regu-

latory protein involved in acid tolerance, is not involved

in induction of acid tolerance by exposure to SCFA as its

deletion can lead to even greater survival in Salmonella at

low pH, consistent with its role in inorganic acid stress

response described above [6].
Individual or mixed SCFA decrease Salmonella

growth rate in vitro [144]. This effect correlates with

the pH of the environment – each SCFA being more

effective at pH 5 or 6 than at pH 7 [145]. Individual

SCFAs differ in their effects on Salmonella invasion of

epithelial cell lines. Butyrate suppresses while acetate

seems to stimulate invasion of tissue culture cells

[146,147]. Acetate, but not propionate or butyrate, was
shown to induce hilA and invF regulators of SPI1 at neu-

tral pH which may explain different invasiveness of Sal-

monella grown in the presence of different SCFAs. These

in vitro studies are consistent with the results of experi-

mental infections of birds fed different SCFAs. Feed en-

riched with acetate resulted in increased Salmonella

colonisation of the host while butyrate-fed birds were

more resistant to intestinal colonisation by Salmonella,
despite the fact that such treatment did not influence

Salmonella invasion into deeper tissue such as liver

and spleen [148].

3.5.4. Bacteriocins

Bacteriocins are peptides of microbial origin which

are produced by both gram-positive and gram-negative

bacteria, including major components of the gut flora
such as Lactobacillus sp., Enterococcus sp. and E. coli

[149,150]. Production of bacteriocins by particular

microorganisms is frequently linked with their ability

to decrease Salmonella colonisation of experimental ani-

mals [151] although much earlier work tended to suggest

that they were unimportant. Production of colicins en-

coded by the ColV plasmid increases colonisation ability

in E. coli but this may be related to iron acquisition
genes [152–154]. However, essentially nothing is known

about Salmonella defense against bacteriocins. Overex-

pression of the mar locus, encoding an efficient efflux

pump, results in increased resistance to microcin 24

[155]. It may be speculated that, because some of the

bacteriocins utilise iron uptake receptors for their trans-

port into a cell [156–158], expression of the Fur regulon

in Salmonella may produce increased or decrease resis-
tance of Salmonella to such bacteriocins. However,

whether the presence of sublethal levels of bacteriocins
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is sensed and by what mechanisms and whether this re-

sults in increased bacteriocin resistance of Salmonella

similarly to acid tolerance response, or whether such

stress is translated into a resistance against other forms

of stress or suppression of Salmonella virulence factors,

is completely unknown.

3.5.5. Quorum sensing

Numerous bacterial species have been shown to be

able to sense the density of their own population

through the production and perception of specific

metabolites termed autoinducers. When the autoinducer

concentration reaches a threshold, when the bacterial

population reaches a certain quorum, specific metabolic
pathways are induced. In gram-negative bacteria two

main systems are used, utilising either autoinducer 1

(AI-1) or autoinducer 2 (AI-2). AI-1 is an acyl homoser-

ine lactone and is generally species specific. AI-2 based

quorum sensing is dependent on the production of a

furanone-like compound and is believed to be used for

wider interspecies communication as AI-2 activity has

been detected in many different bacterial species. The
AI-1 dependent system typically consists of a LuxR sen-

sor and regulator, and LuxI, the AI-1 synthase. A key

protein for the synthesis of AI-2 is LuxS. Interestingly,

S. typhimurium harbours in its genome luxR and luxS

homologues but no luxI homologue. This suggests that

quorum sensing in Salmonella may be different from

other bacterial species.

3.5.5.1. Quorum sensing in Salmonella and sdiA. In S.

typhimurium the homologue of luxR is sdiA. However,

there is no obvious homologue of the AI-1 synthase luxI

in the S. typhimurium genome. This, together with se-

quence analysis, led to the conclusion that sdiA was ac-

quired by E. coli and S. typhimurium by horizontal

transfer [159] which may explain some of the unusual

properties of sdiA described below, mainly its ability
to react with autoinducers produced by other bacterial

species. Simultaneously, horizontal transfer without

the luxI homologue would enable separate evolution

of sdiA resulting in its unique characteristics in

Salmonella.

The sdiA gene was first described in E. coli as a sup-

pressor of the division inhibition effect in a minCD mu-

tant. Suppression was obtained after overexpression of
sdiA from a multicopy plasmid leading to overexpres-

sion of the ftsQAZ locus which resulted in conversion

of aberrant filamentous cells back to the typical rod

shape [160,161]. In parallel, a search for an E. coli

autoinducer was made. Surprisingly, there were reports

on both SdiA-dependent up- or downregulation of the

ftsQAZ promoter by spent (conditioned) medium ob-

tained from E. coli cultures [161,162]. However, these ef-
fects were quite weak and the induction or suppression

was never greater than twofold. In E. coli, SdiA was also
shown to contribute to virulence gene regulation in

enterohaemorrhagic strains of serotype O157:H7 [163].

The same authors also noted that upon overexpression

of sdiA, motility in 0.25% agar decreased.

Overexpression of sdiA in E. coli also led to increased

resistance to xenobiotics through the activation of the
AcrAB multidrug efflux pump [164,165]. Genome-wide

microarray analysis in E. coli confirmed these observa-

tions showing that sdiA overexpression leads to in-

creased expression of ftsQAZ, acrAB and suppressed

flagella expression [166].

sdiA in Salmonella was first described by Ahmer et al.

[167] when this group suggested a link between sdiA and

positive regulation of ten genes on the virulence plasmid
including the previously characterised rck gene responsi-

ble for increased resistance to complement killing and

adhesion to epithelial cells [168]. Although sdiA in

S. typhimurium seems to be suppressed by conditioned

medium to the extent observed in E. coli [169], no AI-

1 like metabolite was ever detected also in S. typhimu-

rium conditioned media. Ahmer and his colleagues

therefore suggested that SdiA may sense autoinducers
produced by other bacterial species [170,171]. In parallel

to these studies, we showed that a sdiA mutant is not

defective in stationary phase survival [131] but is of in-

creased virulence for mice [169]. The fur box 19 bp up-

stream from the sdiA start codon was also identified

and its function in relationship to iron deprivation by

dipyridyl was shown [169]. Because the Fur protein

which binds the fur box is also involved in acid resis-
tance [43], we extended our experiments and found that

sdiA is induced in S. typhimurium when the bacterial cul-

ture is inoculated in LB at pH 4 under fully aerobic con-

ditions [172]. SdiA in Salmonella and E. coli may

therefore integrate several external stimuli. It can sense

sudden reductions in pH. Upon its upregulation, the Ac-

rAB efflux pump is induced [165,166] possibly increasing

resistance of Salmonella to bile. When acid stress is alle-
viated after leaving the stomach, induced SdiA may re-

act with autoinducers produced by other bacteria

present in the gut and may induce rck resulting in in-

creased attachment to epithelial cells. This would be par-

ticularly important in the distal parts of the ileum where

M cells are concentrated.

3.5.5.2. Quorum sensing in Salmonella and luxS. Numer-
ous gram-positive as well as gram-negative bacteria

including Salmonella can produce AI-2 [173,174]. luxS

gene was identified as essential for AI-2 production in

E. coli and S. typhimurium [175]. The highest AI-2 pro-

duction by S. typhimurium is observed in late exponen-

tial phase and after entry into stationary phase the AI-2

is degraded. The presence of glucose in nutrient rich

media, low pH and high osmolarity stimulates AI-2
production and release from Salmonella cells

[176,177]. The exact biological function of LuxS and
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AI-2 in Salmonella is unknown. In E. coli and Shigella

the function of AI-2 has been investigated in greater de-

tail. In E. coli, the type III secretion systems encoded

by the LEE1 and LEE2 loci are stimulated threefold

by the addition of conditioned medium. However, no

experimental animal infections were carried out using
E. coli luxS mutants [178,179]. In Shigella, conditioned

medium also stimulated virulence-related genes includ-

ing virB but invasion of a luxS mutant in tissue culture

was unaffected. Similarly, luxS mutants of Shigella were

capable of causing keratoconjuctivitis in the Sereny test

in guiney pigs [180].

3.5.5.3. Biological significance of quorum sensing in

Salmonella. The biological function of quorum sensing

in Salmonella remains unclear. Initially, it was specu-

lated that quorum sensing may prevent full expression

of virulence before the size of the bacterial population

becomes high enough to successfully deal with the im-

mune system of the host [181,182]. However, recent

findings in V. cholerae showed that quorum sensing

may act also to downregulate virulence after successful
colonisation of the host to decrease continued damage

to the host [183]. Interestingly, it has been shown that

Hha, a negative regulator of hilA in S. typhimurium

[184], is induced tenfold upon exposure of E. coli to

conditioned medium containing AI-2 [185]. Since hilA

is a central regulator of Salmonella invasion into the

epithelial cells, quorum sensing may act as a negative

regulator of virulence also in Salmonella. This can be
further supported by the observation of slightly in-

creased virulence of S. typhimurium sdiA for mice after

per oral infection [169].

It is also not clear why LuxI homologues are miss-

ing from the S. typhimurium genome and whether luxS

and sdiA interact in Salmonella. Overlap of AI-1 and

AI-2 signalling has been documented in V. harveyi in

which these two systems co-regulate bioluminescence
[186,187]. However, the vast majority of bacterial spe-

cies utilise exclusively either AI-1 or AI-2 based quo-

rum sensing. Our recent observations show that sdiA

in Salmonella is induced in environments at pH values

lower than 5 and such induction was not observed in

an luxS mutant [172]. Interplay between sdiA and luxS

was described also in E. coli [179]. Consistent with our

observation, several reports have appeared indicating
that, in different bacterial species, luxS is induced upon

acidification [177,188,189]. Next, quorum-sensing sys-

tems have been repeatedly shown to overlap with iron

metabolism or uptake [190,191]. It is therefore possible

that in Salmonella the quorum-sensing machinery,

upon horizontal acquisition of the LuxR homologue

only [159], evolved into a system for sensing of acidic

environments and response to iron although the rea-
sons for and consequences of this are currently un-

known but are likely to be associated with
colonisation and virulence. Acid-associated sdiA induc-

tion is definitively not a question of a mere survival

since a sdiA deletion mutant survives as well as does

the wild-type strain in LB, pH 4, for a week (I. Rych-

lik, unpublished observations).

3.6. Cationic antimicrobial peptides

After Salmonella passage through the acid stomach

environment and the small intestinal environment rich

in bacterial microflora, the microorganisms finally ap-

proach epithelial cells which may be protected by anti-

microbial agents including cationic antimicrobial

peptides (CAMP). CAMP are produced by mammalian,
bird, insect and even plant cells in response to microbial

infection. In all of these living systems, CAMPs repre-

sent a central component of the innate immune system

which can protect cells against microbial infection with-

in minutes of contact with infectious agents. CAMP are

found on a number of mucosal surfaces including the

epithelium of the respiratory and intestinal tracts [192]

and are likely to affect colonisation and infection [193].
They are also present in azurophilic granules of neutro-

phils where they represent the most potent non-oxida-

tive killing mechanism [194]. The production of some

of them may be induced upon contact with Salmonella

[195].

CAMP are peptides 15–50 amino acid long. They are

active against both gram-negative and gram-positive

bacteria as well as enveloped viruses and some parasites.
Structurally they can be classified into four major clas-

ses, a-helical, b-sheet, extended structure and looped

[194]. Regardless of their structure they are known to

interact with negatively charged lipid membranes. In

gram-negative microorganisms they interact with lipid

A of LPS on the outer leaflet of the outer membrane.

After the initial electrostatic interaction they flip into

the lipid bilayer [196]. Once the first molecule of CAMP
is inserted into the outer membrane, others interact in a

co-operative manner forming channels. Gaining access

to the periplasmic space, CAMPs are thought to interact

with the cytoplasmic membrane in a similar manner

forming channels which results in a decrease of mem-

brane potential, leakage of biologically active chemicals

and cell death. This is the most probable mode of action

of most of the CAMP although other mechanisms can-
not be ruled out as some CAMPs can effectively translo-

cate across artificial membranes [197] and therefore may

affect and destroy targets inside bacterial cell. Because of

a strong affinity of CAMPs for LPS, killing of bacteria

does not result in massive LPS release and therefore

pro-inflammatory cytokine responses are not induced,

unlike the situation of antibiotic killing [198].

Salmonella, as an intestinal and intracellular parasite,
has to deal with CAMP action when colonising the host.

The Salmonella response to CAMP centres on either
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modification of the lipid A structure or CAMP cleavage

[101]. The most frequent modification of lipid A is its

additional palmitoylation due to the activity of PagP
[196] or biosynthesis of lipid A with 4-aminoarabinose

due to the cooperative activity of the whole pmrHFIJKL

operon [58,199]. The PgtE protein of S. typhimurium can

inactivate CAMPs by proteolytic cleavage [200]. Salmo-

nella is also capable of 3-O-deacylation of lipid A catal-

ysed by PagL, although the biological meaning of this

modification is not clear because pagL mutants display

no obvious phenotype [201]. All of the genes involved
in CAMP resistance belong to the phoPQ regulon

although the pmrHFIJKL or ugd genes are regulated

by PhoPQ indirectly through the PmrAB signal trans-

duction system [58,202,203]. This clearly shows that

the PhoPQ regulon is central to Salmonella protection

against CAMP (Fig. 3) although PhoPQ-independent

CAMP resistance has been also described [204]. The

PhoPQ regulon is responsible for most of the CAMP
resistance including the resistance to defensin, magainin,

melittin, mastoparan or cecropin P1 [205]. PmrAB regu-

lates only the 4-aminoarabinose modification of lipid A

and therefore is responsible for the resistance to a smal-

ler subset of CAMPs such as polymyxin [199,202]. RpoS

is not involved in CAMP resistance although the pres-

ence of CAMP is sensed by RpoS but is translated into

increased general stress resistance [206] and not into
CAMP resistance itself.

Resistance to CAMP can be induced in Salmonella by

its exposure to formate, succinate or sub-lethal concen-

trations of CAMP [206,207]. Formate can be produced

by competitive microflora in the intestine and therefore

contact with formate can increase Salmonella resistance

to CAMP prior to its contact with CAMP on the surface

of epithelium or in the phagolysosome of macrophages.
It is no surprise that inability to resist CAMP action

leads to Salmonella attenuation [205]. It is confusing

that CAMPs can suppress SPI1-encoded type III secre-

tion system of Salmonella which is necessary for the en-

try into epithelial cells [206]. This would suggest that

CAMP resistance is mainly essential for intracellular
survival of Salmonella in macrophages where the SPI1-

encoded TTSS is not needed and can be suppressed

[64,208]. This is also supported by the central role of
the PhoPQ regulon in CAMP resistance as it is well de-

scribed that PhoP is induced and activated in low pH,

low magnesium and low ionic strength environment

which is present in macrophage phagolysosomes [63].

However, at least one Salmonella mutant sensitive to

CAMP action in vitro was attenuated after per oral

infection but not after intra peritoneal inoculation [58]

which suggests that there may be a differential Salmo-

nella response to CAMP produced on the epithelial sur-

faces and those produced in the phagolysosome of

macrophages and neutrophils where phoPQ regulon

plays a dominant role (see Fig. 3).
4. Concluding remarks

Salmonella has evolved several overlapping systems

that deal with stress responses, which are of particular

relevance during infection of the host (Fig. 4). Despite

overlapping, acid resistance operates at the top of all

of the adaptations possibly because it is the very first

stress which is encountered by Salmonella immediately

after infection. The central role of acid resistance and

stress can be based on the fact that acid adapted cells
are resistant to a variety of other stresses such as heat

or oxidative stress while heat or oxygen stressed cells

are not resistant to low pH. The central role of the

acid stress may also explain the results of microarray

analysis of V. cholerae inoculated directly into ligated

rabbit ileal loops. In this study, the stress regulators

were not observed among the most expressed genes

[75].
Salmonella cells infecting the host from the environ-

ment are usually not replicating and therefore may

resemble stationary phase cells, which are naturally of

increased resistance to low pH and as such, these cells

are ready for infection. The natural resistance of these

cells can be further potentiated by the low pH present
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in the crop of birds by the induction of the stationary

phase acid tolerance response. Additional defense

mechanisms are induced after contact with bile and

SCFA present in the intestine. These maintain activa-

tion of the low pH stress response mechanisms of Sal-
monella and in addition, induce resistance to

antimicrobial peptides produced by the host cells. Sens-

ing different adverse stimuli always allows Salmonella

to adapt to the stress likely to be encountered and thus

to successfully colonise the host. Key players in Salmo-

nella stress response in intestinal colonisation are

RpoS, PhoPQ, Fur or OmpR/EnvZ, which are not spe-

cific to this genus, showing that the stress adaptation
was already evolved in an ancient ancestor, but

whether this was also a gut coloniser is impossible to

say. Although regulons of individual stress regulators

may have adopted additional functions later in evolu-

tion (such as PhoPQ regulon and its role in Salmonella

virulence), one can imagine that the basic stress resis-

tance is likely to be similar in all microorganisms and

with some caution in interpretation, knowledge from
the Salmonella stress response may perhaps be extrap-

olated to other microbial species. Finally, these regula-

tors are only partly necessary for Salmonella virulence.

The role of oxidative stress response is confusing since
mutations in oxyR and soxRS are not attenuating

(Table 2), although mutations in sodCI or sodCII super-

oxide dismutases are [209,210]. Other stress responsive

pathways such a heat shock contribute to Salmonella

virulence mainly during its intracellular survival.
Stress-related genes which are induced inside macro-

phages include htrA protease and pgtE. Moreover,

within more than 400 ORFs of unknown function

which are upregulated inside macrophage, a number

of stress regulators can be expected [211]. Stress re-

sponse genes are therefore suitable targets for inactiva-

tion, either with a purpose of the construction of

attenuated Salmonella strain to be used for vaccination
against salmonellosis itself, or with a purpose of the

construction of attenuated carrier strain suitable for

the expression of heterologous antigens. For these pur-

poses, inactivation of genes coding for regulators of

acid resistance and resistance to CAMPs seems to be

the most suitable. This also shows which stress regu-

lons are the most important for gut colonisation. An-

other group of target genes are those involved in
stringent response, outer membrane shock and protein

turnover. However, in these it is a question whether the

attenuation of such mutants is due to their reduced

capacity to colonise the gut or whether this is due to



Table 2

Stress regulators and their relationship to virulence in Salmonella enterica: A, attenuated; V, virulent

Protein Function Virulence of the mutant Refs.

RpoE Extracytoplasmic shock A [88]

RpoH Heat shock ?

HtrA Heat shock protease A [84]

ClpP Heat shock protease A [85,86]

DnaK/DnaJ Heat shock chaperone A [80]

GroEL/ES Heat shock chaperone ?

RelA/SpoT Stringent response A [142]

OxyR Oxidative and nitrosative stress V [212]

SoxRS Oxidative and nitrosative stress V [213,214]

OmpR/EnvZ Osmotic shock, acid response A [96]

RpoS Acid pH, SCFA resistance A [10,37]

Fur Acid pH, oxidative and nitrosative stress V [50]

PhoPQ Acid pH, bile salts, CAMP A [40,215]

ArcAB Anaerobiosis/aerobiosis V [130,131]

Fnr Anaerobiosis/aerobiosis V [131,132]

SdiA Quorum sensing V [169]

LuxS Quorum sensing V Rychlik, unpublished
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