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Abstract

Antibiotics were one of the great discoveries of the 20th century. However,

resistance appeared even in the earliest years of the antibiotic era. Antibiotic

resistance continues to become worse, despite the ever-increasing resources

devoted to combat the problem. One of the most important factors in the

development of resistance to antibiotics is the remarkable ability of bacteria to

share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global

scale, such that in theory, any gene in any organism anywhere in the microbial

biosphere might be mobilized and spread. With sufficiently strong selection, any

gene may spread to a point where it establishes a global presence. From an

antibiotic resistance perspective, this means that a resistance phenotype can appear

in a diverse range of infections around the globe nearly simultaneously. We discuss

the forces and agents that make this LGT possible and argue that the problem of

resistance can ultimately only be managed by understanding the problem from a

broad ecological and evolutionary perspective. We also argue that human activities

are exacerbating the problem by increasing the tempo of LGT and bacterial

evolution for many traits that are important to humans.

Introduction

Bacteria have methods of gene exchange that are distinct

from those in eukaryotes, but they still conform to the laws

of evolution by natural selection. When considering the

antibiotic resistance problem, this fundamental point

should not be forgotten (Antonovics et al., 2007). Our real

challenge is to understand the repertoire of processes and

genetic elements that prokaryotes have available to them,

and upon which natural selection can act. Lateral Gene

Transfer, or more recently, Lateral Genetic Transfer (LGT)

(Ragan & Beiko, 2009) is an important process in moving

and rearranging DNA in prokaryotes. The extent of LGT is

substantial, with estimates that up to 25% of some bacterial

genomes can be derived from LGTover evolutionary periods

of time (Ochman et al., 2000). Even over much shorter time

frames, the evolution of genomes by inheritance of large

blocks of DNA from elsewhere can generate phenomenal

amounts of diversity, particularly where selection is very

strong. For instance, Escherichia coli can follow many

different evolutionary paths based on DNA that is present

in only some strains. This diversity is impressive, with the

‘pan genome’ of E. coli encompassing nearly 18 000 genes

despite the fact that the coding content of a single cell of this

species is slightly over 2000 genes (Touchon et al., 2009).

The most overt example of evolution driven by selection

is the selection for antibiotic resistance in pathogens. The

dissemination of resistance genes is a direct consequence of

LGT and this has enormous ramifications for human health.

Indeed, it has been argued that the antibiotic/antibiotic

resistance arms race is one that humans are losing (Falagas

& Bliziotis, 2007). If so, one of the main reasons is that LGT

potentially makes all genes in the microbial biosphere a

single, common and shared resource. In the same way that

wars can be won by nations with the greatest industrial

capacity, so it is that bacteria can draw on a global resource

that, with the means of LGT, can mobilize and transfer

useful genes across physical and phylogenetic distances very

rapidly. Unlike eukaryotes, therefore, bacteria are not de-

pendent on random variation in genes within cell lines as

templates on which natural selection can act. In existing and

newly emerging pathogens, the survival and amplification of
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strains with enhanced pathogenicity may result from the

acquisition of genes that evolved in an environment remote

from humans and in a bacterium that is yet to be cultured.

Managing infectious disease in the long term can only be

achieved by understanding the basic concepts of evolution-

ary biology and how they apply to prokaryotes (Summers,

2002; Nesse & Stearns, 2008).

What is LGT?

The literature on LGT, also known as Horizontal Gene

Transfer (HGT) (Frost et al., 2005), is extensive. However,

most of this literature focuses on the implications of LGT for

the evolution of microbial genomes (Boto, 2010) or on

issues relating to microbial phylogeny and the relevance of

the species concept as it applies to prokaryotes (Bapteste

et al., 2009; Gribaldo & Brochier, 2009). Ironically, despite a

focus on LGT and the arguments for its key role in microbial

evolution, the concept itself is often poorly defined. It is

beyond the scope of this review to fully describe the process,

but some general issues need to be clearly understood. We

define LGT as the process whereby DNA from one cell is

physically transferred from one cell to another without an

absolute requirement for cell division and the incorporation

of that DNA into the recipient’s genome such that it can be

stably inherited. Without reflecting on a specific formal

definition, this would be most people’s understanding of

the process. Thus, LGT requires at least two independent

processes to occur: (1) physical movement of DNA and (2)

incorporation into the receiving genome such as to allow

stable inheritance (Table 1).

Each of these two steps can occur via a relatively small

number of mechanisms. Physical movement occurs by one

of the processes of conjugation, transduction or transforma-

tion and incorporation of DNA either by homologous or

illegitimate recombination, transposition, site-specific re-

combination or by virtue of the transferred DNA being an

independent replicon (Thomas & Nielsen, 2005). A success-

ful transfer outcome requires the agency of at least one of the

processes of movement and at least one of incorporation.

The advent of very strong and near-global selection for

antibiotic resistance has seen a huge increase in the number

of cells carrying the corresponding resistance genes. This

increase in the abundance of specific genes and their

mobilizing elements allows more opportunity for the me-

chanisms of LGT to act cooperatively. Thus, mobile anti-

biotic resistance genes that make up parts of increasingly

complex mosaic structures of identical or related sequences

allow the capture of DNA by combinatorial exchange

involving all of the factors listed in Table 1. Other features

of LGT include the fact that it is both infectious – transfer

can be associated with DNA replication resulting in a net

increase of DNA per cell – and promiscuous – DNA transfer

can occur across species. In environments uncorrupted by

humans, these phenomena are probably more limited, in the

case of promiscuity because barriers to trans-species DNA

movement are known (Thomas & Nielsen, 2005). However,

the strong selection being applied by the use of antibiotics is

likewise seeing a breakdown of some of these natural limit-

ing mechanisms.

Where do antibiotic resistance genes
come from?

Antibiotics are not a human invention. Equally, antibiotic

resistance genes did not evolve in bacterial pathogens as a

defence against humans inventions. Rather, both antibiotics

and the proteins that protect against them have a broad

environmental origin (Martinez, 2008) that dates back

millions and possibly billions of years (Baltz, 2008). The

presence of antibiotics and of genes that confer resistance to

them is an outcome of Darwinian selection in the microbial

world. It has long been regarded that a major role of

antibiotic production in natural environments is to allow

niche exploitation on the part of those bacteria that produce

them and that resistance is a selective response to such

Table 1. The collective forces that drive Lateral Gene Transfer

Mechanisms

of transfer

Mechanisms of

incorporation Mobile elements�

Conjugation 1 – Autonomous

replication

Plasmidsw (1)

Transformation 2 – Transposition Transposons (2)

Transduction 3 – Site-specific

recombination

Insertion sequence common

regions (2)

4 – Homologous

recombination

Integrative and conjugative

elementsw (3)

Gene cassettes (3)

Integronsz

A successful LGT event requires the action of at least one transfer

mechanism and one integration mechanism. All of the mobile elements

named have the potential to move by any of the transfer mechanisms

shown, although plasmids and integrative and conjugative elements

most commonly transfer by conjugation.
�Numbers in brackets identify the major mechanism of incorporation.

That is, the major process by which DNA achieves the ability to maintain

itself in the receiving genome after physical transfer or uptake has taken

place as described in the text.
wPlasmids and integrative and conjugative elements are also agents of

gene transfer because they can move genes between cells by conjuga-

tion as well as integrate them.
zIntegrons lack the ability to integrate autonomously. However, the so-

called mobile integrons have become associated with transposons and

plasmids (or both). In these contexts, they piggyback on the functions of

the associated element. With the acceleration of the evolution of mobile

DNA and the appearance of multiple copies of similar, or identical

elements in the same cell, homologous recombination can be considered

an integrating mechanism for any of the elements listed.
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production on the part of the producers themselves as well

as their potential targets (Waksman & Woodruff, 1940).

There is good evidence to support this hypothesis (Wiener,

1996), although it is also clear that antibiotic production

(Davies et al., 2006) and resistance may have other roles to

play in natural environments, both at the community and at

the cellular level (Groh et al., 2007; Martinez, 2008). With

the many roles that antibiotics play in the microbial bio-

sphere, it has long been expected that antibiotic resistance

genes and bacteria would be very common. In contempor-

ary times, there is substantial evidence that this is true.

Firstly, antibiotic resistance genes have been enriched and

extensively mobilized through the widespread use of anti-

biotics by humans (this will be explored in detail later).

Secondly, tools of the genomics era have provided a window

into the diversity that has always existed in the microbial

biosphere. Early studies predominantly found resistance

genes reflective of those already found in clinical contexts

(Benveniste & Davies, 1973) because they were most easy to

select for and recover. In contrast, contemporary studies

(D’Costa et al., 2006), especially those using metagenomics

approaches that encompass yet to be cultured bacteria,

recover much more diverse resistance genes, including some

that would not be readily be identifiable as such by bioinfor-

matics analysis alone (Riesenfeld et al., 2004; Allen et al.,

2009a). This has obvious ramifications for the management

of antibiotic resistance because it implies that the pool of

resistance genes that cause the current clinical problem may

be the tip of a large iceberg. Compounding this problem is

the fact that novel resistance determinants may already be

undergoing mobilization by processes of LGT (Rowe-Mag-

nus et al., 2001; Nield et al., 2004). The global nature of the

resistance evolution problem is summarized in Fig. 1,

whereby many low copy number resistance genes and

mobilizing elements are distributed throughout the micro-

bial biosphere. Over time (which is very short in the context

of bacterial evolution), the recruitment of some resistance

genes into some mobile elements has seen the subsequent

introduction of both into pathogens. Once this began,

further selection acted to accelerate this process, ultimately

allowing the global spread and amplification of a small

number of genes and mobile element types.

Resistance determinants in vectors,
bacterial species and animal hosts

The accumulation of antimicrobial resistance genes in

pathogens has generated a world-wide crisis in the manage-

ment of infectious disease (Davies, 2007). To control the

spread of existing and novel resistance genes, we need an

understanding of the genetic elements involved, of the

dynamics of LTG and of microbial ecology (Salyers &

Shoemaker, 2006). In turn, this requires the assembly of

many different kinds of data, much of which we do not

yet have.

What kinds of information might be required to under-

stand the ecology of resistance and what is the most efficient

way to approach the problem? The dynamics of resistance

genes must be examined at a variety of different scales

(Baquero, 2009), including the diversity of the genes them-

selves, the families of mosaic DNA elements that carry them,

the bacterial strains and species in which they occur and the

animals that host these bacteria (see Fig. 2). We also need

to assess the probability that potential resistance mechan-

isms exist and the likelihood that genes encoding these

(a)

(b)

(c)

(d)

Fig. 1. Recruitment of resistance genes and mobilizing elements into

pathogens. (a) Diagrammatic representation of the global distribution of

mobile genes, mobilizable genes and mobilizing genetic elements as

found in the preantibiotic era. (b) Pre- and postantibiotic era random

rearrangements bring together mobilizing agents and genes encoding

adaptive genes in niche environments. (c) Mobilizing genes move

through microbial communities including human pathogens (in pink).

(d) With strong selection as occurred in pathogens in the antibiotic era,

selected organisms underwent clonal and global expansion.
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mechanisms can successfully disseminate under conditions

where selection will fix the recipients in populations (Marti-

nez et al., 2007). Above all, we need to move towards a

broader evolutionary and ecological perspective on the

problem (Aminov & Mackie, 2007).

Characterizing the units of transfer (Fig. 2a), particularly

the resistance genes themselves, is an important first step,

and one in which significant progress has been made. For

instance, there have been two recent, comprehensive reviews

on genes for b-lactamases, dealing with their diversity,

mobility and epidemiology (Smet et al., 2009; Poirel et al.,

2010). Similarly, the resistance genes encoded by integron

gene cassettes have been systematically tabulated (Partridge

et al., 2009).

Compilations of resistance determinants generally deal

with known genes characterized from known organisms.

However, it is now widely accepted that culturable bacteria

represent only a small fraction of bacterial genetic diversity,

and consequently, the extent and diversity of resistance

genes in the bacterial metagenome also need to be consid-

ered. Diverse, unusual b-lactamase genes and additional,

novel genes encoding resistance to aminoglycosides and

tetracycline have been readily recovered in metagenomic

libraries generated from soil bacteria (Riesenfeld et al., 2004;

Allen et al., 2009b). Other metagenomic studies of soil and

marine sediments have demonstrated that the pool of novel

gene cassettes available to integrons is vast and diverse

(Michael et al., 2004; Koenig et al., 2008). While the

phenotypes encoded by these environmental gene cassettes

are for the most part unknown (Holmes et al., 2003;

Boucher et al., 2007; Moura et al., 2010), all are likely to be

adaptive under some circumstances. Databases of integron

gene cassettes and their associated recombination machin-

ery are now available (Joss et al., 2009; Moura et al., 2009)

and will continue to grow. There is also considerable interest

in characterizing the antibiotic resistome more generally

from environmental samples (D’Costa et al., 2006; Wright,

2007), with a view to predicting novel resistance mechan-

isms and informing the rational development of new

antibiotics. In the near future, the application of next-

generation sequencing technologies will rapidly increase

our catalogue of resistance genes.

The movement of resistance genes between physical

locations is facilitated by a variety of genetic elements such

as integrons, transposons, integrative conjugative elements

(ICEs), plasmids and genomic islands, which are themselves

also units of lateral transfer (Fig. 2b). Some of these

elements are extraordinarily abundant. For example, trans-

posases are ubiquitous and the most abundant genes in

nature (Aziz et al., 2010). For this reason, understanding the

origins of such mobile elements is complex and is further

complicated by the fact that mobile elements often form

mosaics, built up from different genes and subelements,

each with different evolutionary histories (Toussaint &

Merlin, 2002; Norman et al., 2009). The mosaic complexity

of such molecules allows diverse interactions with other

genetic elements, promoting exchanges that, in turn, gen-

erate more diversity (Garriss et al., 2009; Wozniak & Waldor,

2010). A further complication arises in analyses of mobile

genetic elements because they do not ‘belong’ to a particular

cell or lineage and have independent evolutionary trajec-

tories when compared to phylogenetic trees. One conse-

quence of this independence is that genome sequencing of

individual strains or species of Bacteria is not an efficient

way to collect data on mobile elements (Frost et al., 2005),

although more efficient and cost-effective genome sequen-

cing will progressively help this problem. Nonetheless,

means of directly accessing the mobile gene pool need to be

developed, and frameworks for consistent classification and

nomenclature of mobile elements need to be used (Roberts

et al., 2008a; Leplae et al., 2010).

Reservoirs of resistance?

What about the species of bacteria in which mobile vectors

and resistance genes reside (Fig. 2c)? Most attention in the

literature appears to be focused on characterizing pathogens

by first identifying the species and the strain/clone involved

and then examining the resistance genes contained therein.

While this is a laudable exercise for particular clinical

circumstances, if the phenotypes of interest (virulence,

Units of transfer Sinks /sources

Resistance genes Plasmids, transposons and integrons

(a)

DNA vectors Different bacterial species

(b)

(c)

Bacteria Different host species

Fig. 2. Movement and mobilization of antibiotic resistance genes. The

lateral transfer of resistance determinants can be examined from

different perspectives: (a) Movement of individual resistance determi-

nants can be mapped to particular chromosomal locations, plasmids,

transposons or integrons. (b) Mobile vectors that carry these determi-

nants can be tracked through different bacterial species. (c) Bacterial

strains containing these vectors can be identified in different host

animals. Lateral events can occur at any of these levels. For instance, a

resistance gene may transpose from a chromosome to a plasmid, which

then conjugates from an environmentally acquired bacterium into a

commensal species residing in a new host. In each case, the lateral

transfer can be recognized by genetic identity, but the direction of the

transfer cannot be reliably ascribed without extensive temporal data.

FEMS Microbiol Rev 35 (2011) 790–819 c� 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

793Lateral Gene Transfer and antibiotic resistance evolution

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/35/5/790/2680373 by guest on 24 April 2024



resistance, etc.) are encoded on mobile DNA, then the DNA

element is probably the factor of most importance, not

necessarily the cellular background. Because of the selection

pressure imposed by antibiotics, even transitory colonization

by allochthonous bacteria offers ample opportunity for the

fixation of rare lateral transfer events between species, and the

movement of resistance genes and their vectors between

animal hosts is not surprising. Therefore, if individual envir-

onments are considered in isolation, without taking into

account the power of natural selection and LGT, any environ-

ment can appear to be a ‘source’ of resistance genes.

Naturally occurring antibiotic resistance genes have been

a feature of microbial communities for a long time. Putting

aside the question of what elements may be contributing to

the LGT of resistance genes, one key question is: what do we

know about the link between different environments in the

microbial biosphere? Specifically, what environments can

act as a source for the recruitment of antibiotic resistance

genes into bacterial pathogens, especially those that cause

nosocomial infections? This is a subject of interest for

obvious reasons, and in recent years, many studies have

identified a variety of environments and organisms that are

potential ‘reservoirs’ of antibiotic resistance genes.

The references cited in Tables 2 and 3 were published in

the interval of 2008–2010 and deal with the detection of one

specific family of mobile elements – integrons – in animals

and natural environments. Almost one-third of these pub-

lications (36 of 114) mention animals or environments as a

‘reservoir’ of antibiotic resistance. Slightly less than a third

(33 of 114) use the more accurate term ‘dissemination’ to

describe the movement of genes between genetic, biological

and physical locations. The fact that the descriptor reservoir

has come to be applied so ubiquitously is in itself an

argument that the definition is inappropriate and that the

concept is unhelpful. Rather, what the collective literature in

this area reinforces is that, notwithstanding the qualitative

and quantitative differences between environments, antibio-

tic resistance genes are a near-universal feature of the

microbial biosphere. Although ‘reservoir’ may not be a good

descriptor, we believe that E. coli (Bailey et al., 2010) may be

a particularly important contributor to the spread of anti-

biotic resistance genes globally. There are three reasons for

this: (1) E. coli is an important animal commensal, (2) it can

persist in the environment well away from an animal host

and (3) strain variants of this species can commonly be

pathogenic. To varying degrees, the same argument can be

extended to other genera and species that meet these criteria

(Salyers et al., 2004).

Conduits of LGT

Most genes that are now mobile in clinical isolates probably

originated as genes with a fixed chromosomal origin. Where

this origin can be identified, it may be possible to ascribe

putative origins to resistance genes or gene families as has

been suggested for qnr genes (Poirel et al., 2005). However,

we argue that reference to reservoirs is unhelpful in under-

standing resistance gene flow, even in cases like E. coli, and is

an impediment to ultimately managing the problem of

clinical resistance. When we observe identical genetic ele-

ments residing in two different vectors or species, we can

only say that there has been a lateral transfer event. However,

we cannot reliably ascribe the direction of that transfer, nor

establish that the transfer occurred directly between the two

locations currently occupied by that particular genetic

element. Despite this fundamental problem, an implicit

assumption of direction is contained in the ‘reservoir’

hypothesis of antibiotic resistance (Salyers & Shoemaker,

2006). The term ‘reservoir’ suggests a pool of genes that

flows downwards, usually into human beings and their

pathogens, and this is probably too simplistic.

In contrast, we believe that most and possibly all environ-

ments/organisms act as conduits for resistance gene flow.

Some organisms like E. coli play a particularly important

role, but all bacteria may have a role to play. Global gene

flow acts in multiple directions, allowing the introduction of

new resistance genes into human pathogens and shuttling

known, clinically important resistance genes back into the

broader bacterial population for subsequent cycling into

other clinical contexts (Fig. 3). The ability of organisms like

E. coli to facilitate resistance gene flow has other possible

ramifications for understanding the epidemiology of gene

transfer that are not adequately conveyed by concepts of

reservoirs. An alternative useful view is offered by source–

sink modelling. Under this model, sinks – in this case

clinical pathogens – acquire DNA from sources – the

broader environment. The model is constructive because it

does not preclude two-way flow, and experimental data

suggest that immigration into the sink can result in faster

rates of adaptation, which, in a clinical context, translates

into faster adaptation to antibiotic resistance (Pulliam,

1988; Sokurenko et al., 2006; Perron et al., 2007). The

concept is consistent with conduits because source–sink

modelling provides insights into the primary direction of

flow and how the process started, whereas conduits imply a

mechanism of transfer. Generally, these types of models

reinforce observations that resistance genes (Knapp et al.,

2010) and the elements that mobilize them tend to increase

in abundance over time even in the absence of selection for

all of their components.

The scale and evolutionary history of LGT makes it

inevitable that practically any gene can find its way into any

bacterial cell. The key to understanding this ongoing process

is to quantify both the opportunity for lateral transfer and

the strength of selection for particular transferred genes and

the phenotypes they confer (Martinez et al., 2007). The
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Table 3. Reports of class 1 and class 2 integrons in wild animals and environmental samples, 2008–2010�

Country Animal host/environment Bacterial host/source intI1 Cassette array(s)w intI2z Reference

Argentina River water Pseudomonas sp. ND 1 Ramirez et al. (2010)

Australia Freshwater sediment Diverse heterotrophs 1 aadA11, orf3-qacF, novel ORFs, no

cassette

ND Rosewarne et al. (2010)

Freshwater sediment Metagenomic 1 ND ND Hardwick et al. (2008)

Freshwater biofilm Metagenomic 1 Diverse, novel ORFs linked to

members of the qac gene family

� Gillings et al. (2009a)

Soil, water, biofilm 1 Diverse, novel ORFs Gillings et al. (2008)

Prawn Acinetobacter sp. 1 msrB/msrA/ctr-aadA2 � Gillings et al. (2009b)

Canada Atlantic salmon Aeromonas salmonicida 1 aadA7 � McIntosh et al. (2008)

Polluted estuary Metagenomic 1 Diverse, novel ORFs � Koenig et al. (2009)

Columbia Paracheridon exelrodi Aeromonas hydrophila 1 Cassettes include dfr12, aac61b,

aadA1

ND Verner-Jeffreys et al.

(2009)

Corydora melanistus Aeromonas hydrophila 1 Cassettes include dfr12, aadA2 ND

Carriage water Metagenomic 1 Cassettes include aadA1, dfrA21,

dfrA22, dfrA23, qacE2

ND

Czech

Republic

Pigeon E. coli 1 No cassette 1 Radimersky et al. (2010)

Black-headed gull E. coli 1 aadA1, aadA2, blaOXA�1-aadA1,

dhfr1, dhfr1-aadA1, dhfr1-catB3-

aadA4, dhfr17-aadA5

1 Dolejska et al. (2009)

Pond water E. coli 1 aadA5, dhfr1-aadA1, dhfr12-aadA2 �
Koi carp Aeromonas spp. 1 aadA1, aadA2, dhfr12-aadA2 � Cizek et al. (2010)

France Estuarine water E. coli 1 aadA1, dfrA1-aadA1, dfrA5-ereA2,

dfrA17-aadA5

1 Laroche et al. (2009)

Germany Manured soil Metagenomic 1 aadA1, aadA2, aadA9, aadA11,

aadA13

ND Binh et al. (2009)

Guyana Three lined pencil fish Aeromonas hydrophila 1 Cassettes include dfr12, orfF ND Verner-Jeffreys et al.

(2009)

Silver hatchet Aeromonas hydrophila 1 Cassettes include aadA2, dfr12 ND

Carriage water Metagenomic 1 Cassettes include aadA1, aadA2,

dfrA5, dfrA17, dfrA27, qacE2

ND

India River water Acinetobacter johnsonii 1 dfrA28-aadA1 � Kumar et al. (2010)

Italy Herring gull E. coli 1 aadB, aadA1a, dfrA17-aadA5,

estX-aadA1a

ND Gionechetti et al. (2008)

Herring gull Proteus mirabilis 1 aadB-aadA2, aacCA5-aadA7, dfrA1-

aadA1a, dfrA15, estX, estX-smr-2-

aadA1a, orf1-cat-orf2-aadA1a

ND

Urban wastewater Pseudomonas spp. 1 blaIMP�22-orfXX, blaIMP�22-orfXX-

aacA4

� Pellegrini et al. (2009)

Mexico Dust E. coli 1 ND ND Diaz-Mejia et al. (2008)

Activated sludge tank E. coli 1 ND ND

Mozambique Waste water Vibrio spp. 1 aadA2 � Taviani et al. (2008)

Posttreatment water Vibrio cholerae 1 blaP1, dfrA15 �
Portugal Buzzard E. coli 1 ND � Radhouani et al. (2010)

Yellow-legged gull E. coli 1 aadA, dfrA1-aadA1, dfrA12-orfF-

aadA2, sat-psp-aadA2

1 Radhouani et al. (2009)

Seagull species E. coli 1 blaOXA�1-aadA1, dfrA1-aadA1,

sat-psp-aadA, sat-aadA1

1 Poeta et al. (2008)

Wild boar E. coli 1 ND 1 Poeta et al. (2009)

China Wastewater Diverse species 1 aacA4, aadA1, aadA5, aadB-qacH,

aadA4a, aadA11b

ND Li et al. (2009a)

Lake, river, sediment Metagenomic 1 ND ND Zhang et al. (2009a)

Sewage treatment Metagenomic 1 ND ND

Wastewater Gammaproteobacteria 1 Cassettes include aadA1, aadA2,

aadA2a, dfrA1, dfrA12, qacG

ND Li et al. (2010a)

Wastewater Aeromonas punctata 1 aacA4-qnrVC4-aacA4-catB3 � Xia et al. (2010)

Singapore Guppy Aeromonas hydrophila 1 dfr12 ND Verner-Jeffreys et al.

(2009)
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specific lateral transfer events that have led to the current

crisis in antibiotic resistance management have probably

occurred many thousands of times in the evolutionary past,

but under circumstances where they conferred no selective

advantage. Under strong selection, however, antibiotic re-

sistance genes can come to dominate a population or, with

LGT, an entire community. While it is the case that the

acquisition of an antibiotic resistance gene can come at a

fitness cost, at least initially, compensatory mutations can

arise to counteract this (Andersson, 2003). Thus, a reduc-

tion in antibiotic usage does not necessarily lead to a

significant reduction in resistance gene frequency in a

population.

Understanding the dissemination of resistance determi-

nants requires the investigation of all the locations

where antibiotic-resistant Bacteria might reside. There

are five sources/sinks that are of particular interest:

human beings, domestic animals, companion animals, wild

animals and the general environment (Fig. 3). The high level

of interest in the dissemination of resistance genes between

these locations can be gauged by the contents of Tables 2

and 3, which deal with recent reports of integrons in

animals and in the general environment. As schematically

illustrated in Fig. 3, transfers of mobile elements and linked

resistance genes (integrons or otherwise) can potentially

occur directly between any of these sources/sinks, and it is

likely that that new vectors or combinations of resistance

genes arising in one host can rapidly circulate through all

locations.

Of all the mobile elements in Gram-negative bacteria,

class 1 integrons have been most extensively surveyed in

clinical contexts. As we will discuss below, the ease with

which integrons can be surveyed is itself an impediment,

because it introduces a bias in focus, and is not helpful in

understanding the resistance problem from the perspective

of the microbial biosphere. Bearing this caveat in mind, it is

still the case that there is a wealth of published evidence for

the LGT of integrons, mobilized by other elements or

processes, between most of the sources and sinks depicted

in Fig. 3. We will give some examples of transfers of

particular interest, but unfortunately cannot cover the

complete literature in this review.

Table 3. Continued.

Country Animal host/environment Bacterial host/source intI1 Cassette array(s)w intI2z Reference

Harlequin rasbora Aeromonas hydrophila 1 dfrA1 ND

Redwag platy Aeromonas punctata 1 Cassettes include dfr12, aac61b,

aadA1, catB8

ND

Carriage water Metagenomic 1 Cassettes include aadA1, aadA2,

dfrA1

ND

Switzerland Lake water Aeromonas

allosaccharophila

1 aac61b-blaOXA�1-catB3-arr3 ND Picao et al. (2008)

Tanzania Flamingo E. coli 1 dfrA7 1 Sato et al. (2009)

Flamingo Salmonella arizonae 1 dfrA7 �
Turkey River water E. coli 1 Cassettes include aadA1, aadA5,

blaOXA30, dfrA1, dfr2d, dfrA7,

dfrA16, dfrA17, sat1

1 Ozgumus et al. (2009)

UK Koi carp Aeromonas hydrophila 1 Cassettes include aadA1, dfrA1 ND Verner-Jeffreys et al.

(2009)

Agricultural soil Diverse species 1 ND 1 Byrne-Bailey et al. (2009)

USA Catfish Aeromonas veronii 1 ND � Nawaz et al. (2010)

Catfish E. coli 1 dfrA17-aadA5, dfrA12-orfF-aadA2 ND Nawaz et al. (2009)

Forest soil Diverse species 1 No cassettes ND Srinivasan et al. (2008)

Dairy soil Citrobacter spp. others 1 aadA2, dfrA12-aadA2 ND

Soil, water, compost,

manure

Diverse species 1 aadA1, aadA7, aadA9, dfr16 ND Yang et al. (2010)

Estuarine habitat Metagenomic 1 Diverse, novel ORFs ND Wright et al. (2008)

Riverine habitat Metagenomic 1 Diverse, novel ORFs ND

Sewage treatment Metagenomic 1 ND ND Ghosh et al. (2009)

Compost E. coli 1 aadA1, aadA1-dfrA1, aadA1-

dfrA15, aadA2-dfrA12

ND Heringa et al. (2010)

�Table is based on English-language papers published between 2008 and 2010 recovered from PubMed using the search terms integron� environment.
wGene and cassette nomenclature is based on that used in the original papers. In some cases, gene names are at variance with standard gene naming

nomenclature. A standardized nomenclature has recently been published by Partridge et al. (2009). Individual cassette arrays are given on separate lines,

although in some cases, full cassette arrays were not characterized, and entries list gene cassettes detected.
zCassette arrays for class 2 integrons were dfrA1-sat2-aadA1 or setX-sat-aadA1.

ND, not determined.

FEMS Microbiol Rev 35 (2011) 790–819 c� 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

799Lateral Gene Transfer and antibiotic resistance evolution

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/35/5/790/2680373 by guest on 24 April 2024



Transfer between humans and their
domestic animals

Class 1 and class 2 integrons are widely disseminated in

E. coli and Salmonella isolated from a range of companion and

food animals (Table 2). These integrons are in many cases

identical to those found in human commensals and pathogens,

establishing that a conduit of lateral transfer exists between

humans and these animals (Goldstein et al., 2001; Schwarz &

Chaslus-Dancla, 2001; Schwarz et al., 2001; Antunes et al.,

2006; Hsu et al., 2006; van Essen-Zandbergen et al., 2007). The

presence of identical integrons and cassette arrays in various

Salmonella serovars and E. coli strains demonstrates that lateral

transfer occurs within and between these species, even when

residing in different hosts (Box et al., 2005; Singh et al., 2005;

Hammerum et al., 2006; Ajiboye et al., 2009). Integrons have

also spread from the terrestrial environment into E. coli and

Aeromonas strains associated with aquaculture (Cabello, 2006;

McIntosh et al., 2008; Nawaz et al., 2009, 2010). Because the

prevalence of integrons in all animals increases with vicinity to

humans, it has been suggested that the presence of integrons in

animals is due to transmission from humans rather than the

reverse (Skurnik et al., 2006).

Transfer between humans/domestic animals
and wild animals

There are difficulties in establishing the directionality of

transfer of bacteria or genes. Nevertheless, a good case can

be made in some instances (Table 3). A number of studies

have suggested that wild birds such as gulls and pigeons can

acquire integrons and antibiotic resistance genes by feeding

on waste or from contaminated waters (Gionechetti et al.,

2008; Poeta et al., 2008; Bonnedahl et al., 2009; Dolejska

et al., 2009; Radimersky et al., 2010). Anthropogenic transfer

of integrons and resistance genes to wild boars and buzzards

has also been suggested (Poeta et al., 2009; Literak et al.,

2010; Radhouani et al., 2010). It seems very likely that

integrons in wild animals, zoo animals and ornamental fish

(Ahmed et al., 2007; Sato et al., 2009; Verner-Jeffreys et al.,

2009) (Table 3) have their origins in humans or their

domesticated animals. There also appears to be transfer of

enterobacteria and resistance determinants between humans

and chimpanzees in Uganda (Goldberg et al., 2007).

Transfer between humans/domestic animals and
the more general environment

Integrons from animal husbandry operations make their

way into the general environment via the spread of manure

(Agerso & Sandvang, 2005; Binh et al., 2009; Byrne-Bailey

et al., 2009) and in compost (Heringa et al., 2010; Yang et al.,

2010) (Table 3). Human waste streams disseminate inte-

grons and resistance genes, initially to wastewater treatment

plants (Schluter et al., 2007; Ghosh et al., 2009; Zhang et al.,

2009b), but also more generally into rivers and estuaries

(Laroche et al., 2009). Escherichia coli strains containing

Fig. 3. Conduits of gene transfer between

different bacterial species, animal hosts and the

environment. Genes can potentially move directly

between various host environments including

humans, food animals, domestic animals, wild

animals and the general environment. In the case

of gene cassettes containing antibiotic resistance

determinants, this lateral transfer may be

mediated via transformation with free gene cas-

settes, integrons, transposons or plasmids. Alter-

nately, genes can spread by conjugation between

various commensals and pathogens transferred

between host environments.
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plasmids and multidrug resistance have even made their way

into remote areas, including isolated communities in the

Peruvian Amazonas and birds in the Arctic (Sjolund et al.,

2008; Bartoloni et al., 2009).

Potential for transfer back into
human populations

When antibiotic resistance genes and vectors are spread

from human-dominated ecosystems, they can penetrate

new bacterial hosts. Transfer of integron-mediated antibio-

tic resistance between E. coli strains has been demonstrated

in bovine faeces and in storm water (Nagachinta & Chen,

2008). Similarly, a class 1 integron carrying a novel blaIMP

has moved from Pseudomonas aeruginosa in a nosocomial

environment into P. fluorescens in wastewater (Pellegrini

et al., 2009). Such activity has the potential to generate novel

opportunistic pathogens. Antibiotic resistance integrons

may also interact with diverse mobile elements in the

environment and acquire new resistance and pathogenicity

determinants. Novel integron gene cassettes conferring

trimethoprim and quinolone resistance have recently been

recovered from environmental Acinetobacter and Aeromonas

isolates, respectively (Kumar et al., 2010; Xia et al., 2010).

Clinical class 1 integrons have made their way into the

commensal bacteria of wild animals, where they continue to

acquire novel cassettes. A class 1 integron has been described

in E. coli from a wild reindeer that carried an ant(300)-Ia

resistance cassette, and had also acquired a gene cassette

with homology to a cassette of unknown function described

from Xanthomonas (Sunde, 2005).

Does human use of antimicrobial agents
change the tempo of lateral transfer?

It has been argued that humans are the ‘World’s greatest

evolutionary force’ (Palumbi, 2001), a recognition of our

ability to engineer the biosphere. One particularly apt

example of this concept is our impact on the accelerated

evolution of antibiotic resistance. The use of antibiotics may

have changed the dynamics of bacterial evolution by in-

creasing the basal rate of mutation, enhancing LGT and

promoting the generation of novel DNA elements. We know

that antimicrobial compounds induce stress in bacterial

cells, leading to changes in transcriptomic profiles (Davies

et al., 2006) and other mechanisms that increase evolvability

(Baquero, 2009). For instance, the evolution of resistance in

E. coli is accelerated by exposure to multiple antibiotics

(Hegreness et al., 2008).

It is likely that the ecology of human dominated ecosys-

tems helps to stimulate the generation of novel genetic

elements. Exposure of cells to various antibiotics induces

an SOS response that has widespread effects on the bacterial

genome (Miller et al., 2004; Aertsen & Michiels, 2006).

These responses include promoting lateral transfer of anti-

biotic resistance genes (Beaber et al., 2004) and increasing

integron recombination events (Guerin et al., 2009). Conse-

quently, the release of antibiotics in human waste streams is

likely to have an impact on LGT and on the activity and

complexity of large gene cassette arrays carried by the

diverse chromosomal integrons found in environmental

samples.

Waste streams from human-dominated ecosystems si-

multaneously release resistance determinants, their DNA

vectors and the antimicrobial agents that select for them

(Baquero et al., 2008; Martinez, 2009). Wastewater brings

together diverse cells, plasmids, integrons and resistance

genes, creating a hotspot for interaction between these

elements in an environment that contains subinhibitory

concentrations of the selective agents to which they exhibit

resistance (Schluter et al., 2007, 2008; Moura et al., 2010).

Such environments allow complex mosaics of subelements

to be built up (Toussaint & Merlin, 2002; Norman et al.,

2009), and because these complex DNA elements share

homologous regions, recombination is enhanced, thus pro-

moting still further diversity (Garriss et al., 2009).

It is clear that the fixation of antimicrobial resistance

genes in pathogens and commensals is driven by the selec-

tion imposed by antibiotics. The transfer of such genes has

been occurring for millennia, but not necessarily under

conditions where such transfers conferred any advantage to

the recipient cell. The propensity for such LGTs should be

balanced by two opposing selective forces: the potential

advantage accrued through the acquisition of foreign genes,

balanced against the deleterious effects of invasion by

transposons, bacteriophage and other detrimental DNA

elements (Fig. 4).

It therefore seems reasonable to suggest that porosity to

lateral transfer is under balancing selection, and that differ-

ent species, and even cells within species, fall along a

gradient of porosity. The widespread human use of anti-

biotics and their distribution via human waste streams

(Baquero et al., 2008; Martinez, 2009) may have altered the

strength of this balancing selection, such that cells and

species with a greater porosity to lateral transfer have an

inherent advantage because some members of their lineage

will acquire and express resistance genes. Hence, it is highly

probable that the general tempo of lateral transfer has

actually increased due to selection on cells with inherently

higher rates of lateral transfer (Fig. 4).

The recent discovery of the CRISPR system provides a

potential mechanism for restricting the uptake of foreign

DNA. Changes to this system may have the result of

modulating the rate of uptake of DNA mobilized by LGT.

The clustered regularly interspaced short palindromic repeat

(CRISPR) system is a bacterial form of acquired immunity

(van der Oost et al., 2009). The CRISPR system is complex
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and remarkably sophisticated, but the key component

providing the acquired immunity is the presence of small

RNA guides that target specific DNA sequences that act to

prevent the incorporation of incoming DNA that possess

complementary sequences. The system is analogous, but

unrelated to interfering RNA found in eukaryotes. The

extent to which a bacterial cell can limit LGT is determined

by the number and type of RNA guides, which in turn varies

between individual cells (Marraffini & Sontheimer, 2008).

Genomic analysis would suggest that CRISPR systems are

common among the prokaryotes (van der Oost et al., 2009)

and that they may influence the evolution of pathogenesis

(Marraffini, 2010). The CRISPR system is likely to be

important in influencing cell fitness because it has been

argued that it may help in providing a balance between the

potential positive vs. the negative impacts of acquiring DNA

by LGT (van der Oost et al., 2009). Coevolution of the

system with its host should occur such that in environments

where acquiring DNA may be detrimental, an increase in the

CRISPR content would occur and a decrease would occur

where ‘foreign’ DNA may be advantageous (Vale & Little,

2010). This has direct relevance for the spread of antibiotic

resistance because the global use of antibiotics could see a

substantial decrease in the CRISPR content in bacterial

populations, leading to a general increase in the rate of

mobilization of DNA by LGT as measured by successful

transfer events. In support of this, an inverse correlation

between CRISPR content and the extent of multidrug

resistance has been reported recently (Palmer & Gilmore,

2010).

The agents of gene capture and spread

All of the mobilizing elements associated with the move-

ment of resistance genes in pathogens long predate the

antibiotic era. Analysis of at least one extensive strain

collection dating from the early 20th century demonstrated

that plasmids were a common feature of strains of the

Enterobacteriaceae (Hughes & Datta, 1983; Jones & Stanley,

1992). Similarly, transposons were a common feature of soil

dwelling bacteria in the preindustrial era (Kholodii et al.,

2003; Mindlin et al., 2005). Integrons, based on their

phylogenetic history, have been features of bacterial chro-

mosomes for at least several hundred million years (Mazel,

2006; Boucher et al., 2007). Where they can be directly

examined, mobile elements from before the antibiotic era

are clearly related to contemporary elements that carry

resistance genes. Thus, preantibiotic era plasmids belong to

the same incompatibility groups as those seen today

(Hughes & Datta, 1983) and bacteria from ancient perma-

frost possess mercury resistance transposons related to those

found in pathogens (Mindlin et al., 2001, 2005). While the

evidence is more circumstantial, it is also likely that the class

1 integron, responsible for spreading resistance genes, was

quite broadly distributed in the Proteobacteria before the

antibiotic era (Stokes et al., 2006; Gillings et al., 2008). What

does distinguish these mobile DNA elements in early isolates

from those in contemporary pathogens is that the former

are rarely found in association with antibiotic resistance

genes, whereas the latter are substantial carriers of these

genes. Secondly, in contemporary bacteria, a high degree of

clustering is observed such that multidrug resistance regions

are commonly mosaics made up of many of the mobile

genetic elements described. This cooperation between dis-

parate mechanisms of LGT has considerably facilitated the

global spread of resistance genes (Walsh, 2006) and is

contributing to the evolution of multidrug-resistant patho-

gens with enhanced virulence, via the accumulation of

disparate virulence factors in pathogenicity islands (Juhas

et al., 2009) and virulence plasmids (Villa & Carattoli, 2005).

With time and ongoing selection, the trend is towards

increasing complexity of multidrug resistance elements.

This increase in complexity is driven by combinatorial

exchanges between existing elements, recruitment of new

Barriers to
lateral gene

transfer

Preantibiotic
era

Postantibiotic
era

0 100

Fig. 4. Barriers to lateral gene transfer. For any species, the barriers to

lateral gene transfer are set by two opposing and balanced selective

forces: the ability to resist infection by bacteriophage and/or barriers to

transposons (upward arrows) and the advantage conferred by the ability

to acquire new phenotypes (downward arrows). The widespread dis-

semination of antibiotics may have altered this equilibrium, selecting for

increased lateral transfer capability.
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elements (Walsh, 2006; Garriss et al., 2009) and by coselec-

tion for genes that confer resistance to environmental

compounds and pollutants (Baker-Austin et al., 2006).

Plasmids

The central role of plasmids in contributing to LGT is not

disputed. It was the discovery of these genetic agents that led

to a paradigm shift where bacterial evolution was viewed as

more than spontaneous mutation and binary fission of

haploid cells (Lederberg & Tatum, 1946). It was then

described by Salvador Luria as ‘. . . among the most funda-

mental advances in the whole history of bacteriological

science’ (Luria, 1947). Given subsequent developments,

including the key role of plasmids in making the gene

cloning revolution possible, the statement is still true. The

central role of plasmids is inferred in Table 1, where it can be

seen that at least some plasmids are autonomous, both with

respect to their physical movement (via conjugation) and

through their autonomous replication. Notwithstanding

these basics, plasmids are extraordinarily versatile in that

their size and (commonly) circular form means that they are

readily mobilizable by transformation, a factor that may be

important in soil-dwelling organisms (Sikorski et al., 2002)

and represents an obvious mechanism for the spread of

nonconjugative plasmids.

Once direct evidence for the existence of extrachromoso-

mal DNA in bacteria was established, the early years of

plasmid biology were dominated by the characterization of

their basic properties including size, the fundamentals of

incompatibility, entry exclusion and the replication and

transfer genes they carried (Novick, 1969). The link between

plasmids and resistance genes was noted very early and

resulted in P. aeruginosa emerging as a major focus of

genetic study in the Gram negatives (Holloway, 1969). The

reasons for this included the fact that it is a significant

opportunistic pathogen and a common cause of nosocomial

infections. In a plasmid context, P. aeruginosa is a source of a

number of resistance (or RP) factors and many of these were

unusual at the time in that they were able to easily cross

species boundaries (Sykes & Richmond, 1970; Grinsted

et al., 1972). With the characterization of these resistance

factors, it was realized that the emergence of multidrug

resistance was a result of the comobilization of several genes

and that this was now a major clinical problem, not just a

rare inconvenience involving the transfer of resistance to a

specific single drug (Anonymous, 1974). This same period

also saw the onset of the first resistance epidemiology studies

and the establishment of the link between the clinical use of

antibiotics and an increase in resistance carriage (James

et al., 1975; Krcmery et al., 1975). Ironically, it was just at

this time that the potential of plasmids to play a role in

adaptation to the clinical application of antibiotics was

becoming obvious. Also, at this time, more early data hinted

at the presence of other mechanisms of resistance gene

mobilization. Specifically, it was found that R plasmids

could be targets for translocating pieces of DNA that carried

resistance genes and that the process by which this occurred

was independent of homologous recombination pathways

(Bennett & Richmond, 1976). Thus, the fundamental ad-

vances first articulated by Salvador Luria 30 years previously

were clearly all still to be unravelled. The systems biology

approaches available in contemporary times to analyse

mobile DNA, although more sophisticated, make it clear that

the role played by plasmids in particular to bacterial adapta-

tion is a long way from being fully understood (Johnson &

Nolan, 2009; Halary et al., 2010; Smillie et al., 2010).

Transposons

Why are some mobile elements more commonly associated

with antibiotic resistance genes in pathogens than others?

There may be a number of reasons for this outcome,

including an element of chance. Chance may play a role,

since the first capture event(s) of resistance gene(s) in a

particular element remove the selective advantage conferred

by infiltration of other elements carrying the same or similar

genes. Alternatively, some groups of mobile elements may

have been ‘primed’ for infiltration into pathogens. This is

notably the case for mercury-resistant transposons existing

before the antibiotic era (Fig. 5). The redox potential of

mercury can vary, but only the oxidized state is toxic (Foster,

1987). The bacterial inactivation of mercury is via a reduc-

tion reaction. The proteins that detoxify mercury therefore

probably first arose when the biosphere became oxygenated

(Barkay et al., 2010) and mercury resistance transposons

have been a feature of soil-dwelling bacteria for a very long

time (Mindlin et al., 2001, 2005). Many of these are very

closely related to multidrug resistance transposons in con-

temporary pathogenic isolates (Kholodii et al., 2003). Hav-

ing begun to capture resistance genes, particular types of

these transposons demonstrated very rapid rates of evolution,

driven by selection pressure in the antibiotic era. The best

examples of this phenomenon are derivatives of the Tn21

family (Liebert et al., 1999). Before human impacts, mercury

was present in some environments at low levels and it likely

that bacteria play a role in the global cycling of this element

(Baldi, 1997). Even in pristine and/or preindustrial era soils,

resident bacteria can possess highly evolved and regulated

operons for the chemical transformation of mercury (Barkay

et al., 2003; Barkay & Wagner-Dobler, 2005). In environments

where anthropogenic disturbance has seen the introduction

of elevated levels of mercury, corresponding enrichment for

resistant bacteria has occurred (Barkay & Pritchard, 1988;

Sprocati et al., 2006). This enrichment was probably occur-

ring before the antibiotic era both in the general environment
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and through the use of topical disinfectants that included

mercury. The mining industry has also contributed to the

increased resistance in the general environment throughout

the industrial era (Ball et al., 2007).

Another source of relatively high concentrations of mer-

cury is amalgam dental fillings. From an ecological perspec-

tive, this is potentially an important one because it is an

environment at the interface of commensal and human

pathogenic bacteria. Some early data suggested that mercury

released from such fillings can promote an increase in both

mercury and antibiotic resistance (Summers et al., 1993).

The idea was considered controversial, at least by the dental

community (Shearer, 1993), and more recently, some stu-

dies adopt a more equivocal stand on the notion that a

strong link exists (Roberts et al., 2008b). However, similar to

trying to identify specific reservoirs of resistance, these

studies probably serve to underscore the difficulty of identi-

fying single specific causes for a problem that is multi-

factorial in nature. Thus, dental amalgams are possibly one

further step in the enrichment for antibiotic resistance, but

not the single cause of that selection. Whatever the main

driving forces, it is clear that antibiotic resistance genes began

to appear on mercury resistant transposons and plasmids

soon after the clinical introduction of antibiotics (Smith,

1967) and that co-selection is driving the increasing linkage

of resistance genes to mercury resistance transposons.

Whatever the cause, it is clear that there is a strong link

between antibiotic resistance and mercury resistance. While

there are many genetic contexts in which antibiotic resis-

tance and mercury resistance genes are found together,

probably the most prevalent linkage is that between class 1

integrons and specific families of mercury resistance trans-

posons. Of the latter, the most prevalent includes the Tn21

transposon family (Liebert et al., 1999). The success of the

class 1 integron/Tn21 combination can be partly explained

by the res hunting ability of the Tn402 transposition system

and the fact that Tn21 and its relatives were already wide-

spread in environmental bacteria before the onset of the

antibiotic era (Mindlin et al., 2001, 2005; Kholodii et al.,

2003). In contemporary times, this linkage between anti-

biotic resistance and mercury resistance may see coselection

work ‘both ways’ to reinforce the link. That is, selection for

antibiotic resistance may facilitate an increase in mercury

resistance genes in bacteria and selection for mercury

resistance via the environmental presence of mercury

(whether natural or human induced) may be facilitating

the retention of antibiotic resistance genes (Summers et al.,

1993; Skurnik et al., 2010).

Integrons

The class 1 integrons provide an unrelated, but parallel

example of selection priming. Integrons have been present

in the Proteobacteria for a very long time (Mazel, 2006;

Boucher et al., 2007). The defining feature of these elements

is the presence of a site-specific recombination system

capable of capturing individual genes when part of mobile

gene cassettes (Martinez & de la Cruz, 1988; Stokes & Hall,

1989; Demarre et al., 2007). Over 100 classes of this element

have been identified based on differences in the amino acid

sequence of the site-specific recombinase protein, IntI.

Although there may be site selection differences and

modulation of the recombination reaction based on envir-

onmental parameters, it is nonetheless the case that

Tn402-like

intI1 qacE

Chromosomal integron
Environmental pool of
resistance genes and

cassettes

res hunter Replicative mer transposon

mer genestnpA,R resqacE

mer genestnpA ,R res Tn 402-like integron

Replicative mer transposon

Fig. 5. Coselection and recruitment of transposons and class 1 integrons into pathogens. The schematic represents a model describing the order of

events leading to complex and highly mobile multiresistance regions in contemporary Gram-negative pathogens. The use of disinfectants led to the

linking of qac genes to class 1 integrons before the antibiotic era. This structure then linked to a Tn402-like transposition module and became mobile. At

about the same time, with the onset of extreme selection pressure via the use of antibiotics, antibiotic resistance genes began to be recruited into this

structure and its descendants. In parallel, the presence of mercury in the environment – both natural and human induced – led to the enrichment for

mercury-resistant transposons. These also began to independently recruit resistance genes from the onset of the antibiotic era. At the same time and

subsequently, the res targeting mechanism associated with Tn402-like class 1 integrons made the linking of a broad range of transposition modules to

site-specific recombination functions inevitable.
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members of different integron classes appear to operate by

essentially the same biochemical process (Biskri et al., 2005;

Guerin et al., 2009; Shearer & Summers, 2009). Why then

are the class 1 integrons almost exclusively responsible for

disseminating resistance genes by site-specific recombina-

tion in Gram-negative pathogens, and why are they so

abundant in these same organisms (Partridge et al., 2009)?

Integrons are generally located in bacterial chromosomes

and most are not readily mobile, although they do show

evidence having moved by LGT over evolutionary time

periods (Boucher et al., 2007). The class 1 integrons

from multi-drug-resistant pathogens, however, are highly

mobile and are embedded in a plethora of mobile elements,

including plasmids and transposons or, more frequently,

both. In particular, the ‘clinical’ type of class 1 integron is

found in association with the remnants of a transposon, the

functional exemplar of which is Tn402, also known as

Tn5090 (Shapiro & Sporn, 1977; Radstrom et al., 1994).

When first named, the definition of integrons was based on

both the function (the components of the site-specific

recombination system) and the structural features of

the clinical type of class 1 integrons that included all

of the sequence common to this type when different

examples were compared. This structural definition

therefore additionally encompassed sequences between the

Tn402-like inverted repeats designated IRi and IRt (Stokes &

Hall, 1989; Partridge et al., 2001), reflecting the apparent

universal association of class 1 integrons with Tn402-like

transposition functions. In these same class 1 integrons,

part of the transposition module had been lost and

replaced with a 30-conserved segment (30-CS) (Stokes &

Hall, 1989). Despite the fact that these integrons were

defective transposons, transposition could still occur if

deleted functions were provided in trans (Brown et al.,

1996). This association with a transposon is regarded as a

key step in promoting the LGT of this integron class in

pathogens (Liebert et al., 1999).

Tn402 and relatives are examples of transposons that are

res hunters, meaning that the transposition event targets the

resolution regions important in the replication and/or the

mobility of many plasmids and transposons (Kholodii et al.,

1995; Petrovski & Stanisich, 2010). This ability to target

other mobile elements was another key factor in the spread

of class-1-associated antibiotic resistance genes from the

earliest days of the antibiotic era. Thus, numerous examples

are known of plasmids originally isolated in the 1950s and

1960s that carry resistance genes as a consequence of either

the direct insertion of a class 1 integron into a plasmid res

site (Brown & Willetts, 1981; Ward & Grinsted, 1982;

Swedberg & Skold, 1983; Hall & Vockler, 1987) or via the

acquisition of a transposon such as Tn21 (Swedberg &

Skold, 1983; Hall & Vockler, 1987) that itself had captured

a class 1 integron.

The res hunter family of transposons is commonly

associated with mercury resistance, although in the Tn402-

like integron version the integron module has replaced the

mer module (Kholodii et al., 1995). In most clinical class 1

integrons, the tni module has undergone one or more

deletions after the acquisition of the 3 0-CS, which includes

a sulphonamide resistance determinant. Class 1 integrons/

transposons with a complete transposition module and no

30-CS are known, although they are uncommon, and so the

acquisition of the 30-CS is generally presumed to have

occurred soon after the clinical application of antibiotics

(Brown et al., 1996). Very recently, however, this has been

called into question with the discovery from permafrost

dating back at least 15 000 years of a Pseudomonas sp. that

possesses a class 1 integron with all the features seen in

clinical isolates including a known resistance gene cassette

and a 30-CS (Petrova et al., 2011). This observation, if

correct, does not necessarily change the order of steps

involved in the evolution of the clinical type of class 1

integron, but would obviously impact on the timing. In our

view, this observation is so radical as to require interpreta-

tion with caution. In particular, it needs to be established

that contamination with contemporary isolates has not

occurred and additional independent isolates need to be

found.

While the defective integron/transposon version is un-

doubtedly the most common type of class 1 integrons in

clinical isolates, the functional ancestor may also be more

frequent than realized because the most common form of

PCR screening for class 1 integrons is based on a primer that

targets the 30-CS (Levesque et al., 1995). Consequently,

testing for other variants, most notably those with a

complete transposition module (Post et al., 2007), would

be highly desirable. Putting aside differences in the inserted

cassette arrays, more than one functional transposon version

has been identified (Labbate et al., 2008; Marchiaro et al.,

2010). One of these, Tn6007, is from a human commensal

bacterium and the associated integron has a complete tni

module that is a hybrid when compared with Tn402

(Labbate et al., 2008). This is a significant observation

because it implies either that independent capture events

involving the res hunter transposons and class 1 integrons

can occur or that rearrangements between Tn402 like

integron/transposons and other members of the res hunter

family are similarly occurring. In either event, it is likely that

other analogous variants can be found because the bacter-

ium containing Tn6007 was recovered in the absence of any

selection beyond the ability to grow on complete medium

(Labbate et al., 2008). One very common feature of class 1

integrons associated with a complete or a partial Tn402

module is evidence of the presence of a gene conferring

resistance to quaternary ammonium compounds. In those

class 1 integrons with a 30-CS, this qacE gene has undergone
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a deletion, a consequence of the creation of this segment

(Stokes & Hall, 1989). In the fully functional class 1

integron/transposons Tn402 and Tn6007, complete qacE

gene are present as part of mobile gene cassettes (Radstrom

et al., 1994; Labbate et al., 2008). Where present, the qac

genes in such functional class 1 integrons/transposons are in

functional cassettes (as distinct from the nonfunctional qacE

cassette in the 30-CS); hence, loss of such a cassette is as

likely as for a typical antibiotic resistance cassette. Thus, if

the progenitor class 1 integron that was captured by the

transposition module brought in a qac gene, its absence

could be explained by cassette deletion. In our view, it is

likely that a qac gene was present when capture occurred

because surveys of class 1 integrons that are embedded in

Tn402-like transposons very commonly have qac cassettes

linked to them (Gillings et al., 2009c) as discussed below.

The linking of the class 1 integron to a res hunter-type

transposon was clearly an important step (Fig. 5) in the

introduction of these elements into pathogens, and recent

analysis of environmental bacteria has shed some light on

how this occurred. When various Proteobacteria from

nonclinical environments were tested for the presence of

class 1 integrons, it was found that these elements were

readily recoverable at a frequency of about 2% of bacteria

screened. The study was noteworthy in that bacteria were

recovered without selection for antibiotic resistance, the

bacteria came from environments that were not under any

overt selection for such resistance and the recovery of class 1

integrons was carried out in such a way as to not bias

towards association with res hunter transposons (Stokes

et al., 2006). While some of the integrons recovered were

the clinical (i.e. possessed a 30-CS) Tn402-like variants, most

were not. This second group was distributed among differ-

ent Proteobacteria, thereby implying LGT events that were

independent of Tn402-like transposition systems. Subse-

quent studies reinforced this point (Gillings et al., 2008),

making it clear that class 1 integrons are being mobilized

independent of res hunter transposons, notwithstanding the

prevalence of this type in clinical isolates, and this mobi-

lization probably began well before the beginning of the

antibiotic era. The pre-Tn402-like integrons commonly

possess cassette arrays, although none of the cassette genes

are obvious antibiotic resistances genes. Instead, they are

more typical of cassettes from chromosomal arrays in the

sense of being novel with no close (if any) homologues in the

databases. The one exception to this, however, is the

common presence of qac containing cassettes. In studies

based on the ‘random’ recovery of class 1 integrons from

environmental DNA and pure cultures, it was found that

over half of the recovered pre-Tn402 integrons included qac

cassettes in its array (Gillings et al., 2009c) and that in some

communities these cassettes were being actively exchanged

(Gillings et al., 2009a). This observation suggests a parallel

with mercury-resistant tranpsosons as described above.

Specifically, disinfectants predate the clinical use of anti-

biotics by at least 50 years (Gilbert & Moore, 2005) and

quaternary ammonium compounds were a major fraction

of these. Given the association of qac genes to mobilized, but

non-Tn402-like class 1 integrons, and the presence of qac

cassettes in Tn402-like integrons that predate the 30-CS, we

argue that selection for qac resistance led to at least the

partial mobilization of class 1 and amplified their numbers

in the Proteobacteria even before the application of the first

antibiotics (Gillings et al., 2009c) (Fig. 5). With this scenar-

io, when antibiotics came into broad clinical use, it would be

almost inevitable that class 1 integrons would come to play a

major role in the dissemination of antibiotic resistance in

the same way as mercury-resistant transposons play a

similar role.

It is also noteworthy that the debate over the role

disinfectant use has in selecting for multi-drug-resistant

bacteria is still very much ongoing. As is the case for

coselection for antibiotic resistance with mercury, studies

also claim that links are lacking between qac and antibiotic

coselection (Weber & Rutala, 2006). However, we believe

that reductionist studies that look at defined environments

over limited time frames are missing real-world events.

Given the power of LGT, the antibiotic resistance problem

can only be understood and potentially controlled by

considering gene flow through the biosphere over time. This

point is reinforced by the fact that metagenomic studies,

which are culture independent and therefore represent a

more inclusive sample of the microbial biosphere, reveal

that mobilizing elements like integrons are extraordinarily

abundant and that selection in stressed environments with

respect to such compounds as heavy metals are enriched

with antibiotic resistance genes (Wright et al., 2008; Rose-

warne et al., 2010).

The success of the Tn402-like class 1 integrons in dis-

seminating antibiotic resistance genes is striking. Other

integron classes have been recruited into mobile elements,

but their impact has been more limited. The two best

examples are class 2 and class 3 integrons. Class 2 integrons

were first described around the time of the class 1, when site-

specific recombination functions were identified in Tn7

(Sundstrom et al., 1988). However, this original version,

along with most other examples found since, has a non-

functional DNA integrase via the presence of a premature

stop codon in the corresponding gene (Hansson et al.,

2002). Not surprisingly, the diversity of the cassette arrays

is low compared with class 1 integrons, although some

differences can be found (Hansson et al., 2002; Biskri &

Mazel, 2003; Plante et al., 2003). This outcome is presumed

to be achieved by providing an integrase function in trans.

Two functional variants of intI2 have been found. One is

from Provdentia stuartii isolates from cattle in Australia
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(Barlow & Gobius, 2006) and the second is from an E. coli

isolate in Uruguay (Marquez et al., 2008a). Both sets of

isolates were additionally noteworthy in that they included

gene cassettes that did not possess obvious antibiotic

resistance genes. Both these sets of integrons are, or are

likely to be, on plasmids and so this may suggest that

functional mobile integrons are beginning to recruit other

types of genes. The Uruguayan isolate (Fig. 6) highlights the

ramifications of this phenomenon for the management of

pathogens, because the organism is an actual pathogen and

the cassette array carries a known antibiotic resistance gene

along with a cassette that includes a gene that encodes a

likely lipopolysaccharide signal peptidase (Marquez et al.,

2008a). The precise function of this protein is unknown, but

bioinformatic analysis strongly suggests a link to a protein

family that can impact host pathogenicity. If it is subse-

quently found that this gene product does have a direct link

to virulence, it may be an early portent that integrons in

multiresistant strains are beginning to recruit other types of

cassettes that enhance pathogenicity. The rules of LGT do

not prevent this, because if resistance genes can be recruited,

appropriate selection will, by the same rules, see other types

of genes appear. Intuitively, if every member of a population

is multidrug resistant, the next logical step would be the

recruitment of other genes that assist in niche adaptation

over competitors. There is at least one other example of an

analogous array structure. In a class 1 integron recovered

from an Acinetobacter from a prawn gut, a two-cassette array

was identified (Gillings et al., 2009b). One cassette carried a

previously identified resistance gene. The second cassette

included an msr operon. The msr family of genes encodes

methionine sulphoxide reductases, multiple copies of which

assist in adapting to high-stress environments especially in

relation to oxidative stress tolerance in the intestinal tract.

This particular integron is from a commensal of an inverte-

brate that is a popular human food. We consider this link to

be a potentially major conduit and we predict that this msr

cassette will be identified in an integron array in a human

pathogen in the near future.

Class 3 integrons were first identified in Japan in 1995

(Arakawa et al., 1995). A later integron survey in Japan

suggested that this integron class may be relatively common

in that country, although not to the extent of the class 1

(Shibata et al., 2003). The class 3 integron has the potential

to spread as it is on a plasmid and has been found in

different species within and outside Japan (Correia et al.,

2003), but is not common. In systematic screens for mobile

integrons, class 3 integrons are rarely detected, suggesting

that they have not infiltrated the clinical environments

where class 1 (and to a lesser extent class 2 integrons) were

common (van Essen-Zandbergen et al., 2007; Laroche et al.,

2009). Why is this class relatively rare? One explanation may

be the one given above – the class 1 integrons managed to

infiltrate clinical isolates in greater numbers first. Another

contributing factor, however, may be the fact that the

associated class 3 integrase is not as efficient in capturing

mobile cassettes as the class 1 in comparative experiments

(Collis et al., 2002), thereby potentially conferring another

selective advantage on the latter.

Elements within elements

The development of multidrug resistance regions in Gram-

negative bacteria in the antibiotic era has been driven by

tapping into the vast resource of mobile elements that have

evolved in the microbial biosphere over very long periods of

time. Some of these preexisting elements have been particu-

larly important in concentrating resistance genes in patho-

gens. The recruitment of these elements may have been a

result of chance or some degree of preselection as described

above. In either event, it is clear that only a subset of the

available pool of mobile elements has been recruited into

pathogens. While small in number, selection has made them

extraordinarily abundant. Partly as a consequence of this,

drug resistance-carrying mobile elements are cooperating in

a way that probably did not occur in the preantibiotic era.

Thus, we tend to talk today of multidrug resistance regions

and not individual genes. In many cases, the development of

multidrug resistance regions has taken place in the chro-

mosome. Several important Gram-negative pathogens are

known to have quite variable genomes when different strains

are compared and these variable regions, genomic islands,

can include concentrations of resistance genes (Dobrindt

et al., 2004; Hall, 2010). The expansion of these islands, with

ongoing selection, is a major clinical problem in Acineto-

bacter baumannii, where they can extend over several tens of

kilobases and comprise dozens of resistance genes (Fournier

et al., 2006; Adams et al., 2008). Pathogenicity islands are a

form of genomic island that carry known and/or inferred

virulence factors. In several organisms, they contribute

First gene
cassette

intI2 dfrA14 lip

cassette

attI2

Second gene

lsp

L  S  A  C
3 2–  -  -1 +1

*

Fig. 6. Structure of functional class 2 integron and associated cassette

array from an Escherichia coli pathogen. intI2, functional class 2 DNA

integrase; attI2, class 2 integron attachment site; dfrA14, trimethoprim

resistance gene cassette; lsp, putative lipoprotein signal peptidase gene

cassette; and lip, putative lipoprotein gene. This lip gene is not cassette

associated. Asterisk indicates the relative position of internal stop codon.

Letters indicate a putative signal peptidase cleavage recognition site. The

resident strain and other features are as described previously (Marquez

et al., 2008a, b).
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substantially to strain-specific pathogenicity and can excise

and integrate as a large single unit (Dobrindt et al., 2004).

Both genomic islands and pathogenicity islands commonly

contain the same types of mobilizing elements seen in

extrachromosomal DNA. Genomic islands often include

integrated plasmids (Smillie et al., 2010) and the mobiliza-

tion of pathogenicity islands is mediated by processes

similar to that seen for ICEs with respect to incision/excision

mechanisms. Indeed, this may be at least partly driven by the

integration of whole plasmids or ICEs into the chromosome

(Burrus & Waldor, 2004). Movement of genomic islands can

occur by conjugation even when conjugation genes are not

linked. For example, the conjugal spread of the Salmonella

genomic island SG1 can be mediated by IncA/C plasmids,

specifically those that carry multidrug resistance regions

(Douard et al., 2010), providing another remarkable exam-

ple of mobile genetic regions that ‘cooperate’ with each

other. Other types of large chromosomal regions with

properties shared with genomic and pathogenicity islands

are also beginning to appear. One possible emerging exam-

ple of this distinctive genomic resistance module has re-

cently been reported at a defined location in E. coli

clonal group A (Lescat et al., 2009), which includes deter-

minants conferring resistance to antibiotics, antiseptics and

heavy metals.

The extraordinary power of mobile elements to cooperate

is commonly seen in the accumulation and concentration of

resistance genes into promiscuous plasmids. This coopera-

tion is recent because, while the individual elements that

comprise them have existed since before the antibiotic era,

they were not seen together. In pathogens, cooperation is the

norm and the abundance and myriad of combinations is

accelerating the rate of resistance evolution (Walsh, 2006;

Marquez et al., 2008b; Garriss et al., 2009). This level of

cooperation is remarkable, given that theory would suggest

that such cooperation is not a stable evolutionary strategy

(Wagner, 2006). However, this is not something that pro-

vides a degree of hope in solving the resistance crisis,

because strong selection is the driver of this cooperation.

Also, game theory makes the point that cooperation is

not stable over evolutionary periods of time. Thus, even if

selection were to suddenly stop, multiresistance regions

would persist well beyond time frames relevant to humans.

In the meantime, it is inevitable that ever more larger and

complex DNA elements will evolve. At least to some extent,

this is likely to be driven by the recruitment of new

mobilizing elements linking resistance to mobilizable re-

gions in plasmids. There are now several examples of new

families of elements, one of which are the ISCR elements.

These are a group of insertion sequences with similarities,

structural and functional, to the IS91 family. One of their

defining features is a process of one-ended transposition

that allows the co-option of adjacent sequences (Toleman

et al., 2006). This has ramifications for the dissemination of

antibiotic resistance because ISCR elements are commonly

linked to antibiotic resistance genes in pathogens. Although

their name did not come until later, they were first observed

nearly 20 years ago in clinical isolates (Stokes et al., 1993).

However, they appear to have become especially prevalent in

recent years and there are now some 19 distinct groups

based on sequence differences and there is evidence that, like

other types of mobile elements, recombination is beginning

to generate novel hybrids (Li et al., 2009b). They are also

linked to, or embedded in, other types of mobile elements,

with perhaps the best example being the common linkage of

ISCR1 to class 1 integrons (Sohn et al., 2009), where they act

cooperatively to mobilize an increasingly diverse range of

antibiotic resistance genes.

Another example of resistance recruitment elements are

the ISEcp1 family of mobile elements. These are mobile and

mobilizing elements that contribute to the growing anti-

biotic resistance problem. These elements are transposon-

like in their mode of movement, but are also commonly

found adjacent to various resistance genes in a manner

structurally similar to the ISCR family of elements. Where

this linkage is found, the ISEcp1 element has the potential to

both mobilize and express the linked resistance gene (Karim

et al., 2001). ISEcp1 elements were first described in the

context of the spread of CTX-M family of b-lactamase genes

(Karim et al., 2001; Poirel et al., 2003) and numerous

examples of linkage of such genes to an ISEcp1 element are

now known (Canton & Coque, 2006). However, linkage of

an ISEcp1 to other resistance gene families are also known

including to qnr (Cattoir et al., 2008), blaCMY (Verdet et al.,

2009) and rmt (Wachino et al., 2006). ISEcp1 regions are

commonly linked to other mobile elements such as other

transposons, class 1 integrons and ISCR1 elements so as to

generate quite large and complex regions that potentially

move as single discrete units (Canton & Coque, 2006; Rice

et al., 2008).

Some families of insertion sequences are frequently found

in association with antibiotic resistance regions. One of

these is IS26. Superficially, this is an example of the very

common family of insertion sequences, which, like all

members of this family, comprises a transposase gene

flanked with characteristic inverted repeats. However, in

recent years, it has become clear that this insertion sequence

is very commonly associated with resistance regions both in

plasmids and in chromosomal genomic islands where, when

present, it can be often found in multiple copies (Hall, 2007;

Doublet et al., 2009; Dawes et al., 2010). The presence of

multiple copies of IS26 probably enhances the mobilization

of resistance in a manner directly analogous to that seen for

composite transposons. As well, multiple copies can also

result in the deletion of resistance and other regions. Thus,

IS26 is driving the evolution of clonal lines at a regional and

FEMS Microbiol Rev 35 (2011) 790–819c� 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

808 H.W. Stokes & M.R. Gillings

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/35/5/790/2680373 by guest on 24 April 2024



global level (Post et al., 2010). Mobilization of resistance

regions by IS26 may not be confined to conventional

transposition since it has recently been reported that single

IS26 copies may be able to mobilize adjacent regions,

including resistance genes via a circular intermediate (Cain

et al., 2010). If so, this would probably be a form of

mobilization analogous to the ISCR elements. Another

family of insertion sequences – the IS1111 family – is

associated with resistance regions and its association with

these regions is likely to grow in prominence with time.

Members of this family are atypical of transposons in some

respects, most notably in that movement does not generate a

target site duplication (Partridge & Hall, 2003). Also, these

elements target the inverted repeats of other mobile elements

including the Tn21 family of transposons (Partridge & Hall,

2003) and the attC sites found in integron-associated mobile

gene cassettes (Tetu & Holmes, 2008; Post & Hall, 2009).

Finally, a mobilizing element recently identified in patho-

genic bacteria in association with class 1 integrons is the

miniature inverted transposable element (MITE). This is a

diverse element family with respect to both sequence and

properties, with no single set of universal defining charac-

teristics (Delihas, 2008). They do, however, have the poten-

tial to move themselves and mobilize other DNA by a

nonhomologous recombination mechanism. There are two

recent examples where these elements are linked to class 1

integrons and resistance genes. One is from a clinical

Enterobacter cloacae isolate, where it was shown that when

transposition functions were supplied in trans, the so-called

integron mobilization unit was translocated, with this

region including the flanking MITE sequences, the integron

and its associated resistance array (Poirel et al., 2009). The

second example is from the msr cassette containing the

strain described above (Gillings et al., 2009b). As noted, this

came from an Acinetobacter strain that was not a clinical

isolate. Also, the two sets of MITE sequences are not

identical in sequence, suggesting two independent capture

events, although their arrangement with respect to class 1

integrons is similar. We would again suggest that this family

of elements will begin to appear in clinical isolates in

growing numbers.

Overall, there is a clear ongoing trend towards increasing

size and complexity for resistance regions that involves all of

the elements described above. These multifactorial interac-

tions are increasing the opportunities for the recruitment of

new resistance and other genes into pathogens. Numerous

examples of this have been provided, but a further one is

offered. In 2009, the recovery of a new metallo-b-lactamase

– NDM-1 – was reported from a Klebsiella pneumoniae

clinical isolate (Yong et al., 2009). Since its first identifica-

tion, the gene has spread and it has rapidly become a global

problem. Even worse is the fact that the gene product

inactivates almost all known b-lactam antibiotics and is

found in association with other complex multi-drug-resis-

tant regions (Moellering, 2010) such that it is being labelled

as contributing to the creation of a new type of superbug

(Anonymous, 2010). Examination of the genetic architec-

ture of the resistance regions found in the original isolate

(Yong et al., 2009) revealed that the new NDM-1 gene was

flanked by a pathogenicity island at one end and a defective

IS26/Tn3 region at the other. Other resistance genes/regions

were located in association with a class 1 integron (which

also included a second novel resistance gene in a cassette), an

ISCR1 element and an ISEcP1. All these regions are located

on a conjugative plasmid spreading by LGT. This complexity

and cooperativity is, thus, now at a point where our ability

to identify and characterize these newly emerging mobile

regions is testing the limits of sophisticated contemporary

clinical and molecular diagnostic tools.

Concluding remarks

What does the future hold for the management of antibiotic

resistance? Based on past experience, the future is not

promising. Despite the enormous resources devoted to

combating and managing the antibiotic resistance problem,

positive outcomes are hard to identify, because the problem

continues to grow unabated as determined by any measur-

able metric. There are global increases in the number of

multi-drug-resistant nosocomial infections, the number of

resistance genes per pathogen, the range of resistant patho-

gens and the number of infections refractory to antibiotic

treatment. Ironically, this arms race is ‘funded’ by humans

through the use and misuse of antibiotics. This is leading to

infections that are nearly impossible to treat, and equally

concerning, may begin to kill more quickly through the

recruitment of other types of virulence factors. Also, the

unrestrained growth of the problem has come about despite

the fact that the problem has not been ignored. Rather, the

literature contains in excess of 200 000 publications devoted

to the problem of antibiotic resistance since the 1950s

(Davies & Davies, 2010).

To address the problem, we believe that it has to be

tackled at a global level. This global approach has to be

considered from a number of perspectives. The first of these

is that antibiotic resistance is fundamentally an evolutionary

problem, and one in which LGT, combined with human-

induced selection pressures, virtually makes the entire

microbial biosphere into a single evolving community. Both

management strategies and basic scientific analysis could

benefit by better trans-border coordination. In the case of

the former, there has been some progress and to a lesser

extent the latter in recent years; however, there is still

probably a long way to go. The increasing power of high-

throughput technologies also has the potential to analyse

mobile DNA at a scale needed to understand the problem
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globally and provide the data needed to devise better

management strategies. This requires a shift away from a

focus on reductionist strategies that analyse the problem

from the perspective of specific sets of resistance gene types,

specific organisms or specific locations. The need to under-

stand the problem as a global one and, in part, recognize

that it is another consequence of globalization, and therefore

requires global solutions is recognized by economists

(Rudholm, 2002). It is clearly incumbent on microbiologists

at the ‘coal face’ to recognize the same.
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