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Abstract

Metals play essential roles in many biological processes but are toxic when

present in excess. This makes their transport and homoeostatic control of

particular importance to living organisms. Within the context of plant–pathogen
interactions the availability and toxicity of transition metals can have a sub-

stantial impact on disease development. Metals are essential for defensive

generation of reactive oxygen species and other plant defences and can be used

directly to limit pathogen growth. Metal-based antimicrobials are used in agri-

culture to control plant disease, and there is increasing evidence that metal

hyperaccumulating plants use accumulated metal to limit pathogen growth.

Pathogens and hosts compete for available metals, with plants possessing mech-

anisms to withhold essential metals from invading microbes. Pathogens, mean-

while, use low-metal conditions as a signal to recognise and respond to the

host environment. Consequently, metal-sensing systems such as fur (iron) and

zur (zinc) regulate the expression of pathogenicity and virulence genes; and

pathogens have developed sophisticated strategies to acquire metal during

growth in plant tissues, including the production of multiple siderophores.

This review explores the impact of transition metals on the processes that

determine the outcome of bacterial infection in plants, with a particular

emphasis on zinc, iron and copper.

Introduction

Plant diseases provide an important social and economic

challenge, being responsible yearly for pre- and posthar-

vest losses of 16–28% of crops (Chakraborty & Newton,

2011). It is increasingly understood that the concentration

of transition metals in the environment and the availabil-

ity of essential metals to support pathogen growth can

have a significant impact on the outcome of plant–patho-
gen interactions. In this review we discuss the ways in

which transition metals influence the outcome of plant–
pathogen interactions, considering both their effects upon

the plant, in terms of plant health, defensive signalling

and alterations to the environment that the pathogen

experiences in planta; and their effect upon the pathogen,

in terms of mineral nutrition, regulation of virulence gene

expression and toxicity. This review will focus on three

metals that are of profound interest for their effects on

plants and pathogens: iron, copper and zinc. Initially, we

give a brief overview of the importance of transition

metals for all forms of life, and the ways in which plants

and microbes obtain and regulate their supply of these

important but potentially toxic chemicals. We will discuss

the ways in which pathogenesis can be dependent upon,

or regulated by, metal availability; and how, in turn, this

can influence the plants’ response to the pathogen. Finally,

we discuss the special case of metal hyperaccumulating

plants, which maintain high foliar metal concentrations that

appear to form an important part of their anti-pathogen

defences. These unusual plants may not only provide

insights into the role of metals in plant–pathogen interac-

tions, but also genetic resources for the improvement of

metal uptake by crops, and insights into the consequences

of altering metal availability in crop plants for disease

resistance.

Metals are essential for both plants and
plant pathogens

To understand the effects that metals such as copper, zinc

and iron have on plant–pathogen interactions, it is neces-

sary to briefly consider their chemistry and the roles in
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metabolism that they fulfil. Copper and iron, along with

other transition metals, have incompletely filled d-orbitals,

conferring strong redox activity; in aqueous solution,

their ions may also participate in reactions as Lewis acids

(see Box 1). These properties make these metals able to

catalyse biochemical reactions, giving them an essential

role in metabolism (Nies & Brown, 1998). Zinc is often

included in discussions of transition metals, but it does

not have an incomplete d-orbital, and it does not partici-

pate in redox reactions. Instead, its stability makes it an

ideal cofactor for enzymatic reactions that require a stable

metal ion to act as a Lewis acid during catalysis. Esti-

mates suggest that as high a fraction as one third of all

proteins require some metal cofactor (Waldron & Robin-

son, 2009). In illustration of the importance of these

metals to all life forms, consider that iron has essential

roles in oxygen metabolism, electron transport, lipid

metabolism and the tricarboxylic acid (TCA) cycle; in

fact, there are known to be over 100 metabolic enzymes

with iron-based cofactors (Massé & Arguin, 2005; Miethke

& Marahiel, 2007). So fundamental are some of its uses

that bacteria have been found to have controls both at

the gene expression and post-transcriptional level to

ensure that iron is directed to the most essential proteins

when it is in limited supply (Massé & Gottesmann, 2002;

Massé & Arguin, 2005; Zaini et al., 2008).

Zinc is necessary for the functioning of DNA/RNA

polymerase enzymes and of ribosomes and in superoxide

dismutase (SOD) (Zelko et al., 2002). Zinc also has par-

ticular importance for plants, being found in carbonic

anhydrase and in stromal processing peptide, and thus

contributing to photosynthesis. Additionally, zinc is

important for protein structure, with 4% of Arabidopsis

proteins, for example, containing zinc finger domains

(Hänsch & Mendel, 2009). Copper is needed in cyto-

chrome oxidases (Waldron & Robinson, 2009), ascorbate

oxidase (Santagostini et al., 2004), SOD (Zelko et al.,

2002), polyphenol oxidase (Marusek et al., 2006) and, in

plants, in the receptor for the hormone ethylene, an

important signal in plant development and disease resis-

tance (Rodrı́guez et al., 1999). These essential roles are

by no means an exhaustive list of the functions of these

metals in vivo.

Given the essential role of metals in living organisms, it

is clear that either a lack, or an excess of essential metals

may have a profound effect on a wide range of organ-

isms, and by extension, their interactions. Add to this the

fact that availability varies widely in natural situations–
zinc, for example, is present at varying concentrations in

different soil types (Reeves & Baker, 2000; Hotz & Brown,

2004), including growth limiting concentrations in many

agricultural soils – and it becomes clear that the impact

of these metals on plant–pathogen interactions must be

taken into consideration in economically important agri-

cultural settings. To gain more insight into the impact of

varying metal availability on plant disease it will be neces-

sary to consider in what ways these metals are available

to both partners in this interaction.

Box 1 Chemical terms

Lewis acid: A molecule that is capable of taking part in

reactions in which it forms a co-ordinate covalent bond

by accepting a pair of electrons. Common examples are

H+ and metal cations:

(a) Hþ þ NH3 ! NHþ
4

(b) Hþ þOH� ! H2O

(c) Cu2þ þ 4NH3 ! CuðNH3Þ2þ4
Fenton reaction: Generation of OH˙ radicals from H2O2

by the reduction of OÆ�
2 , catalysed by redox active metal

ions, usually iron in biological systems:

(1) Fe3þ þOÆ�
2 ! Fe2þ þO2

(2) Fe2þ þH2O2 ! Fe3þ þOH� þOHÆ

Sources of metals

Plants generally have one main source of mineral nutri-

ents: the soil, although foliar fertilisation is also used in

some crop management systems. The availability of min-

eral nutrients in the soil may be further affected by

mycorrhizal symbioses and rhizosphere bacteria, detailed

discussion of which is beyond the scope of this work.

Although some opportunistic and soil-borne pathogens,

such as Ralstonia spp., can obtain metals directly from

the environment (Denny, 2007), pathogens that multiply

inside the host are dependent on the host for their metal

supply (Hancock & Huisman, 1981; Rico et al., 2011).

The importance of, and limitations imposed by, this

dependency is at least partially determined by the mode

of infection employed. Necrotrophs, such as soft rot

pathogens belonging to the genera Dickeya and Pectobac-

terium (formerly Erwinia), have access to the full range of

nutrients found within the colonised tissue, as they break

down cell walls and membranes and release metals and

other compounds that are sequestered in the vacuole or

bound within the cell wall (Hugouvieux-Cotte-Pattat

et al., 1996). The tissue colonised may be of importance

in determining metal availability, as certain metals may

be retained within the roots of plants, particularly if toxic

in excess (Lasat et al., 1996; Prasad, 2004); or, if in short

supply, will be translocated rapidly to sink tissues. Even

within a tissue, there may be heterogeneity of availability

as certain cell types may be used preferentially as stores

of metals (Küpper et al., 1999, 2004). The pathogens
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likely to suffer the most restriction, however, may be

xylem pathogens, such as Xylella fastidiosa (Hopkins,

1989) to which only those compounds translocated in the

xylem are available, and where iron and other metals may

be mainly available in chelated forms such as Fe-citrate.

This means that metal availability to the pathogen

depends both on metal availability to the plant and the

plant’s requirement for the nutrient in its aerial tissues.

Many biotrophic and hemibiotrophic bacteria, such as

Pseudomonas syringae, colonise the apoplastic space

between the cells of a plant’s leaves (Preston, 2000). As

these pathogens have no or limited access to intracellular

stores such as the vacuole, they face particular challenges

in obtaining essential but redox active metals, which are

often sequestered in the vacuole for the plants’ own pro-

tection (Küpper et al., 1999). For hemibiotrophic strains,

these difficulties may be obviated at later stages of infec-

tion, but they may be considered to be of importance

during biotrophic growth.

Metal uptake, toxicity and
homoeostasis

Given the importance of metals for life, it is unsurpris-

ing that organisms compete for them when they are in

short supply, and that they have evolved specific sys-

tems that enable them to take up the metal ions that

they require. This is of great importance in the case of

iron, because, although an abundant metal, it exists

most commonly as the insoluble and therefore nonbio-

available Fe3+ in aerobic environments (Miethke & Mar-

ahiel, 2007). For many plants and micro-organisms, the

solution to this is to produce and secrete diffusible

ligands, known as siderophores (Fig. 1), which have

high affinities for this otherwise unavailable ferric iron

(Romheld & Marschner, 1986; Braud et al., 2009), in

conjunction with the synthesis of dedicated uptake pro-

teins for the siderophore-Fe3+ complex, such as the TonB-

dependent uptake system (Cornelis & Matthijs, 2002). Cer-

tain bacteria, including the opportunistic pathogen Burk-

holderia cenocepacia, can obtain iron directly from host

iron-chelating proteins such as ferritin (Whitby et al.,

2006). These abilities, however, are known to have become

the subject of an evolutionary arms race between bacterium

and host in vertebrate pathosystems (Skaar, 2010), an out-

come which also seems likely in phytopathology. This

makes the indirect pathway of siderophore production

more stable, although there are also clear advantages for a

bacterium in being able to assimilate siderophores pro-

duced by other organisms, including the host (Miethke &

Marahiel, 2007).

Siderophore production is regulated by iron availability

as part of a complex system of iron homoeostasis. The

topics of siderophore production, regulation and uptake

have been extensively reviewed elsewhere (e.g. Neilands,

1993, 1995; Cakmak et al., 1994; Chakraborty et al.,

2007), and will not be covered again herein. Interestingly,

however, it has recently begun to emerge that some

so-called secondary siderophores, which have much lower

affinities for iron than other siderophores produced by

the same organism, may be important for the acquisition

of other metals, including zinc (Leach et al., 2007). As

will be discussed, siderophores and their regulatory

systems have extensive influence on plant–pathogen inter-

actions.

Redox active metals are not simply required for life.

A delicate balance must be maintained, because these

metals have the potential to become toxic at excess

concentrations. Copper, for example, is able to displace

other metals from complexes and to generate reactive

oxygen species (ROS). Similarly, iron is a potent genera-

tor of ROS (Miethke & Marahiel, 2007), which is the

necessary corollary of the redox activity that makes it so

fundamentally useful. ROS may cause oxidative stress and

damage to cells (Fones & Preston, 2012). The observation

that the toxic metal, cadmium, kills cells by creating

waves of H2O2 and superoxide illustrates the damaging

potential of ROS (Garnier et al., 2006). Additionally,

excess metals may compete with required cofactors for

binding sites in transport proteins and enzymes (Stohs &

Bagchi, 1995; Hanikenne, 2003). This results in a need

for stringently controlled metal ion homoeostasis, and

mechanisms for tolerating elevated metal concentrations.

Metals are most toxic as free ions (Pollard et al., 2002),

so an important facet of tolerance is chelation of metal

ions into complexes to reduce their toxicity. Such com-

plexes are often sequestered into specific subcellular com-

partments (Küpper et al., 1999; Krämer et al., 2000;

Cosio et al., 2004). This strategy is common among

plants; in barley, for example, metal toxicity is reduced by

vacuolar and apoplastic sequestration (Brune et al., 1994).

Chelating agents such as phytochelatins and metallothi-

oneins are also known to be involved in metal tolerance

in many plants; for example, phytochelatins are essential

for tolerance to cadmium in Arabidopsis thaliana (Ford-

ham-Skelton et al., 1998), while metallothioneins have

been shown to be upregulated in response to zinc stress

in Populus alba (Castiglione et al., 2007). A metallothion-

ein has also been implicated in cadmium and zinc toler-

ance in Silene vulgaris, but its role may be indirect, via

copper homoeostasis, rather than directly chelating zinc

or cadmium (Jack et al., 2007).

Metal binding proteins are similarly important in

bacterial metal tolerance. For example, the copA, B and C

genes of P. syringae encode copper binding proteins that

are found in the periplasm and outer membrane of the
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bacterium. These provide copper resistance by binding

copper so effectively that the bacterial colonies can turn

blue (Silver, 1996; Nies & Brown, 1998). This well charac-

terised system is known to have parallels in many other

bacteria (Cooksey et al., 1990; Cooksey, 1994). Metallo-

thioneins are also known in bacteria, having, in fact,

first been discovered in the cyanobacteria Synechococcus

(Silver, 1996). They are used particularly for zinc (Blindauer

et al., 2001) and also copper (Gold et al., 2008). Pseudo-

monas syringae may also use histidine to bind copper

(Cánovas et al., 2003). Regulation of the expression of

iron-binding proteins is thought to play an important

role in iron homoeostasis. For example, transcriptomic

studies of the xylem-limited pathogen X. fastidiosa showed

that expression of the major iron storage protein, bacte-

rioferritin, and other proteins containing iron-sulphur

clusters decreased in iron-limited conditions (Zaini et al.,

2008).

However, the most common strategy for metal resis-

tance in bacteria is the efflux of excess metal from the

cell. For example, the cueA copper resistance gene of

Pseudomonas aeruginosa encodes a P-type ATPase, which

exports the metal (Schwan et al., 2005). There are a num-

ber of well-studied metal resistance operons that enable

efflux of metals from the cell. This efflux is mediated by a

variety of transporters, the expression of which is regu-

lated by metal ion sensing proteins (Busenlehner et al.,

2003). Efflux proteins include members of the Cation

Diffusion Facilitator (CDF), Resistance-Nodulation-Cell

Division (RND) and Major Facilitator superfamilies, as

well as P-type and ABC ATPases (Mergeay et al., 2003;

Nies, 2003, 2007; Silver & Phung, 2005). There is evi-

dence for the horizontal transfer of the genes encoding

these metal-efflux systems (Mergeay et al., 2003). The

number of efflux pumps possessed by a bacterial species

varies depending on lifestyle, with generalist bacteria typi-

cally possessing more, as they may be exposed to a

greater variety of toxins. For instance, Pseudomonas

putida and P. aeruginosa have twelve and ten efflux pumps,

respectively, while Escherichia coli has four (Cánovas

Control
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hrp genes
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Siderophores
 ROS 
 tolerance
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BiofilmsCu
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3
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Fig. 1. Metals in plant-microbe interactions.

Metals can influence the expression of various

bacterial virulence factors, including toxins,

EPS and hrp genes, most notably via signalling

involving metal sensing systems including fur

and zur, and metal uptake systems,

particularly siderophores (1). Metals may also

have roles in protecting the plant against

infection and, especially in the case of copper,

can be applied directly to crops as

antimicrobials (2). This approach can lead to

the development of metal resistant strains,

accelerated by the horizontal transfer of

resistance genes. Build-up of metals in the soil

can affect microbial communities (4), with

potential effects upon plant-microbe

interactions, and can result in overexposure of

the plant, causing toxicity symptoms such as

russetting (5). Plants and microbes also

compete for metals. Metal uptake often

occurs via iron-chelating compounds such as

siderophores, and soil-borne bacteria are

frequently able to take up those produced by

the plant, in addition to their own (6). Within

the plant, competition for metals may also be

important, with the withholding of metals,

especially iron, being an important defence.

Additionally, plants may use metals in

defence, either as catalysts for ROS

production, or more directly as antimicrobial

toxins (7), as most clearly evident in the case

of metal hyperaccumulating plants.

ª 2012 Federation of European Microbiological Societies FEMS Microbiol Rev 37 (2013) 495–519
Published by John Wiley & Sons Ltd. All rights reserved

498 H. Fones & G.M. Preston

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/37/4/495/2399021 by guest on 23 April 2024



et al., 2003). The mechanisms of bacterial metal tolerance

are summarised in Fig. 2.

Interestingly, studies have also suggested a role for

metal uptake systems in reducing metal toxicity, particu-

larly the iron toxicity associated with bacterial responses

to oxidative stress. Peroxide stress has been shown to

induce a variety of adaptive changes in bacteria, including

changes in metal ion homoeostasis such as increased

expression of transporters involved in uptake of manga-

nese and zinc. It has been speculated that increased cyto-

solic concentrations of these metals act to displace ferrous

iron from enzyme targets, and a high Mn/Fe ratio has

been correlated with oxidative stress tolerance (Faulkner

& Helmann, 2011).

From the perspective of plant pathogenesis it is inter-

esting to note that the regulation or expression of a num-

ber of metal tolerance systems alters during host-bacteria

interactions. For instance, the cueA gene is upregulated in

the plant growth promoting rhizobacterium Pseudomonas

fluorescens SBW25 when growing on the surface of sugar

beets (Zhang & Rainey, 2008), and it has been found that

this gene is important for colonisation of plant hosts

(Zhang & Rainey, 2007). The copRSCD genes present in a

strain of P. fluorescens isolated from a diseased fish have

been implicated in spread and survival in host tissues, as

well as copper resistance (Hu et al., 2009). In plants as

well, metal resistance systems appear to play a role during

interactions with pathogens. For instance, metallothione-

ins are known to be upregulated in Arabidopsis, tobacco

and velvetleaf during infection (Dauch & Jabaji-Hare,

2006), while phytochelatin synthesis has been linked to

basal defence responses (Clemens & Peršoh, 2009). This

interplay between metal usage, metal stress and plant–
pathogen interactions will be explored in more detail in

the following sections of this review.

Metal-dependent regulation of
virulence

Fur and zur: metal sensing in virulence

There are a number of ways in which metals can influ-

ence the ability of a micro-organism to be pathogenic on

a plant host. Their most obvious impact is in terms of

metal availability to support bacterial growth in plant tis-

sues. However, metals can also be involved in the regula-

tion of pathogenesis and virulence genes, both directly

and indirectly (Fig. 1). An important example of this is

the transcriptional regulator, fur. fur controls the expres-

sion of iron uptake and iron storage systems in an iron-

dependent manner (McHugh et al., 2003; Butcher et al.,

2011). The mode of action of the Fur protein has been

well studied in E. coli, where it is known to form a com-

plex with Fe2+, which binds to a ‘fur box’ sequence in the

promoter of various genes. In the absence of iron, Fur

cannot bind and repression of transcription of these genes

is released (Bagg & Neilands, 1987). As well as this nega-

tive regulation, Fur can activate genes by repressing the

transcription of the small RNA, RyhB, which, when

expressed, causes degradation of mRNAs encoding iron-

utilising enzymes (Massé & Gottesman, 2002). However,

the role of Fur is not restricted to effects upon iron

metabolism. Instead, Fur behaves as a global regulator of

gene expression, with involvement in acid tolerance, oxi-

dative stress tolerance, toxin production and the expres-

sion of virulence factors (Kitphati et al., 2007), making

iron and fur critical for pathogenesis (Ratledge & Dover,

2000).

Unsurprisingly, fur mutants have been found to have

reduced virulence and pathogenicity. For example, a fur

mutant of P. syringae pv. tabaci 11528, the causal agent

Fe3+

Cu2+

Cu2+
Cu2+

Cu2+

Cu2+

Cu2+

Zn2+

Cu2+
Zn2+

Cu2+

Fe3+
1

2

4

5
Fe2+

Cu2+ Zn2+

3

Fig. 2. Bacterial metal uptake and homoeostasis. Iron is often

limiting in plant-associated environments. Iron-chelating compounds

such as siderophores are produced to maximise uptake (1). Bacterial

pathogens may also be able to obtain iron from host iron-chelating

compounds such as ferritins, which may function to restrict iron

availability to the pathogen (2). Metals such as zinc and copper are

imported by membrane transporters (3). The presence of high

concentrations of individual metals in the environment may restrict

uptake of other essential metals through competition for metal ion

binding sites in transport mechanisms. Toxic excesses of metal ions

are often tolerated through chelation and sequestration, either by

compounds within the EPS, periplasm or outer membrane, such as

the CopABC copper binding system of Pseudomonas syringae, or

compounds such as metallothioneins, found within the cell (4). The

final and frequently most important layer of defence employed by

bacteria against toxic excesses of metals is efflux from the cell (5),

mediated by a number of types of membrane transporter including

P-type and ABC ATPases, as well as CDF-, RND- and major facilitator

family proteins.
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of wildfire disease of tobacco, was found to have reduced

virulence and population growth in planta, which may be

linked to fur regulation of iron uptake and siderophore

synthesis, but may also be linked to reduced production

of the toxin, tabtoxin, in fur mutants (Cha et al., 2008).

Tabtoxin is a monocyclic b-lactam, which is cleaved in a

zinc-dependent manner (Durbin & Uchytil, 1985; Levi &

Durbin, 1986) in plant cells to generate the toxin tabtoxi-

nine-b-lactam (TbL). TbL inhibits glutamine synthesis by

glutamine synthetase, which may cause chlorotic symp-

toms due to the build-up of ammonia (Barta et al., 1992;

Bender et al., 1999). Similarly, a spontaneous fur mutant

of Xanthomonas campestris pv. campestris was reported to

show high intracellular iron, reduced virulence and

increased sensitivity to ROS (Jittawuttipoka et al., 2010).

In some bacteria, including the plant symbionts Rhizo-

bium leguminosarum and Sinorhizobium meliloti, fur has

been found to regulate manganese uptake, while losing its

role in iron homoeostasis (Johnston et al., 2007). This is

also the case in the tumour-inducing pathogen Agrobacte-

rium tumefaciens, where the gene is renamed mur. Despite

regulating a different metal, mur remains essential for full

virulence (Kitphati et al., 2007).

A homologue of fur, named zur, has been discovered

which controls zinc homoeostasis by repressing zinc

uptake and up-regulating zinc efflux (Hantke, 2001, 2005;

Huang et al., 2008). Zur behaves as a zinc responsive glo-

bal transcription regulator, and, like fur, can be shown to

be involved in pathogenicity and virulence. A zur mutant

of Xanthomonas oryzae grows slowly in both rich medium

and in rice leaves, and shows reduced virulence on rice

(Yang et al., 2007). A zur knock-out mutant in the

related bacterium X. campestris shows reduced zinc toler-

ance and reduced virulence (Tang et al., 2005). It is pos-

sible, however, that the virulence effect in this instance

may be attributable to the fact that the mutant produces

lower quantities of extracellular polysaccharides (EPS),

which are important for virulence (Yu et al., 1999; Fones

& Preston, 2012).

It has been shown that zur is involved in the regulation

of hrp (hypersensitive response and pathogenicity) genes

in X. campestris (Huang et al., 2009). This provides a

direct link between this gene and the pathogenicity of the

bacterium: the hrp genes, in concert with genes named

‘hypersensitive response conserved’ (hrc) produce the

‘syringe-like’ type three secretion system (T3SS) (Alfano

& Collmer, 1997; Collmer et al., 2000) through which

‘effector’ proteins are injected into host cells to enhance

pathogenicity (Preston, 2000; Grant et al., 2006). Addi-

tionally, fur is known to regulate the expression of T3SS

genes in animal pathogens such as Salmonella enterica

(Ellermeier & Slauch, 2008), suggesting that this link

between metal regulation and the expression of the hrp

cluster is unlikely to be confined to Xanthomonas. Indeed,

it is known that iron nutrition can affect hrp gene expres-

sion in P. syringae (Bronstein et al., 2008; Kim et al.,

2009, 2010). Other plant colonisation and virulence fac-

tors shown to be regulated by iron include type IV pili in

X. fastidiosa (Zaini et al., 2008) and exoenzyme produc-

tion in soft rot pathogens such as Dickeya dadantii (Fran-

za et al., 2002).

Siderophores: metal binding in
virulence

Links between siderophore production and pathogenesis

have been clearly demonstrated in mammalian systems,

in which it is understood, for example, that the sidero-

phore yersiniabactin is essential for the pathogenicity of

Klebsiella and Yersinia pestis and pyoverdine for P. aeru-

ginosa on mouse hosts (Meyer et al., 1996; Bearden et al.,

1997; Lawlor et al., 2007). In plants, a large body of work

performed by Expert and coworkers using the model sys-

tem of Erwinia chrysanthemi (now renamed D. dadantii)

and Saintpaulia ionantha has provided much of our cur-

rent knowledge in this area, demonstrating a clear link

between siderophore production and pathogenicity in this

model system (Enard et al., 1988; Expert, 1999). Dickeya

dadantii produces two kinds of siderophore involved in

high-affinity Fe uptake: achromobactin and chrysobactin.

Both are needed for survival and full virulence in planta

(Expert, 1999). The importance of these siderophores in

mediating plant-microbe competition for iron can be

illustrated by the finding that chrysobactin production by

D. dadantii leads to iron deficiency in the plant host, as

measured by the amount of iron bound to plant ferritins

(Neema et al., 1993).

In addition to those of D. dadantii, siderophores of

related enterobacteria have been extensively studied. Erwinia

carotovora (now Pectobacterium carotovorum) produces

the high-affinity hydroxamate siderophore, aerobactin

(Ishimaru & Loper, 1992), and a high-affinity class of

siderophores, desferriodoxamines, is conserved among

Erwinia and Pantoea species (Smits & Duffy, 2011). Erwinia

amylovora infects the blossoms of pear and apple trees,

which are known to provide an iron-limited environment

(Temple et al., 2004), a fact that supplies a possible role for

these conserved high-affinity siderophores.

The transcriptional regulator Fur, discussed in the pre-

ceding section, regulates siderophore synthesis in many

plant pathogenic bacteria, including D. dadantii (Franza

et al., 2005), P. syringae pv. tabaci (Cha et al., 2008) and

P. syringae pv. tomato (Jones et al., 2007). Although fur

mutants generally show constitutive siderophore produc-

tion, it is interesting to note that nonlethal Fur missense

mutants of P. aeruginosa have been reported to show con-
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stitutive synthesis of the siderophores pyochelin and pyov-

erdine, but reduced iron uptake (Hassett et al., 1996),

which may provide one explanation for the reduced ability

of some fur mutants to grow in the host environment.

However, as noted above, fur does not regulate sidero-

phore synthesis in all bacteria. A mur (fur) mutant of the

tumourigenic plant pathogen A. tumefaciens did not show

altered siderophore synthesis, although it did show

increased manganese uptake, reduced virulence, reduced

growth in iron-limiting conditions and increased sensitiv-

ity to oxidative stress (Kitphati et al., 2007).

Evidence of a role for siderophore synthesis and iron

uptake in the pathogenesis of P. syringae was suggested in

work by Bronstein et al. (2005), which showed that

mutants of P. syringae pv. tomato DC3000 lacking the

twin-arginine translocation (tat) system had reduced sid-

erophore synthesis, reduced iron uptake and decreased

virulence. More direct evidence was provided by a study

showing that siderophore-deficient mutants of P. syringae

pv. tabaci were impaired in their ability to infect tobacco

(Taguchi et al., 2010). Pseudomonas syringae pv. tomato

produces two siderophores, yersiniabactin and pyover-

dine, and is also able to use citrate as an iron chelator

(Buell et al., 2003; Jones et al., 2007; Jones & Wilder-

muth, 2011). However, siderophore-deficient mutants

of P. syringae pv. tomato, although impaired in iron

uptake in vitro, remained fully pathogenic in tomato.

Similarly, siderophore mutants of the bean pathogen

P. syringae pv. phaseolicola 1448A and the sweet cherry

pathogen P. syringae pv. syringae B301D were shown to

retain virulence when inoculated into bean pods and

cherry fruit, respectively (Cody & Gross, 1987; Owen &

Ackerley, 2011). Studies of a number of other plant path-

ogenic bacteria, including the rice pathogen X. oryzae pv.

oryzae, the gram-positive plant pathogen Streptomyces

scabies, the wilt pathogen Ralstonia solanacearum and

A. tumefaciens have also failed to demonstrate a role for

siderophore synthesis in plant pathogenesis (McQueen &

Schottel, 1987; Bhatt & Denny, 2004; Rondon et al., 2004;

Pandey & Sonti, 2010; Seipke et al., 2011).

Several explanations have been put forward to explain

why siderophore-deficient mutants of some plant patho-

genic bacteria remain fully virulent in plant hosts. It has

been suggested that pathogens are able to acquire iron

from plant iron compounds such as heme/hemin or iron-

nicotiamine, or that iron levels in plant tissues are

sufficient to support pathogen growth in the absence of

siderophore synthesis (Bhatt & Denny, 2004; Jones &

Wildermuth, 2011). Iron complexes with phytic acid

(myo-inositol hexakisphosphate, InsP6) and other myo-

inositol trisphosphate and tetrakisphosphate regio-isomers

have also been suggested to be a source of iron for plant

pathogenic bacteria (Smith et al., 1994; Hirst et al.,

1999). Genome sequence analyses have revealed a greater

degree of functional diversity and functional redundancy

in many plant pathogens than previously anticipated,

with pathogens such as P. syringae pv. actinidiae contain-

ing genes for the production of multiple siderophores,

including pyoverdine, enterobactin and yersinabactin

(Scortichini et al., 2012). Finally, it has been suggested

that some of these bacteria have novel iron chelation sys-

tems that act as alternative mechanisms for iron uptake

in the absence of siderophore synthesis. For example,

Grinter et al. (2012) have recently shown that two ferre-

doxin containing bacteriocins produced by the soft rot

pathogen P. carotovorum can enhance bacterial growth in

the presence of spinach ferredoxin under iron-limiting

conditions, suggesting that plant ferredoxins can be used

as an additional source of iron. The activity of iron chela-

tion systems may be enhanced by the activity of com-

pounds such as phenazine-1-carboxylic acid, produced by

the opportunistic pathogen P. aeruginosa, which can act

to reduce Fe3+ to Fe2+ increasing iron availability in host

tissues (Wang et al., 2011).

Despite the lack of evidence for a role for siderophore

synthesis in the growth of many plant pathogenic bacteria

inside plant tissues, siderophores have been shown to have

an important role in the earliest stages of the P. syringae

infection cycle. Pseudomonas syringae pv. syringae B728a

and P. syringae pv. phaseolicola 1448A produce two sidero-

phores, pyoverdine, in common in with P. syringae pv.

tomato and other pseudomonads, and achromobactin, in

common with D. dadantii (Berti & Thomas, 2009; Owen &

Ackerley, 2011). Mutants of the epiphytic strain P. syringae

pv. syringae 22d/93 deficient in either pyoverdine or achro-

mobactin synthesis showed reduced epiphytic growth on

soybean leaves when spray inoculated onto the leaf surface,

with a double mutant lacking both siderophores showing

an even greater reduction in growth (Wensing et al., 2010).

This reduction was not evident when bacteria were

wound inoculated into leaves, indicating that wound sites

leaked sufficient iron to support bacterial growth. It is

interesting to note that for opportunistic pathogens such

as P. aeruginosa and B. cenocepacia the requirement for

siderophore synthesis differs between plant and animal

hosts, with siderophores playing a more central role in

animal models of infection. For example, pyoverdine and

ornibactin-deficient mutants of B. cenocepacia showed

only a slight reduction in the ability to infect alfalfa, but

were strongly attenuated in their ability to infect Galleria

mellonella and Caenorhabditis elegans (Uehlinger et al.,

2009). It has been shown that some plant pathogenic

bacteria, including P. syringae, Pantoea stewartii and

D. dadantii can be disseminated by insect vectors such as

aphids (Grenier et al., 2006; Stavrinides et al., 2009,

2010), and it is possible that siderophore-mediated iron
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uptake plays an important role in these interactions.

Finally, it is also important to note that there may be

counter-selection against the use of certain siderophores

during plant colonisation, as the pseudomonad sidero-

phore pyoverdine can be recognised and assimilated by

Arabidopsis, thus both alerting the plant to the presence

of the invader and providing it with an iron source

(Vansuyt et al., 2007). Indeed, the enterobactin genes

of closely related P. carotovorum strains have been

shown to be highly polymorphic (Bull et al., 1994), sug-

gesting selection for diversity among these enzymes and

their products, which may be driven by plants or other

microorganisms.

Beyond their role in iron acquisition, siderophores are

implicated in the regulation of many essential virulence

functions; for example, pyoverdine can, via the TonB-

dependent siderophore receptor, induce both itself and

the important virulence factors exotoxin A and endopro-

tease in P. aeruginosa (Vasil, 2007). Pseudomonas syringae

pv. tabaci mutants deficient in pyoverdine synthesis were

found to be deficient in production of tabtoxin and EPS,

and to show severely reduced virulence following both

infiltration and spray inoculation (Taguchi et al., 2010).

Greenwald et al. (2012) used RNAseq analysis to show

that the extracytoplasmic sigma factor AcsS regulates ach-

romobactin synthesis in P. syringae pv. syringae B728a,

and found that AcsS-deficient mutants showed altered

expression of 287 genes, including genes associated with

motility, toxin synthesis and EPS synthesis.

Dickeya dadantii seems to be relatively unusual in

requiring full siderophore functionality for growth in

plant tissues; neither P. syringae pv. tomato, P. aeruginosa,

A. tumefaciens nor even the more closely related P. caro-

tovorum show compromised virulence or growth in planta

when their siderophore synthesis systems are mutated

(Leong & Neilands, 1981; Ishimaru & Loper, 1992; Jones

et al., 2007; Nadal Jimenez et al., 2010; Jones & Wilder-

muth, 2011). One possibility is that siderophores might

be used in planta to help protect D. dadantii from oxida-

tive stress caused by excess iron released during tissue

maceration (Expert et al., 1996), explaining why multiple

siderophores are of greater importance in this soft rot

pathogen than in more biotrophic pathogens. Consistent

with this, Boughammoura et al. (2008) found that strains

of D. dadantii lacking the main iron storage ferritin FtnA

showed increased sensitivity to oxidative stress and

reduced virulence in planta. Both oxidative stress and

iron regulate siderophore production in the plant-associ-

ated bacterium Azotobacter vinelandii, suggesting that

here, too, siderophores might function to protect the

bacterium from oxidative stress induced by excess iron

(Tindale et al., 2000). However, as noted earlier, in

D. dadantii, several genes involved in infection, including

pectinases essential for soft rot symptoms, are also con-

trolled via iron availability, and siderophores are directly

implicated in modulation of plant signal transduction

pathways to promote bacterial growth, creating a far

more complex picture than simply the use of sidero-

phores to ‘mop up’ excess iron (Franza et al., 2002;

Dellagi et al., 2009). The iron-binding activity of chrysob-

actin and deferrioxamine have been shown to induce

salicylic acid sigalling in Arabidopsis, thereby antagonis-

ing jasmonate signalling and impairing plant defences

(Dellagi et al., 2009).

The challenge of untangling the links between iron

uptake and oxidative stress can be further illustrated by

work on the iron regulators RirA and IrrA in A. tumefac-

iens. RirA is a repressor of iron uptake and siderophore

synthesis and rirA mutants produce increased levels of

siderophore and take up excess iron in iron-sufficient

media, resulting in increased sensitivity to ROS and

reduced virulence gene expression (Ngok-Ngam et al.,

2009). IrrA is regulated by degradation when bound to

iron-containing heme, and represses expression of rirA.

As might be expected, a mutant lacking irrA contains

decreased iron, and shows increased ROS tolerance.

However, a double rirA irrA mutant has slightly increased

iron and decreased ROS tolerance (Hibbing & Fuqua,

2011). The authors of this study speculate that this

discrepancy in the correlation between iron concentra-

tions and ROS tolerance could be explained if IrrA acted

as a negative regulator of a ROS defence mechanism.

Another example of cross-talk between iron uptake and

oxidative stress mechanisms in plant pathogenic bacteria

has been reported in P. syringae pv. tomato, in which

genes associated with siderophore synthesis were found

to be co-regulated with azurin, a periplasmic protein

predicted to be associated with responses to oxidative

stress (Swingle et al., 2008).

Metals and siderophores in bacterial
quorum sensing and virulence

When considering the diverse roles of siderophore synthe-

sis in plant pathogenesis, it is interesting to note that in

some bacteria siderophore-deficient mutants have been

shown to produce reduced levels of acyl-homoserine lac-

tones (AHLs), signals that are known to be important in

bacterial quorum sensing (Dong et al., 2001). A recipro-

cal observation is that quorum sensing–deficient mutants

of P. aeruginosa produce reduced levels of the sidero-

phore pyoverdine (Stinzi et al., 1998). Quorum sensing is

important for the virulence of many bacterial pathogens

and also controls the formation of biofilms (Williams

et al., 2000; Waters & Bassler, 2005). The importance of

biofilms for pathogen survival is particularly well-studied
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in the case of human pathogens (e.g. Parsek & Singh,

2003). Under the control of quorum-sensing systems,

iron can influence biofilm formation, leading to a con-

nection between loss of siderophore synthesis and

reduced virulence for P. aeruginosa PAO1 (Banin et al.,

2005; Diggle et al., 2007). Consequently, iron chelators

are currently being explored as therapeutic agents to limit

P. aeruginosa infection (Moreau-Marquis et al., 2009;

Hurley et al., 2012).

Recently, parallels have been found in plant pathogens,

showing that siderophore production and iron-based reg-

ulation of quorum-sensing genes can also be important

for biofilm formation and virulence in planta (Cha et al.,

2008; Taguchi et al., 2010). An intriguing example of the

links between iron availability, quorum sensing and viru-

lence was reported by Dulla et al. (2010), who found that

the ability of epiphytic bacteria to inhibit quorum sensing

in P. syringae strongly correlated with their ability to

compete for iron with P. syringae through the production

of iron-chelating siderophores. However, co-inoculation

of these iron/quorum sensing–limiting strains with

P. syringae increased the number of disease lesions.

Experiments using nonmotile P. syringae indicated that

this increased virulence could be due to an increase in

motility in iron-limited conditions. Additionally, Cha

et al. (2008) found that AHL synthesis is suppressed in

the fur mutant of P. syringae pv. tabaci, indicating that a

similar link between iron levels and quorum sensing may

exist in this bacterium. These studies, together with stud-

ies discussed in previous sections, support the idea that

there are two distinct phases to P. syringae infection,

an epiphytic phase in which iron is limited and quorum–
sensing signals are present in low concentrations, promoting

motility towards stomata and wounds, and an endophytic

phase in which iron is more available, quorum–sensing
signals increase, and bacteria switch from planktonic to

sessile growth.

In P. aeruginosa, Bollinger et al. (2001) have shown

that iron limitation induces SOD, an essential part of the

bacterium’s response to ROS stress, in a manner depen-

dent upon quorum–sensing systems, which may promote

in planta survival and thus pathogenicity. At low iron

concentrations, P. aeruginosa has also been shown to

express an acylase, PvdQ, which degrades AHLs (Nadal

Jimenez et al., 2010), thus quenching the quorum signal.

The expression of pvdQ is essential for biofilm formation,

swarming motility and full virulence under low iron con-

ditions. AHL acylases similar to pvdQ are also present in

genome-sequenced strains of P. syringae, providing a

potential mechanism linking iron availability with quo-

rum sensing in this pathogen. Consistent with this, a

strain of P. syringae pv. syringae B728a lacking two AHL

acylases named HacA and HacB was found to be deficient

in siderophore production and to exhibit a distinctive

colony morphology (Shepherd & Lindow, 2009).

Links between iron availability and quorum sensing are

not limited to AHL-based quorum-sensing systems. The

rpfB gene of X. fastidiosa, which encodes a long chain

fatty acid coenzyme A ligase important in the production

of diffusible signal molecules by xanthomonads and Xylella,

was found to be down-regulated in response to both

excess iron and iron-limiting conditions (Zaini et al.,

2008).

Intriguingly, considering these links between iron, quo-

rum sensing and virulence, it appears that there may also

be a role for siderophores and redox active phenazines

such as pyocyanin in cell–cell communication in some

plant pathogenic bacteria. In P. aeruginosa, pyoverdine is

involved in the regulation of secreted virulence factors

and of itself. At low iron, the secretion of pyoverdine is

increased, and the secreted siderophore is then able to

regulate virulence factor expression in other bacteria by

which it is taken up (Lamont et al., 2002; Beare et al.,

2003). Pyocyanin induces expression of efflux pumps and

the iron storage protein bacterioferritin, but downregu-

lates certain genes associated with ferric iron uptake and

zinc uptake, including genes involved in siderophore-

mediated iron uptake and signal transduction (Dietrich

et al., 2006; Shirley & Lamont, 2009). As discussed above,

the AcsS sigma factor of P. syringae pv. syringae B728a

regulates the synthesis and secretion of the siderophore

achromobactin, but also the iron response, EPS produc-

tion and motility of these bacteria (Greenwald et al.,

2012). It would therefore be of great interest to know

whether achromobactin can itself influence the expres-

sion of AcsS in a manner parallel to the auto-regulation

of pyoverdine, and whether similar regulatory mecha-

nisms exist for other siderophores produced by plant

pathogenic bacteria, with iron availability acting not

only as a property of the host environment, but also an

indicator of the number of competing con-specifics in

that environment.

Additional roles for metals in
pathogenicity

Iron is not the only metal involved in regulating virulence

gene expression. In the potato pathogen, S. scabies, zinc is

known to regulate the expression of esterase, an impor-

tant enzyme for the virulence of this bacterium (McQueen

& Schottel, 1987; Schottel et al., 1992). There are also

other potential roles for metals in pathogenesis. Bacterial

NRAMP manganese transporters are known to be impor-

tant for virulence, but their precise role is not known

(Papp-Wallace & Maguire, 2006). Similarly, a copper

transporter is necessary for the pathogenicity of the fun-
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gal phytopathogen Colletotrichum gloeosporioides. In this

case, the copper is required by the pathogen for the

production of copper-SOD in order for the pathogen to

tolerate ROS produced during the plant’s defence

response, but also for fungal spore germination (Barhoom

et al., 2008). Pseudomonas syringae strains also possess a

Cu-Zn-SOD, which is absent from most nonpathogenic

pseudomonads, along with a Mn-SOD and Fe-SOD that

are more broadly conserved (Fones & Preston, 2012). All

three SODs are predicted to have a periplasmic location,

placing these metal-dependent enzymes in the front line

of defences against oxidative stress. Also important in

protecting the pathogen from ROS stress is the aconitase

enzyme of X. campestris pv. vesicatoria, an iron-sulphur

protein that is involved in the TCA cycle, and also in

sensing of iron and reactive oxygen. Mutants lacking

functional aconitase are more susceptible to superoxide

toxicity, and show impaired in planta growth and symp-

tom development on pepper (Kirchberg et al., 2012). One

of the most direct links between metal and pathogenicity

is in the alfalfa pathogen, Corynebacterium insidiosum,

which has been found to produce a copper-containing

phytotoxic glycopeptide that induces wilt by blocking

xylem vessels (Ries & Strobel, 1972).

In some cases it may be necessary for a pathogen to

resist high concentrations of metal in the host. A well-

studied example of this is the human pathogen Helicob-

acter pylori, which requires metal-efflux systems providing

resistance to cadmium, zinc and nickel to colonise the

human stomach (Stähler et al., 2006). There is also evi-

dence that plant disease symptoms can be associated with

increased or unbalanced metal concentrations in plant tis-

sues, which may lead to a requirement for increased

metal tolerance in plant pathogens. For example, high

levels of iron, zinc and manganese have been recorded in

chlorotic leaves of citrus plants infected with X. fastidiosa

(Silva-Stenicio et al., 2009). The following sections

consider the various ways in which metal resistance can

be important for plant pathogens.

Use of metals in disease control

The fact that metals can behave as toxins when present

in excess means that they can be used as protective,

anti-microbial agents in agriculture. For instance, copper

is part of a fungicide application known as ‘Bordeaux

mixture’, used in orchards and vineyards since the 19th

century to guard these crops against mildew (Russell,

2005). Indeed, Bordeaux mixture, commercialised after

its accidental discovery by Milardet in the 1880s, repre-

sents the first large scale use of fungicide (Floyd, 1991),

although copper is recorded as being used as a protec-

tant for cereal crops as long ago as 1761 (Van Zweiten

et al., 2007). Today, copper-based fungicides remain

popular, largely because they are one of the few permit-

ted anti-microbial applications in organic farming.

A recent report conducted by the Australian government

listed an impressive diversity of crops, from macadamia

nuts to cucumber to mangoes, of which a variety of

diseases including leaf spot, late blight, canker, anthrac-

nose and mildew are treated with copper-based fungi-

cides (Van Zweiten et al., 2007). Copper is often one of

a very limited number of options available for bacterial

disease control, and in Florida, frequent use of copper

sprays for control of canker has increased since the

citrus canker eradication programme was suspended in

2006 (Behlau et al., 2011).

There are, however, a number of problems with the

use of copper as a crop protectant. Firstly, copper is not

only toxic to pathogens, but is also phytotoxic, and, when

used excessively, causes russetting of fruits (Montag et al.,

2006). An additional concern is that copper-based prod-

ucts can build up in soils where they are used over long

periods, eventually becoming toxic to the crops they are

intended to protect. This is a particular problem in

viticulture and in orchard settings (Rusjan et al., 2007).

Copper in soil can also have a detrimental effect on

mycorrhizal symbionts (Van Zweiten et al., 2007). When

used in the treatment of citrus canker, copper has been

shown to induce a viable but nonculturable state in

Xanthomonas axonopodis pv. citri, potentially creating a

reservoir of the pathogen in the soil (del Campo et al.,

2009). Copper has also been reported to induce expres-

sion of the virulence-associated Xcs (type II) secretion

system in X. axonopodis pv. citri (Palmieri et al., 2010).

As a result, methods are being developed to minimise the

use of copper in these crop systems (Kuflik et al., 2009)

and the European Union has considered a ban on the use

of copper-based pesticides and fungicides due to their

environmental persistence (Houlton, 2009).

Another concern, from the perspective of disease con-

trol, is the problem of pathogen resistance to metals,

which often develops as the result of prolonged exposure.

The development of copper resistance has been well doc-

umented. For example, Bordeaux mixture is used widely

in Portugal and Spain to treat apical necrosis of mangoes,

caused by P. syringae pv. syringae (Cazorla et al., 2002).

The efficacy of this treatment is declining, in common

with that of copper-based treatments of other diseases

caused by pseudomonads and xanthomonads (Schenk &

Pscheidt, 1998). Resistant strains of both species have

been discovered (Marco & Stall, 1983; Andersen et al.,

1991) and there is evidence that extensive horizontal

transfer of the copper resistance determinants, which are

largely plasmid borne (Sundin et al., 1989) occurs, both

among pseudomonads and between pseudomonads and
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xanthomonads (Voloudakis et al., 1993). This process can

be rapid, with newly resistant strains appearing within

1 year of the application of Bordeaux mixture to mango

crops (Cazorla et al., 2002). In Japan, strains of P. syringae

pv. actinidiae, the causal agent of bacterial canker of kiwi

fruit, were found to have copA and copB genes at the

onset of disease outbreaks, but following repeated treat-

ment with copper-based bactericides strains were also

found to have acquired copS and copR (Nakajima et al.,

2002). Furthermore, when copper is used in concert

with the antibiotic streptomycin, a common strategy to

prevent tip-dieback disease, resistance to both of these

anti-microbials can quickly become linked in pathogenic

pseudomonads (Sundin & Bender, 1993).

Interestingly, despite the long-term use of copper as an

antimicrobial, its mode of action has not been fully eluci-

dated. One recent study determined that toxicity towards

the fungus Venturia inaequalis does not occur as a result

of external ROS production, but requires that the copper

be taken up by the organism (Montag et al., 2006). It is

known that contact with copper surfaces can be bacterici-

dal, causing loss of membrane integrity, DNA damage and

respiratory inhibition (Grass et al., 2011; Warnes et al.,

2011). The exact mechanism underlying this appears to

vary depending upon the bacterial species, although ROS

are known to be involved (Warnes et al., 2011). It has also

been proposed that copper sulphate is lethal to E. amylo-

vora through enzyme inhibition severe enough to prevent

growth and promote autolysis (Geider, 1999). What is

understood is that copper resistant pathogens have a

number of different mechanisms for tolerating the metal.

One is the over-production of oxalate, which complexes

with copper to form a harmless precipitate (Clausen &

Green, 2003). The Pseudomonas and Xanthomonas strains

discussed above possess several different resistance deter-

minants (Cazorla et al., 2002) and it has been speculated

that these may have roles in addition to copper tolerance,

contributing to the persistence of copper resistance in the

absence of copper use. This is the case for a copper resis-

tance gene in Aeromonas, which is known to also function

as a pathogenicity gene (Francki et al., 2000).

Although used to a lesser degree than copper, zinc is

also used as an anti-microbial which can be applied to

crops; for example, zinc has been shown to prevent fungal

spore germination via the production of toxic levels of

ROS (Montag et al., 2006), while zinc sulphate and zineb

(zinc ethylene bisdithiocarbamate) were found to inhibit

growth of the bacterial pathogen X. campestris pv. vesica-

toria (Adaskaveg & Hine, 1985). However, again there is

evidence that strains can rapidly become resistant to zinc

compounds (Adaskaveg & Hine, 1985; Fones et al., 2010).

Copper, streptomycin and zinc compounds have been

used in combination to control bacterial plant disease,

and there is evidence that bacteria can acquire resistance

to all three compounds (Ward & O’Garro, 1992).

Metals in plant defence

The involvement of metals in plant defence is not restricted

to their artificial application in agricultural systems: as

already discussed, metals are an integral component of

living systems and thus play a number of roles in plant

defence. There are several ways in which plants use or rely

on metals to influence the outcome of infection. Firstly,

plants may disrupt the pathogen’s supply of essential

metals (Bullen, 1981; Hammer & Skaar, 2012). Secondly,

the plant may attempt to overwhelm the pathogen’s metal

homoeostasis and tolerance mechanisms by oversupplying

a potentially toxic metal (Fones et al., 2010; Yuan et al.,

2010). There are a number of metalloenzymes that are

important for plant defence (Wu et al., 2011), meaning

that the availability of these metals to the plant can be an

important factor in the outcome of the plant–pathogen
interaction. Metal-induced ROS have a number of impor-

tant roles both in defensive signalling and as antimicrobials

(eg Wojtaszek, 1997). Finally, metal stress, either as defi-

ciency or excess, can act as a ‘priming’ stimulus for plant

defence, via the overlapping pathways by which plants

signal biotic and abiotic stress (Mithöfer et al., 2004).

Graham (1983) states that the balance of an interaction

between plant and pathogen can be tipped by changes in

micronutrition, especially when the plant is deficient in,

or has access to excess levels of, a trace element. This

may be most important in cases where the pathogen has

not had the opportunity to co-evolve with the plant; for

example when it has newly arrived in the plant’s environ-

ment. Such a pathogen would, of course, be likely to lack

tolerance mechanisms for the lack or excess of an ele-

ment, allowing the plant to turn this contingency to its

advantage.

Withholding of metals in defence

The disruption of the pathogen’s supply of metal is an

obvious strategy for disease resistance, considering that

microorganisms and host organisms are in competition

for metal ions (Bullen, 1981; Hammer & Skaar, 2012).

Thus it is to the plant’s advantage to ensure that metals

are diverted from the pathogen to plant cells (Fig. 1). In

this context, the most relevant metal to consider is iron.

Iron is one of the most abundant elements in the world

(Expert et al., 1994), but in aerobic environments it

mostly exists as the insoluble Fe3+ ion, so that its bio-

availability is comparatively low (Touati, 2000). This

makes iron one of the most intensely competed ions

during host-pathogen interactions (Payne, 1993; Weinberg,
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1993; Johnson, 2008; Nairz et al., 2010). The host strategy

of withholding iron to limit pathogen growth has been

particularly well documented in mammalian systems

(Bezkorovainy, 1981; Ward & Connelly, 2004; Nairz

et al., 2010). Iron withholding via sequestration by stor-

age proteins such as transferrin and lactoferrin is com-

mon in vertebrates and invertebrates, and can be

effective, as iron is needed for bacterial growth, pathoge-

nicity and biofilm formation (Ong et al., 2006). The last

of these is of great importance clinically, as the restriction

of pathogen iron supply by lactoferrin can prevent neces-

sary signalling for the development of drug-resistant bio-

films (Singh et al., 2002; Banin et al., 2005).

More recently, evidence has been uncovered that indi-

cates that plants also employ a strategy of pathogen iron-

deprivation. In plants, a ferredoxin-like protein has been

demonstrated to be involved in defence against P. syrin-

gae pv. tomato DC3000, X. campestris and D. dadantii, a

pathogen known to depend on iron scavenged from host

tissues during the progression of soft rot disease, as dis-

cussed previously. The defensive function of this protein

was found to rely on its ability to bind iron (Huang

et al., 2006). Perhaps inevitably, there are also iron-bind-

ing proteins produced by pathogens, so that the final out-

come depends on the interaction between host and

pathogen iron-chelating agents (Boughammoura et al.,

2007). Arabidopsis has been found to upregulate ferredoxin

in response to the detection of iron-uptake siderophores

from pathogens (Dellagi et al., 2005). Other chemicals that

may be used to bind and withhold iron from pathogens

include polyphenols, shown to be effective against D. da-

dantii mutants with reduced iron-uptake capacity (Mila

et al., 1998), and to inhibit the growth of P. syringae pv. sy-

ringae B728a on leaf surfaces (Karamanoli et al., 2011).

More evidence for the importance of iron withholding

in plant–pathogen interactions comes from investigations

into the role of NRAMP metal transporting proteins

in Arabidopsis. These proteins are, again, known from

mammalian systems where they appear to have a role in

regulating the concentrations of iron, zinc and manganese

to which pathogens are exposed within macrophages

(Gunshin et al., 1997; Forbes & Gros, 2001; Goswami

et al., 2001). NRAMPs occur throughout the diversity of

life and have recently been characterised in plants, includ-

ing Arabidopsis, where they have been shown to function

as uptake pumps for iron and manganese (Curie et al.,

2000). Certain of these NRAMPs are upregulated under

biotic stress and iron starvation, and NRAMP3 and 4

have been found to be involved in basal resistance to

D. dadantii in a manner independent of other defence-

associated signals such as salicylic acid and jasmonate

(Segond et al., 2009). As noted previously, there is evi-

dence that in some interactions pathogen invasion causes

iron starvation, and the presence of bacterial siderophores

can induce the iron storage protein FER1 (Dellagi et al.,

2005; Boughammoura et al., 2007). Thus, bacteria-

induced iron deficiency may provide the link between

NRAMP proteins and defence. Additionally, it was found

that a double knockout mutant, nramp3nramp4, has an

attenuated oxidative burst, providing the suggestion that

these transporters might be involved in providing Fe3+

for Fenton reactions (See Box 1) for the generation of

ROS (Segond et al., 2009).

Iron is not the only metal which may be withheld as a

form of defence. In mammalian systems, the protein

calprotectin is used by neutrophil cells to prevent bacte-

rial growth by preventing pathogens from acquiring zinc

(Clohessy & Golden, 1995). Not only can this prevent the

growth of bacteria, but it can also disable zinc-dependent

SOD, rendering the bacteria more susceptible to bacterici-

dal ROS production by neutrophils (Kehl-Fie et al.,

2011). As yet, there is limited evidence for zinc-withhold-

ing as a means of pathogen defence in plants, although it

is thought that metal-chelating chemicals such as

polyphenols may restrict the availability of multiple metal

ions, including zinc and copper (McDonald et al., 1996;

Mila et al., 1998).

Iron withholding in antagonism and
biocontrol

In addition to competing with host plants for metal ions,

plant pathogens compete directly with other plant-associ-

ated microorganisms for essential metals, a process that is

of increasing interest as a means of enhancing biocontrol.

In many well studied cases, siderophores produced by bio-

control bacteria are known to limit fungal growth, as they

often have a higher affinity for iron than fungal sidero-

phores and may even remove bound iron from these (Duf-

fy et al., 2003; Compant et al., 2005). Similarly, the anti-

mycoplasma factor, micacocidin, initially identified in

Pseudomonas sp. No. 57-250, and subsequently found to be

produced by the plant pathogen R. solanacearum, is

expressed under iron-limited conditions, binds metals, and

may itself be a siderophore (Kobayashi et al., 1998; Kreut-

zer et al., 2011). Interest in the impact of metal on biocon-

trol activity is also driven by studies showing that both the

fitness (Hartney et al., 2011), and biocontrol activity (Duf-

fy & Défago, 2000; Ownley et al., 2003) of biocontrol bac-

teria can be impacted by iron and zinc availability.

The biocontrol strain Pantoea agglomerans C9-1 pro-

duces desferrioxamine siderophores (Smits et al., 2010),

which are known to sequester iron and thus inhibit the

growth of bacteria unable to take them up (Dellagi et al.,

1998). Similarly, Burkholderia species such as the rice rhi-

zosphere bacterium, Burkholderia vietnamiensis produce a
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siderophore, ornibactin, which cannot be taken up by

pseudomonads (Meyer et al., 1995). Thus, biocontrol of

bacterial disease using strains that compete for essential

metals by producing different siderophores may be possi-

ble. In contrast, Wensing et al. (2010) found that sidero-

phore production by the biocontrol strain P. syringae pv.

syringae 22d/93, which produced the same siderophores

as the target strain P. syringae pv. glycinea 1a/96, had no

significant impact on biocontrol activity under the condi-

tions tested. Although detailed consideration of the bio-

control field is beyond the scope of this review, it is

clearly an area meriting further research. The various

potential interactions between biocontrol bacteria, patho-

gens and host plants are summarised in Fig. 3.

Metals as toxins in defence

In contrast to the metal-withholding mechanisms dis-

cussed above, there are instances where the plants’

defence mechanism exposes the pathogen to an excess of

a metal. An example is the bacterium X. oryzae pv.

oryzae, which, when growing in the xylem of rice, can be

limited by high concentrations of copper (Yuan et al.,

2010). The importance of this for the outcome of this

plant–pathogen interaction is illustrated by the evolution

of a bacterial TAL effector protein that initiates transcrip-

tion of Xa13, a rice gene encoding a transmembrane

transporter that works in concert with two additional rice

proteins to remove copper from the xylem (Yuan et al.,

2011). Animals, too, are known to use copper as an anti-

microbial (reviewed in Samanovic et al., 2012). It has

been suggested that a novel Arabidopsis MFS-family zinc

transporter, an orthologue of which is induced by patho-

gen infection in maize (Simmons et al., 2003), may

release zinc from the vacuole in infected tissues, thus

playing a role in defence (Haydon & Cobbett, 2007). Zinc

is also known to have a role in defence in humans, with

zinc-deficient humans being more susceptible to Staphylo-

coccus pneumonia infection. It has been suggested that

zinc acts to limit bacterial growth by competing for

manganese transporters (McDevitt et al., 2011). In this

context, it is of interest that the NRAMP proteins

discussed above may also function to transport manga-

nese (Segond et al., 2009).

Indirect effects of metals in defence

As well as affecting pathogens directly through direct defi-

ciency or toxicity, metals can affect plant–pathogen inter-

actions indirectly via their inclusion in metalloenzymes.

An exhaustive review of this topic is beyond the scope of

this review, but a few examples of particular note are dis-

cussed here. Two metalloenzymes of particular impor-

tance in plant–pathogen interactions are SOD, which

exists as three isoforms that can be separated according

to their metallic cofactors of Fe, Mn and Cu/Zn

(Kliebenstein et al., 1998; Wu et al., 2011), and catalase,

which relies for its activity on four heme groups (Reid

et al., 1981; Willekens et al., 1995). During the oxidative

burst, plants produce such high concentrations of ROS

that their own anti-oxidant defences are temporarily over-

whelmed (Vanacker et al., 1998). To prevent escalating

damage to plant cells, it is essential that the plant pos-

sesses functional antioxidant enzymes to regain control of

ROS levels at the appropriate time. Indeed, it is known

that control of ROS levels is important in the plant’s

response to both biotic and abiotic stresses (Mittler, 2002;

Prashanth et al., 2008).

Some plant pathogens attempt to manipulate ROS pro-

duction by the host as part of their pathogenicity (Fones

& Preston, 2012). For example, the phytotoxin corona-

tine, employed by many strains of P. syringae and by the
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Fig. 3. The importance of iron in the interactions of pathogen, host

and biocontrol agents. The finite amount of iron available in the

environment may be thought of as an ‘iron pool’ for which different

organisms compete (1). An important example of such competition is

the withholding of iron from pathogens by hosts (2), using both iron

storage proteins to sequester the metal and competitive uptake by

high-affinity siderophores (3). Both iron itself and siderophores

produced by the pathogen can have extensive effects upon the

regulation of the pathogen’s virulence, with virulence often, although

not exclusively, increasing with higher iron availability (4). One

mechanism through which iron can affect virulence is through its

effects upon quorum-sensing systems, with low iron conditions

leading to quenching of the quorum signal. Suppression of virulence

and quorum sensing regulated gene expression through competition

for iron may be one mechanism through which biocontrol bacteria

can reduce pathogen virulence (5).
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soft rot pathogen Pectobacterium atrosepticum, causes

light-dependent upregulation of ROS production and a

concomitant suppression of SOD activity, and is essential

for full virulence of these pathogens (Bender et al., 1987;

Ishiga et al., 2008, 2009; Uppalapati et al., 2008). Simi-

larly, P. aeruginosa produces a redox active phenazine

toxin called pyocyanin, which induces ROS production

and systemic resistance in plants and animals, but

enhances susceptibility to the fungal pathogen Rhizoctonia

solani in rice (Mahajan-Miklos et al., 1999; O’Malley

et al., 2003; De Vleesschauwer et al., 2006).

Another enzyme which is important in plant defence is

the pathogen-related protein, PR-10, of Theobroma cacoa.

This protein is a ribonuclease, which, when released during

pathogen-induced programmed cell death, is internalised

by fungal cells and can act as a fungicidal toxin against

Moniliophthora perniciosa, the causal agent of witches’

broom disease (Pungartnik et al., 2009). Although the

exact mechanism of toxicity is unclear, it has been dem-

onstrated that toxicity is reduced if a fungal high-affinity

copper transporter is not expressed, suggesting that either

copper is needed for PR-10 enzyme activity, or that the

toxin works by disrupting copper homoeostasis in the

pathogen (Pungartnik et al., 2009). In a separate study,

over-expression of maize ZmPR10.1 in A. thaliana was

found to cause increased susceptibility to P. syringae pv.

tomato, and Cu2+ was identified as an inhibitor of

ZmPR10 and ZmPR10.1 RNase activity (Xie et al., 2010).

The final two aspects of the involvement of metals in

plant defence we will cover in this section concern their

role in the generation of ROS. ROS are understood to

have a number of pivotal roles in plant defence, both as

antimicrobials produced at the site of infection (Peng &

Kuc, 1992; Lamb & Dixon, 1997; Wojtaszek, 1997) and as

signals for further defence responses (Alvarez et al., 1998;

Love et al., 2005; Torres et al., 2006; Choi et al., 2007;

Van Breussegem et al., 2008). The importance of metals

for ROS production has already been noted. Redox active

metals, particularly iron, can participate in Fenton reac-

tions by which hydroxide radicals may be generated from

H2O2 (Pierre & Fontecave, 1999). Cereal crops traffic

large vesicles containing H2O2 and Fe3+ to the site of

Blumeria graminis infection, where they appear to partici-

pate in the oxidative burst; similarly, the ABC transporter

ATPEN3, which is involved in the translocation of the

redox active metal, cadmium, has been found to be

involved in resistance to P. syringae and Phytophthora

infestans (Hückelhoven, 2007). Iron appears to be involved

in a feed-forward mechanism controlling ROS generation,

for as well as participating in the generation of ROS, its

efflux can also be signalled by H2O2 (Lui et al., 2007).

In addition to this direct role in the defensive produc-

tion of anti-microbial ROS, metals can induce ROS in

plants by acting as stressors (Boominathan & Doran,

2003; Garnier et al., 2006). Since ROS are important sig-

nals in the plant response to pathogen invasion, it is per-

haps unsurprising that there is evidence of cross-talk

between metal stress and pathogen resistance, (Mithöfer

et al., 2004). ROS, whether generated by biotic or abiotic

stress, can induce the production of oxylipins, which also

have signalling roles in plant defence (Bleé, 2002; Mithö-

fer et al., 2004). Although the mechanism has not been

fully elucidated, low-intensity spraying of crops with

nickel can induce phytoalexin production and protect

against fungal infection (Wood & Reilly, 2007). It is logi-

cal to speculate that this effect may also be due to com-

mon signalling pathways between nickel and pathogen

stress. There is, however, also evidence of a synergistic

effect of metal and pathogen stress, in which each may

increase the susceptibility of the plant to the other

(Stroniski & Floriszak-Wieczorek, 1990; Miteva et al.,

2001).

A special case – metal
hyperaccumulating plants

Some plants found growing on metal-rich soils have an

unusual interaction with metals, actively taking up and

storing the metals in their aerial tissues. These are ‘hyper-

accumulators’ (Jaffré et al., 1976), defined as plants that

take up ‘exceptionally high concentrations of an element

in the above ground parts of a plant under field condi-

tions’ (Pollard, 2000). For example, the brassica, Noccaea

(formerly Thlaspi) caerulescens, can accumulate up to

30 000 lg g�1 zinc and over 1300 lg g�1 cadmium

(Brown et al., 1995). Around 400 plant taxa are classed as

hyperaccumulators (Baker & Brookes, 1989; Freeman

et al., 2005). Nickel is the most commonly accumulated

metal (Küpper et al., 1999; Reeves & Baker, 2000;

Assunção et al., 2003), but zinc hyperaccumulation is also

relatively common (Prasad & de Oliveira Freitas, 2003).

Copper, too, can be hyperaccumulated, although the

number of plants that do so is limited to around 25 spe-

cies (Jiang et al., 2004).

The reason for the evolution of metal hyperaccumula-

tion is, at present, unknown, but the hypothesis that

hyperaccumulated metals provide a defence against herbi-

vores or pathogens (Boyd & Martens, 1992; Poschenrieder

et al., 2006), has received much attention. For herbivores,

it is clear that deterrence does occur, although this depends

on many factors (Boyd, 2007; Vesk & Reichman, 2009).

There are a number of ways in which metals could protect

plants; the so-called elemental defence hypothesis postu-

lates that the metals act directly to deter or kill pests and

pathogens, but it is possible that protection could occur in

other ways. Poschenrieder et al. (2006) use the term ‘metal
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fortification’ to describe the possibility that hyperaccumu-

lated metals induce responses in the plant that might nor-

mally occur in response to a pathogen attack, thus

indirectly rendering the plant less susceptible to disease.

This is plausible, since plant responses to biotic and abiotic

stress share a number of common features and signalling

pathways (Piffanelli et al., 2002; Mithöfer et al., 2004; Free-

man et al., 2005; Chmielowska et al., 2010).

As this review has shown, the ways in which metals

can influence or potentially influence plant–pathogen
interactions are extremely diverse, and can be complex or

indirect. However, the idea of simple protection of hyper-

accumulators against bacteria by direct metal toxicity has

received support from work which demonstrated that

zinc levels in the N. caerulescens were sufficient to

account for observed inhibition of the bacterial pathogen,

P. syringae pv. maculicola, in planta, and that bacterial

survival in these plants was correlated to zinc tolerance

(Fones et al., 2010; Figs 1 and 4). These observations pro-

vide one of the clearest cases for the importance of metals

in hyperaccumulator-pathogen interactions to date.

Concluding remarks

In this review, the ways in which metals can influence

plant–pathogen interactions have been explored. Metals,

especially those with redox activity, are essential for life

via their indispensable roles in various enzymes. Because

such metals have the capacity to elicit the production of

ROS, they can be toxic in excess and their uptake and

homoeostasis must be closely controlled. Some of these

metals are also subject to limited availabillity in biotic

environments. These factors combined ensure that the

manipulation of their availability is a key strategy for

both microbial pathogens and their plant hosts. This

occurs via competition for essential metals and also via

host attempts to overwhelm the pathogen with a toxic

excess of metal, a technique that may have been adopted

as a constitutive form of defence in metal hyperaccumu-

lating plants. It is also common for metals to be applied

directly for crop protection against disease.

As well as applying metals as anti-microbials, there are

incentives to either supplement soils with mineral nutri-

ents or to breed or engineer plants with increased ability

to assimilate and accumulate the nutrients already avail-

able to them, an approach known as biofortification of

crops. This is an increasingly important ideal in 21st

century agriculture: for example, zinc deficiency is an

important problem throughout the world, affecting

around 33% of people, rising to 74% in some countries

(Sillanpää, 1982; Hotz & Brown, 2004; Singh, 2008) and

causing, in severe cases, important physical and psycho-

logical difficulties in humans and livestock (Hotz &

Brown, 2004; Graham, 2008). Iron is also an element that

many cultivated soils lack in a bioavailable form, with the

World Health Organisation (WHO) estimating that 30%

of the world’s human population are anaemic. To date,

successful attempts have been made to increase the iron

and zinc content of rice, pineapple and banana by expres-

sion of soybean ferritin (Goto et al., 1999; Kumar et al.,

2011; Mhatre et al., 2011). Approaches such as biofortifi-

cation may also allow the cultivation of additional land;

as one common problem that affects land use and crop

yield is a lack, or toxic excess, of mineral nutrients (Lal,

2009; Beddington, 2010). With an expanding world popu-

lation, it is of increasing importance that we find ways of

exploiting agricultural land to the fullest effect, while lim-

iting malnutrition (Beddington, 2010), however the

impact of biofortification strategies on plant disease resis-

tance remains to be explored.

As we have seen, metals and the systems that regulate

their uptake and homoeostasis are often implicated in the

regulation of virulence and pathogenicity genes, including

the T3SS; they are also essential components of the

enzymes used in the production and tolerance of ROS,

another key feature of the battle between plants and

pathogens. Thus, to maximise future productivity, while

minimising losses from crop disease, researchers must

endeavour to understand all the ways in which metals can

influence the interactions between plants and pathogens.
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Murillo J & de Vicente A (2002) Copper resistance in

Pseudomonas syringae strains isolated from mango is

encoded mainly by plasmids. Phytopathology 92: 909–916.
Cha JY, Lee JS, Oh J-L, Choi JW & Baik HS (2008) Functional

analysis of the role of Fur in the virulence of Pseudomonas

syringae pv. tabaci 11528: Fur controls expression of genes

involved in quorum sensing. Biochem Biophys Res Comm

3666: 281–287.
Chakraborty R & Newton AC (2011) Climate change, plant

diseases and food security: an overview. Plant Pathol 60:

12–14.
Chakraborty R, Storey E & van der Helm D (2007) Molecular

mechanism of ferricsiderophore passage through the outer

membrane receptor proteins of Escherichia coli. Biometals

20: 263–274.
Chmielowska J, Veloso J, Gutiérrez J, Silvar C & Dı́az J (2010)

Cross-protection of pepper plants stressed by copper against

a vascular pathogen is accompanied by the induction of a

defence response. Plant Sci 178: 176–182.
Choi H, Kim Y, Lee SC, Hong J & Hwang B (2007)

Hydrogen peroxide generation by the pepper extracellular

peroxidase CaPO2 activates local and systemic cell death

and defence response to bacterial pathogens. Plant Physiol

145: 890–904.
Clausen C & Green F (2003) Oxalic acid overproduction by

copper tolerant brown-rot basidiomycetes on southern

yellow pine treate with copper-based preservatives. Int

Biodeterior Biodegradation 51: 139–144.
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Hänsch R & Mendel R (2009) Physiological functions of

mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl).

Curr Opin Plant Biol 12: 259–266.
Hantke K (2001) Bacterial zinc transporters and regulators.

Biometals 14: 239–249.
Hantke K (2005) Bacterial zinc uptake and regulators. Curr

Opin Microbiol 8: 196–202.
Hartney SL, Mazurier S, Kidarsa TA, Quecine ME, Lemenceau

P & Loper JE (2011) Ton-B dependent outer-membrane

proteins and siderophore utilization in Pseudomonas

fluorescens Pf-5. Biometals 24: 193–213.
Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT,

Ochsner V & Vasil ML (1996) Ferric uptake regulator (Fur)

mutants of Pseudomonas aeruginosa demonstrate defective

siderophore mediated iron uptake, aerobic growth and

decreased superoxide dismutase and catalase activities.

J Bacteriol 178: 3996–4003.
Haydon MJ & Cobbett CS (2007) A novel major facilitator

superfamily protein at the tonoplast influences zinc

tolerance and accumulation in Arabidopsis. Plant Physiol

143: 1705–1719.

Hibbing ME & Fuqua C (2011) Antiparallel and interlinked

control of cellular iron levels by the Irr and RirA regulators

of Agrobacterium tumefaciens. J Bacteriol 193: 3461–3472.
Hirst PH, Riley AM, Mills SJ, Spiers ID, Poyner DR, Freeman S,

Poter BV & Smith AW (1999) Inositol polyphosphate-

mediated iron transport in Pseudomonas aeruginosa. J Appl

Microbiol 86: 537–543.
Hopkins DL (1989) Xylella fastidiosa, a xylem limited

bacterial pathogen of plants. Annu Rev Plant Pathol 27:

271–290.
Hotz C & Brown K (2004) Assessment of the risk of zinc

deficiency in populations and options for its control. Food

Nutr Bull 25: 94–204.
Houlton S (2009) Double standard in pesticide ban? www.rsc.

org/chemistryworld/News/2009/April/07040901.asp.

Hu Y, Wang H, Zhang M & Sun L (2009) Molecular analysis

of the copper-responsive CopRSCD of a pathogenic

Pseudomonas fluorescens strain. J Microbiol 47: 277–286.
Huang H-E, Ger M-J, Chen C-Y, Yip M-K, Chung M-C &

Feng T-T (2006) Plant ferrodoxin-ilke protein (PFLP)

exhibits an anti-microbial ability against soft-rot pathogen

Erwinia carotovora subsp. carotovora in vitro and in vivo.

Plant Sci 171: 17–23.
Huang DL, Tang DJ, Liao Q et al. (2008) The Zur of

Xanthomonas campestris functions as a repressor and an

activator of putative zinc homeostasis genes via recognizing

two distinct sequences within its target promoters. Nucleic

Acids Res 36: 4295–4309.
Huang D-L, Tang D-J, Liao Q, Li X-Q, He Y-Q, Feng J-X,

Jiang B-L, Tao G & Tang J-L (2009) The Zur of

Xanthomonas campestris is involved in hypersensitive

response and positively regulates the expression of the hrp

cluster via HrpX but not HrpG. Mol Plant Microbe Interact

22: 321–329.
Hückelhoven R (2007) Transport and sequestration in plant-

microbe interactions. Curr Opin Plant Biol 10: 573–579.
Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W &

Reverchon S (1996) Regulation of pectinolysis in Erwinia

chrysanthemi. Annu Rev Microbiol 50: 213–257.
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