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Abstract 

In humans, many diseases are associated with alterations in gut micr obiota, namel y incr eases or decreases in the abundance of 
specific bacterial groups. One example is the genus Faecalibacterium . Numerous studies have underscored that low levels of Faecalibac- 
terium ar e corr elated with inflammator y conditions, with inflammator y bowel disease (IBD) in the for efr ont. Its r e pr esentation is also 
diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative 
presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is fr equentl y pr esent 
at r educed lev els in indi viduals with gastr ointestinal diseases or disorders. In this r e vie w, we first thor oughl y describe updates to 
the taxonomy of Faecalibacterium , which has transformed a single-species taxon to a multispecies taxon over the last decade. We 
then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were 
published. Ne xt, we e xamine curr ent av aila b le str ate gies for modulating Faecalibacterium levels in the gut. F inally, w e summarize the 
mechanisms underlying the beneficial effects that have been attributed to this g enus. Tog ether, epidemiolog ical and experimental 
data str ongl y support the use of Faecalibacterium as a next-generation pr obiotic (NGP) or li v e biotherapeutic pr oduct (LBP). 

Ke yw ords: Faecalibacterium , keystone, next-generation probiotic, live biotherapeutic product, anaerobe, commensal, inflammation 
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Introduction 

Faecalibacterium is a genus of strictly anaerobic, extremely 
o xygen-sensiti v e (EOS), Gr am-positiv e, r od-sha ped, nonmotile,
and nonspore-forming bacteria (Duncan et al. 2002a ). Initially, it 
was thought to account for 5% of the human microbiota (Qin et 
al. 2010 ). Based on a metagenomic analysis of over 7900 human 

samples, a mor e r ecent study has suggested the mean and median 

may be 6.5% and 4.8%, r espectiv el y, in adults and could may e v en 

be as high as 75% (De Filippis et al. 2020 ). These results confirm 

the high r elativ e abundance of this genus in the human gut. More- 
over, Faecalibacterium is prevalent in human populations across the 
w orld—it w as detected in 85% of gut samples (De Filippis et al.
2020 )—and members of Faecalibacterium are considered to be ubiq- 
uitous in the gastrointestinal tracts (GITs) of healthy humans (Tap 

et al. 2009 ). Researc h also indicates that Faecalibacterium le v els dif- 
fer with age and potentially gender, where abundances are lo w er 
in women than in men (Aguirre de Carcer et al. 2011 ). Addition- 
all y, the pr e v alence of this genus is less pronounced in newborns,
c hildr en, and the elderl y (De Filippis et al. 2020 ). It is first detected 

around 6–7 months of age and persists at a low level until 2–3 
years of age (Hopkins et al. 2005 ). This pattern in early infancy sug- 
gests that there must be a first wave of gut colonization for Faecal- 
ibacterium to become established. Indeed, the implantation of EOS 
bacteria depends on certain physicochemical conditions that are 
generated by other commensal bacteria (Tomas et al. 2013 ). Faecal- 
ibacterium abundance is higher in non-Westernized populations, 
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r e pr oduction in any medium, provided the original work is properly cited. For com
ighlighting its ancient syner gistic r elationship with humans that
as onl y r ecentl y been disrupted by modern lifestyles (De Filip-
is et al. 2020 ). It has also been hypothesized that Faecalibacterium
ight act to stabilize the gut microbiota. Support for this idea was

ound in a study that monitored the microbiota of healthy human
ubjects over the course of a year: the abundance of this genus
as negativ el y corr elated with gr eater intr aindividual v ariability

n microbiota composition (Olsson et al. 2022 ), suggesting its po-
ential role as a k e ystone taxon (Tudela et al. 2021 ). In this vein,
aecalibacterium is among the first genus of commensal bacteria to
ave been found to differ between individuals with and without

nflammatory bo w el disease (IBD), and its beneficial r ole a ppears
o be associated with its anti-inflammatory pr operties (Sok ol 
t al. 2008 ). 

he genus Faecalibacterium 

rom a single species to multiple species 

aecalibacterium has undergone several taxonomic shifts since its 
iscovery in 1922 by J. Prausnitz (Prausnitz 1922 ). Initially clas-
ified as Bacteroides prausnitzii in 1937 by Hauduroy et al . ( 1937 ),
t was reclassified as Fusobacterium prausnitzii in 1974 (Cato et
l.1974 ) and then as Faecalibacterium prausnitzii in 2002 (Duncan
t al. 2002a ) (Fig. 1 ). Initially , F . prausnitzii was the only mem-
er of the genus and was r epr esented by two cultured strains—
TCC 27768 (the type strain) and ATCC 27766—as well as by
 is an Open Access article distributed under the terms of the Cr eati v e 
es/by-nc/4.0/ ), which permits non-commercial re-use, distribution, and 

mercial re-use, please contact journals.permissions@oup.com 

https://doi.org/10.1093/femsre/fuad039
https://orcid.org/0000-0001-7525-3131
https://orcid.org/0000-0001-5960-4341
mailto:philippe.langella@inrae.fr
http://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


2 | FEMS Microbiology Reviews , 2023, Vol. 47, No. 4 

Figure 1. Faecalibacterium taxonomy and evolutionary timeline. 
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wo ne wl y discov er ed str ains (A2-165 and L2-6) (Duncan et al.
002a ). Despite its high pr e v alence and abundance, it has been
hallenging to isolate and culture this genus because its EOS sta-
us. In recent years, it has been possible to isolate Faecalibacterium
trains using classical strategies, such as microbiological flow
harts (Martin et al. 2017 ), or more complex strategies, including
o w c ytometry-assisted sorting under anaerobic conditions us-

ng anti- Faecalibacterium polyclonal antibodies (Bellais et al. 2022 ).
hanks to advances in anaerobic cultivation and next-generation
equencing techniques, the complexity of the genus has progres-
iv el y been decipher ed. First, a 16S rRNA gene-based a ppr oac h di-
ided F. prausnitzii into two phylotypes, which accounted for 97.9%
f the amplified sequences found across several studies (Lopez-
iles et al. 2012 ). In 2017, an analysis of 17 Faecalibacterium isolates
ed to the identification of three phylotypes (A, B, and C) (Benevides
t al. 2017 ). Ho w e v er, se v er al str ains did not belong to an y of these
hylotypes, setting the basis for the future identification of addi-
ional species . T he number of phylogroups increased as a result
f r esearc h comparing the av er a ge nucleotide identity (ANI) of 35
enomes (Fitzgerald et al. 2018 ). In 2020, more than 7900 human
nd 200 nonhuman primate metagenomes were analyzed lead-
ng to the identification of 22 Faecalibacterium -like metagenome-
ssembled genomes (MAGs) (De Filippis et al. 2020 ). A total of 12
ere specific to humans, distributed across the globe, and dis-
layed a degree of a ge-r elated v ariation. The others wer e specific
o other particular niches (De Filippis et al. 2020 ). In 2021, follow-
ng genome sequencing and phenotypic , chemotaxonomic , and
hylogenetic c har acterization, two ne w species of Faecalibacterium
ere described: Faecalibacterium butyricigenerans (type strain: AF52-
1 T ) and Faecalibacterium longum (type strain: CM04-06 T ) (Zou et al.
021 ). Finall y, in 2022, thr ee nov el species wer e pr oposed: Faecal-

bacterium duncaniae (type strain: A2-165 of human origin), Faecal-
bacterium hattorii (type strain: APC922/41–1 T of human origin), and
aecalibacterium gallinarum (type strain: ic1379 T of chicken/broiler
rigin) (Sakamoto et al. 2022 ). The type strain for F. prausnitziii
emains ATCC 27768. The complexity of this genus is still being
ncov er ed: r ecent phylogenetical anal ysis r e v ealed that se v er al
trains do not seem to belong to any of the above species (Fig. 2 )
Tanno et al. 2022 ). The discovery of new phylogroups and species
as expanded possibilities for studying and understanding the
ener al c har acteristics of this genus and the r ole it plays in host
ealth. In a recent study, Tanno et al . ( 2023 ) found that 16S rRNA

s not a suitable gene marker for quantifying Faecalibacterium due
o sequence div er gence within clusters/str ains and e v en among
opies of a single str ain, whic h could lead to biased results (Tanno
t al. 2022 ). The same gr oup r ecentl y pr oposed that rpoA may serv e
s a better gene marker for identifying Faecalibacterium spp. (Tanno
t al. 2023 ). These important results indicate that the knowledge
athered prior to the discovery of these new phylogroups and
pecies is inaccurate because adequate tools were lacking. They
lso signal that new analyses must be performed that account for
en us di v ersity and that utilize a ppr opriate gene markers, notabl y
n the case of studies that used the 16S gene (Tanno et al. 2022 ). 

eneral metabolism and metabolic cross-feeding 

cetate , propionate , and butyrate are among the most abun-
ant short-chain fatty acids (SCFAs) in the human gut (Martin-
allausiaux et al. 2021 ). They are the primary end products result-

ng from bacterial fermentation of dietary fibers, including plant
ell wall pol ysacc harides, r esistant starc hes, soluble oligosacc ha-
ides, and endogenous products (e.g. m ucin). Additionall y, some
acterial species can ferment amino acids and proteins to pro-
uce SCFAs and br anc hed fatty acids. Butyr ate is the main en-
rgy source of colonocytes and plays a central role in host phys-
ology (Martin-Gallausiaux et al. 2021 ). The major end products
f glucose fermentation by Faecalibacterium str ains ar e formate,
mall amounts of d -lactate ( l -lactate is undetectable), and large
mounts of butyrate ( > 10 mM in vitro ) (Duncan et al. 2002a ,
iquel et al. 2013 ). 
Cross-feeding occurs when a species metabolizes metabolites

roduced by another species (D’Souza et al. 2018 ). SCFAs in par-
icular acetate, are among the most common cross-fed metabo-
ites in the bacterial communities of the human gut (D’Souza
t al. 2018 ). Acetate consumption is the major driver of bu-
yr ate pr oduction by members of Faecalibacterium genus (pro-
ess known as acetate-cross feeding) in the healthy human
ut (Miquel et al. 2013 ). The k e y enzyme in butyrate produc-
ion is butyryl-CoA:acetate CoA-tr ansfer ase (Fig. 3 ). It catalyzes
he r eaction wher eby butyr ate and acetyl-CoA ar e gener ated
r om extr acellular acetate and intracellular butyryl-CoA, thus
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Figure 2. ANI-v alue-based hier arc hical clustering of Faecalibacterium genomes. Complete or draft genome sequences of Faecalibacterium strains were 
obtained from the NCBI database . T he program dRep (version 3.2.2) was run using the 87 available Faecalibacterium genomes as input (Olm et al. 2017 ). 
ANI values of 95% or higher indicate that a genome pair likely belongs to the same species, wher eas ANI v alues below 95% indicate that a genome pair 
likel y r epr esents differ ent species. Cluster C corr esponds to phylogr oup C, as described else wher e (Bene vides et al. 2017 ). 
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explaining the gr owth-pr omoting effects of acetate consump- 
tion (Duncan et al. 2002a ,b , 2004 , Charrier et al. 2006 , Heinken 

et al. 2014 ). Indeed, supplementing the culture medium with 

acetate (33–50 mM) stimulates Faecalibacterium growth (Duncan 

et al. 2002a , Lopez-Siles et al. 2012 , D’Hoe et al. 2018 ). In a co- 
cultur e model, butyr ate pr oduction b y Faecalibacterium w as in- 
creased via acetate cross-feeding with the acetate-producing bac- 
eria Bifidobacteria adolescentis (Rios-Covian et al. 2015 ) and Blautia 
ydrogenotrophica (D’Hoe et al. 2018 ) (Fig. 3 ). In r esearc h using gno-
obiotic rodents colonized by F. duncaniae and Bacteroidetes thetaio- 
aomicron , the phenomenon was observed in vivo by measuring bu-
yrate and acetate levels in cecal samples (Wrzosek et al. 2013 ). 

Metabolic cross-feeding has been performed between F. dun- 
aniae A2-165 and lactic acid bacteria (LAB) using F. duncaniae
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Figure 3. Acetate and formate cross-feeding between B. hydrogenotrophica and F. prausnitzii. The metabolism of B. hydrogenotrophica centers on gl ycol ysis 
and the acetate pathwa y. T he metabolism of F. prausnitzii centers on gl ycol ysis and the formate and butyrate pathwa ys . T he k e y enzyme in butyrate 
production is butyryl- CoA :acetate CoA -transferase (ButCoAT). In red are the SCFAs consumed (acetate, formate). In blue are the SCFAs produced 
(acetate, butyrate). In green are the sugars consumed. 
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2-165 cultured with cell-free supernatants (8% v/v) obtained
r om LAB gr own in an acetate-ric h, vitamin-poor medium (Lebas
t al. 2020 ). A transcriptomics approach was used to characterize
our LAB strains stimulating F. duncaniae A2-165 growth or delay-
ng its lysis . T hese str ains wer e Lactococcus lactis subsp. lactis CNCM
-1631, subsp. cremoris CNCMI-3558, Lactobacillus paracasei CNCM I-
689, and Streptococcus thermophilus CNCM I-3862. The results re-
ealed that the supernatants had some shar ed effects, namel y
he upregulation of carbohydrate metabolism genes and cell wall-
elated genes as well as the downregulation of replication and mo-
ilome genes . T her e wer e also LAB-specific effects. In particular, F.
rausnitzii answer to the exposure of L. paracasei CNCM I-3689 su-
ernatant, may stabilize cell wall formation, through the upregu-

ation of some genes involved mainly in peptidoglycan formation,
nd the inhibition of cell wall degradation genes . T his in vitro study
uggests that LAB metabolites other than acetate may modify the
etabolism of F. duncaniae A2-165. 
While other members of the gut micr obiome, suc h as B. thetaio-

aomicron or Bifidobacterium, are known to be effectiv e degr aders
nd utilizers of pol ysacc harides, members of Faecalibacterium are
ess well-equipped to utilize complex carbon sources (Heinken et
l. 2014 ). Indeed, the genome of F. duncaniae A2-165 (3.11 Mb) con-
ains genes for just 31 gl ycoside hydr olases and one pol ysacc ha-
ide lyase. In contrast, the genome of B. thetaiotaomicron VPI 5482
ontains genes for 255 glycoside hydrolases and 29 polysaccha-
ide lyases (6.36 Mb). Moreover, glycolytic ability is likely strain
ependent, as suggested by an in silico study (Blanco et al. 2019 ). 
The second most r ele v ant and best-documented compound
nvolved in Faecalibacterium crossfeeding is fructose, which can
 esult fr om the degr adation of inulin, a dietary fiber and
omplex sugar (Ramirez-Farias et al. 2009 ). Even with lim-
ted carbohydr ate-degr adation mac hinery (Heinken et al. 2014 ),
ome Faecalibacterium members can metabolize inulin and pectin
Lopez-Siles et al. 2012 , Rios-Covian et al. 2015 , Martin et al. 2017 ).
esearch on inulin metabolism in Faecalibacterium was first ex-
lored in an interventional study where healthy volunteers took

nulin supplements for 16 da ys . T he result was an increase in pop-
lations of Faecalibacterium and B. adolescentis, with a concomitant

ncr ease in butyr ate pr oduction (Ramir ez-Farias et al. 2009 ). Un-
er laboratory conditions, 9 of 11 strains were able to ferment in-
lin, but only tw o display ed efficient gro wth (Lopez-Siles et al.
017 ). When Faecalibacterium metabolizes inulin, different prod-
cts ar e r eleased that can serv e as substr ates for other comm u-
ity members, thus contributing to broader-scale cross-feeding

Rios-Covian et al. 2015 , Moens et al. 2016 ). Inulin degradation
glucosyl hydrolases) and uptake (ABC transporter) mechanisms
er e r ecentl y described in F. duncaniae A2-165 (P ark et al. 2022 ).

or this same str ain, r esearc h has provided a molecular char-
cterization of the phosphoenolpyruv ate:carbohydr ate phospho-
r ansfer ase system transporter (PTS) involved in fructose uptake
EI,HPr and EIIABC 

Fru , the general and specific PTS components,
 espectiv el y) using the membr anous pr otein extr acts fr om cells
r own on div erse carbohydr ates and the purified PTS proteins
Kang et al. 2021 ). This result is consistent with the proteomic
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anal ysis of P ark et al . ( 2022 ). Indeed, the fructose-specific PTS pro- 
teins were highly upregulated during growth in inulin (Park et al.
2022 ). Ov er all, the r esults suggest that teasing a part PTS function- 
ality in Faecalibacterium could clarify how this taxon outcompetes 
other bacterial taxa in the human intestine. 

Faecalibacterium can also tak e ad v anta ge of compounds gener- 
ated by other members of the microbiome community, such as the 
pr oducts r esulting fr om the degr adation of ß-mannan complex 
pol ysacc harides, whic h ar e important components of hemicellu- 
loses in plant cell walls . T hese pr oducts ar e r eleased by metabolic 
processes in Bacteroides ovatus or Roseburia intestinalis , via a path- 
w ay encoded b y specific, highl y conserv ed genes with a worldwide 
distribution (Lindstad et al. 2021 ). Faecalibacterium is also able to 
metabolize the products of alginate metabolism released by Bac- 
teroides species (Murakami et al. 2021 ). 

Members of Faecalibacterium can also use other metabolites, 
such as N -acetylglucosamine , d -glucosamine , and d -glucuronic 
acid, allowing them to grow on substr ates deriv ed fr om their host,
their host’s diet, and other bacteria (Lopez-Siles et al. 2012 ). Some 
Faecalibacterium can breakdown other, more unique compounds, 
suc h as av enanthr amides—the phenolic alkaloids found in oats.
Indeed, Faecalibacterium is the only known genus capable of trans- 
forming av enanthr amides into dihydr o-av enanthr amides, bioac- 
tive compounds with anti-inflammatory and antioxidant prop- 
erties in specific-pathogen free (SPF) and monocolonized mice 
(Wang et al. 2021 ). 

Oxidati v e stress 

Although members of Faecalibacterium ar e consider ed to be EOS, F.
duncaniae A2-165 can grow under low-oxygen conditions because 
it possesses an extracellular electron shuttle of flavins and thi- 
ols that transfers electrons to oxygen (O 2 ) (Khan et al. 2012 ). This 
mec hanism pr obabl y involv es a flavin r eductase, whic h might r e- 
gener ate NAD 

+ fr om NADH and r educe O 2 to H 2 O 2 (Heinken et 
al. 2014 ). In addition, the health benefits of Faecalibacterium are di- 
r ectl y r elated to the colon’s envir onmental conditions, giv en that 
O 2 dynamics play a centr al r ole in intestinal homeostasis (Fig. 4 ).
In the GIT of healthy individuals, O 2 concentr ations decr ease lon- 
gitudinall y, fr om the stomach ( ∼5%) to the colon (0.1%–0.4%), and 

tr ansv ersel y, fr om the epithelial cells (5%) to the lumen (1%–2%) 
(Keeley and Mann 2019 ). Little is currently known about the rela- 
tionship between variation in luminal O 2 concentrations and in- 
testinal diseases, including the subsequent effects on hosts. How- 
e v er, man y gastr ointestinal diseases ar e thought to be associated 

with high o xidati v e str ess, whic h can influence luminal O 2 lev- 
els and lead to dysbiosis (Singhal and Shah 2020 ). As c hr onic gut 
inflammation pr ogr esses, it can r esult in uncontr olled and persis- 
tent o xidati v e str ess, wher e r eactiv e oxygen species (ROS), such 

as H 2 O 2 , ar e ov er pr oduced and/or inadequatel y r emov ed by an- 
tioxidant systems (Aviello and Knaus 2017 , Burgueno et al. 2019 ).
T hus , during gut inflammation, O 2 and ROS le v els may pr esent a 
challenge for Faecalibacterium species. Indeed, one of the character- 
istics associated with IBD is a pronounced decrease in Faecalibac- 
terium abundance in the gut (Sokol et al. 2009 , Cao et al. 2014 ). In- 
ter estingl y, compar ed to healthy individuals, certain patients with 

gut inflammation display r elativ el y higher le v els of F. longum L2-6 
and r elativ el y lo w er le v els of F. duncaniae A2-165, suggesting that 
different Faecalibacterium species cope differently with o xidati ve 
stress (Song et al. 2016 , Zhang et al. 2018 ). 

Little is known about how members of Faecalibacterium may 
remain unaffected by O 2 and ROS except that, in vitro, F. dunca- 
niae A2-165 has been found to hav e extr acellular antioxidants,
hic h tr ansfer electr ons to O 2 in moder atel y oxygenated envir on-
ents (Khan et al. 2014 ). Furthermore, when inorganic nitrate was

sed as an antioxidant, the Faecalibacterium population was main- 
ained following total body irradiation in a mouse model (Wang
t al. 2020 ). In addition, using a metabolic model exploring the
ffects of diet on O 2 sensitivity, it was predicted that diets with
 balanced carbohydrate and protein ratio could increase the O 2 

 ange ov er whic h Faecalibacterium could surviv e (Henson and Pha-
ak 2017 ). T hus , the presence of antioxidants as well as r elativ e di-
tary quantities of carbohydrates and proteins could impact the 
bility of Faecalibacterium species to tolerate o xidati ve stress dur-
ng gut inflammation. 

aecalibacterium in relation to health and 

isease 

hen the normal microbial ecosystem is altered, various non- 
r edominant bacteria (mainl y pathobionts) may thriv e, a situa-
ion, i.e. sometimes associated with illness (Caballer o-Flor es et al.
022 ). Suc h dynamics hav e been linked to man y differ ent types
f diseases that may or may not be dir ectl y r elated to the GIT.
otably, the abundance of some Faecalibacterium species has been 

ound to be altered across a wide range of diseases and disorders.
t is essential to note that most of the results presented in this
ection are based on observational data, which do not allow to
etermine whether dysbiosis is the cause or consequence of dis-
ase . T her efor e, these findings should be inter pr eted with caution.
ndeed, the new taxonomic structure of the genus highlights the
eed for further r esearc h, particularl y in the case of poorly stud-

ed diseases. Lastly, most of the intervention-focused or mechanis- 
ic studies described below have been performed in mice, which

eans that the r ele v ance of their results in humans remains to
e assessed. 

nflamma tory bo w el diseases (IBDs) 
he two forms of IBD are Crohn’s disease (CD) and ulcerative col-

tis (UC). Both are chronic conditions characterized by the height-
ned c hr onic activ ation of the gut m ucosal imm une system (Khor
t al. 2011 ). T his o v er activ e imm une r esponse occurs in tandem
ith an imbalance in the gut microbiota: a decline in Faecal-

bacterium abundance has been observed in CD and UC (Sokol 
t al. 2008 , Morgan et al. 2012 ). In addition, in IBD, there is a
eduction in the richness of two mucosa-associated Faecalibac- 
erium phylotypes (Lopez-Siles et al. 2015 ). The markers for IBD
nd its subtypes (with or without effects on the ileum) have re-
 ealed inter esting patterns in a meta pr oteomics study that com-
ared healthy individuals to individuals with the disease: the 

atter had reduced levels of Faecalibacterium (Henry et al. 2022 ).
n CD patients with ileal involvement, the abundance of Faecal- 
bacterium phylogroup II was lower (Lopez-Siles et al. 2016 ). In
nother study with the same target population, this decrease 
as associated with an increase in the levels of primary and

econdary bile acids (Gonzalez et al. 2022 ). Suc h r eductions in
aecalibacterium abundance have been linked to the decreased cir- 
ulation of CCR6 + CSCR6 + DP8 α r egulatory T (Tr eg) leuk ocytes and
ncr eased v alues of disease activity metrics (Sarr abayr ouse et al.
014 , Touch et al. 2022 ). Based on the above evidence, Faecal-

bacterium has been identified as playing a k e y role in inducing
his subset of Treg cells , which ha ve an important influence on

icr obiota–host cr oss-talk in cases of IBD. In individuals with ac-
ive IBD, DP8 α leucocytes from the peripheral blood and lamina
ropria do not respond to Faecalibacterium, whereas those from 



6 | FEMS Microbiology Reviews , 2023, Vol. 47, No. 4 

Figure 4. Gr a phic summary of relationships between Faecalibacterium r epr esentation within the intestinal microbiota and colon inflammation. The 
normal state of the microbiota greatly contrasts with the dysbiosis often encountered in digestive diseases such as IBD. Intestinal inflammation is 
accompanied by an ov er pr oduction of ROS as well as an increase in O 2 levels, conditions that favour facultative anaerobes over strict aerobes such as 
Faecalibacterium . In some patient cohorts, abundance of F. duncaniae A2-165 decreases while that of F. longum L2-6 increases (Song et al. 2016 , Zhang et 
al. 2018 ). 
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ndividuals who are healthy or in remission do respond (Sarrabay-
 ouse et al. 2014 ). Mor eov er, DP8 α T cells exhibit a r egulatory phe-
otype in vitro (Sarr abayr ouse et al. 2014 , Godefroy et al. 2018 ,
lameddine et al. 2019 ) and dampen colitis se v erity in mice when
ombined with the administration of Faecalibacterium (Touch et al.
022 ). IBD is also c har acterized by ele v ated le v els of IgG antibod-
es in the mucus and serum. In a study where fecal samples from
ealthy individuals and IBD patients were incubated with autolo-
ous serum, the IgG-coated fractions from IBD patients displayed
 lo w er-le v el r esponse to Faecalibacterium . T hus , IBD patients dis-
layed a higher r elativ e le v el of imm unological toler ance to this
enus compared to other genera, including Streptococcus , Lacto-
acillus , and Lactococcus (Bourgonje et al. 2022 ). 

Specific phages can infect Faecalibacterium and may play a role
n se v er al human diseases, including IBD (Cornuault et al. 2018 ).
aecalibacterium phages occur at higher levels in feces from hu-
ans with IBD than in feces from healthy controls (Cornuault

t al. 2018 ). Suc h could partiall y explain the decline in bacterial
bundance, along with redox imbalance during inflammation. In
ice, treatments using Faecalibacterium or supernatant from Fae-

alibacterium cultur es decr eased inflammation se v erity in se v er al
urine models for colitis (Sokol et al. 2008 , Carlsson et al. 2013 ,
iu et al. 2013 , Martin et al. 2014 , Laval et al. 2015 ). 

rritable bo w el syndrome 

rritable bo w el syndrome (IBS) is a commonly occurring gastroin-
estinal disorder c har acterized by alter ed bo w el habits, c hr onic
bdominal pain, the absence of detectable structural abnormal-
ties in the colon, and increased gut permeability (Marshall et
l. 2004 ). Although less is known about the relationship between
he microbiota and IBS than in the case of IBD, abnormalities in
ecal microbiota have been found in a subgroup of IBS patients
ho experienced bloating, as well as altered intestinal motility or

ensitivity (Collins et al. 2009 ). Furthermore, dysbiosis has been
bserved in at least some subsets of IBS (Bonfrate et al. 2013 ,
ennet et al. 2015 , Sabo and Dumitrascu 2021 , Chen et al. 2023 ).
or e specificall y, individuals with alternating-type IBS (IBS-A)
av e significantl y lo w er le v els of Faecalibacterium . In contr ast, Fae-
alibacterium abundance is unaltered in individuals with diarrhea-
redominant IBS (IBS-D) and is either notably lo w er or unaltered

n individuals with constipation-predominant IBS (IBS-C) (Rajilic-
tojanovic et al. 2011 , Duboc et al. 2012 , Rigsbee et al. 2012 ). In a
ecent study using multicenter amplicon sequencing data, Chen
t al. ( 2023 ) found that, within a cohort of 708 individuals (354 IBS
atients and 354 healthy controls), the genus Faecalibacterium was
ne of the depleted taxa in IBS patients . T he same study sho w ed
hat Faecalibacterium was among the top 10 hub taxa in all the IBS
ubtypes identified by co-occurrence network analysis and was
lso among the top three genera identified as potential microbial
iomarkers for IBS using a random forest model (alongside Pseu-
oclostridium and Bifidobacterium ) (Chen et al. 2023 ). Furthermore,
 negativ e corr elation has been observ ed between Faecalibacterium
bundance and IBS se v erity in humans (Rajilic-Stojanovic et al.
011 ). In murine models of visceral pain mimicking IBS, such as
hose using neonatal maternal separation (NMS) and partial re-
tr aint str ess (PRS), hypersensitivity decr eased in r esponse to sup-
lementation with F. duncaniae A2-165 bacteria (but not super-
atant) (Miquel et al. 2016 ). Given that low-grade inflammation
as been reported in a subset of human IBS patients (Collins 1992 ,
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Akiho et al. 2010 ), treatments using the A2-165 strain could possi- 
bl y pr oduce benefits because of the anti-inflammatory properties 
the bacterium displa ys . Ho w e v er, e vidence for this hypothesis re- 
mains unclear given that, while both F. duncaniae A2-165 and its 
supernatant helped counteract impairment of the intestinal ep- 
ithelial barrier in a murine model of c hr onic low-gr ade inflamma- 
tion, only the bacterium was effective in murine models of NMS 
and PRS, indicating that other mechanisms likely explain the ob- 
served beneficial effects in mice (Martin et al. 2015 ). 

Obesity, metabolic conditions, and li v er 
disorders 

Abnormal or excessive fat accumulation can present health risks.
The Obesity Medicine Association defines obesity as ‘a c hr onic,
r ela psing, m ultifactorial, neur obehavior al disease, wher ein an in- 
crease in body fat promotes adipose tissue dysfunction and ab- 
normal fat mass physical forces, resulting in adverse metabolic,
biomec hanical, and psyc hosocial health consequences’. Obe- 
sity is associated with health concerns such as type 2 di- 
abetes (T2D), hypertension, and cancer (Arro y o-Johnson and 

Mincey 2016 ). 
Obese or T2D patients have lo w er microbiota diversity, and 

Faecalibacterium is one of the community members that has been 

found to differ (Le Chatellier et al . 2013 ). These r esults wer e cor- 
r obor ated by an Iranian study, which observed a negative correla- 
tion between Faecalibacterium le v els and BMI (Navab-Moghadam 

et al. 2017 ). Chinese T2D patients displayed reduced abundances 
of Bacteroides , Akkermansia , and Faecalibacterium . Evidence of this 
shift was e v en detectable in pr ediabetic obese patients, r eflecting 
the link between glucose intolerance and microbiota composition 

(Zhang et al. 2013 ). In other r esearc h, Faecalibacterium was en- 
riched in T2D patients following weight loss (Hippe et al. 2016 ). In- 
triguingly, the same study found that samples from lean patients 
contained higher numbers of Faecalibacterium genes than did sam- 
ples from obese and T2D patients; in contrast, lean patients had 

the lo w est number of copies of the Faecalibacterium –associated 

butyryl-CoA:acetate CoA-tr ansfer ase (B UT) gene. T2D patients 
had the highest butyrate levels . T hese findings could be inter- 
preted as indicating that different Faecalibacterium species produce 
differ ent le v els of butyr ate in vivo and that the taxon’s abundance 
varies between healthy and unhealthy individuals (Hippe et al.
2016 ). Consequently, although the exact mechanisms have yet to 
be determined, current research supports a relationship between 

BMI, blood glucose le v els, and Faecalibacterium abundance. In mice,
supplementation with F. duncaniae A2-165 bacteria holds promise 
for treating obesity and its related complications. Compared to 
control mice, HFD-fed mice given twice-weekly supplements of F.
duncaniae A2-165 had smaller adipocytes as well as reduced hep- 
atic inflammation, lipid accumulation in the liver, and inflamma- 
tory cell infiltration in adipose tissue (Munukka et al. 2017 ). While 
these results seem quite promising, studies on obesity in mice 
not always translate to humans and must, therefore, be carefully 
inter pr eted and validated by clinical intervention-based trials in 

humans. 
In pr eliminary r esearc h, lower le v els of Faecalibacterium were 

also observed in individuals with rare metabolic diseases such as 
propionic acidemia (Tims et al. 2022 ), phenylk eton uria (Verduci et 
al. 2018 ), or gl ycogen stor a ge disease type 1 (Ceccar ani et al. 2020 ).
Finall y, patients with liv er cirrhosis sho w ed reduced amounts of 
certain Faecalibacterium phylogr oups, especiall y those that ar e bet- 
ter butyrate producers (Chen et al. 2021 ). More research should be 
performed to clarify the significance of these observations. 
eurological conditions 

he gut microbiota plays an important role in the complex
rosstalk that takes place between the gut and the brain (Alonso-
arcía et al. 2021 ). T hus , it is unsurprising that microbial dysbiosis
as been observed in individuals with a range of neurological con-
itions, opening the door to r esearc h on the micr obiota–gut–br ain
xis (Cryan et al. 2019 ). In addition, se v er al neur ological condi-
ions have been associated with leaky gut syndrome and a proin-
ammatory shift in the colonic micr obiota, whic h r esults fr om

ncr eased le v els of Gr am-negativ e bacteria containing imm une-
riggering lipopol ysacc harides (LPSs) (Eic her and Mohajeri 2022 ).
orr elations hav e also been found with lo w er abundances of Bifi-
obacterium , Coprococccus , Eubacterium , Lactobacillus , Prevotella , Rose-
uria , and Faecalibacterium (Eicher and Mohajeri 2022 ). The latter
enus has been found to occur at lo w er le v els in individuals with
linical depression (Ye et al. 2021 ). Explor atory studies hav e ob-
erved similar patterns in association with se v er al additional psy-
hiatric conditions, including bipolar disorder, anxiety, psychosis,
nd sc hizophr enia (Nik olov a et al. 2021 ). 

Alterations in gut microbiota have also been seen in pro-
einopathies such as Parkinson’s disease (PD) and Alzheimer’s dis- 
ase (AD) (Nishiwaki et al. 2020 , Xi et al. 2021 ). For example, Fae-
alibacterium le v els wer e found to be lo w er in PD patients than
n healthy controls (Nishiwaki et al. 2020 ). Recently, Faecalibac- 
erium strains isolated from healthy human donors were tested 

n a murine model of AD; the administration of both living and
ead bacteria impr ov ed cognitiv e impairment (Ueda et al. 2021 ).
urthermore, Faecalibacterium abundance was found to be higher 
n healthy individuals than in individuals with mild cognitive im-
airment (MCI) and AD patients, in whom it was positiv el y corr e-

ated with cognitive performance (Ueda et al. 2021 ). 
Recent pr eliminary r esearc h found that c hildr en on the autism

pectrum had higher le v els of Faecalibacterium (Xu et al. 2019 ,
glesias-Vazquez et al. 2020 ). Unexpectedly, an intervention study 
iscov er ed that autistic c hildr en who consumed gluten- and
asein-restricted diets were better able to handle autism-related 

ehavior al c hallenges and had higher Faecalibacterium le v els than
utistic c hildr en who consumed the control diet (Grimaldi et al.
018 ). Members of this genus were found to be more abundant in
ndi viduals with e pile psy, although ther e wer e no links with se v er-
ty status (Valles-Colomer et al. 2019 , Cui et al. 2021 ). 

Intriguing results aside, these results should be interpreted 

ith caution because r esearc h r elating Faecalibacterium abun-
ance to neurological conditions is far more preliminary than that
xamining the links with diseases such as IBD. 

ancer 
he gut microbiota also appears to have an impact on the efficacy
f imm une c hec kpoint inhibitors (Routy et al. 2018 , Daillere et al.
020 , Effendi et al. 2022 ). Indeed, se v er al studies hav e shown that
 higher baseline le v el of Faecalibacterium , as well as that of other
irmicutes, positiv el y corr elates with r esponses to r elated tr eat-
ents for various cancers, such as melanoma (Chaput et al. 2017 ,
opalakrishnan et al. 2018 , Coutzac et al. 2020 , Limeta et al. 2020 ,
pencer et al. 2021 ), hepatocellular carcinoma (Li and Ye 2020 ),
nd nonsmall cell lung cancer (Newsome et al. 2022 ). 

In a rat model where colorectal cancer (CRC) was induced via
zoxymethane (AOM), treatment with F. prausnitzii reduced dis- 
ase markers as well as lipid pero xidation (Dik eocha et al. 2022 ).
ndeed, K en yan patients with CRC were found to have intesti-
al mucosa-associated microbiota and microbial metabolic pro- 
les differ ent fr om those of healthy individuals (Obuya et al.
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022 ). In particular, Prevotella copri and Faecalibacterium species
ere less abundant, and alterations were observed in glutamate
etabolism. 
In another study, breast cancer patients sho w ed reduced fecal

e v els of Faecalibacterium (Ma et al. 2020 ). Mor eov er, when Faecal-
bacterium and MCF-7 breast cancer cells were cocultured in vitro ,
r olifer ation of the latter was hampered through the inhibition of
L-6 production and the phosphorylation of JAK2/signal transduc-
rs and ST A T3 activators (Ma et al. 2020 ). Interestingly, a recent
tudy demonstrated that a mixture of four commensal Clostridi-
les strains (i.e. CC4: F. prausnitzii , R. intestinalis , Eubacterium hal-

ii , and Anaerostipes caccae ) display ed anticar cinogenic properties
 gainst differ ent solid tumors (Montalban-Arques et al. 2021 ). The
ationale behind CC4 composition was to combine different com-

ensal str ains ca pable of pr oducing butyr ate. In another pr eclin-
cal rat model, treatment with F. duncaniae helped repair collat-
r al dama ge in the colon that was caused by r adiation ther a py, a
ommon treatment for cancer in the pelvic area. Mechanistically,
his effect arose from reductions in hyperpermeability and neu-
r ophil infiltr ation; the pr eserv ation of pr ogenitor cells and colon
ell morphology; and the upregulation of IL-18 expression (Lapiere
t al. 2020 ). 

ermatitis and allergies 

topic dermatitis is a condition in which the skin is chronically
nflammed, r esulting in r edness , dryness , and irritation. It is char-
cterized by a reduction in skin micr obiota div ersity, whic h facil-

tates colonization by pathogenic bacteria, such as Staphylococcus
ureus , leading to increased disease severity (Paller et al. 2019 ).
ut dynamics in early childhood might have an important role

o play. Indeed, metabolites production by some types of bacteria,
rom infancy to adulthood, results in heightened immune system
riming and contributes to atopic dermatitis de v elopment, whic h
eans that early life experiences ar e likel y key contributors to

his condition (Gensollen and Blumberg 2017 ). Research has also
hown that atopic dermatitis is associated with shifts in the gut
icrobiota. In a study conducted using 42 healthy individuals and

0 individuals with the condition, the latter had reduced butyrate
nd propionate levels in their feces; furthermore, they had lo w er
bundances of Faecalibacterium subspecies r elated exclusiv el y to
. duncaniae A2-165 (Song et al. 2016 , Effendi et al. 2022 ). Faecal-
bacterium le v els ar e r educed in individuals with psoriasis, but not
n those with hidradenitis suppurativa, which can co-occur with
BD (Eppinga et al. 2016 ). Sur prisingl y, in a murine wound healing

odel, i.e. commonly emplo y ed to stud y healing d ynamics and
r eatment efficacity, tr eatment with supernatant from Faecalibac-
erium cultures improved several types of skin lesions caused by
ntense, sustained inflammation, such as ulcers (Stefia et al. 2020 ).
n NC/Nga mice in which atopic dermatitis had been induced us-
ng 2,5-dinitr oc hlor obencene (DNCB), the administration of Fae-
alibacterium impr ov ed symptoms by boosting the T h2 response ,
hus counterbalancing the excessive Th1 response elicited in the

odel (Lee et al. 2022 ). These promising results remain to be val-
dated by clinical trials with humans. 

Asthma is a c hr onic inflammatory condition that impacts lung
irwa ys . Research has suggested that shifts in the gut microbiome
an impact the outcome of lung diseases. Indeed, the higher
r e v alence of lung diseases in individuals with gastrointestinal
isorders supports the existence of a gut–lung axis, of which SC-
As may be major driv ers (Corr ea et al. 2022 ). While findings
or adults remain inconclusive (Wang et al. 2018b , Tikunov et al.
021 ), c hildr en with aller gic asthma had lo w er Faecalibacterium lev-
ls than did healthy c hildr en (Demirci et al. 2019 ). Finally, in a
urine model, both living and dead F. duncaniae were able to allevi-

te dust mite-induced allergic asthma by modulating the micro-
iota and incr easing butyr ate pr oduction, an inter esting finding
hat should be explored in future research (Hu et al. 2021 ). 

ovid-19 

nfection with SARS-CoV-2 causes the disease COVID-19, which
ainly affects the respiratory system. Although COVID-19 com-
onl y causes fe v er and r espir atory tr act symptoms, it may also

ead to cardiac, gastrointestinal, hepatic, renal, neurological, ol-
actory , gustatory , ocular, cutaneous, and hematological symp-
oms (Zhang and Guo 2020 ). SARS-CoV-2 affects the gastrointesti-
al system because the virus enters cells via the angiotensin-
onverting enzyme 2 (ACE2) receptor, which is abundantly present
n the glandular cells of the gastric, duodenal, and rectal ep-
thelia as well as on the endothelial cells of the small intestine
Zhang and Guo 2020 ). T hus , the virus can also infect entero-
ytes, as r e v ealed by the presence of viral RNA in feces (Trot-
ein and Sokol 2020 , Yeoh et al. 2021 ). Furthermore, several stud-
es have described a pattern of infection-related dysbiosis , i.e .

arked by a reduction in Faecalibacterium abundance, particularly
n hospitalized patients with the se v er e phenotype (Yeoh et al.
021 , Hazan et al. 2022 ). Ad ditionally, indi viduals suffering from
ostacute COVID-19 syndrome (PACS), otherwise known as Long
OVID, hav e higher le v els of Ruminococcus gnavus and Bacteroides
ulgatus and lo w er le v els of Faecalibacterium (Liu et al. 2022 ). Since
aecalibacterium holds promise for treating the intestinal issues
aused by other gut-related disorders, its use has been proposed to
elp r elie v e COVID-19-r elated symptoms (He et al. 2021 ). Indeed,
OVID-19 patients that r eceiv ed a fecal microbiota transfer (FMT)
ad higher le v els of Faecalibacterium following the pr ocedur e than
uring the course of their infection (Liu et al. 2021 ). Mor eov er, in
 preclinical model in hamsters, the or al administr ation of a Fae-
alibacterium strain to SARS-CoV-2 infected animals resulted in a
0-fold reduction in viral load (Monchatre-Leroy et al. 2021 ). 

ost- Faecalibacterium cross-talk 

eneficial effects on the host 
e v er al studies hav e sought to decipher how Faecalibacterium pres-
nce promotes GIT homeostasis using in vivo murine models or in
itro testing with human cell lines. Numerous types of evidence
uggest that this genus plays an important role in immune sys-
em regulation, gut barrier protection, and microbiota modula-
ion (Miquel et al. 2013 ), potentially via a range of mechanisms
Fig. 5 ). Ho w e v er, it is important to note that r esearc h on the inter-
ctions between Faecalibacterium and their hosts is in constant flux
or two reasons. First, the taxonomy of the genus is undergoing
hifts because of new disco veries . Second, it is difficult to separate
ut general effects, potentially attributable to multiple butyrate-
r oducing bacteria, fr om effects specific to Faecalibacterium . Some
tudies have shown that the presence of specific species can mod-
late the host immune system, by upregulating IL-10 expression

n dendritic cells and enhancing the pr olifer ation of T cells, which
uggests the presence of an effect specific to Faecalibacterium (Rossi
t al. 2016 ). In support of this idea, in vitro tests r e v ealed that the
resence of different clinical isolates led to the upregulation of
L-10 in the human peripheral blood mononuclear cells (PBMCs)
f healthy individuals; this result was seen especially, but not ex-
lusiv el y, in association with bacteria displaying higher le v els of
utyr ate pr oduction (Martin et al. 2017 ). The pr esence of these
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Figure 5. Mechanisms of action associated with Faecalibacterium . (1) Supernatant from Faecalibacterium cultures blocks the activation of NF- κB induced 
by a proinflammatory stimulus. (2) Butyrate produced by Faecalibaterium inhibits NF- κB activation and blocks Il-8 production in TNF- α stimulated 
intestinal epithelial cells. (3) Butyrate inhibits HD AC , leading to the expression of Dact3 , a gene encoding a negative regulator of the inflammatory 
Wnt/JNK signaling pathway, and the inhibition of IL-8 production. It is important to note that the silencing of Dact3 leads to a partial loss of the 
anti-inflammatory effects of Faecalibacterium supernatant in the intestinal epithelial cells. (4) Faecalibaterium components can induce the a ppear ance of 
a specific subset of IL-10-secreting Treg cells—called DP8 cells—in the colonic lamina propria. Moreover, the presence of Faecalibacterium can boost 
IL-10 le v els in antigen-pr esenting cells and DP8 cells, whic h may enhance the suppr essiv e acti vity of Fo xp3 + Tr eg cells and bloc k pr oinflammatory 
effector T cells induced by various stimuli. 
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clinical isolates could also block IL-8 production in human HT-29 
cells that had been activated with TNF −α, although, in this model,
there was no clear genus-specific effect tied to butyrate produc- 
tion (Martin et al. 2017 ). Additionall y, tr eatment with F. duncaniae 
has been shown to increase levels of a specific subset of IL-10- 
secr eting Tr eg cells (CD4CD8 α) in the lamina propria of the colon; 
these cells are lacking in individuals with IBD. In a humanized 

murine model, the administration of DP8 α cells and F. duncaniae 
pr otected a gainst dextr an sulfate sodium (DSS)-induced colitis in- 
duced (Touch et al. 2022 ). Ho w ever, it is not yet known whether 
this effect is species-specific. 

Faecalibacterium presence can also affect intestinal epithelial 
cells . In assa ys using human Caco-2 cells , IL-1 β-induced NF- κB 

activity was abolished after the addition of supernatant from Fae- 
calibacterium cultures but not after the addition of Faecalibacterium 

cells (Sokol et al. 2008 ). Furthermore, in a murine model where col- 
itis was induced using dinitrobenzene sulfonic acid (DNBS), the 
butyr ate pr oduced by Faecalibacterium upr egulated expr ession of 
the dishevelled binding antagonist of beta catenin 3 (Dact3) gene in 

TNF α−stimulated HT-29 cells (Lenoir et al. 2020 ). Dact3 is a neg- 
ativ e r egulator of the inflammatory Wnt/JNK signaling pathway 
and could be one of the host effectors that mediates the positive 
effects attributed to Faecalibacterium , given that its silencing leads 
to a partial loss of supernatant-mediated anti-inflammatory ef- 
fects in intestinal epithelial cells . T hat said, the k e y role played 
y butyrate makes difficult to determine whether the presence of
aecalibacterium specifically contributes to activation (Lenoir et al.
020 ). 

The presence of Faecalibacterium also appears to have impacts 
n the intestinal barrier. Treatment with F. duncaniae A2-165 was
ound to impr ov e gut permeability and function in a murine

odel of DNBS-induced intestinal barrier impairment (Sokol et 
l. 2008 , Martin et al. 2014 , Laval et al. 2015 , Martin et al. 2015 ,
iquel et al. 2015a ). Rossi et al. ( 2015 , 2016 ) and Carlsson et al .

 2013 ) also found that treatment helped r estor e intestinal perma-
ility in a model of DSS-induced colitis in mice. In all these cases,

t is difficult to distinguish whether these beneficial effects arise
rom the anti-inflammatory properties of the bacteria or the phys-
cal effects of the bacteria on the barrier. Ho w e v er, in a noninflam-

atory model of gut alteration in mice, administration of F. dunca-
iae A2-165 led to the r ecov ery of claudin-2 le v els, whic h had been
ltered using NMS (Miquel et al. 2016 ). It also ameliorated the de-
ree of radiation-induced colonic hyperpermeability by preserving 
he progenitor cells and colon cell morphology in mice (Lapiere et
l. 2020 ). In a nonpathological model using germ-free rats colo-
ized by B. thetaiotaomicron and F. duncaniae A2-165, the presence
f the latter diminished the negative effects of Bacteroides on gob-
et cell differentiation and mucin glycosylation. This effect likely 
tems from the strain’s metabolic processes, in which acetate is
onsumed and butyrate is produced, and underscores how the 



10 | FEMS Microbiology Reviews , 2023, Vol. 47, No. 4 

p  

c  

2

B
M
A  

b  

e  

c  

s  

c  

d  

a  

e  

(
 

m  

s  

i  

S  

o  

2  

a  

m  

a  

i  

A  

1  

t  

b  

m  

s  

(  

r  

A  

t  

w  

a  

d  

m  

F  

p
 

e  

c  

n  

i

E
E  

u  

i  

r  

t  

c  

b  

i  

l  

2  

c  

(  

c  

r  

2  

a  

l  

s  

t  

f  

t  

i  

u  

s  

s  

t  

t  

r  

m

M
T  

i  

I  

f  

t  

d  

e  

κ  

t  

m  

(  

t  

s  

i  

m  

a
 

n  

t  

M  

t  

a  

r  

t

E
T  

i  

d  

t  

t  

i  

g  

r  

b  

i  

t  

c

F
P
I  

o  

c  

t  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/47/4/fuad039/7224591 by guest on 23 April 2024
resence of Faecalibacterium helps modulate the gut microbial
omm unity during host–micr obiome inter actions (Wrzosek et al.
013 ). 

acterial effectors 

etabolites 
s mentioned pr e viousl y, one of the main metabolites produced
y Faecalibacterium is butyrate (Duncan et al. 2004 ), which has sev-
ral effects on host ph ysiology. F or example, it can be used by
olonocytes as a carbon source and bolster the gut barrier by
trengthening the tight junctions (Liu et al. 2018 ). In continuous
ocultures with primary epithelial cells, butyrate production by F.
uncaniae A2-15 was correlated with the downregulation of TLR3
nd TLR4 expression via the HDAC1 and NF-kB pathways (Zhang
t al. 2021 ). The health effects of butyrate are reviewed elsewhere
Liu et al. 2018 ). 

In a gnotobiotic model employing F. duncaniae A2-165 and E. coli ,
etabolomic analysis identified several metabolites—including

alicylic acid, shikimic acid, and raffinose—that could play a role
n the benefits attributed to the bacterium (Miquel et al. 2015b ).
ome studies have suggested that salicylic acid could help treat
besity, by inducing the browning of white adipocytes (Choi et al.
022 ), or could serve as a pr e v entiv e tr eatment for CRC (Imai et
l. 2022 ). Furthermore, it is used as a coadjuvant in cancer treat-
ents because it can boost the effects of antitumor immunother-

py (Sun et al. 2022 ). In the pharmaceutical industry, salicylic acid
s used to produce the amine deri vati ve 5-aminosalicylic acid (5-
SA or mesalamine), curr entl y used to tr eat IBD (Messori et al.
994 ). The effects of aspirin might be mediated via its transforma-
ion into salicylic acid, a process that can be carried out by mem-
ers of the gut microbiota (Zhao et al. 2020 ). Through the achoris-
ate synthase pathway, shikimic acid acts as a precursor for the

ynthesis of se v er al ar omatic compounds, including salicylic acid
Boc hk ov et al. 2012 ). Consequently , F . duncaniae ma y pla y a k e y
ole in the biosynthesis of salicylic acid, which is a precursor of 5-
SA. Both are anti-inflammatory molecules that could contribute

o the anti-inflammatory effects observed in vivo in mice treated
ith Faecalibacterium. In addition, the oligosacc haride r affinose is
 potential effector that could serve to address intestinal barrier
ysfunction induced by Faecalibacterium presence during inflam-
ation (Martin et al. 2018 ). It has yet to be determined whether

aecalibacterium produces these three metabolites, or if they are
roduced by host cells when Faecalibacterium is present. 

Finall y, we hav e also identified the butyrate as the F. prausnitzii
ffector responsible for Dact3 modulation (see the section ‘Benefi-
ial effects on the host’). The elucidation of the impact of F. praus-
itzii is Dact3 upregulation validated in vivo in both healthy and
nflamed mice is curr entl y in pr ogr ess. 

xtracellular vesicles 
xtr acellular v esicles (EVs) ar e spherical membr anous v esicles
sed by prokaryotic and eukaryotic cells to release compounds

nto the extracellular space for functional reasons, such as
 esponding to envir onmental c hanges or comm unicating with
he host or other bacteria (Deather a ge and Cookson 2012 ). Re-
ent work has underscored that EVs could potentially serve as
iomarkers or ther a peutic tools, whic h has r esulted in an incr ease

n the number of EV-focused studies. EVs are released by all cel-
ular organisms, including Gram-positive bacteria (To y ofuku et al.
023 ), and, since they were first described, unexpected biophysi-
al, bioc hemical, and functional heter ogeneity has been observ ed
Buzas 2023 ). For F. duncaniae A2-165, EVs were first isolated and
 har acterized by Jafari et al. in 2019. The EVs contain proteins
anging in size from 11 to 245 kDa (Jafari et al. 2019 ). In Caco-
 cells, a treatment utilizing EVs from A2-165 and A. municiphila
ugmented ser otonin pr oduction and the expr ession of genes r e-
ated to serotonin (Yaghoubfar et al. 2021 ). Similarly, the EVs alone
tr engthened the expr ession of genes encoding tight junction pro-
eins [zonula occludens 1 (ZO1) and occludin (OCLN)] and ParR
amil y compounds, r esults that confirm the r ole of EVs in main-
aining gut barrier integrity (Moosavi et al. 2020 ). EVs from Faecal-
bacterium species are also involved in immune homeostasis: when
sed to treat Caco-2 cells, they significantly diminished levels of
e v er al pr oinflammatory cytokines (Rabiei et al. 2019 ). Similar r e-
ults were obtained in a model utilizing Faecalibacterium EVs and
he lung cancer cell line A549 (Jafari et al. 2019 ). Taken together,
hese results should encourage further research on the potential
ole play ed b y Faecalibacterium EVs in hosts and dri ve ad ditional,

or e conclusiv e r esearc h in this field. 

icr obial anti-inflammator y molecule 
he microbial anti-inflammatory molecule (MAM; ZP05614546.1)

s 15 kDa in size and has a nonpolar residue prevalence of 53%.
t was first described in a peptidomic analysis of supernatants
r om Faecalibacterium cultur es, in whic h se v en of its deri vati ve pe p-
ides inhibited the NF-kB pathway in intestinal epithelial cells,
isplaying the potential for anti-inflammatory effects (Que vr ain
t al. 2016 ). Indeed, in DNBS and DSS models employing NF-
−lucifer ase tr ansgenic mice, a decr ease in pr oinflammatory cy-
okines related to Th1 and Th17 responses was observed in

ice gav a ged with Lactococcus lactis strain delivering MAM cDNA
Breyner et al. 2017 ). Recent in vitro and in vivo studies have shown
hat MAM’s anti-inflammatory properties are diverse and species-
pecific. In murine models of DNBS-induced acute and c hr onic
nflammation, the MAM from the F. prausnitzii strain M21-2 was

or e effectiv e than the MAM fr om F. duncaniae A2-165 (Auger et
l. 2022 ). 

The effects of MAM were examined in db/db mice, which do
ot express le ptin rece ptors and have lo w er levels of Faecalibac-

erium in their guts. Oral supplementation with E. coli -produced
AM suggest that the molecule interacts with ZO-1 and other

ight junction pr oteins. Furthermor e, the tr ansfection of MAM into
 cell line increased ZO-1 expression and restored epithelial bar-
ier function (Xu et al. 2019 ). These results suggest that MAM has
her a peutic potential in improving intestinal barrier function. 

xtracellular polymeric matrix 

he presence of a biofilm-forming strain, Faecalibacterium HTF-F,
nhibited the production of proinflammatory signals in human
endritic cells that had been stimulated using L. plantarum . In
he same study, the presence of the HTF-F strain was better than
he presence of the A2-165 strain at improving symptoms of DSS-
nduced colitis (Rossi et al. 2015 ). The authors concluded that the
reater anti-inflammatory effects associated with HTF-F could be
elated to the extracellular polymeric matrix (EPM) of the strain’s
iofilm. Ho w e v er, giv en ongoing taxonomic shifts within Faecal-

bacterium , it is essential to car efull y explor e other differ ences be-
ween these two str ains, whic h belong to different phylogenetic
luster. 

aecalibacterium as a therapeutic tool 
otential applications 

n the last 15 years, the field of probiotics has exploded as a result
f massive leaps in knowledge about the gut microbiota and its
rucial role in human health. Probiotics are ‘live microorganisms
hat, when administered in adequate amounts, confer a health
enefit to the host’ (Hill et al. 2014 ). They are usually microor-
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ganisms and most fr equentl y a specific list of bacterial genera of 
pr ov en safety with a long history of use in mainly healthy people 
(Martin and Langella 2019 ). Ho w e v er, this mor e classical defini- 
tion of probiotics has evolved over time to include next-generation 

probiotics (NGPs) and live biotherapeutic products (LBPs). In con- 
tr ast to conv entional pr obiotics, these two ne w gr oups do not hav e 
an established history of safe use in humans. Instead, NGPs and 

LBPs are directly isolated from the human gut microbiome and 

then car efull y c hosen for their biological effects. Faecalibacterium 

holds great promise as an LBP because of its demonstrated role 
in host homeostasis and its many positive effects in preclinical 
murine models for various diseases (e.g. IBD, CRC, AD, and e v en r a- 
diation ther a py). Its use is alr eady being explor ed in liv estoc k. For 
instance, r esearc h has c har acterized Faecalibacterum str ains iso- 
lated from the stool of calves and piglets (Foditsch et al. 2014 ).
Given the strong relationship between IBD in humans and lower 
le v els of Faecalibacterium (Sokol et al. 2008 , 2009 , Cao et al. 2014 ),
the genus is clearly a potential LBP candidate. It is being used 

for the first time in a clinical trial focused on maintaining both 

corticosteroid-induced clinical responses and remission in indi- 
viduals with CD (MAINTAIN 2022 ). This phase 1 study has two 
parts: a open-label e v aluation of safety using a small group of 
participants and a r andomised, double-blind, placebo-contr olled 

e v aluation using a large group of participants (ClinicalTrials .go v 
Identifier: NCT05542355). Furthermore, a specific formulation has 
been proposed to k ee p these EOS bacteria alive under ambient 
conditions, which would be necessary to treat patients with in- 
testinal dysbiosis-associated diseases (Khan et al. 2014 ). 

Additionally, Faecalibacterium could serve as an effective dis- 
ease biomarker and diagnostic support tool (Miquel et al. 2013 ).
In 2008, a diagnostic test based on Faecalibacterium prevalence and 

leukoc yte counts w as de v eloped to distinguish activ e CD fr om 

UC and displayed a high le v el of performance (79%–80% sensi- 
tivity and 98%–100% specificity) (Swidsinski et al. 2008 ). As-yet- 
undiscov er ed species and phylotypes could yield further insights 
and impr ov e the accur acy of methods that utilize Faecalibacterium 

as a disease marker. Work addressing these issues is especially im- 
portant since differ ent r atios of strains and phylotypes have been 

seen in association with se v er al health conditions, such as AD and 

obesity (Lopez-Siles et al. 2017 ). 

Interventions to modulate faecalibacterium 

Dietar y interventions , including pr obiotics and pr ebiotics 
Dietary interv entions r emain one of the most efficient ways 
for modifying the microbiota. For example, eating the fiber-rich 

Mediterranean diet can result in higher levels of Faecalibacterium 

(Godny et al. 2022 ). Several studies have investigated nutritional 
strategies for increasing the abundance of this genus in the gut. A 

30-day diet of the alga Euglena gracilis was observed to increase Fae- 
calibacterium le v els (Nakashima et al. 2021 ). The same effect was 
ac hie v ed via a 6-day, lifestyle-based immersion pr ogr am that in- 
cluded nutritional intervention: with 100% plant based meals and 

that incor por ated whole foods (Ahr ens et al . 2021 ). Similarl y, le v- 
els of Faecalibacterium increased in children given a diet low in fer- 
mentable oligosacc harides, disacc harides, monosacc harides, and 

polyols (FODMAPs), and the abundance of bacteria in this taxon 

correlated with symptom improvement (Chumpitazi et al. 2015 ).
The FODMAP diet contains reduced quantities of fermentable car- 
bohydrates and has been effective in reducing gastrointestinal 
symptoms in adults with IBD and IBS, e v en if it decreases Faecal- 
ibacterium le v els (Hustoft et al. 2017 , Cox et al. 2020 ). Ho w e v er, it
remains unclear whether the relationship between this diet and 
aecalibacterium abundance is consistent, an issue discussed in a 
ecent systematic review (Vandeputte and Joossens 2020 ) . In a 6-

onth controlled-feeding experiment, 217 healthy young adults 
er e r andoml y assigned a low-, mid-, or high-fat diet; those con-

uming the low-fat diet showed a decrease in Faecalibacterium lev-
ls (Wan et al. 2019 ). In contrast, no such changes were seen dur-
ng a 3-month single-center intervention where six patients with 

lucose transporter 1 deficiency syndrome were given a tradi- 
ional ketogenic diet (i.e. high fat and low carbohydrate) (Tagliabue
t al. 2017 ). Se v er al studies in r odents hav e r e v ealed the existence
f a negative correlation between protein intake and Faecalibac- 
erium abundance, as noted in a systematic r e vie w of how dietary
roteins affect the gut microbiota (Wu et al. 2022 ). Research ex-
mining this relationship remains scarce, and few intervention 

tudies have been conducted using healthy subjects. Finally, fast- 
ng has been found to increase Faecalibacterium le v els in humans,
onfirming that dietary habits may shape Faecalibacterium occur- 
ence in myriad ways (Remely et al. 2015 ). 

Pr ebiotics ar e another tool that can be used to modulate the
e v els of Faecalibacterium . A pr ebiotic is a ‘non-digestible com-
ound that, through its metabolization by microorganisms in 

he gut, modulates composition and/or activity of the gut micro-
iota, thus conferring a beneficial physiological effect on the host’
Bindels et al. 2015 ). Faecalibacterium is a fibre fermenter, and sev-
ral studies have found a positive correlation between levels of
ietary fibre and the r elativ e abundance of this gen us (Ben us et
l. 2010 ). Historically, supplementation with inulin was one of the
rst str ategies successfull y used to incr ease the r epr esentation
f Faecalibacterium within the microbial community of the human 

ut (Ramirez-Farias et al. 2009 ). A recent systematic review has
ighlighted the ability of prebiotics to boost Faecalibacterium abun- 
ance (Verhoog et al. 2019 ). Indeed, in germ-free mice convention-
lized with human micr obiota, the administr ation of a supple-
ent containing resistant starch increased butyrate production 

nd increased Faecalibacterium levels; the effect was more substan- 
ial when donors had lo w er initial abundances of the genus (Cher-
uy et al. 2019 ). In a randomized placebo-controlled crossover
tud y, the intak e of pol ydextr ose and soluble corn fiber boosted
e v els of Faecalibacterium (Hooda et al. 2012 ) . In another cr ossov er
tudy, the consumption of c hic kpea and its main oligosacc haride,
affinose, had the same effect (Fernando et al. 2010 ). 

It has been hypothesized that traditional probiotics can help 

r eat disease-r elated bacterial imbalances in the gut micr obiome.
ome impr ov e Faecalibacterium abundance, perha ps because tr a-
itional probiotics often produce acetate. Acetate promotes the 
rowth of Faecalibacterium via cross-feeding (Ramirez-Farias et al .
009 ). For instance, during a dietary intervention study that used
. plantarum PMO08, Faecalibacterium le v els had significantly in-
reased after 2 weeks of treatment (Oh et al. 2021 ). Host health
mpr ov ed and Faecalibacterium abundance increased in response 
o the administration of L. plantarum ZPL001, Enterococcus durans 
P1, and L. paracasei N1115, among others (Carasi et al. 2017 , Wang
t al. 2018a ). 

edications 
t is well-established that antibiotics gr eatl y impact the structural
omposition of the gut microbiota (Wang et al. 2023 ). For exam-
le , an 8-week amoxicillin treatment led to diminished levels of
aecalibaterium (Pallav et al. 2014 ), as did the administration of
ipr ofloxacin (Ste w ar dson et al. 2015 ). In contr ast, nitr ofur antoin,
 medication mainly used for urinary tract infections, increased 

he abundance of four genera of Firmicutes, including that of
aecalibacterium (Stew ar dson et al. 2015 ). In v a ginal-deliv er ed in-
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ants, Faecalibacterium le v els wer e lo w er at the 1-y ear mark for ba-
ies that had r eceiv ed postnatal antibiotics at any point compared
o babies that had not (Ainonen et al. 2022 ). Another study re-
orted that antibiotic and antifungal treatments diminished Fae-
alibacterium abundance in c hildr en with leukemia (Dunn et al.
022 ); the same result was seen in response to intraveinously
dministered antibiotics in individuals with multiple myeloma
D’Angelo et al. 2022 ). 

Shifts in Faecalibacterium le v els hav e also been observ ed follow-
ng exposure to other drugs. For example, they have been seen
o decline in individuals taking diabetes medications including

etformine (Manor et al. 2020 ) or to display partial r estor ation
n those taking vortioxetine for depression (Ye et al . 2021 ). In
ontr ast, a cr oss-sectional study in humans ( n = 8583 partici-
ants) found no significant correlations between Faecalibacterium
bundance and le v els of different drug metabolites in the blood
Dekkers et al. 2022 ). 

ecal microbiota transplants 
ecal microbiota transplants have been extensively used to deal
ith m ultir ecurr ent Clostridioides difficile infections (CDIs), and

heir use in other contexts is curr entl y under explor ation (Cam-
arota et al. 2017 ). Faecalibacterium levels have been found de-

reased in patients with CDIs and low le v els of Faecalibacterium are
r oposed as pr edictiv e of CDIs r ecurr ence (Han et al. 2020 , Khanna
t al. 2016 , Lee et al. 2020 , Milani et al. 2016 , Stewart et al. 2019 ).
esearch indicates that fecal microbiota transplants could restore
nd maintain Faecalibacterium le v els for 2–4 months (Bjorkqvist et
l. 2021 ). Indeed, in a case study of coinfection with C. difficile and
n extensiv el y drug-r esistant KPC-pr oducing Klebsiella pneumoniae ,
he le v els of Faecalibacterium incr eased after the fecal micr obiota
ransplant (Bahl et al. 2020 ). In a murine model, transplants led
o the r ecov ery of Faecalibacterium le v els that had diminished fol-
owing treatment with antibiotics and chemotherapy (Le Bastard
t al. 2018 ), confirming the pr omise of this str ategy. 

echnical and legislative challenges 

efore EOS bacteria can be administered to human subjects, there
s a 2-fold challenge to r esolv e: (1) bacteria need to be produced
t large scales in the absence of animal compounds and under
trictl y anaer obic conditions and (2) sufficiently anoxic conditions
ust be maintained across all the postculture processing steps

e.g. centrifugation, filtr ation, or l yophilization). In addition, the
acteria should remain alive during storage, so as to reach the
ut in an effective state. Faecalibacterium is not only EOS. It is also
ighl y sensitiv e to slight incr eases (fr om 0.1% to 0.5%) in phys-

ological concentrations of bile salts, and its optimal pH is be-
ween 5.7 and 6.7 (Lopez-Siles et al. 2012 , Lopez-Siles et al. 2017 ).
o solve this problem, Faecalibacterium could be encapsulated so
hat it could survive transit through the GIT (Raise et al. 2020 ). To
urther simplify this part of the process , non viable bacteria could
e emplo y ed . A r ecent study compar ed the pr e v entiv e and ther-
peutic effects of administering li ve vs. inacti vated F. prausnitzii
TCC27768 in murine models of DSS-induced colitis (Kawade et
l. 2019 ). It was found that mice given live F. prausnitzii recovered
etter than did mice given inactivated F. prausnitzii (Kawade et al.
019 ). That said, dead bacteria wer e effectiv e in a m urine model
f AD (i.e . impro ved AD-related cognitive impairment) and in a
urine model of allergic asthma (Hu et al. 2021 , Ueda et al. 2021 ).

o address this question more clearly, we need additional research
hat focuses on dir ect cr osstalk between Faecalibacterium and the
ost. Furthermore, the efficacy of live versus dead bacteria could
epend on design variables, including the strain or model em-
lo y ed, or v arious tec hnical v ariables. To pr ovide clarity, mor e r e-
earch should be conducted on the mechanisms by which dead
acteria could have impacts. 

As stated abo ve , probiotic therapy often seeks to restore bal-
nce of the intestinal ecosystem. This objective could be ac hie v ed
ith natur all y occurring commensal bacteria in the form of NGPs
r LBPs (Miquel et al. 2015a ). Ho w e v er, unlike tr aditional pr obiotic
tr ains, these bacteria ar e not r ecognized under formal pr oduct
afety regimes in either Europe [qualified presumption of safety
QPS)] or the USA [gener all y r ecognized as safe (GRAS)]. Further-

ore , as they ha ve a short track record of safe consumption—
o safe use was documented in Europe prior to 1997—these
GPs must be treated as novel foods or drugs, and they will

ace mor e se v er e commercial r equir ements in Eur ope than their
onv entional counter parts did (Miquel et al. 2015b ). Although
aecalibacterium is not on the QPS list as most of the commen-
al bacteria, it holds great promise as a safe treatment given
hat thousands of FMTs have been performed worldwide with-
ut any Faecalibacterium -induced side effects or infections occur-
ing. Mor eov er, r egulatory a gencies in Eur ope and the USA hav e
lread y gi ven the green light for research on how LBPs, includ-
ng Faecalibacterium , affect humans (Cani 2018 , CAUSALITY 2021 ,

AINTAIN 2022 ). 

onclusions and future perspectives 

ver since low levels of Faecalibacterium were discovered to be as-
ociated with se v er al diseases, r esearc hers hav e sought to c har-
cterize the mec hanisms underl ying inter actions between hosts
nd members of this gen us. In ad dition, as scientists have gained
r eater clarity ar ound the taxonomy of Faecalibacterium , studies
re being conducted in which the effects of the bacteria can be
ssigned to specific strains or species. In addition, a robust litera-
ure exists documenting the anti-inflammatory properties of the
enus, in which the effects of butyrate , EVs , and cell wall compo-
ents are ad dressed. Tak en together, these findings have piqued

nterest in utilizing the genus as a LBP. 
Ho w e v er, conclusions based on this work should be made with

aution. First, most r esearc h to date has focused on the sin-
le strain F. duncaniae A2-165. Second, the beneficial effects have
ar gel y been observ ed in pr eclinical m urine models . T hird, the re-
ationship between Faecalibacterium occurrence and diverse health
onditions has been described based on correlational data, mak-
ng it difficult to e v aluate the degr ee to whic h Faecalibacterium has
 causal effect on disease reduction. Clinical studies are currently
nderway to address these concerns, and they will play an impor-
ant part in supporting the growing knowledge base being gener-
ted by preclinical and in vitro models. 
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