Abstract

Characterization of the heat shock response in Clostridium acetobutylicum has indicated that at least 15 proteins are induced by a temperature upshift from 30 to 42°C. These so-called heat shock proteins include DnaK and GroEL, two highly conserved molecular chaperones. Several genes encoding heat shock proteins of C. acetobutylicum have been cloned and analysed. The dnaK operon includes the genes orfA (a heat shock gene with an unknown function), grpE, dnaK, and dnaJ; and the groE operon the genes groES and groEL. The hsp18 gene coding for a cell member of the small heat shock protein family constitutes a monocistronic operon. Interestingly, the heat shock response in this bacterium is regulated by a mechanism, which is obviously different from that found in Escherichia coli. So far, no evidence for a heat shock-specific sigma factor for the RNA polymerase in C. acetobutylicum has been found. In this bacterium, like in many Gram-positive and several Gram-negative bacteria, a conserved inverted repeat is located upstream of chaperone/chaperonin-encoding stress genes such as dnaK and groEL and may be implicated as a cis-acting regulatory site. The inverted repeat is not present in the promoter region of hsp18. Therefore, in C. acetobutylicum there are at least two classes of heat shock genes with respect to the type of regulation. Evidence has been found that a repressor is involved in the regulation of the heat shock response in C. acetobutylicum. However, this regulation seems to be independent of the inverted repeat motif, and the mechanism by which the inverted repeat motif mediates regulation remains to be elucidated. Another protein with a potential regulatory function might be the 21-kDa heat shock protein, which is induced significantly earlier than the majority of heat shock proteins. This protein has similarity to the redox carrier rubredoxin. Interestingly, heat shock genes are expressed in C. acetobutylicum at an increased rate not only after heat stress but also during the initiation of solvent formation. The mRNA level of some heat shock genes, e.g. dnaK, reached a maximum at the same time during the metabolic shift as the mRNA levels of genes necessary for solvent production. Therefore, the heat shock response in C. acetobutylicum might be part of a global regulatory network including different stress responses like heat shock, metabolic switch, and also sporulation.

References

[1]
Morimoto
R.I.
Tissières
A.
Georgopoulos
C.
(
1990
)
The stress response, function of the proteins, and perspectives
In:
Stress Proteins in Biology and Medicine
 
Morimoto
R.I.
Tissières
A.
Georgopoulos
C.
, Eds) pp
1
36
Cold Spring Harbor Laboratory
,
Cold Spring Harbor, NY
.
[2]
Gething
M.-J.
Sambrook
J.
(
1992
)
Protein folding in the cell
Nature
 ,
355
,
33
45
.
[3]
Wild
J.
Altman
E.
Yura
T.
Cross
C.A.
(
1992
)
DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli
Genes Dev.
 ,
6
,
1165
1172
.
[4]
Narberhaus
F.
Bahl
H.
(
1992
)
Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum
J. Bacteriol.
 ,
174
,
3282
3289
.
[5]
Narberhaus
F.
Giebeler
K.
Bahl
H.
(
1992
)
Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene
J. Bacteriol.
 ,
174
,
3290
3299
.
[6]
Wetzstein
M.
Völker
U.
Dedio
J.
Löbau
S.
Zuber
U.
Schiesswohl
M.
Herget
C.
Hecker
M.
Schumann
W.
(
1992
)
Cloning, sequencing and molecular analysis of the dnaK locus from Bacillus subtilis
J. Bacteriol.
 ,
174
,
3300
3310
.
[7]
Schön
U.
Schumann
W.
(
1993
)
Molecular cloning, sequencing, and transcriptional analysis of the groESL operon from Bacillus stearothermophilus
J. Bacteriol.
 ,
175
,
2465
2469
.
[8]
Segal
G.
Ron
E.Z.
(
1993
)
Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin-loop structure
J. Bacteriol.
 ,
175
,
3083
3088
.
[9]
Yura
T.
Nagai
H.
Mori
H.
(
1993
)
Regulation of the heat-shock response in bacteria
Annu. Rev. Microbiol.
 ,
47
,
321
350
.
[10]
Bukau
B.
(
1993
)
Regulation of the E. coli heat shock response
Mol. Microbiol.
 ,
9
,
671
680
.
[11]
Pich
A.
Narberhaus
F.
Bahl
H.
(
1990
)
Induction of heat shock proteins during initiation of solvent formation in Clostridium acetobutylicum
Appl. Microbiol. Biotechnol.
 ,
33
,
697
704
.
[12]
Bahl
H.
(
1993
)
Heat shock response and onset of solvent formation in Clostridium acetobutylicum
In:
The Clostridia and Biotechnology
 
Woods
D.R.
, Ed) pp
247
258
Butterworth-Heinemann
,
Stoneham, MA
.
[13]
Sauer
U.
Dürre
P.
(
1993
)
Sequence and molecular characterization of a DNA region encoding a small heat shock protein of Clostridium acetobutylicum
J. Bacteriol.
 ,
175
,
3394
3400
.
[14]
Terraciano
J.S.
Rapaport
E.
Kashket
E.R.
(
1988
)
Stress and growth-phase associated proteins of Clostridium acetobutylicum
Appl. Environ. Microbiol.
 ,
54
,
1989
1995
.
[15]
Behrens
S.
Narberhaus
F.
Bahl
H.
(
1993
)
Cloning, nucleotide sequence and structural analysis of the Clostridium acetobutylicum dnaJ gene
FEMS Microbiol. Lett.
 ,
114
,
53
60
.
[16]
Ohta
T.
Saito
K.
Kuroda
M.
Honda
K.
Hirata
H.
Hayashi
H.
(
1994
)
Molecular cloning of two new heat shock genes related to the hsp70 genes in Staphylococcus aureus
J. Bacteriol.
 ,
176
,
4779
4783
.
[17]
Shine
D.
Dalgarno
L.
(
1974
)
The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementary to nonsense triplets and ribosome binding sites
,
71
, In:
Proc. Natl. Acad. Sci. USA
 , pp
1342
1346
.
[18]
Graves
M.C.
Rabinowitz
J.C.
(
1986
)
In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for ‘extended’ promotor elements in gram-positive organisms
J. Biol. Chem.
 ,
261
,
11409
11415
.
[19]
Moran
C.P.
Jr.
(
1993
)
RNA polymerase and transcription factors
In:
Bacillus subtilis and Other Gram-Positive Bacteria. Biochemistry, Physiology, and Molecular Genetics
 
Sonenshein
A.L.
Hoch
J.A.
Losick
R.
, Eds) pp
653
667
American Society for Microbiology
,
Washington, D.C
.
[20]
Platt
T.
(
1986
)
Transcription termination and the regulation of gene expression
Annu. Rev. Biochem.
 ,
55
,
339
372
.
[21]
Grossman
A.D.
Erickson
J.W.
Gross
C.A.
(
1984
)
The htpR gene product is a sigma factor for heat-shock promoters
Cell
 ,
38
,
383
390
.
[22]
Sauer
U.
(
1992
)
Klonierung, Sequenzierung und molekulare Charakterisierung regulatorischer Gene aus Clostridium acetobutylicum
, In:
PhD thesis
 
University of Göttingen
.
[23]
van Asseldonk
M.
Simons
A.
Visser
H.
de Vos
W.M.
Simons
G.
(
1993
)
Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene
J. Bacteriol.
 ,
175
,
1637
1644
.
[24]
Mazodier
P.
Guglielmi
G.
Davies
J.
Thompson
C.J.
(
1991
)
Characterization of the groEL-like genes in Streptomyces albus
J. Bacteriol.
 ,
173
,
7382
7386
.
[25]
Zuber
U.
Schumann
W.
(
1994
)
CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis
J. Bacteriol.
 ,
176
,
1359
1363
.
[26]
Gerischer
U.
Dürre
P.
(
1990
)
Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum
J. Bacteriol.
 ,
172
,
6907
6918
.
[27]
Fischer
R.J.
Helms
J.
Dürre
P.
(
1993
)
Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis
J. Bacteriol.
 ,
175
,
6959
6969
.
[28]
Petersen
D.J.
Welch
J.W.
Rudolph
F.B.
Bennet
G.N.
(
1991
)
Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824
J. Bacteriol.
 ,
173
,
1831
1834
.
[29]
Bahl
H.
Andersch
W.
Gottschalk
G.
(
1982
)
Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat
Eur. J. Appl. Microbiol. Biotechnol.
 ,
15
,
201
205
.
[30]
Gerischer
U.
Dürre
P.
(
1992
)
mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis
J. Bacteriol.
 ,
174
,
426
433
.
[31]
Baird
P.N.
Hall
L.M.C.
Coates
A.R.M.
(
1989
)
Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis
J. Gen. Microbiol.
 ,
135
,
931
939
.
[32]
Fischer
H.M.
Babst
M.
Kaspar
T.
Acuna
G.
Arigoni
F.
Hennecke
H.
(
1993
)
One member of a groESL-like multigene family of Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes
EMBO J.
 ,
12
,
2901
2912
.
[33]
Lin
J.
Adams
L.G.
Ficht
T.A.
(
1992
)
Characterization of the heat shock response in Brucella abortus and isolation of the genes encoding the GroE heat shock proteins
Infect. Immun.
 ,
60
,
2425
2431
.
[34]
Morrison
R.P.
Belland
R.J.
Lyng
K.
Caldwell
H.D.
(
1989
)
Chlamydial disease pathogenesis. The 57-kDa chlamydial hypersensitivity antigen is a stress response protein
J. Exp. Med.
 ,
170
,
1271
1283
.
[35]
Ferreyra
R.G.
Soncini
F.C.
Viale
A.M.
(
1993
)
Cloning, characterization, and functional expression in Escherichia coli of chaperonin (groESL) genes from the phototrophic sulfur bacterium Chromatium vinosum
J. Bacteriol.
 ,
175
,
1514
1523
.
[36]
Webb
R.
Reddy
K.J.
Sherman
L.A.
(
1990
)
Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin
J. Bacteriol.
 ,
172
,
5079
5088
.
[37]
Hawley
D.K.
McClure
W.R.
(
1983
)
Compilation and analysis of Escherichia coli promoter sequences
Nucleic Acids Res.
 ,
11
,
2237
2255
.
[38]
Young
M.
Minton
N.P.
Staudenbauer
W.L.
(
1989
)
Recent advances in the genetics of the clostridia
FEMS Microbiol. Rev.
 ,
63
,
301
326
.

Author notes

1
Mikrobiologisches Institut, ETH-Zentrum, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland.