Abstract

Archaeal RNA polymerases show a weak ability in vitro to bind to promoter DNA and/or to initiate transcription with low activity independent of upstream regulatory DNA sequences. Active transcription in vitro and in vivo, however, depends strictly on a TATA box resemblin the TATA box of eucaryal polII promoters. This TATA box is recognized by a polypeptide related to eucaryal TATA-binding protein (TBP) that was formerly designated aTFB. Template competition studies showed that this archaeal TATA-binding protein (aTBP) is stably sequestered at the promoter by interaction with the second archaeal transcription factor, aTFA, which is related to eucaryal transcription factor IIB (TFIIB). The association of archaeal TFIIB (aTFIIB) with the aTBP-promoter complex leads to template commitment, indicating that aTFIIB recruits archaeal RNA polymerase to the preinitiation complex. These analyses suggest the following order for assembly of transcription factors on the archaeal promoter: aTBP, aTFIIB, RNA polymerase, and provide evidence for a common molecular mechanism of transcription initiation by eucaryal RNA polymerase II and archaeal RNA polymerases. The sequence of the genes encoding aTBP and aTFIIB (TFB) showed all the characteristics conserved in their eucaryal counterparts. The degree of sequence similarity between archaeal and eucaryal transcription factors is between 27 to 35% for TFIIB and between 36 to 41% for TBP. The findings discussed here indicate that TBP and TFIIB perform analogous functions in Archaea and Eucarya and show that four essential components of archaeal and eucaryal transcriptional machineries, RNA polymerase, TATA box, TBP and TFIIB are homologous.

References

[1]
Collado-Vides
J.
Magasanik
B.
Gralla
J.D.
(
1991
)
Control site location and transcriptional regulation in Escherichia coli
Microbiol. Rev.
 ,
55
,
371
394
.
[2]
Haldenwang
W.G.
(
1995
)
The Sigma factors of Bacillus subtilis
Microbiol. Rev.
 ,
59
,
1
30
.
[3]
Woese
C.R.
Kandler
O.
Wheelis
M.L.
(
1990
)
Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya
3rd Edn.
,
87
, In:
Proc. Natl. Acad. Sci. USA
 , pp
299
303
.
[4]
Frey
G.
Thomm
M.
Brüdigam
B.
Gohl
H.P.
Hausner
W.
(
1990
)
An archaebacterial cell-free transcription system. The expression of tRNA genes from Methanococcus vannielii is mediated by a transcription factor
Nucleic Acids Res.
 ,
18
,
1361
1367
.
[5]
Hüdepohl
U.
Reiter
W.D.
Zillig
W.
(
1990
)
In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B 12 indicates a factor requirement for specific initiation
3rd Edn.
,
87
, In:
Proc. Natl. Acad. Sci. USA
 , pp
5851
5855
.
[6]
Reiter
W.D.
Hüdepohl
U.
Zillig
W.
(
1990
)
Mutational analysis of an archaebacterial promoter: Essential role of a TATA box for transcription efficiency and start-site selection
3rd Edn.
,
87
, In:
Proc. Natl. Acad. Sci. USA
 , pp
9509
9513
.
[7]
Hausner
W.
Frey
G.
Thomm
M.
(
1991
)
Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNAVal gene of Methanococcus vannielii
J. Mol. Biol.
 ,
222
,
495
508
.
[8]
Breathnach
R.
Chambon
P.
(
1981
)
Organisation and expression of split genes coding for proteins
Annu. Rev. Biochem.
 ,
50
,
49
83
.
[9]
Rowlands
T.
Baumann
P.
Jackson
S.P.
(
1994
)
The TATA-binding protein: A general transcription factor in Eukaryotes and Archaebacteria
Science
 ,
264
,
1326
1329
.
[10]
Marsh
T.L.
Reich
C.I.
Whitelock
R.B.
Olsen
G.J.
(
1994
)
Transcription factor IID in the Archaea: Sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes
3rd Edn.
,
91
, In:
Proc. Natl. Acad. Sci. USA
 , pp
4180
4184
.
[11]
Ouzounis
C.
Sander
C.
(
1992
)
TFIIB, an evolutionary link between the transcription machineries of archaebacteria and eukaryotes
Cell
 ,
71
,
189
190
.
[12]
Creti
R.
Londei
P.
Cammarano
P.
(
1993
)
Complete nucleotide sequence of an archaeal (Pyrococcus woesei) gene encoding a homolog of eukaryotic transcription factor IIB (TFIIB)
Nucleic Acids Res.
 ,
21
,
2942
.
[13]
Qureshi
S.A.
Khoo
B.
Baumann
P.
Jackson
S.P.
(
1995
)
Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae
3rd Edn.
,
92
, In:
Proc. Natl. Acad. Sci. USA
 , pp
6077
6081
.
[14]
Wettach
J.
Gohl
H.P.
Tschochner
H.
Thomm
M.
(
1995
)
Functional interaction of yeast and human TATA binding proteins with an archaeal RNA-polymerase and promoter
3rd Edn.
,
92
, In:
Proc. Natl. Acad. Sci. USA
 , pp
472
476
.
[15]
Gohl
H.P.
Gröndahl
B.
Thomm
M.
(
1995
)
Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein
Nucleic Acids Res.
 ,
23
,
3837
3841
.
[16]
Zillig
W.
Stetter
K.O.
Tobien
M.
(
1978
)
DNA dependent RNA polymerase from Halobacterium halobium
Eur. J. Biochem.
 ,
91
,
193
199
.
[17]
Zillig
W.
Stetter
K.O.
Janekovic
D.
(
1979
)
DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius
Eur. J. Biochem.
 ,
96
,
597
604
.
[18]
Gropp
F.
Reiter
W.D.
Schnabel
R.
Zillig
W.
Thomm
M.
Sentenac
A.
(
1986
)
Homologies of the components of DNA-dependent RNA polymerases of archaebacteria, eubacteria and eukaryotes
System. Appl. Microbiol.
 ,
7
,
95
101
.
[19]
Leffers
H.
Gropp
F.
Lottspeich
F.
Zillig
W.
Garrett
A.
(
1889
)
Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the Archaebacterial extreme Halophiles Halobacterium halobium and Halococcus morrhuae
J. Mol. Biol.
 ,
206
,
1
17
.
[20]
Pühler
G.
Leffers
H.
Gropp
F.
Palm
P.
Klenk
H.-P.
Lottspeich
F.
Garrett
R.A.
Zillig
W.
(
1989
)
Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome
3rd Edn.
,
86
, In:
Proc. Natl. Acad. Sci. USA
 , pp
4569
4573
.
[21]
Langer
D.
Hain
J.
Thuriaux
P.
Zillig
W.
(
1995
)
Transcription in Archaea: Similarity to that in Eucarya
3rd Edn.
,
92
, In:
Proc. Natl. Acad. Sci. USA
 , pp
5768
5772
.
[22]
Prangishvilli
D.
Hain
J.
Thuriaux
P.
Zillig
W.
(
1995
)
DNA-dependent RNA polymerases of Thermoacidophilic Archaebacteria
Eur. J. Biochem.
 ,
122
,
471
477
.
[23]
Thomm
M.
Stetter
K.O.
(
1985
)
Transcription in methanogens. Evidence for specific in vitro transcription of the purified DNA-dependent RNA polymerase of Methanococcus thermolithotrophicus
Eur. J. Biochem.
 ,
149
,
345
351
.
[24]
Thomm
M.
Wich
G.
(
1988
)
An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes
Nucleic Acids Res.
 ,
16
,
151
163
.
[25]
Brown
J.
Thomm
M.
Beckler
G.
Frey
G.
Stetter
K.O.
Reeve
J.
(
1988
)
Archaebacterial RNA polymerase binding site and transcription of the hisA gene of Methanococcus vannielii
Nucleic Acids Res.
 ,
16
,
135
164
.
[26]
Thomm
M.
Sherf
B.
Reeve
J.N.
(
1988
)
The RNA polymerase and transcription initiation sites upstream of the methyl reductase operon of Methanococcus vannielii
J. Bacteriol.
 ,
170
,
1958
1961
.
[27]
Thomm
M.
Wich
G.
Brown
J.W.
Frey
G.
Sherf
B.A.
Beckler
G.S.
(
1989
)
An archaebacterial promoter sequence assigned by RNA polymerase binding experiments
Can. J. Microbiol.
 ,
35
,
30
35
.
[28]
Lanzendörfer
M.
Langer
D.
Hain
J.
Klenk
H.-P.
Holz
J.
Arnold-Ammer
J.
Zillig
W.
(
1994
)
Structure and Function of the DNA-dependent RNA Polymerase of Sulfolobus
System. Appl. Microbiol.
 ,
16
,
156
162
.
[29]
Qureshi
S.A.
Baumann
P.
Rowlands
T.
Khoo
B.
Jackson
S.P.
(
1995
)
Cloning and functional analysis of the TATA binding protein from Sulfolobus shibatae
Nucleic Acids Res.
 ,
23
,
1775
1781
.
[30]
Frey
G.
Thomm
M.
Brüdigam
B.
Gohl
H.P.
Hausner
W.
(
1990
)
An archaebacterial cell-free transcription system. The expression of tRNA genes from Methanococcus vannielii is mediated by transcription factor
Nucleic Acids Res.
 ,
18
,
1361
1367
.
[31]
Hausner
W.
Thomm
M.
(
1993
)
Purification and characterization of a general transcription factor, a aTFB, from the archaeon Methanococcus thermolithotrophicus
J. Biol. Chem.
 ,
268
,
24047
24052
.
[32]
Thomm
M.
Sandmann
K.
Frey
G.
Koller
G.
Reeve
J.
(
1992
)
Transcription of the histone encoding gene hmfB from the hyperthermophilic archaeon Methanothermus fervidus
J. Bacteriol.
 ,
174
,
3508
3513
.
[33]
Koller
G.
Reeve
J.
Frey
G.
Thomm
M.
(
1992
)
Transcription in vitro and in vivo of the 7S RNA gene associated with the ribosomal RNA operon in the hyperthermophilic archaeon Methanothermus fervidus
FEMS Microbiol. Lett.
 ,
98
,
95
102
.
[34]
Hüdepohl
U.
Gropp
F.
Horne
M.
Zillig
W.
(
1991
)
Heterologous in vitro transcription from two archaebacterial promoters
FEBS Lett.
 ,
285
,
257
259
.
[35]
Wich
G.
Hummel
H.
Jarsch
M.
Bär
U.
Böck
A.
(
1986
)
Transcription signals for stable RNA genes in Methanococcus
Nucleic Acids Res.
 ,
14
,
2459
2479
.
[36]
von Hippel
P.H.
Yager
T.D.
Gill
S.C.
(
1992
)
Quantitative Aspects of the Transcription Cycle in Escherichia coli
In:
Transcription and Regulation
 
Mc Knight
S.L.
Yamamoto
K.R.
, Eds)
3rd Edn.
In Book,
1
, pp
179
201
Cold Spring Harbor Laboratory Press
,
New York
.
[37]
Knaub
S.
Klein
A.
(
1990
)
Specific transcription of cloned Methanobacterium thermoautotrophicum transcription units by homologous RNA polymerase in vitro
Nucleic Acids Res.
 ,
18
,
1441
1446
.
[38]
Hethke
C.
Geerling
A.
Gröndahl
B.
de Vos
W.
Thomm
M.
A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus
.
Nucleic Acids Res.
 , submitted.
[39]
Roovers
M.
Hethke
C.
Thomm
M.
Glansdorff
N.
in preparation.
[40]
Hethke
C.
Thomm
M.
, unpublished data.
[41]
Gohl
H.P.
Hausner
W.
Thomm
M.
(
1992
)
Cell-free transcription of the nifH1 gene of Methanococcus thermolithotrophicus indicates that promoters of archaeal nif genes share basic features with the methanogen consensus promoter
Mol. Gen. Genet.
 ,
231
,
286
295
.
[42]
Palmer
J.R.
Daniels
C.J.
(
1995
)
In Vivo Definition of an Archael Promoter
J. Bacteriol.
 ,
177
,
1844
1849
.
[43]
von Hippel
P.H.
Bear
D.G.
Winter
R.B.
Berg
O.G.
(
1982
)
Molecular aspects of Promoter function: an overview
In:
Promoters
 
Rodriguez
R.L.
Chamberlin
M.J.
, Eds) pp
3
33
Präger
,
New York
.
[44]
Reiter
W.-D.
Palm
P.
Zillig
W.
(
1988
)
Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters
Nucleic Acids Res.
 ,
16
,
1
19
.
[45]
Sharp
P.A.
(
1992
)
TATA-binding protein is a classless factor
Cell
 ,
68
,
819
821
.
[46]
Weinzierl
R.O.J.
Dynlacht
B.D.
Tjian
R.
(
1993
)
Largest subunit of Drosophila transcription factor IID directs assembly of a complex containing TBP and a coactivator
Nature
 ,
362
,
511
517
.
[47]
Hisatake
K.
Ohta
T.
Takada
R.
Guermah
M.
Horikoshi
M.
Nakatani
Y.
Roeder
R.G.
(
1995
)
Evolutionary conservation of human TATA-binding-polypeptide-associated factors TAFII31 and TAFII80 and interactions of TAFII80 with other TAFs with general transcription factors
3rd Edn.
,
92
, In:
Proc. Natl. Acad. Sci. USA
 , pp
8195
8199
.
[48]
Reese
J.
Apone
L.
Walker
S.S.
Griffin
L.A.
Green
M.R.
(
1994
)
Yeast TAFIIs in a multisubunit complex required for activated transcription
Nature
 ,
371
,
523
527
.
[49]
Kelleher
R.J.
III
Flanagan
P.M.
Chasman
D.I.
Ponticelli
A.S.
Struhl
K.
Kornberg
R.D.
(
1992
)
Yeast and human TFIIDs are interchangeable for the response to acidic Transcriptional activators in vitro
Genes Dev.
 ,
6
,
296
303
.
[50]
Wettach
J.
Thomm
M.
, in preparation.
[51]
Langer
D.
Zillig
W.
(
1993
)
Putative tfIIS gene of Sulfolobus acidocaldarius encoding an archaeal transcription elongation factor is situated directly downstream of the gene for a small subunit of DNA-dependent RNA polymerase
Nucleic Acids Res.
 ,
21
,
2251
.
[52]
Kaine
B.P.
Mehr
I.J.
Woese
C.R.
(
1994
)
The sequence, and its evolutionary implications, of a Thermococcus celer protein associated with transcription
3rd Edn.
,
91
, In:
Proc. Natl. Acad. Sci. USA
 , pp
3854
3856
.
[53]
Braker
G.
Hausner
W.
Thomm
M.
, unpublished data.
[54]
Buratowski
S.
(
1994
)
The Basics of Basal Transcription by RNA Polymerase II
Cell
 ,
77
,
1
3
.
[55]
Peterson
M.G.
Tanese
N.
Pugh
B.F.
Tjian
R.
(
1990
)
Functional domains and upstream activation properties of cloned human TATA binding protein
Science
 ,
248
,
1625
1630
.
[56]
Lassar
A.B.
Martin
P.L.
Roeder
R.G.
(
1983
)
Transcription of Class III genes: Formation of preinitiation complexes
Science
 ,
222
,
740
748
.
[57]
Kassavetis
G.A.
Blanco
J.A.
Johnson
T.E.
Geiduscheck
E.P.
(
1992
)
Formation of open and elongating transcription complexes by RNA polymerase III
J. Mol. Biol.
 ,
226
,
47
58
.
[58]
Bieker
J.L.
Martin
P.L.
Roeder
R.G.
(
1985
)
Formation of a rate-limiting intermediate in 5S rRNA transcription
Cell
 ,
40
,
119
127
.
[59]
Hausner
W.
Thomm
M.
(
1995
)
The translation product of the presumptive Thermococcus celer TATA-binding protein sequence is a transcription factor related in structure and function to Methanococcus transcription factor B
J. Biol. Chem.
 ,
270
,
17649
17651
.
[60]
Hausner
W.
Hethke
C.
Thomm
M.
, submitted.
[61]
Conaway
R.C.
Conaway
J.W.
(
1993
)
General initiation factors for RNA polymerase II
Annu. Rev. Biochem.
 ,
62
,
161
190
.
[62]
Zawel
L.
Reinberg
D.
(
1993
)
Initiation of Transcription by RNA Polymerase II: A Multi-step Process
Prog. Nucleic Acids Res. Mol. Biol.
 ,
44
,
67
108
.
[63]
Parvin
J.D.
Sharp
P.
(
1993
)
DNA topology and a minimal set of basal factors for transcription by RNA polymerase II
Cell
 ,
73
,
533
540
.
[64]
Hain
J.
Reiter
W.-D.
Hüdepohl
U.
Zillig
W.
(
1992
)
Elements of an archaeal promoter defined by mutational analysis
Nucleic Acids Res.
 ,
20
,
5423
5428
.