Abstract

Psychrophilic organisms such as micro-organisms and other ectothermic species living in polar, deep- sea or any constantly low temperature environments, produce enzymes adapted to function at low temperature. These enzymes are characterized by a high catalytic efficiency at low and moderate temperatures but are rather thermolabile. Due to their high specific activity and their rapid inactivation at temperatures as low as 30°C, they offer, along with the producing micro-organisms, a great potential in biotechnology. The molecular basis of the adaptation of cold α-amylase, subtilisin, triose phosphate isomerase from Antarctic bacteria and of trypsin from fish living in North Atlantic and in Antarctic sea waters have been studied. The comparison of the 3D structures obtained either by protein modelling or by X-ray crystallography (North Atlantic trypsin) with those of their mesophilic counterparts indicates that the molecular changes tend to increase the flexibility of the structure by a weakening of the intramolecular interactions and by an increase of the interactions with the solvent. For each enzyme, the most appropriate strategy enabling it to accommodate the substrate at a low energy cost is selected. There is a price to pay in terms of thermosensibility because the selective pressure is essentially oriented towards the harmonization of the specific activity with ambient thermal conditions. However, as demonstrated by site-directed mutagenesis experiments carried out on the Antarctic subtilisin, the possibility remains to stabilize the structure of these enzymes without affecting their high catalytic efficiency.

References

[1]

Kobori
H.
Sullivan
C.W.
Shizuya
H.
(
1984
)
Heat labile alkaline phosphatase from antarctic bacteria: rapid 5′ end labeling of nucleic acids
3rd Edn.,
81
, In:
Proc. Natl. Acad. Sci. USA
, pp
6691
6695
.

[2]

Hochachka
P.W.
Somero
G.N.
(
1973
)
Temperature
, In:
Strategies of Biochemical Adaptation
pp
179
270
W.B. Saunders Company
,
Philadelphia
.

[3]

Somero
G.N.
(
1977
)
Temperature as a selective factor in protein evolution. The adaptational strategy of compromise
J. Exp. Zool.
,
194
,
175
188
.

[4]

Clarke
A.
(
1983
)
Life in cold water: the physiological ecology of polar marine ectotherms
Oceanogr. Mar. Biol. Annu. Rev.
,
21
,
341
453
.

[5]

Hochachka
P.W.
Somero
G.N.
(
1984
)
Temperature adaptation
, In:
Biochemical Adaptation
pp
355
449
Princeton University Press
,
Princeton
.

[6]

Shoichet
B.K.
Baase
W.A.
Kuraki
R.
Matthews
B.W.
(
1995
)
A relationship between protein stability and protein function
3rd Edn.,
92
, In:
Proc. Natl. Acad. Sci. USA
, pp
452
456
.

[7]

Delille
D.
Bouvy
M.
Cahet
G.
(
1988
)
Short-term variations of Bacterioplankton in antarctic zone: Terre Adelie area
Microbiol. Ecol.
,
15
,
293
309
.

[8]

Sullivan
C.W.
Palmisano
A.C.
(
1984
)
Sea ice microbial communities: Distribution, abundance and diversity of ice bacteria in McMurdo sound, Antarctica in 1980
Appl. Environ. Microbiol.
,
47
,
788
795
.

[9]

Ruger
H.J.
(
1988
)
Substrate dependent cold adaptations in some deep-sea sediment bacteria
System. Appl. Microbiol.
,
11
,
90
93
.

[10]

Ruger
H.J.
Tan
T.L.
(
1982
)
Community structures of cold and low nutrient adapted heterotrophic sediment bacteria from the deep sea eastern tropical atlantic
Mar. Ecol. Progr.
,
84
,
83
93
.

[11]

Morita
R.Y.
(
1975
)
Psychrophilic bacteria
Bacteriol. Rev.
,
39
,
144
167
.

[12]

Russell
N.J.
(
1990
)
Cold adaptation of microorganisms
Phil. Trans. R. Soc. Lond.
,
326
,
595
611
.

[13]

Gounot
A.M.
(
1991
)
Bacterial life at low temperature: physiological aspects and biotechnological implications
J. Appl. Bacteriol.
,
71
,
386
397
.

[14]

Hjelmeland
K.
Raa
J.
(
1982
)
Characteristics of two trypsin type isozymes isolated from the arctic fish capelin (Mallotus villosus)
Comp. Biochem. Physiol.
,
71B
,
557
562
.

[15]

Simpson
B.K.
Haardt
N.F.
(
1984
)
Trypsin from Greenland cod, Gadus ogac. Isolation and comparative properties
Comp. Biochem. Physiol.
,
79B
,
613
622
.

[16]

Genicot
S.
Feller
G.
Gerday
Ch.
(
1988
)
Trypsin from antarctic fish Paranotothenia magellanica as compared with trout (Salmo gairdneri) trypsin
Comp. Biochem. Physiol.
,
90B
,
601
609
.

[17]

Gudmundsdottir
A.
Gudmundsdottir
E.
Oskarsson
S.
Bjarnason
J.B.
Eakin
A.K.
Craik
C.S.
(
1993
)
Isolation and characterization of cDNAs from atlantic cod encoding two different forms of trypsinogen
Eur. J. Biochem.
,
217
,
1091
1097
.

[18]

Gudmundsdottir
A.
Oskarsson
S.
Eakin
A.E.
Craik
C.S.
Bjarnason
J.B.
(
1994
)
Atlantic cod cDNA encoding a psychrophilic chymotrypsinogen
Biochim. Biophys. Acta
,
1219
,
211
214
.

[19]

Bjarnason
J.B.
Asgeirsson
B.
Kristjansson
M.
Gudmundsdottir
A.
Fox
J.W.
Chlebowski
J.F.
Craik
C.S.
(
1992
)
Characteristics, protein engineering and applications of psychrophilic marine proteinases from atlantic cod
In:
Stability and Stabilization of Enzymes
van den Tweel
W.J.J.
Harder
A.
Buitelaar
R.M.
, Eds) pp
205
214
Elsevier
,
The Netherlands
.

[20]

Feller
G.
Narinx
E.
Arpigny
J.L.
Zekhnini
Z.
Swings
J.
Gerday
Ch.
(
1994
)
Temperature dependence of growth, enzyme secretion and activity of psychrophilic antarctic bacteria
Appl. Microbiol. Biotechnol.
,
41
,
477
479
.

[21]

Margesin
R.
Schinner
F.
(
1994
)
Properties of cold-adapted microorganisms and their potential role in biotechnology
J. Biotechnol.
,
33
,
1
14
.

[22]

Feller
G.
Thiry
M.
Arpigny
J.L.
Gerday
Ch.
(
1991
)
Cloning and expression in E. coli of three lipase-encoding genes from the psychrophilic antarctic strain Moraxella TA144
Gene
,
102
,
111
115
.

[23]

Whyte
L.G.
Inniss
W.E.
(
1992
)
Cold shock proteins and cold acclimatation proteins in a psychrotrophic bacterium
Can. J. Microbiol.
,
38
,
1281
1285
.

[24]

Ray
M.K.
Sitaramamma
T.
Ghandhi
S.
Shivagi
S.
(
1994
)
Occurrence and expression of CspA, a cold shock gene in antarctic psychrotrophic bacteria
FEMS Microbiol. Lett.
,
116
,
55
60
.

[25]

Jones
P.G.
Inouye
M.
(
1994
)
The cold-shock response. A hot topic
Mol. Microbiol.
,
11
,
811
818
.

[26]

Hebrand
M.
Dubois
E.
Potier
P.
Labadie
J.
(
1994
)
Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi
J. Bacteriol.
,
176
,
4017
4024
.

[27]

Araki
T.
(
1991
)
The effect of temperature shifts on protein synthesis by the psychrophilic bacterium Vibrio sp. strain ANT-300
J. Gen. Microbiol.
,
137
,
817
826
.

[28]

Vayda
M.E.
Yuan
M.-L.
(
1994
)
The heat shock response of an antarctic alga is evident at 5°C
Plant Mol. Biol.
,
24
,
229
233
.

[29]

Priralov
P.L.
(
1979
)
Stability of proteins
Adv. Protein Chem.
,
33
,
167
241
.

[30]

Creighton
T.E.
(
1991
)
Stability of folded conformations
Curr. Opin. Struct. Biol.
,
1
,
5
16
.

[31]

Fontana
A.
(
1991
)
Analysis and modulation of protein stability
Curr. Opin. Biotech.
,
2
,
551
560
.

[32]

Jaenicke
R.
(
1991
)
Protein stability and molecular adaptation to extreme conditions
Eur. J. Biochem.
,
202
,
715
728
.

[33]

Vihinen
M.
(
1987
)
Relationship of protein flexibility to thermostability
Protein Eng.
,
1
,
477
480
.

[34]

Wrba
A.
Schweiger
A.
Schultes
V.
Jaenicke
R.
(
1990
)
Extremely thermostable d-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima
Biochemistry
,
29
,
7584
7592
.

[35]

Burley
S.K.
Petsko
G.A.
(
1985
)
Aromatic-aromatic interaction: a mechanism of protein structure stabilization
Science
,
229
,
23
28
.

[36]

Siezen
R.J.
de Vos
W.M.
Leunissen
J.A.
Dijkstra
B.W.
(
1991
)
Homology modelling and protein engineering strategy of subtilases the family of subtilisin-like serine proteinases
Protein Eng.
,
4
,
719
737
.

[37]

Matthews
C.R.
(
1991
)
The mechanism of protein folding
Curr. Opin. Struct. Biol.
,
1
,
28
35
.

[38]

Sancho
J.
Serrano
L.
Fersht
A.R.
(
1992
)
Histidine residues at the N- and C-termini of α-helices: perturbed pKa’s and protein stability
Biochemistry
,
31
,
2253
2258
.

[39]

Mrabet
N.T.
van den Broeck
A.
van den Brande
I.
Stanssens
P.
Laroche
Y.
Lambeir
A.M.
Matthijssens
G.
Jenkins
J.
Chiadmi
M.
van Tilburgh
H.
Rey
F.
Janin
J.
Quax
W.J.
Lasters
I.
Demayer
M.
Wodak
S.J.
(
1991
)
Arginine residues as stabilizing elements in proteins
Biochemistry
,
31
,
2239
2253
.

[40]

Borders
C.L.
Broadwater
J.A.
Bekeny
P.A.
Salmon
J.E.
Lee
A.S.
Eldridge
A.M.
Pett
V.B.
(
1994
)
A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens
Protein Sci.
,
3
,
541
548
.

[41]

Smalas
A.O.
Heimstad
E.S.
Hordvik
A.
Willasen
P.
Male
R.
(
1994
)
Cold adaptation of enzymes: structural comparison between salmon and bovine trypsins
Protein Struct. Funct. Gen.
,
20
,
149
166
.

[42]

Feller
G.
Lonhienne
T.
Deroanne
C.
Libioulle
C.
van Beeumen
J.
Gerday
Ch.
(
1992
)
Purification, characterization and nucleotide sequence of the thermolabile α-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23
J. Biol. Chem.
,
267
,
5217
5221
.

[43]

Feller
G.
Payan
F.
Theys
F.
Qian
M.
Haser
R.
Gerday
Ch.
(
1994
)
Stability and structural analysis of α-amylase from the antarctic psychrophile Alteromonas haloplanctis A23
Eur. J. Biochem.
,
222
,
441
447
.

[44]

Qian
M.
Haser
R.
Payan
F.
(
1993
)
Structure and molecular model refinement of pig pancreatic α-amylase at 2.1 Å resolution
J. Mol. Biol.
,
231
,
785
791
.

[45]

Narinx
E.
Davail
S.
Feller
G.
Gerday
Ch.
(
1992
)
Nucleotide and derived amino acid sequence of the subtilisin from the antarctic psychrotroph Bacillus TA39
Biochim. Biophys. Acta
,
1131
,
111
113
.

[46]

Davail
S.
Feller
G.
Narinx
E.
Gerday
Ch.
(
1994
)
Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41
J. Biol. Chem.
,
269
,
17448
17453
.

[47]

Gron
H.
Meldal
M.
Breddam
K.
(
1992
)
Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching
Biochemistry
,
31
,
6011
6018
.

[48]

Narinx
E.
(
1994
)
Adaptations moléculaires des enzymes aux basses températures: application aux subtilisines de bactéries antarctiques
Ph.D. Thesis
,

[49]

Pantoliano
M.W.
Whitlow
R.
Wood
J.F.
Hardman
K.D.
Rollence
M.L.
Bryan
P.N.
(
1989
)
Large increases in general stability for subtilisin BPN′ through incremental changes in the free energy of unfolding
Biochemistry
,
28
,
7205
7213
.

[50]

Narhi
L.O.
Stabinsky
Y.
Levitt
M.
Miller
L.
Sachdev
R.
Finley
S.
Park
S.
Kolvenbach
G.
Arakawa
T.
Zukowski
R.
(
1991
)
Enhanced stability of subtilisin by three point mutations
Biotech. Appl. Biochem.
,
13
,
12
24
.

[51]

Feller
G.
Thiry
M.
Arpigny
J.L.
Mergeay
M.
Gerday
Ch.
(
1990
)
Lipases from psychrotrophic antarctic bacteria
FEMS Microbiol. Lett.
,
66
,
239
244
.

[52]

Rentier-Delrue
F.
Mande
S.C.
Moyens
S.
Terpstra
P.
Mainfroid
V.
Goraj
K.
Lion
M.
Hol
W.G.
Martial
J.
(
1993
)
Cloning and overexpression of the triose phosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequence
J. Mol. Biol.
,
229
,
85
93
.

[53]

Mitchinson
C.
Baldwin
R.L.
(
1989
)
The design and production of semi-synthetic ribonucleases with increased thermostability by incorporation of S-peptide analogue with enhanced helical stability
Protein Struct. Funct. Gen.
,
1
,
23
33
.

[54]

Genicot
S.
Rentier
F.
van Beeumen
J.
Dodson
G.
Gerday
Ch.
(
1994
)
Trypsin from temperature and antarctic fish Paranotothenia magellanica. Molecular adaptations
, In:
SCAR Sixth Biology Symposium
pp
106
Abstracts.

[55]

Eisenberg
D.
Schwartz
E.
Komaromy
M.
Wall
R.
(
1984
)
Analysis of membrane and surface protein sequences with the hydrophobic moment plot
J. Mol. Biol.
,
179
,
125
142
.

[56]

Feller
G.
Thiry
M.
Gerday
Ch.
(
1991
)
Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site specific mutagenesis of the conserved serine and histidine residues
DNA Cell. Biol.
,
10
,
381
388
.

[57]

Arpigny
J.L.
Feller
G.
Gerday
Ch.
(
1993
)
Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10
Biochim. Biophys. Acta
,
1171
,
331
333
.

[58]

Arpigny
J.L.
Feller
G.
Gerday
Ch.
(
1995
)
Corrigendum to Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10″
Biochim. Biophys. Acta
,
1263
,
103
.

[59]

Arpigny
J.L.
Feller
G.
Davail
S.
Genicot
S.
Narinx
E.
Zekhnini
Z.
Gerday
Ch.
(
1994
)
Molecular adaptations of enzymes from thermophilic and psychrophilic organisms
3rd Edn. (
Gilles
R.
, Ed) Vol.
20
, In:
Comparative Environmental Physiology
, pp
269
295
Springer-Verlag
,
Berlin
.

[60]

de Long
E.F.
Wu
K.Y.
Prezelin
B.B.
Jovine
V.M.
(
1984
)
High abundance of Archea in Antarctic marine picoplankton
Nature
,
371
,
695
697
.

This content is only available as a PDF.