Abstract

An increasing number of strict anaerobic bacteria are being found which use an alternative pathway to the ubiquitous Calvin cycle for CO2 fixation into cell compounds and the ubiquitous Krebs cycle for acetyl CoA oxidation to CO2. The principles of this non-cyclic pathway, the acetyl CoA pathway, have long been studied in acetogenic bacteria. These bacteria can catalyze the exergonic reduction of 2 CO2 with 8 reducing equivalents to acetate. In this pathway, CO2 reduction is part of a catabolic redox process which functions to accept reducing equivalents from a variety of dehydrogenated substrates. This process yields net ATP generated by electron transport phosphorylation. Acetyl CoA is an intermediate, formed from one CO2 via a tetrahydropteridine-bound 1-carbon unit (methyl group of acetate), and from another CO2 via a bound carbon monoxide (carboxyl group of acetate). The most characteristic and complex enzyme involved in acetyl CoA synthesis is carbon monoxide dehydrogenase (‘acetyl CoA synthase’). The enzymes of this acetyl CoA pathway not only participate in (1) acetate synthesis in energy metabolism of acetogenic bacteria, but also mediate (2) acetyl CoA oxidation in sulfate-reducing bacteria and possibly other anaerobes; (3) acetate disproportionation to CO2 and CH4 in the energy metabolism of many methanogenic bacteria; (4) autotrophic CO2 fixation in autotrophic acetogenic, methanogenic, and most autotrophic sulfate-reducing bacteria; (5) assimilation and/or dissimilation of 1-carbon compounds in many anaerobes; (6) CO oxidation to CO2 in anaerobes. A specialized group of anaerobes performs acetate synthesis from CO2 or from C1 units via a different pathway, the glycine synthase/glycine reductase pathway. Glycine is an intermediate which is formed from 2 C1 compounds, and is then reduced to acetate. The principal features of the two pathways and some open questions are discussed in this review. Emphasis is placed upon the acetyl CoA pathway in acetogenic bacteria, but important advances in the study of other strict anaerobes are also considered.

References

[1]
Wood
H.G.
Drake
H.L.
Hu
S.
(
1982
) In
Proc. Biochem. Symp.
 
Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen
, pp
29
56
.
[2]
Balch
W.E.
Fox
G.E.
Magrum
L.J.
Woese
C.R.
Wolfe
R.S.
(
1979
)
Methanogens: Reevaluation of a unique biological group
Microbiol. Rev.
 ,
43
,
260
296
.
[3]
Thauer
R.K.
Jungermann
K.
Decker
K.
(
1977
)
Energy conservation in chemotrophic anaerobic bacteria
Bacteriol. Rev.
 ,
41
,
100
180
.
[4]
Blaut
M.
Gottschalk
G.
(
1985
)
Evidence for a chemiosmotic mechanism of ATP synthesis in methanogenic bacteria
Trends Biochem. Sci.
 ,
10
,
486
489
.
[5]
Ljungdahl
L.G.
Wood
H.G.
(
1969
)
Total synthesis of acetate from CO2 by heterotrophic bacteria
Annu. Rev. Microbiol.
 ,
23
,
515
538
.
[6]
Ljungdahl
L.G.
Wood
H.G.
(
1982
) In
Vitamin B12
 
Acetate biosynthesis
Dolphin
D.
, Ed) pp
165
202
Wiley
,
New York
.
[7]
Ljungdahl
L.G.
(
1983
) In
Formation of acetate using homoacetate fermenting anaerobic bacteria
Organic Chemicals from Biomass
 
Wise
D.L.
, Ed) pp
219
248
Benjamin/Cummings
,
London
.
[8]
Gottschalk
G.
Andreesen
J.R.
Hippe
H.
(
1981
)
The genus Clostridium (nonmedical aspects)
In
The Prokaryotes
  (
Starr
M.P.
Stolp
H.
Trüper
H.G.
Balows
A.
Schlegel
H.G.
, Eds) pp
1767
1803
Springer
,
Berlin, Heidelberg, New York
.
[9]
Barker
H.A.
(
1956
)
8th ed.
, In
Bacterial Fermentations
 
Wiley
,
New York
.
[10]
Zeikus
J.G.
(
1983
)
Metabolism of one-carbon compounds by chemotrophic anaerobes
Adv. Microb. Physiol.
 ,
24
,
215
299
.
[11]
Zeikus
J.G.
Kerby
R.
Krzycki
J.A.
(
1985
)
Single-carbon chemistry of acetogenic and methanogenic bacteria
Science
 ,
227
,
1167
1173
.
[12]
Fuchs
G.
Stupperich
E.
(
1986
)
Carbon assimilation pathways in archaebacteria
Sys. Appl. Microbiol.
 ,
7
,
364
369
.
[13]
Diekert
G.
Fuchs
G.
Thauer
R.K.
(
1985
)
Properties and function of carbon monoxide dehydrogenase from anaerobic bacteria
In
Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects
  (
Poole
R.K.
Daw
C.S.
, Eds) pp
115
130
Society for General Microbiology
.
[14]
Diekert
G.
(
1986
) In
CO dehydrogenase of acetogens
,
Bioinorganic Chemistry of Nickel
 
VCH Publishers
in press.
[15]
Wood
H.G.
Ragsdale
S.W.
Pezacka
E.
(
1986
)
The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth
Trends Biochem. Sci.
 ,
11
,
14
18
.
[16]
In
Vitamin B12
  ((
1979
)
Zagalak
B.
Friedrich
W.
, Eds)
Walter de Gruyter
,
Berlin and New York
.
[17]
Dolphin
D.
, Ed)
8th ed.
,
vols. I and II
, In
B12
  (
1982
)
Wiley
,
New York
1982
.
[18]
In
Folates and Pterins
  ((
1984
)
Blakley
R.L.
Benkovic
J.
, Eds)
8th ed.
,
vols. I and II
,
Wiley
,
New York
.
[19]
Ljungdahl
L.G.
(
1984
)
Other functions of folates
8th ed.
In
Folates and Pterins
  (
Blakley
R.L.
Benkovic
S.J.
, Eds)
Vol. I
, pp
555
579
Wiley
,
New York
.
[20]
Mah
R.A.
Smith
M.R.
(
1981
)
The methanogenic bacteria
8th ed.
In
The Prokaryotes
  (
Starr
M.P.
Stolp
H.
Trüper
H.G.
Balows
A.
Schlegel
H.G.
, Eds)
Vol. I
, pp
948
977
Springer
,
Berlin, Heidelberg, New York
.
[21]
Pfennig
N.
Widdel
F.
Trüper
H.G.
(
1981
)
The dissimilatory sulfate-reducing bacteria
8th ed.
In
The Prokaryotes
  (
Starr
M.P.
Stolp
H.
Trüper
H.G.
Balows
A.
Schlegel
H.G.
, Eds)
Vol. I
, pp
926
947
Springer
,
Berlin, Heidelberg, New York
.
[22]
Widdel
F.
Pfennig
N.
(
1984
)
Dissimilatory sulfate-or sulfur-reducing bacteria
In
Bergey's Manual of Systematic Bacteriology
  (
Krieg
N.R.
Holt
J.G.
, Eds) Vol.
1
, pp
663
679
Williams and Wilkins
,
Baltimore
.
[23]
Postgate
J.R.
, Ed)
Cambridge University Press
,
Cambridge, London, New York
.
[23a]
Daniels
L.
Sparling
R.
Sprott
D.
(
1984
)
The bioenergetics of methanogenesis
Biochim. Biophys. Acta
 ,
768
,
113
163
.
[24]
Wood
H.G.
(
1985
)
Then and now
Ann. Rev. Biochem.
 ,
54
,
1
41
.
[25]
Braun
M.
Schoberth
S.
Gottschalk
G.
(
1979
)
Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats
Arch. Microbiol.
 ,
120
,
201
204
.
[26]
Breznak
J.A.
Switzer
J.M.
(
1986
)
Acetate synthesis from H2 plus CO2 by termite gut microbes
Appl. Environ. Microbiol.
 , in press.
[26a]
Zehnder
A.J.B.
Wuhrmann
K.
(
1976
)
Titanium III citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes
Science
 ,
194
,
1165
1166
.
[27]
Vogels
G.D.
Van der Drift
C.
(
1976
)
Degradation of purines and pyrimidines by microorganisms
Bacteriol. Rev.
 ,
40
,
403
468
.
[28]
Sleat
R.
Mah
R.A.
Robinson
R.
(
1985
)
Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2
Int. J. Syst. Bacteriol.
 ,
35
,
10
15
.
[29]
Eichler
B.
Schink
B.
(
1984
)
Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe
Arch. Microbiol.
 ,
140
,
147
152
.
[30]
Braun
M.
Gottschalk
G.
(
1982
)
Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide
Zbl. Bakt. Hyg. I Abt. Orig.
 ,
C3
,
368
376
.
[31]
Balch
W.E.
Schoberth
S.
Tanner
R.S.
Wolfe
R.S.
(
1977
)
Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria
Int. J. Syst. Bacteriol.
 ,
27
,
355
361
.
[32]
Bache
R.
Pfennig
N.
(
1981
)
Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields
Arch. Microbiol.
 ,
130
,
255
261
.
[33]
Braun
K.
(
1979
)
Untersuchungen zum autotrophen, heterotrophen und mixotrophen Wachstum von Acetobacterium woodii und Clostridium aceticum
8th ed.
, In
Thesis
 
University of Göttingen
,
F.R.G
.
[34]
Leigh
J.A.
Mayer
F.
Wolfe
R.S.
(
1981
)
Acetogenium kivui, a new thermophilic hydrogen-oxidizing acetogenic bacterium
Arch. Microbiol.
 ,
129
,
275
280
.
[35]
Zeikus
J.G.
Lynd
L.H.
Thompson
T.E.
Krzycki
J.A.
Wimer
P.J.
Hegge
P.W.
(
1980
)
Isolation and characterization of a new, methylotrophic acidogenic anaerobe, the Marburg strain
Curr. Microbiol.
 ,
3
,
381
386
.
[36]
Lynd
L.
Kerby
R.
Zeikus
J.G.
(
1982
)
Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum
J. Bacteriol.
 ,
149
,
255
263
.
[37]
Moench
T.T.
Zeikus
J.G.
(
1983
)
Nutritional growth requirements for Butyribacterium methylotrophicum on single carbon substrates and glucose
Curr. Microbiol.
 ,
9
,
151
154
.
[38]
Kerby
R.
Niemczura
W.
Zeikus
J.G.
(
1983
)
Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C-nuclear magnetic resonance measurement
J. Bacteriol.
 ,
155
,
1208
1218
.
[39]
Lynd
L.H.
Zeikus
J.G.
(
1983
)
Metabolism of H2/CO2, methanol and glucose by Butyribacterium methylotrophicum
J. Bacteriol.
 ,
153
,
1415
1423
.
[40]
Barker
H.A.
Kamen
M.D.
Haas
V.
(
1945
)
Carbon dioxide utilization in the synthesis of acetic and butyric acids by Butyribacterium rettgeri
J. Bacteriol.
 ,
31
,
355
.
[41]
In
Bergey's Manual of Determinative Bacteriology
  ((
1974
)
Buchanan
R.E.
Gibbons
N.E.
, Eds)
8th ed.
, pp
644
Williams and Wilkins
,
Baltimore
.
[42]
Wieringa
K.T.
(
1936
)
Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden; voortzetting van een onderzoek van wijlen Prof. Dr. Ir. N.L. Söhngen. Antonie van Leeuwenhoek
,
J. Microbiol. Serol.
 ,
3
,
263
273
(In Dutch).
[43]
Wieringa
K.T.
(
1940
)
The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek
,
J. Microbiol. Serol.
 ,
6
,
251
262
.
[44]
Karlsson
J.L.
Volcani
B.E.
Barker
H.A.
(
1948
)
The nutritional requirements of Clostridium aceticum
J. Bacteriol.
 ,
56
,
781
782
.
[45]
Adamse
A.D.
(
1980
)
New isolation of Clostridium aceticum (Wieringa) Antonie van Leeuwenhoek
,
J. Microbiol. Serol.
 ,
46
,
523
531
.
[46]
Braun
M.
Mayer
F.
Gottschalk
G.
(
1981
)
Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide
Arch. Microbiol.
 ,
128
,
288
293
.
[47]
Stadtman
E.R.
Stadtman
T.C.
Pastan
I.
Smith
L.D.
(
1972
)
Clostridium barkeri sp. nov.
J. Bacteriol.
 ,
110
,
758
760
.
[48]
Andreesen
J.R.
Gottschalk
G.
Schlegel
H.G.
(
1970
)
Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum
,
Arch. Microbiol.
 ,
72
,
154
174
.
[49]
Schink
B.
(
1984
)
Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium
Arch. Microbiol.
 ,
137
,
250
255
.
[49a]
Krumholz
L.R.
Bryant
M.P.
(
1985
)
Clostridium pfennigi sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate
Int. J. Syst. Bacteriol.
 ,
35
,
454
456
.
[50]
Fontaine
F.E.
Peterson
W.H.
McCoy
E.
Johnson
M.J.
(
1942
)
A new type of glucose fermentation by Clostridium thermoaceticum n.sp.
J. Bacteriol.
 ,
43
,
701
715
.
[51]
Andreesen
J.R.
Schaupp
A.
Neurauter
C.
Brown
A.
Ljungdahl
L.G.
(
1973
)
Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2
J. Bacteriol.
 ,
114
,
743
751
.
[52]
Kerby
R.
Zeikus
J.G.
(
1983
)
Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source
Curr. Microbiol.
 ,
8
,
27
30
.
[53]
Martin
D.R.
Misra
A.
Drake
H.L.
(
1985
)
Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum
Appl. Environ. Microbiol.
 ,
49
,
1412
1417
.
[55]
Wiegel
J.
Braun
M.
Gottschalk
G.
(
1981
)
Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide
Curr. Microbiol.
 ,
5
,
255
260
.
[56]
Klemps
R.
Cypionka
H.
Widdel
F.
Pfennig
N.
(
1985
)
Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species
Arch. Microbiol.
 ,
143
,
203
208
.
[57]
Cypionka
H.
Pfennig
N.
(
1986
)
Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture
Arch. Microbiol.
 ,
143
,
396
399
.
[58]
Sharak Genthner
B.R.
Davis
C.L.
Bryant
M.P.
(
1981
)
Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol and H2-CO2 utilizing species
Appl. Environ. Microbiol.
 ,
42
,
12
19
.
[59]
Sharak Genthner
B.R.
Bryant
M.P.
(
1982
)
Growth of Eubacterium limosum with carbon monoxide as the energy source
Appl. Environ. Microbiol.
 ,
43
,
70
74
.
[60]
Lorowitz
W.H.
Bryant
M.P.
(
1984
)
Peptostreptococcus productus strain that grows rapidly with CO as the energy source
Appl. Environ. Microbiol.
 ,
47
,
961
964
.
[61]
Adamse
A.D.
Velzeboer
C.T.M.
(
1982
)
Features of a Clostridium strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol Antonie van Leeuwenhoek
,
J. Microbiol. Serol.
 ,
48
,
305
313
.
[62]
Frazer
A.C.
Young
L.Y.
(
1985
)
A Gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids
Appl. Environ. Microbiol.
 ,
49
,
1345
1347
.
[63]
Krumholz
L.R.
Bryant
M.P.
(
1985
)
Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate
Int. J. Syst. Bacteriol.
 ,
35
,
454
456
.
[64]
Mountfort
D.O.
Asher
R.A.
(
1986
)
Isolation from an anaerobe that converts methoxyl groups of aromatic acids to volatile fatty acids
Arch. Microbiol.
 ,
144
,
55
61
.
[64b]
Ollivier
B.
Cord-Ruwisch
R.
Lombardo
A.
Garcia
J.L.
(
1985
)
Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium
Arch. Microbiol.
 ,
142
,
307
310
.
[64c]
Cord-Ruwisch
R.
Ollivier
B.
(
1986
)
Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes
Arch. Microbiol.
 ,
144
,
163
165
.
[65]
Tanner
R.S.
Stackebrandt
E.
Fox
G.E.
Woese
C.R.
(
1981
)
A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue
Curr. Microbiol.
 ,
5
,
35
38
.
[66]
Tanner
R.S.
Stackebrandt
E.
Fox
G.E.
Gupta
R.
Magrum
L.J.
Woese
C.R.
(
1982
)
A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide
Curr. Microbiol.
 ,
7
,
127
132
.
[67]
Ljungdahl
L.
Irion
E.
Wood
H.G.
(
1965
)
Total synthesis of acetate from CO2, I. Co-methylcobyric acid and Co-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum
Biochemistry
 ,
4
,
2771
2780
.
[68]
Tanner
R.S.
Wolfe
R.S.
Ljungdahl
L.G.
(
1978
)
Tetrahydrofolate enzyme levels in Acetobacterium woodii and their implication in the synthesis of acetate from CO2
J. Bacteriol.
 ,
134
,
668
670
.
[69]
Diekert
G.B.
Thauer
R.K.
(
1978
)
Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum
J. Bacteriol.
 ,
136
,
597
606
.
[70]
Clark
J.E.
Ragsdale
S.W.
Ljungdahl
L.G.
Wiegel
J.
(
1982
)
Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum
J. Bacteriol.
 ,
151
,
507
509
.
[71]
Champion
A.
Rabinowitz
J.C.
(
1977
)
Ferredoxin and formyltetrahydrofolate synthetase: comparative studies with Clostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains
J. Bacteriol.
 ,
132
,
1003
1020
.
[72]
Waber
L.J.
Wood
H.G.
(
1979
)
Mechanism of acetate synthesis from CO2 by Clostridium acidiurici
J. Bacteriol.
 ,
140
,
468
478
.
[73]
Dürre
P.
Andreesen
J.R.
(
1983
)
Purine and glycine metabolism by purinolytic clostridia
J. Bacteriol.
 ,
154
,
192
199
.
[74]
Dürre
P.
Andreesen
J.R.
(
1982
)
Pathway of carbon dioxide reduction to acetate without a net energy requirement in Clostridium purinolyticum
FEMS Microbiol. Lett.
 ,
15
,
51
56
.
[75]
Dürre
P.
Andersch
W.
Andreesen
J.R.
(
1981
)
Isolation and characterization of an adenine-utilizing, anaerobic sporeformer, Clostridium purinolyticum sp. nov.
Int. J. Syst. Bacteriol.
 ,
31
,
184
194
.
[76]
Schiefer-Ullrich
H.
Wagner
R.
Dürre
P.
Andreesen
J.R.
(
1984
)
Comparative studies on physiology and taxonomy of obligately purinolytic clostridia
Arch. Microbiol.
 ,
138
,
345
353
.
[77]
Dürre
P.
Spahr
R.
Andreesen
J.R.
(
1983
)
Glycine fermentation via a glycine reductase in Peptococcus glycinophilus and Peptococcus magnus
Arch. Microbiol.
 ,
134
,
127
135
.
[78]
Robinson
J.R.
Klein
S.M.
Sagers
R.D.
(
1973
)
Glycine metabolism Lipoic acid as the prosthetic group in the electron transfer protein P2 from Peptococcus glycinophilus
,
J. Biol. Chem.
 ,
248
,
5319
5323
.
[79]
Kiguchi
G.
Hiraga
K.
(
1982
)
The mitochondrial glycine cleavage system. Unique features of the glycine decarboxylation
,
Mol. Cell. Biochem.
 ,
45
,
137
149
.
[80]
Stadtman
T.C.
(
1978
)
Selenium-dependent clostridial glycine reductase
Methods Enzymol.
 ,
53
,
372
382
.
[81]
Stadtman
T.C.
(
1980
)
Selenium-dependent enzymes
Ann. Rev. Biochem.
 ,
49
,
93
110
.
[82]
Dürre
P.
Andreesen
J.R.
(
1982
)
Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum
J. Gen. Microbiol.
 ,
128
,
1457
1466
.
[83]
Curthoys
N.P.
Scott
J.M.
Rabinowitz
J.C.
(
1972
)
Folate coenzymes of Clostridium acidiurici. The isolation of (1)-5,10-methenyltetrahydropteroyltriglutamate, its conversion to (1)-tetrahydropteroyltriglutamate, and (1)-10-14C formyltetrahydropteroyltriglutamate and the synthesis of (1)-10-formyl-6,7-3H2 tetrahydropteroyltriglutamate and (1)-6,7-3H2-tetrahydropteroyltriglutamate
,
J. Biol. Chem.
 ,
247
,
1959
1964
.
[84]
Stadtman
T.C.
(
1960
)
Synthesis of adenine-B12 coenzyme by Clostridium sticklandii: relationship to one-carbon metabolism
J. Bacteriol.
 ,
79
,
904
.
[85]
Wood
H.G.
Utter
M.F.
(
1965
)
The role of CO2 fixation in metabolism
In
Essays in Biochemistry
  (
Campbell
P.N.
Greville
G.D.
, Eds) Vol.
1
, pp
1
27
Academic Press
,
London
.
[86]
Fischer
F.
Lieske
R.
Winzer
K.
(
1932
)
Biologische Gasreaktionen, II. Mitteilung: über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan
Biochem. Z.
 ,
245
,
2
12
.
[87]
Kluyver
J.A.
Schnellen
C.G.
(
1947
)
On the fermentation of carbon monoxide by pure cultures of methane bacteria
Arch. Biochem.
 ,
14
,
57
70
.
[88]
Kamen
M.D.
(
1963
)
The early history of carbon-14
J. Chem. Ed.
 ,
40
,
234
242
.
[89]
Barker
H.A.
Kamen
M.D.
(
1945
)
Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum
,
31
, In
Proc. Natl. Acad. Sci. USA
 , pp
219
225
.
[90]
Wood
H.G.
(
1952
)
A study of carbon dioxide fixation by mass determination of the types of C13-acetate
J. Biol. Chem.
 ,
194
,
905
931
.
[91]
Barker
H.A.
(
1944
)
On the role of carbon dioxide in the metabolism of Clostridium thermoaceticum
,
30
, In
Proc. Natl. Acad. Sci USA
 , pp
88
95
.
[92]
Calvin
M.
Bassham
J.A.
(
1962
)
The Photosynthesis of Carbon Compounds
 
W.A. Benjamin
New York
.
[93]
Hatch
M.D.
Slack
C.R.
(
1968
)
A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis
Biochem. J.
 ,
106
,
141
146
.
[94]
Evans
M.C.W.
Buchanan
B.B.
Arnon
D.I.
(
1966
)
A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium
,
55
, In
Proc. Natl. Acad. Sci. USA
 , pp
928
934
.
[95]
Ljungdahl
L.
Wood
H.G.
(
1965
)
Incorporation of 14C from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum
J. Bacteriol.
 ,
80
,
1055
1064
.
[96]
Lentz
K.
Wood
H.G.
(
1955
)
Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum
J. Biol. Chem.
 ,
215
,
645
654
.
[97]
Poston
J.M.
Kuratomi
K.
Stadtman
E.R.
(
1964
)
Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracats of Clostridium thermoaceticum
Ann. NY Acad. Sci.
 ,
112
,
804
806
.
[98]
Ghambeer
R.K.
Wood
H.G.
Schulman
M.
Ljungdahl
L.
(
1971
)
Total synthesis of acetate from CO2, III. Inhibition by alkylhalides of the synthesis from CO2, of methyltetrahydrofolate, and methyl-B12 by Clostridium̀ thermoaceticum
Arch. Biochem. Biophys.
 ,
143
,
471
484
.
[99]
Ljungdahl
L.
Irion
E.
Wood
H.G.
(
1966
)
Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum
,
25
, In
Fed. Proc. Am. Soc. Exp. Biol.
 , pp
1642
1648
.
[100]
Taylor
R.T.
Weissbach
H.
(
1967
)
N5-Methyltetrahydrofolate-homocysteine transmethylase. Propylation characteristics with the use of a chemical reducing system and purified enzyme
,
J. Biol. Chem.
 ,
242
,
1509
1516
.
[101]
Parker
D.J.
Wu
T.F.
Wood
H.G.
(
1971
)
Total synthesis of acetate from CO2: methyltetrahydrofolate, an intermediate, and a procedure for separation of the folates
J. Bacteriol.
 ,
108
,
770
776
.
[102]
Jungermann
K.
Thauer
R.K.
Decker
K.
(
1968
)
The synthesis of one-carbon units from CO2 in Clostridium kluyveri
Eur. J. Biochem.
 ,
3
,
351
359
.
[103]
Jungermann
K.A.
Schmidt
W.
Kirchniawy
F.H.
Rupprecht
E.H.
Thauer
R.K.
(
1970
)
Glycine formation via threonine and serine aldolase. Its interrelation with the pyruvate formate lyase pathway of one-carbon unit synthesis in Clostridium kluyveri
,
Eur. J. Biochem.
 ,
16
,
424
429
.
[104]
Andreesen
J.R.
Schaupp
A.
Neurauter
C.
Brown
A.
Ljungdahl
L.G.
(
1973
)
Fermentation of glucose, fructose and xylose by Clostridium thermoaceticum: Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2
J. Bacteriol.
 ,
114
,
743
751
.
[105]
Thauer
R.K.
(
1972
)
CO2-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum
,
FEBS Lett.
 ,
27
,
111
115
.
[106]
Schulman
M.
Ghambeer
R.K.
Ljungdahl
L.G.
Wood
H.G.
(
1973
)
Total synthesis of acetate from CO2, VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2
,
J. Biol. Chem.
 ,
248
,
6255
6261
.
[107]
Wood
H.G.
Kumar
G.K.
(
1985
)
Transcarboxylase: its quaternary structure and the role of the biotinyl subunit in the assembly of the enzyme and in catalysis
Ann. NY Acad. Sci.
 ,
447
,
1
22
.
[108]
Drake
H.L.
Hu
S.I.
Wood
H.G.
(
1981
)
Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate
J. Biol. Chem.
 ,
256
,
11137
11144
.
[109]
Taylor
G.T.
Kelly
D.P.
Pirt
S.J.
(
1976
)
Intermediary metbolism in methanogenic bacteria (Methanobacterium)
In
Proc. Symp. Microbial Production and Utilization of Gases (H2, CH4, CO)
  (
Schlegel
H.G.
Gottschalk
G.
Pfenning
N.
, Eds) pp
173
180
Goltze Verlag
,
Göttingen
.
[110]
Zeikus
J.G.
Fuchs
G.
Kenealy
W.
Thauer
R.K.
(
1977
)
Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum
J. Bacteriol.
 ,
132
,
604
613
.
[111]
Fuchs
G.
Stupperich
E.
Thauer
R.K.
(
1978
)
Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum
Arch. Microbiol.
 ,
117
,
61
66
.
[112]
Fuchs
G.
Stupperich
E.
(
1978
)
Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum
Arch. Microbiol.
 ,
118
,
121
125
.
[113]
Daniels
L.
Zeikus
J.G.
(
1978
)
One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated in whole cells
J. Bacteriol.
 ,
136
,
75
84
.
[114]
Weimer
P.J.
Zeikus
J.G.
(
1979
)
Acetate assimilation pathway of Methanosarcina barkeri
J. Bacteriol.
 ,
137
,
332
339
.
[115]
Fuchs
G.
Stupperich
E.
(
1980
)
Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum
Arch Microbiol.
 ,
127
,
267
272
.
[116]
Lezius
A.G.
Barker
H.A.
(
1965
)
Corrinoid compounds of Methanobacillus omelianskii, I. Fractionation of the corrinoid compounds and identification of factor III and factor III coenzyme
Biochemistry
 ,
4
,
510
518
.
[117]
Daniels
L.
Fuchs
G.
Thauer
R.K.
Zeikus
J.G.
(
1977
)
Carbon monoxide oxidation by methanogenic bacteria
J. Bacteriol.
 ,
132
,
118
126
.
[118]
Yagi
T.
(
1958
)
Enzymic oxidation of carbon monoxide
Biochim. Biophys. Acta
 ,
30
,
194
195
.
[119]
Yagi
T.
(
1959
)
Enzymic oxidation of carbon monoxide, II
J. Biochem. (Tokyo)
 ,
46
,
949
955
.
[120]
Yagi
T.
Tamiya
N.
(
1962
)
Enzymic oxidation of carbon monoxide, III. Reversibility
Biochim. Biophys. Acta
 ,
65
,
508
509
.
[121]
Thauer
R.K.
Fuchs
G.
Käufer
B.
Schnitker
U.
(
1974
)
Carbon-monoxide oxidation in cell-free extracts of Clostridium pasteurianum
Eur. J. Biochem.
 ,
45
,
343
349
.
[122]
Fuchs
G.
Schnitker
U.
Thauer
R.K.
(
1974
)
Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum
Eur. J. Biochem.
 ,
49
,
111
115
.
[123]
Fuchs
G.
(
1975
)
Die Oxidation von Kohlenmonoxid durch Clostridium pasteurianum
, In
Thesis
 
University of Bochum
,
F.R.G
.
[124]
Fuchs
G.
Andress
G.
Thauer
R.K.
(
1976
)
CO oxidation by anaerobic bacteria: indications for the involvement of a vitamin B12 compound
In
Microbial Production and Utilization of Gases
  (
Schlegel
H.G.
Gottschalk
G.
Pfennig
N.
, Eds) pp
231
236
Goltze, Göttingen
,
F.R.G
.
[125]
Diekert
G.
(
1980
)
Kohlenmonoxid-Oxidation und die Reduktion von CO2 zu Acetat in Clostridien
, In
Thesis
 
University of Marburg
,
F.R.G
.
[126]
Diekert
G.B.
Graf
E.G.
Thauer
R.K.
(
1979
)
Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum
Arch. Microbiol.
 ,
122
,
117
120
.
[127]
Diekert
G.B.
Graf
E.G.
Thauer
R.K.
(
1979
)
Carbon monoxide oxidation by Clostridia: evidence for the involvement of a corrinoid-like compound
In
Vitamin B12
  (
Zagalak
B.
Friedrich
W.
, Eds) pp
1033
1036
Walter de Gruyter
,
Berlin and New York
.
[128]
Meyer
O.
Schlegel
H.G.
(
1980
)
Carbon monoxide: methylene blue oxidoreductase from Pseudomonas carboxydovorans
J. Bacteriol.
 ,
141
,
74
80
.
[129]
Meyer
O.
Schlegel
H.G.
(
1983
)
Biology of aerobic carbon monoxide-oxidizing bacteria
Annu. Rev. Microbiol.
 ,
37
,
277
310
.
[130]
Drake
H.L.
Hu
S.I.
Wood
H.G.
(
1980
)
Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum
J. Biol. Chem.
 ,
255
,
7174
7180
.
[131]
Hu
S.I.
Drake
H.L.
Wood
H.G.
(
1982
)
Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum
J. Bacteriol.
 ,
149
,
440
448
.
[132]
Oberlies
G.
Fuchs
G.
Thauer
R.K.
(
1980
)
Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum
Arch. Microbiol.
 ,
128
,
248
252
.
[133]
Ragsdale
S.W.
Wood
H.G.
(
1985
)
Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis
,
J. Biol. Chem.
 ,
260
,
3970
3977
.
[134]
Krzycki
J.A.
Wolkin
R.H.
Zeikus
J.G.
(
1982
)
Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri
J. Bacteriol.
 ,
149
,
247
254
.
[135]
Schauder
R.
Eikmanns
B.
Thauer
R.K.
Widdel
F.
Fuchs
G.
(
1986
)
Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle
Arch. Microbiol.
 , in press.
[136]
Masters
C.
(
1979
)
The Fischer-Tropsch reaction
In
Advances in Organometallic Chemistry
  (
Stone
F.G.A.
West
R.
, Eds) vol.
17
, pp
61
103
Academic Press
,
New York, San Francisco and London
.
[137]
Mullen
A.
(
1980
) In
Carbonylations catalyzed by metal carbonyls-Reppe reactions
New Syntheses with Carbon Monoxide
 
Falbe
J.
, Ed) pp
286
290
Springer Verlag
,
Berlin
.
[138]
Forster
D.
(
1979
)
Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes
Adv. Organomet. Chem.
 ,
17
,
255
267
.
[139]
Ljungdahl
L.
(
1986
)
Purification and Characterization of the F1-ATPase from Clostridium thermoaceticum
J. Bacteriol.
 ,
165
,
252
257
.
[140]
Thauer
R.K.
Fuchs
G.
Jungermann
K.
(
1977
)
Role of iron-Sulfur proteins in formate metabolism
(
Lowenberg
W.
, Ed)
Vol. III
, In
Iron-Sulfur Proteins
 , pp
121
156
Academic Press
,
New York, San Francisco and London
.
[141]
Ljungdahl
L.G.
(
1980
) In
Formate dehydrogenases: Role of molybdenum, tungsten, and selenium
Molybdenum and Molybdenum-Containing Enzymes
 
Coughlan
M.P.
, Ed) pp
463
486
Pergamon Press
,
Oxford
.
[142]
Andreesen
J.R.
Ljungdahl
L.G.
(
1973
)
Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme
J. Bacteriol.
 ,
116
,
867
873
.
[143]
Andreesen
J.R.
Ljungdahl
L.G.
(
1974
)
Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties
J. Bacteriol.
 ,
120
,
6
14
.
[144]
Ljungdahl
L.G.
Andreesen
J.R.
(
1975
)
Tungsten, a component of active formate dehydrogenase from Clostridium thermoaceticum
FEBS Lett.
 ,
54
,
279
282
.
[145]
Yamamoto
I.
Saiki
T.
Liu
S.M.
Ljungdahl
L.G.
(
1983
)
Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein
J. Bacteriol.
 ,
258
,
1826
1832
.
[146]
Thauer
R.K.
Fuchs
G.
Käufer
B.
(
1975
)
Reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum
Hoppe-Seyler's Z. Physiol. Chem.
 ,
356
,
653
662
.
[147]
Scherer
P.A.
Thauer
R.K.
(
1978
)
Purification and properties of reduced ferredoxin: CO2 reductase from Clostridium pasteurianum, a molybdenum-iron-sulfur protein
Eur. J. Biochem.
 ,
85
,
125
135
.
[148]
Thauer
R.K.
Käufer
B.
Fuchs
G.
(
1975
)
The active species of ‘CO2’ utilized by reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum
Eur. J. Biochem.
 ,
55
,
111
117
.
[149]
Andreesen
J.R.
El Ghazzawi
E.
Gottschalk
G.
(
1974
)
The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation
Arch. Microbiol.
 ,
96
,
103
118
.
[150]
Leonhardt
U.
Andreesen
J.R.
(
1977
)
Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum
Arch. Microbiol.
 ,
115
,
277
284
.
[151]
Ljungdahl
L.G.
Brewer
J.M.
Neece
S.H.
Fairwell
T.
(
1970
)
Purification, stability, and composition of formyltetrahydrofolate synthetase from Clostridium thermoaceticum
J. Biol. Chem.
 ,
245
,
4791
4797
.
[152]
Brewer
J.M.
Ljungdahl
L.G.
Spencer
T.E.
Neece
S.H.
(
1970
)
Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum
J. Biol. Chem.
 ,
245
,
4798
4803
.
[153]
Shoaf
W.T.
Neece
S.H.
Ljungdahl
L.G.
(
1974
)
Effects of temperature and ammonium ions on formyltetrahydrofolate synthetase from Clostridium thermoaceticum
Biochim. Biophys. Acta
 ,
334
,
448
458
.
[154]
Mayer
F.
Elliott
J.I.
Sherod
D.
Ljungdahl
L.G.
(
1982
)
Formyltetrahydrofolate synthase from Clostridium thermoaceticum
Eur. J. Biochem.
 ,
124
,
397
404
.
[155]
Himes
R.H.
Harmony
J.A.K.
(
1973
)
Formyltetrahydrofolate synthetase
CRC Crit. Rev. Biochem.
 ,
1
,
501
.
[156]
O'Brien
W.E.
Brewer
J.M.
Ljungdahl
L.G.
(
1973
)
Purification and characterization of thermostable, 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum
J. Biol. Chem.
 ,
248
,
403
408
.
[157]
Ljungdahl
L.G.
O'Brien
W.E.
Moore
M.R.
Liu
M.T.
(
1980
)
Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum
Methods Enzymol.
 ,
66
,
599
.
[158]
Moore
M.R.
O'Brien
W.E.
Ljungdahl
L.G.
(
1974
)
Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum
J. Biol. Chem.
 ,
249
,
5250
5253
.
[159]
Clark
J.E.
Ljungdahl
L.G.
(
1982
)
Purification and properties of 5,10-methenyltetrahydrofolate cyclohydrolase from Clostridium formicoaceticum
J. Biol. Chem.
 ,
257
,
3833
3836
.
[160]
Ragsdale
S.W.
Ljungdahl
L.G.
(
1984
)
Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii
J. Biol. Chem.
 ,
259
,
3499
3503
.
[161]
Pankert
J.L.
D'Ari Strauss
L.
Rabinowitz
J.C.
Formyl-methenyl-methylenetetrahydrofolate synthetase-(combined). An ovine protein with multiple catalytic activities.
J. Biol. Chem
 .
251
,
5104
5111
.
[162]
Dev
I.K.
Harvey
R.J.
(
1978
)
A complex of N5,N10-methylenetetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Eschericha coli
J. Biol. Chem.
 ,
253
,
4245
4253
.
[163]
Clark
J.E.
Ljungdahl
L.G.
(
1984
)
Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum
J. Biol. Chem.
 ,
259
,
10845
10849
.
[164]
Vanoni
M.A.
Matthews
R.G.
(
1984
)
Methylene tetrahydrofolate reductase — an imperfect enzyme
In
Flavins and Flavoproteins
  (
Bray
R.C.
Engel
P.C.
Mayhew
S.G.
, Eds) pp
497
500
Walter de Gruyter
,
Berlin
.
[165]
Taylor
R.T.
(
1982
)
B12 dependent methionine biosynthesis
(
Dolphin
D.
, Ed) vol.
2
, In
Vitamin B12
 , pp
307
355
Academic Press
,
New York
.
[166]
Hu
S.I.
Pezacka
E.
Wood
H.G.
(
1984
)
Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein
,
J. Biol. Chem.
 ,
259
,
8892
8897
.
[167]
Welty
F.K.
Wood
H.G.
(
1978
)
Purification of the ‘corrinoid’ enzyme involved in the synthesis of acetate by Clostridium thermoaceticum
J. Biol. Chem.
 ,
253
,
5832
5838
.
[168]
Ljungdahl
L.G.
LeGall
J.
Lee
J.P.
(
1973
)
Isolation of a protein containing tightly bound 5-methoxy-benzimidazol-cobamide (factor IIIm) from Clostridium thermoaceticum
Biochemistry
 ,
12
,
1802
1808
.
[169]
Kräutler
B.
(
1984
)
Acetyl cobalamin from photoinduced carbonylation of methyl-cobalamin
Helv. Chim. Acta
 ,
67
,
1053
1059
.
[170]
Conrad
R.
Thauer
R.K.
(
1983
)
Carbon monoxide production by Methanobacterium thermoautotrophicum
FEMS Microbiol. Lett.
 ,
20
,
229
232
.
[171]
Diekert
G.
Hansch
M.
Conrad
R.
(
1984
)
Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate
Arch. Microbiol.
 ,
138
,
224
228
.
[172]
Eikmanns
B.
Fuchs
G.
Thauer
R.K.
(
1985
)
Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum
Eur. J. Biochem.
 ,
146
,
149
154
.
[173]
Diekert
G.
Schrader
E.
Harder
W.
(
1986
)
Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii
Arch. Microbiol.
 , in press.
[174]
Pezacka
E.
Wood
H.G.
(
1984
)
Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria
,
81
, In
Proc. Natl. Acad. Sci. USA
 , pp
6261
6265
.
[175]
Diekert
G.
Ritter
M.
(
1983
)
Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum
FEBS Lett.
 ,
151
,
41
.
[176]
Ragsdale
S.W.
Clark
J.E.
Ljungdahl
L.G.
Lundie
L.L.
Drake
H.L.
(
1983
)
Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein
J. Biol. Chem.
 ,
258
,
2364
2369
.
[177]
Ragsdale
S.W.
Ljungdahl
L.G.
DerVartanian
D.V.
(
1983
)
Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme
J. Bacteriol.
 ,
155
,
1224
1237
.
[178]
Hammel
K.E.
Cornwell
K.L.
Diekert
G.B.
Thauer
R.K.
(
1984
)
Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus
J. Bacteriol.
 ,
157
,
975
978
.
[179]
Krzycki
J.A.
Zeikus
J.G.
(
1984
)
Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri
J. Bacteriol.
 ,
158
,
231
237
.
[180]
Meyer
O.
Fiebig
K.
(
1985
)
Enzymes oxidizing carbon monoxide
In
Gas Enzymology
  (
Degn
et-al, pp
147
168
D. Reidel
,
Dordrecht, The Netherlands
.
[181]
Diekert
G.
Thauer
R.K.
(
1980
)
The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum
FEMS Microbiol. Lett.
 ,
7
,
187
189
.
[182]
Drake
H.L.
(
1982
)
Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum
J. Bacteriol.
 ,
149
,
561
566
.
[183]
Diekert
G.
Ritter
M.
(
1982
)
Nickel requirement of Acetobacterium woodii
J. Bacteriol.
 ,
151
,
1043
1045
.
[184]
Ragsdale
S.W.
Ljungdahl
L.G.
DerVartanian
D.V.
(
1982
)
EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum
Biochem. Biophys. Res. Commun.
 ,
108
,
658
663
.
[185]
Ragsdale
S.W.
Ljungdahl
L.G.
DerVartanian
D.V.
(
1983
)
13C and 61Ni isotope substitutions confirm the presence of a nickel(III)-carbon species in acetogenic CO dehydrogenases
Biochem. Biophys. Res. Commun.
 ,
115
,
658
665
.
[186]
Thauer
R.K.
(
1985
)
Nickelenzyme im Stoffwechsel von methanogenen Bakterien
Biol. Chem. Hoppe-Seyler
 ,
366
,
103
112
.
[187]
Ragsdale
S.W.
Wood
H.G.
Antholine
W.E.
(
1985
)
Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum
,
82
, In
Proc. Natl. Acad. Sci. USA
 , pp
6811
6814
.
[188]
Pezacka
E.
Wood
H.G.
(
1984
)
The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate
Arch. Microbiol.
 ,
137
,
63
69
.
[189]
Stupperich
E.
Hammel
K.E.
Fuchs
G.
Thauer
R.K.
(
1983
)
Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium
FEBS Lett.
 ,
152
,
21
23
.
[190]
Stupperich
E.
Fuchs
G.
(
1983
)
Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium
FEBS Lett.
 ,
156
,
345
348
.
[191]
Stupperich
E.
Fuchs
G.
(
1984
)
Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum, I. Properties of in vitro system
Arch. Microbiol.
 ,
139
,
8
13
.
[192]
Stupperich
E.
Fuchs
G.
(
1984
)
Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum, II. Evidence for different origins of acetate carbon atoms
Arch. Microbiol.
 ,
139
,
14
20
.
[193]
Diekert
G.
Ritter
M.
(
1983
)
Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and CO2
FEMS Microbiol. Lett.
 ,
17
,
299
302
.
[194]
Kerby
R.
Niemczura
W.
Zeikus
J.G.
(
1983
)
Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13Cnuclear magnetic resonance measurement
J. Bacteriol.
 ,
155
,
1208
1218
.
[195]
Jansen
K.
Thauer
R.K.
Widdel
F.
Fuchs
G.
(
1984
)
Carbon assimilation pathways in sulfate-reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii
,
Arch. Microbiol.
 ,
138
,
257
262
.
[196]
Jansen
K.
Fuchs
G.
Thauer
R.K.
(
1985
)
Autotrophic CO2 fixation by Desulfovibrio baarsii: demonstration of enzyme activities characteristic for the acetyl-CoA pathway
FEMS Microbiol. Lett.
 ,
28
,
311
315
.
[197]
Pezacka
E.
Wood
H.G.
(
1986
)
The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase
,
J. Biol. Chem.
 ,
261
,
1609
1615
.
[198]
Holder
U.
Schmidt
D.E.
Stupperich
E.
Fuchs
G.
(
1985
)
Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum, III. Evidence for common one-carbon precursor pool and the role of corrinoid
,
Arch. Microbiol.
 ,
141
,
229
238
.
[199]
Stupperich
E.
Steiner
I.
Rühlemann
M.
(
1986
)
Isolation and analysis of bacterial cobamides by high-performance liquid chromatography
Anal. Biochem.
 , in press.
[200]
Yang
S.S.
Ljungdahl
L.G.
LeGall
J.
(
1977
)
A four-iron, four-sulfide ferredoxin with high thermostability from Clostridium thermoaceticum
J. Bacteriol.
 ,
130
,
1084
1090
.
[201]
Elliott
J.I.
Yang
S.S.
Ljungdahl
L.G.
Travis
J.
Reilly
C.F.
(
1982
)
Complete amino acid sequence of the 4Fe–4S, thermostable ferredoxin from Clostridium thermoaceticum
Biochemistry
 ,
21
,
3294
3298
.
[202]
Elliott
J.I.
Ljungdahl
L.G.
(
1982
)
Isolation and characterization of an Fe8-S8 ferredoxin (ferredoxin II) from Clostridium thermoaceticum
J. Bacteriol.
 ,
151
,
328
333
.
[203]
Ragsdale
S.W.
Ljungdahl
L.G.
(
1984
)
Characterization of ferredoxin, and rubredoxin from Clostridium formicoaceticum grown in media with high and low iron contents
J. Bacteriol.
 ,
157
,
1
6
.
[204]
Yang
S.S.
Ljungdahl
L.G.
(
1980
)
Isolation and characterization of two rubredoxins from Clostridium thermoaceticum
Biochim. Biophys. Acta
 ,
590
,
24
33
.
[205]
Gottwald
M.
Andreesen
J.R.
LeGall
J.
Ljungdahl
L.G.
(
1975
)
Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum
J. Bacteriol.
 ,
122
,
325
328
.
[206]
Jungermann
K.
Thauer
R.K.
Leimenstoll
G.
Decker
K.
(
1973
)
Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia
Biochim. Biophys. Acta
 ,
305
,
268
280
.
[207]
Schulz
H.
Fuchs
G.
(
1986
)
Cobamide-containing membrane protein complex in Methanobacterium
FEBS Lett.
 ,
198
,
279
283
.
[208]
Savéant
J.M.
de Tacconi
N.
Lexa
D.
Zickler
J.
(
1979
)
Electrochemistry of vitamin B12. Equilibria, kinetics and mechanisms in the B12a-B12r-B12s oxidoreduction
In
Vitamin B12
  (
Zagalak
B.
Friedrich
W.
, Eds) pp
203
212
Walter de Gruyter
,
Berlin and New York
.
[209]
Lexa
D.
Savéant
J.M.
Soufflet
J.P.
(
1979
)
Electrochemistry of vitamin B12. Alkyl cobalamins and cobinamides
In
Vitamin B12
  (
Zagalak
B.
Friedrich
W.
, Eds) pp
213
216
Walter de Gruyter
,
Berlin and New York
.
[210]
Wolfe
R.S.
(
1985
)
Unusual coenzymes of methanogenesis
Trends Biochem. Sci.
 ,
10
,
396
399
.
[211]
Leigh
J.A.
Rinehart
K.L.
Wolfe
R.S.
(
1984
)
Structure of methanofuran, the carbon dioxide reduction factor of Methanobacterium thermoautotrophicum
J. Am. Chem. Soc.
 ,
106
,
3636
3640
.
[212]
Leigh
J.A.
Rinehard
K.L.
Jr.
Wolfe
R.S.
(
1985
)
Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium
Biochemsitry
 ,
24
,
995
999
.
[213]
van Beelen
P.
Stassen
A.P.M.
Bosch
J.W.G.
Vogels
G.D.
Guijt
W.
Haasnoot
C.A.G.
(
1984
)
Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear magnetic-resonance techniques
Eur. J. Biochem.
 ,
138
,
563
571
.
[214]
van Beelen
P.
de Cock
R.M.
Guijt
W.
Haasnoot
C.A.G.
Vogels
G.D.
(
1984
)
Isolation and identification of 5,10-methenyl-5,6,7,8-tetrahydromethanopterin, a coenzyme involved in methanogenesis
FEMS Microbiol. Lett.
 ,
21
,
159
163
.
[215]
Taylor
C.D.
Wolfe
R.S.
(
1974
)
Structure and methylation of coenzyme M (HSCH2CH2SO3)
J. Biol. Chem.
 ,
249
,
4879
4885
.
[216]
Stouthamer
A.H.
(
1979
)
The search for correlation between theoretical and experimental growth yields
(
Quayle
J.R.
, Ed) vol.
21
, In
International Review of Biochemistry
 , pp
1
47
University Park Press
,
Baltimore
.
[217]
Riebeling
V.
Thauer
R.K.
Jungermann
K.
(
1975
)
The internal alkaline pH-gradient sensitive to uncoupler and ATPase inhibitor in growing Clostridium pasteurianum
Eur. J. Biochem.
 ,
55
,
445
453
.
[218]
Menzel
U.
Gottschalk
G.
(
1985
)
The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid
Arch. Microbiol.
 ,
143
,
47
51
.
[219]
Konings
W.N.
(
1985
)
Generation of metabolic energy by end-product efflux
Trends Biochem. Sci.
 ,
10
,
317
319
.
[220]
Mitchell
P.
(
1972
)
Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge
Bioenergetics
 ,
3
,
5
24
.
[221]
Dorn
M.
Andreesen
J.R.
Gottschalk
G.
(
1978
)
Fermentation of fumarate and L-malate by Clostridium formicoaceticum
J. Bacteriol.
 ,
133
,
26
32
.
[222]
Dorn
M.
Andreesen
J.R.
Gottschalk
G.
(
1978
)
Fumarate reductase of Clostridium formicoaceticum
Arch. Microbiol.
 ,
119
,
7
11
.
[223]
Tschech
A.
Pfennig
N.
(
1984
)
Growth yield increase linked to caffeate reduction in Acetobacterium woodii
Arch. Microbiol.
 ,
137
,
163
167
.
[224]
Kröger
A.
(
1980
)
Bacterial electron transport to fumarate
(
Knowles
C.J.
, Ed)
vol. II
, In
Diversity of Bacterial Respiratory Systems
 , pp
1
17
CRC Press
,
Boca Raton, FL
.
[225]
Eikmanns
B.
Thauer
R.K.
(
1984
)
Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate
Arch. Microbiol.
 ,
138
,
365
370
.
[226]
Hirsch
P.
(
1968
)
Photosynthetic bacterium growing under carbon monoxide
Nature
 ,
217
,
555
556
.
[227]
Uffen
R.L.
(
1976
)
Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate
,
73
, In
Proc. Natl. Acad. Sci. USA
 , pp
3298
3302
.
[228]
Uffen
R.L.
(
1981
)
Metabolism of carbon monoxide
Enz. Microb. Technol.
 ,
3
,
197
206
.
[229]
Uffen
R.L.
(
1983
)
Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system
J. Bacteriol.
 ,
155
,
956
965
.
[230]
Wakim
B.T.
Uffen
R.L.
(
1983
)
Membrane association of the carbon monoxide oxidation system in Rhodopseudomonas gelatinosa
J. Bacteriol.
 ,
153
,
571
573
.
[231]
Brandis-Heep
A.
Gebhardt
N.A.
Thauer
R.K.
Widdel
F.
Pfennig
N.
(
1983
)
Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei, 1. Demonstration of all enzymes required for the operation of the citric acid cycle
Arch. Microbiol.
 ,
136
,
222
229
.
[232]
Gebhardt
N.A.
Linder
D.
Thauer
R.K.
(
1983
)
Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei, 2. Evidence from 14C-labelling studies for the operation of the citric acid cycle
Arch. Microbiol.
 ,
136
,
230
233
.
[233]
Gebhardt
N.A.
Thauer
R.K.
Linder
D.
Kaulfers
P.M.
Pfennig
N.
(
1985
)
Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans
Arch. Microbiol.
 ,
141
,
392
398
.
[234]
Paulsen
J.
Kröger
A.
Thauer
R.K.
(
1986
)
ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans
Arch. Microbiol.
 ,
144
,
78
83
.
[235]
Meile
L.
Kiener
A.
Leisinger
T.
(
1983
)
A plasmid in the archaebacterium Methanobacterium thermoautotrophicum
Mol. Gen. Genet.
 ,
191
,
480
484
.
[236]
Thomm
M.
Altenbuchner
J.
Stetter
K.O.
(
1983
)
Evidence for a plasmid in a methanogenic bacterium
J. Bacteriol.
 ,
153
,
1060
1062
.
[237]
Stackebrandt
E.
Woese
C.R.
(
1981
)
The evolution of prokaryotes, In Molecular and Cellular Aspects of Microbial Evolution
(
Carlile
M.
Collins
J.F.
Moseley
B.
, Eds) In
Society for General Microbiology Symposium
 ,
32
, pp
1
31
Cambridge University Press
.
[238]
In
Evolution of Prokaryotes
  (
1985
)
Schleifer
K.H.
Stackebrandt
E.
, Eds)
Academic Press
,
New York
.
[239]
Mitchell
G.J.
Jones
J.G.
Cole
J.A.
(
1986
)
Distribution and regulation of nitrate and nitrate reduction by Desulfovibrio and Desulfotomaculum species
Arch. Microbiol.
 ,
144
,
35
40
.
[240]
Oyaizu
H.
Woese
C.R.
(
1985
)
Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria
Syst. Appl. Microbiol.
 ,
6
,
257
263
.
[241]
Zinder
S.H.
Koch
M.
(
1984
)
Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture
Arch. Microbiol.
 ,
138
,
263
272
.
[242]
Henson
J.M.
Smith
P.H.
(
1985
)
Isolation of a butyrate-utilizing bacterium in coculture with Methanobacterium thermoautotrophicum from a thermophilic digester
Appl. Environ. Microbiol.
 ,
49
,
1461
1466
.
[243]
Phelps
T.J.
Conrad
R.
Zeikus
J.G.
(
1985
)
Sulfate-dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol
Appl. Environ. microbiol.
 ,
50
,
589
594
.
[244]
Blaut
M.
Müller
V.
Fiebig
K.
Gottschalk
G.
(
1985
)
Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde
J. Bacteriol.
 ,
164
,
95
101
.
[245]
Huser
B.A.
Wuhrmann
K.
Zehnder
A.J.B.
(
1982
)
Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium
Arch. Microbiol.
 ,
132
,
1
9
.
[246]
Kohler
H.P.E.
Zehnder
A.J.B.
(
1984
)
Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soehngenii
FEMS Microbiol. Lett.
 ,
21
,
287
292
.
[247]
Smith
M.R.
Mah
R.A.
(
1980
)
Acetate as sole carbon and energy source for growth of Methanosarcina strain 227
Appl. Environ. Microbiol.
 ,
39
,
993
999
.
[248]
Mah
R.A.
Smith
M.R.
Ferguson
T.
Zinder
S.
(
1981
) In
Microbial Growth on C1 Compounds
 
Methanogenesis from H2-CO2, methanol, and acetate by Methanosarcina
Dalton
H.
, Ed) pp
131
142
Heyden
,
London
.
[249]
Blaut
M.
Gottschalk
G.
(
1982
)
Effect of trimethylamine on acetate utilization by Methanosarcina barkeri
Arch. Microbiol.
 ,
133
,
230
235
.
[250]
Krzycki
J.A.
Wolkin
R.H.
Zeikus
J.G.
(
1982
)
Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri
J. Bacteriol.
 ,
149
,
247
254
.
[251]
Kenealy
W.R.
Zeikus
J.G.
(
1982
)
One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri
J. Bacteriol.
 ,
151
,
932
941
.
[252]
Eikmanns
B.
Thauer
R.K.
(
1985
)
Evidence for the involvement and role of corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri
Arch. Microbiol.
 ,
142
,
175
179
.
[253]
Lovley
D.R.
White
R.H.
Ferry
J.G.
(
1984
)
Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina sp.
J. Bacteriol.
 ,
160
,
521
525
.
[254]
Vogels
G.D.
Visser
C.M.
(
1983
)
Interconnection of methanogenic and acetogenic pathways
FEMS Microbiol. Lett.
 ,
20
,
291
297
.
[255]
Eden
G.
Fuchs
G.
(
1982
)
Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii
Arch. Microbiol.
 ,
133
,
66
74
.
[256]
Eden
G.
Fuchs
G.
(
1983
)
Autotrophic CO2 fixation in Acetobacterium woodii, II. Demonstration of enzymes involved
Arch. Microbiol.
 ,
135
,
68
73
.
[257]
vander Meijden
P.
TeBrömmelstroet
B.W.
Poirot
C.M.
vander Drift
C.
Vogels
G.D.
(
1984
)
Purification and properties of methanol:5-hydroxybenzimidazolyl-cobamide methyltransferase from Methanosarcina barkeri
J. Bacteriol.
 ,
160
,
629
635
.
[258]
vander Meijden
P.
(
1984
)
Methanol conversion by methanogenic and acetogenic bacteria
, In
Thesis
 
University of Nijmegen
,
The Netherlands
.
[259]
vander Meijden
P.
vander Drift
C.
Vogels
G.D.
(
1985
)
Methanol conversion in methanogenic and acetogenic bacteria. Antonie van Leeuwenhoek
,
J. Microbiol. Serol.
 ,
51
,
454
.
[260]
Braun
M.
Stolp
H.
(
1985
)
Degradation of methanol by a sulfate-reducing bacterium
Arch. Microbiol.
 ,
142
,
77
80
.
[261]
Bott
M.H.
Eikmanns
B.
Thauer
R.K.
(
1985
)
Defective formation and/or utilization of carbon monoxide in H2CO2 fermenting methanogens dependent on acetate as carbon source
Arch. Microbiol.
 ,
143
,
266
269
.
[262]
Postgate
J.R.
(
1969
)
Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria
J. Gen. Microbiol.
 ,
57
,
293
302
.
[263]
Fuchs
G.
Stupperich
E.
(
1985
)
Evolution of autotrophic CO2 fixation
In
Evolution of Prokaryotes
  (
Schleifer
K.H.
Stackebrandt
E.
, Eds) pp
235
251
Academic Press
,
London
.
[264]
Meyer
O.
Jacobitz
S.
Krüger
B.
(
1986
)
Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria
FEMS Microbiol. Rev.
 ,
39
,
161
179
.