Abstract

Cyanobacterial extracellular polymeric substances (EPS) are mainly composed of high-molecular-mass heteropolysaccharides, with variable composition and roles according to the microorganism and the environmental conditions. The number of constituents – both saccharidic and nonsaccharidic – and the complexity of structures give rise to speculations on how intricate their biosynthetic pathways could be, and how many genes may be involved in their production. However, little is known regarding the cyanobacterial EPS biosynthetic pathways and regulating factors. This review organizes available information on cyanobacterial EPS, including their composition, function and factors affecting their synthesis, and from the in silico analysis of available cyanobacterial genome sequences, proposes a putative mechanism for their biosynthesis.

Introduction

A wide range of bacteria are able to synthesize and secrete extracellular polymeric substances (EPS) (Neu & Marshall, 1990), mainly of polysaccharidic nature, which can remain covalently linked or loosely attached to the cell surface, or be released into the surrounding environment (De Philippis & Vincenzini, 2003). These exopolysaccharides can be divided into two groups: homopolysaccharides and heteropolysaccharides (Sutherland et al., 2001). The homopolysaccharides are composed of only one type of monosaccharide, and are synthesized from sucrose by the action of a sucrase. The heteropolysaccharides consist of high-molecular-mass hydrated molecules made up of different sugar residues, and are synthesized by the combined action of different types of glycosyltransferases (De Vuyst & Degeest, 1999; De Vuyst et al., 2001; Van Hijum et al., 2006; Arskold et al., 2007). These complex polymers can also contain acetylated amino sugar moieties, as well as noncarbohydrate constituents such as phosphate, lactate, acetate and glycerol (De Vuyst & Degeest, 1999; De Vuyst et al., 2001; Ruas-Madiedo et al., 2002; Girard & Schaffer-Lequart, 2007). The composition of the bacterial EPS varies with the type of microorganism (Vaningelgem et al., 2004; Panhota et al., 2007), nutrient availability (De Vuyst & Degeest, 1999; Ricciardi et al., 2002), growth phase and environmental conditions (Fischer et al., 2003; Bahat-Samet et al., 2004). However, the mechanisms involved in the synthesis of EPS seem to be relatively conserved for Gram-negative and Gram-positive bacteria (De Vuyst et al., 2001; Jolly & Stingele, 2001; Laws et al., 2001; Sutherland, 2001; Welman & Maddox, 2003; Whitfield et al., 2006). In terms of biotechnological applications, bacterial EPS are a good alternative to the polysaccharides of plant and algal origin due to the higher growth rates of the producing bacteria, the reproducible physicochemical properties of their EPS, the easier manipulation of these properties by genetically engineering the producing microorganisms, the presence of novel functionalities and the overall economical costs of producing them (Selbmann et al., 2002; Parikh & Madamwar, 2006). This versatility could be useful in a wide range of applications in many industrial sectors such as textiles, detergents, adhesives, oil recovery, wastewater treatment, dredging, brewing, downstream processing, cosmetology, pharmacology and food additives.

Cyanobacteria are a large and widespread group of photoautotrophic microorganisms that combine the ability to perform oxygenic photosynthesis (similar to that of the chloroplasts) with typical prokaryotic features (Whitton & Potts, 2000). Certain strains also have the ability to fix atmospheric dinitrogen, thus displaying the simplest nutritional requirements (Fay, 1992; Bergman et al., 1997). They possess a unique cell wall that combines the presence of an outer membrane and lipopolysaccharides, as in Gram-negative bacteria, with a thick and highly cross-linked peptidoglycan layer similar to Gram-positive bacteria (Hoiczyck & Hansel, 2000; Stewart et al., 2006). Moreover, many cyanobacterial strains have polysaccharidic structures surrounding their cells (De Philippis & Vincenzini, 2003). However, a lack of information regarding both the genes encoding the proteins involved in the EPS biosynthetic pathways, and the factors controlling these processes strongly limits their potential for biotechnological applications (Morvan et al., 1997; Otero & Vincenzini, 2003; Potts, 2004).

The aim of this review is to summarize the current knowledge on the composition and the macromolecular characteristics of the cyanobacterial exopolysaccharides. We consider their ecological role and the factors that may affect their synthesis, as well as analyze the available genome sequences to gather information on the genes encoding products putatively involved in the production of EPS in cyanobacteria.

Composition and macromolecular characteristics of cyanobacterial exopolysaccharides

The cyanobacterial EPS can be divided in two main groups: the ones associated with the cell surface and the polysaccharides released into the surrounding environment (released polysaccharides, RPS). The EPS associated with the cell surface can be referred to as sheaths, capsules and slimes, according to their thickness, consistency and appearance (De Philippis & Vincenzini, 1998, 2003). The sheath is defined as a thin, dense layer loosely surrounding cells or cell groups usually visible in light microscopy without staining. The capsule generally consists of a thick and slimy layer intimately associated with the cell surface with sharp outlines, which is structurally coherent, excluding particles (e.g. India ink). The slime refers to the mucilaginous material dispersed around the organism but not reflecting the shape of the cells. The RPS are soluble aliquots of polysaccharidic material released into the medium, either from the external layer(s) or derived from a biosynthetic process not directly related to the synthesis of EPS. Despite some evidence, this last point is still controversial. Differences in the sulphur content and in the monosaccharidic composition reported for the sheath and RPS of some cyanobacteria strongly support the hypothesis of different biosynthetic pathways (Tease et al., 1991; Ortega-Calvo & Stal, 1994; Li et al., 2002; Micheletti et al., 2008b). However, further studies are needed to fully elucidate these pathways in cyanobacteria.

The RPS can be easily recovered from liquid cultures and, due to their physicochemical properties, are suitable for a variety of industrial applications, making cyanobacteria one of the most attractive sources of new polymers (De Philippis & Vincenzini, 1998, 2003). The available data on the monosaccharidic composition of cyanobacterial EPS (Table 1) reveal some peculiar features of these polymers when compared with those produced by other microorganisms, such as the presence of one or two uronic acids, constituents rarely found in the EPS produced by other microbial groups. Cyanobacterial EPS also contain sulphate groups, a feature unique among bacteria, but shared by the EPS produced by archaea and eukaryotes. Both the sulphate groups and the uronic acids contribute to the anionic nature of the EPS, conferring a negative charge and a ‘sticky’ behaviour to the overall macromolecule (Decho, 1990; Sutherland, 1994; Leppard et al., 1996; Arias et al., 2003; De Philippis & Vincenzini, 2003; Mancuso Nichols et al., 2005). The anionic charge is an important characteristic for the affinity of these EPS towards cations, notably metal ions. However, the ability to chelate metal ions is related not only to the amount of charged groups but also to their distribution on the macromolecules and their accessibility (Brown & Lester, 1982; De Philippis et al., 2000; Mancuso Nichols et al., 2005; Micheletti et al., 2008b). On the other hand, many cyanobacterial EPS are also characterized by a significant level of hydrophobicity, which is due to the presence of ester-linked acetyl groups (up to 12% of EPS dry weight), peptidic moieties and deoxysugars such as fucose and rhamnose (Table 1). The presence of these hydrophobic groups contributes significantly to the emulsifying properties of the polysaccharides, which would otherwise be highly hydrophilic, and it is also essential for determining their rheological properties (Neu et al., 1992; Shepherd et al., 1995).

Table 1a

Main constituents of EPS produced by unicellular cyanobacteria

Unicellular organisms Ecological origin No. of monosaccharides Wt/EPS dry weight (%) References 
Uronic acids Deoxysugars Sulphate Pyruvate Acetate Peptides 
Aphanocapsa halophytia MN-11 Saline lake, Japan 52.4 11.9   10.3 Sudo et al. (1995) 
Aphanothece halophytica GR02 Saltworks, China 14.1 27.8   Li et al. (2001) 
Aphanothece sacrum (Sur.) Okada Freshwater spring, Japan      Kabata et al. (2005) 
Chroococcus minutus B 41.79 Water reservoir, India 14 4.2 17.1    3.2 Fischer et al. (1997) 
Chroococcus submarinus Brackish ponds, French Polynesia 10 10 24.4 14   14 Richert et al. (2005) 
Cyanothece 16Som2 Saltworks, Somalia 20.6 8.2  De Philippis & Vincenzini (1998) 
Cyanothece CA3 Hypersaline ponds, Italy 66.8 23.2 2.7 0.6  De Philippis & Vincenzini (1998) 
Cyanothece CE4 Saltworks, Italy 80.1 36.6 0.4 0.7  De Philippis & Vincenzini (1998) 
Cyanothece CE9 Saltworks, Italy 35.7 33.5 1.2 0.0  De Philippis & Vincenzini (1998) 
Cyanothece CH1 Saltworks, Greece 27.4 39.4 0.5  De Philippis & Vincenzini (1998) 
Cyanothece ET2 Alkaline lake, Ethiopia 63.1 21.5 2.3 4.2  De Philippis & Vincenzini (1998) 
Cyanothece ET5 Alkaline lake, Ethiopia 29.4 22.3 0.4 2.5  De Philippis & Vincenzini (1998) 
Cyanothece IR20 Hypersaline lake, Israel 9.8 80.2 2.1 0.8  De Philippis & Vincenzini (1998) 
Cyanothece PE13 Tidal pool, Greece 20.9 8.9 2.1  De Philippis & Vincenzini (1998) 
Cyanothece PE14 Tidal pool, Greece 21.7 4.4 0.2 0.3  De Philippis & Vincenzini (1998) 
Cyanothece sp. ATCC 51142 Intertidal area, Texas   18.3 Parikh & Madamwar (2006) 
Cyanothece sp. 113 Sea, China    Chi et al. (2007) 
Cyanothece sp. PCC 8801 Rice fields, Taiwan 35 33.3  0.5 1.4  De Philippis & Vincenzini (1998) 
Cyanothece TI4 Hypersaline pond, Italy 58.2 39.9 1.4  De Philippis & Vincenzini (1998) 
Cyanothece TP10 Saltworks, Italy 31.3 42.7 3.9   De Philippis & Vincenzini (1998) 
Cyanothece TP5 Saltworks, Italy 40.4 57.5 1.1  De Philippis & Vincenzini (1998) 
Cyanothece VI13 Tidal pool, Italy 32.1 37.2 0.3  De Philippis & Vincenzini (1998) 
Cyanothece VI22 Tidal pool, Italy 40.8 31.7 0.2 0.6  De Philippis & Vincenzini (1998) 
Gloeocapsa gelatinosa Unknown 10 31.4 14.2    28.2 Raungsomboon et al. (2006) 
Gloeothece sp. PCC 6909 Unknown 13.8   6.2 Tease et al. (1991) 
Johannesbaptistia pellucida Brackish ponds, French Polynesia 7.6 19   10 Richert et al. (2005) 
Microcystis aeruginosa Water reservoir, Brazil 8.9 28.3     Gouvea et al. (2005) 
Microcystis aeruginosa f. aeruginosa Unknown 5.2 μg mg−1 64.6     Forni et al. (1997) 
Microcystis aeruginosa f. flos-aquae Unknown 2.6 μg mg−1     Forni et al. (1997) 
Microcystis flos-aquae C3-40 Unknown 83 5.5    <1 Plude et al. (1991) 
Microcystis PCC 7005 Lake, Wisconsin 0.05 μg mg−1 15.7     Forni et al. (1997) 
Microcystis PCC 7941 Lake, Canada 0.04 μg mg−1 tr     Forni et al. (1997) 
Microcystis sp. Water reservoir, Taiwan     Huang et al. (2007) 
Microcystis viridis Unknown 5.8 μg mg−1 7.3     Forni et al. (1997) 
Microcystis wesenbergii Unknown 100     Forni et al. (1997) 
Rhabdoderma rubrum Brackish ponds, French Polynesia 8.7 13   Richert et al. (2005) 
Synechococcus elongatus f. A. nidulans Lake, Ohio     Sangar & Dugan (1972) 
Synechocystis sp. PCC 6714 Freshwater, California 11 16.7 31.4 1.2  20 Panoff et al. (1988) 
Synechocystis sp. PCC 6803 Freshwater, California 12 16.4 6.7 1.0  40 Panoff et al. (1988) 
Unicellular organisms Ecological origin No. of monosaccharides Wt/EPS dry weight (%) References 
Uronic acids Deoxysugars Sulphate Pyruvate Acetate Peptides 
Aphanocapsa halophytia MN-11 Saline lake, Japan 52.4 11.9   10.3 Sudo et al. (1995) 
Aphanothece halophytica GR02 Saltworks, China 14.1 27.8   Li et al. (2001) 
Aphanothece sacrum (Sur.) Okada Freshwater spring, Japan      Kabata et al. (2005) 
Chroococcus minutus B 41.79 Water reservoir, India 14 4.2 17.1    3.2 Fischer et al. (1997) 
Chroococcus submarinus Brackish ponds, French Polynesia 10 10 24.4 14   14 Richert et al. (2005) 
Cyanothece 16Som2 Saltworks, Somalia 20.6 8.2  De Philippis & Vincenzini (1998) 
Cyanothece CA3 Hypersaline ponds, Italy 66.8 23.2 2.7 0.6  De Philippis & Vincenzini (1998) 
Cyanothece CE4 Saltworks, Italy 80.1 36.6 0.4 0.7  De Philippis & Vincenzini (1998) 
Cyanothece CE9 Saltworks, Italy 35.7 33.5 1.2 0.0  De Philippis & Vincenzini (1998) 
Cyanothece CH1 Saltworks, Greece 27.4 39.4 0.5  De Philippis & Vincenzini (1998) 
Cyanothece ET2 Alkaline lake, Ethiopia 63.1 21.5 2.3 4.2  De Philippis & Vincenzini (1998) 
Cyanothece ET5 Alkaline lake, Ethiopia 29.4 22.3 0.4 2.5  De Philippis & Vincenzini (1998) 
Cyanothece IR20 Hypersaline lake, Israel 9.8 80.2 2.1 0.8  De Philippis & Vincenzini (1998) 
Cyanothece PE13 Tidal pool, Greece 20.9 8.9 2.1  De Philippis & Vincenzini (1998) 
Cyanothece PE14 Tidal pool, Greece 21.7 4.4 0.2 0.3  De Philippis & Vincenzini (1998) 
Cyanothece sp. ATCC 51142 Intertidal area, Texas   18.3 Parikh & Madamwar (2006) 
Cyanothece sp. 113 Sea, China    Chi et al. (2007) 
Cyanothece sp. PCC 8801 Rice fields, Taiwan 35 33.3  0.5 1.4  De Philippis & Vincenzini (1998) 
Cyanothece TI4 Hypersaline pond, Italy 58.2 39.9 1.4  De Philippis & Vincenzini (1998) 
Cyanothece TP10 Saltworks, Italy 31.3 42.7 3.9   De Philippis & Vincenzini (1998) 
Cyanothece TP5 Saltworks, Italy 40.4 57.5 1.1  De Philippis & Vincenzini (1998) 
Cyanothece VI13 Tidal pool, Italy 32.1 37.2 0.3  De Philippis & Vincenzini (1998) 
Cyanothece VI22 Tidal pool, Italy 40.8 31.7 0.2 0.6  De Philippis & Vincenzini (1998) 
Gloeocapsa gelatinosa Unknown 10 31.4 14.2    28.2 Raungsomboon et al. (2006) 
Gloeothece sp. PCC 6909 Unknown 13.8   6.2 Tease et al. (1991) 
Johannesbaptistia pellucida Brackish ponds, French Polynesia 7.6 19   10 Richert et al. (2005) 
Microcystis aeruginosa Water reservoir, Brazil 8.9 28.3     Gouvea et al. (2005) 
Microcystis aeruginosa f. aeruginosa Unknown 5.2 μg mg−1 64.6     Forni et al. (1997) 
Microcystis aeruginosa f. flos-aquae Unknown 2.6 μg mg−1     Forni et al. (1997) 
Microcystis flos-aquae C3-40 Unknown 83 5.5    <1 Plude et al. (1991) 
Microcystis PCC 7005 Lake, Wisconsin 0.05 μg mg−1 15.7     Forni et al. (1997) 
Microcystis PCC 7941 Lake, Canada 0.04 μg mg−1 tr     Forni et al. (1997) 
Microcystis sp. Water reservoir, Taiwan     Huang et al. (2007) 
Microcystis viridis Unknown 5.8 μg mg−1 7.3     Forni et al. (1997) 
Microcystis wesenbergii Unknown 100     Forni et al. (1997) 
Rhabdoderma rubrum Brackish ponds, French Polynesia 8.7 13   Richert et al. (2005) 
Synechococcus elongatus f. A. nidulans Lake, Ohio     Sangar & Dugan (1972) 
Synechocystis sp. PCC 6714 Freshwater, California 11 16.7 31.4 1.2  20 Panoff et al. (1988) 
Synechocystis sp. PCC 6803 Freshwater, California 12 16.4 6.7 1.0  40 Panoff et al. (1988) 

The cyanobacteria are sourced from a culture collection unless specified otherwise.

*

Field sample.

Monocyanobacterial culture.

p, present, but not quantified; tr, trace.

Table 1b

Main constituents of EPS produced by filamentous cyanobacteria

Filamentous organisms Ecological origin No. of monosaccharides Wt/EPS dry weight (%) References 
Uronic acids Deoxysugars Sulphate Pyruvate Acetate Peptides 
Geitlerinema sp. Brackish ponds, French Polynesia tr   Richert et al. (2005) 
Leptolyngbya sp. VRUC 135 Domus Aurea, Italy     Piro et al. (2005) 
Lyngbya confervoides S9g Surface of Lithophyllum lichenoides, France 38.6 tr     Gloaguen et al. (1995) 
Microcoleus sp. Sand dunes, Israel    6.0 Mazor et al. (1996) 
Microcoleus vaginatus Desert algal crusts, China 10 9.9    50.3 Hu et al. (2003a) 
Oscillatoria amphibia PCC 7105 Unknown marine habitat 6.7 4.5 9.1    Gloaguen et al. (1995) 
Oscillatoria corallinae CJ1 Leaves of Posidonia Oceanica, France 24.2 5.1 19.3    Gloaguen et al. (1995) 
Oscillatoria sp. Microbial mats, Florida 10 4.6 15.9     Bender et al. (1994) 
Oscillatoria sp. Pantelleria Island, Italy     Nicolaus et al. (1999) 
Oscillatoria sp. Contaminated soil, India   34.4 Parikh & Madamwar (2006) 
Oscillatoria sp. Water reservoir, Taiwan     Huang et al. (2007) 
Phormidium ectocarpi ME3 Marine habitat 18.9 2.7 15.2    Gloaguen et al. (1995) 
Phormidium ectocarpi C86 Marine habitat 29.9 tr 12.2    Gloaguen et al. (1995) 
Phormidium ectocarpi K5 Marine habitat 28.7 1.8 12.4    Gloaguen et al. (1995) 
Phormidium ectocarpi N182 Marine habitat 28.7 tr 13.6    Gloaguen et al. (1995) 
Phormidium ectocarpi PCC7375 Marine plankton, Massachusetts 41.5 10.4     Gloaguen et al. (1995) 
Phormidium foveolarum unknown 17.4     Matulewicz et al. (1984) 
Phormidium foveolarum C52 Marine habitat 29.4 11.2    Gloaguen et al. (1995) 
Phormidium foveolarum MEU Freshwater 0.5 9.8 0.5    Gloaguen et al. (1995) 
Phormidium minutum D5 Marine habitat 17.1 0.9 4.5    Gloaguen et al. (1995) 
Phormidium minutum NB5 Marine habitat 24.4 tr     Gloaguen et al. (1995) 
Phormidium minutum RT6 Marine habitat 20.1 7.1 7.7    Gloaguen et al. (1995) 
Phormidium sp. Lake, Antarctica 24.5    13 Matulewicz et al. (1984) 
Phormidium sp. Unknown  5.8     Nicolaus et al. (1999) 
Phormidium sp. 90-14/1 Intertidal habitat, New Guinea 3.0 5.8    Gloaguen et al. (1995) 
Phormidium sp. CCAP1463/4 Phosphorescent bay, Massachusetts 13.0 6.7 3.5    Gloaguen et al. (1995) 
Phormidium sp. CCAP1464/3 Marine habitat 26.1 tr 4.4    Gloaguen et al. (1995) 
Phormidium sp. J-1 Benthic, drainage canal, Israel  34.0  1.65   4.4 Bar-Or & Shilo (1987) 
Phormidium sp. PNG91 Intertidal habitat, New Guinea tr 5.6 3.6    Gloaguen et al. (1995) 
Phormidium tenue Desert algal crusts, China tr 12.7    21.9 Hu et al. (2003a) 
Phormidium uncinatum Unknown <5    Hoiczyk et al. (1998) 
Plectonema battersii Brackish ponds, French Polynesia 11.1 16   11 Richert et al. (2005) 
Plectonema golenkinianum Brackish ponds, French Polynesia 11 20.4   19 Richert et al. (2005) 
Spirulina maxima China     Nie et al. (2002) 
Spirulina platensis China 20.0     Tseng & Zhao (1994) 
Spirulina platensis PCC 8005 Unknown 10 40 13.6    Filali Mouhim et al. (1993) 
Filamentous organisms Ecological origin No. of monosaccharides Wt/EPS dry weight (%) References 
Uronic acids Deoxysugars Sulphate Pyruvate Acetate Peptides 
Geitlerinema sp. Brackish ponds, French Polynesia tr   Richert et al. (2005) 
Leptolyngbya sp. VRUC 135 Domus Aurea, Italy     Piro et al. (2005) 
Lyngbya confervoides S9g Surface of Lithophyllum lichenoides, France 38.6 tr     Gloaguen et al. (1995) 
Microcoleus sp. Sand dunes, Israel    6.0 Mazor et al. (1996) 
Microcoleus vaginatus Desert algal crusts, China 10 9.9    50.3 Hu et al. (2003a) 
Oscillatoria amphibia PCC 7105 Unknown marine habitat 6.7 4.5 9.1    Gloaguen et al. (1995) 
Oscillatoria corallinae CJ1 Leaves of Posidonia Oceanica, France 24.2 5.1 19.3    Gloaguen et al. (1995) 
Oscillatoria sp. Microbial mats, Florida 10 4.6 15.9     Bender et al. (1994) 
Oscillatoria sp. Pantelleria Island, Italy     Nicolaus et al. (1999) 
Oscillatoria sp. Contaminated soil, India   34.4 Parikh & Madamwar (2006) 
Oscillatoria sp. Water reservoir, Taiwan     Huang et al. (2007) 
Phormidium ectocarpi ME3 Marine habitat 18.9 2.7 15.2    Gloaguen et al. (1995) 
Phormidium ectocarpi C86 Marine habitat 29.9 tr 12.2    Gloaguen et al. (1995) 
Phormidium ectocarpi K5 Marine habitat 28.7 1.8 12.4    Gloaguen et al. (1995) 
Phormidium ectocarpi N182 Marine habitat 28.7 tr 13.6    Gloaguen et al. (1995) 
Phormidium ectocarpi PCC7375 Marine plankton, Massachusetts 41.5 10.4     Gloaguen et al. (1995) 
Phormidium foveolarum unknown 17.4     Matulewicz et al. (1984) 
Phormidium foveolarum C52 Marine habitat 29.4 11.2    Gloaguen et al. (1995) 
Phormidium foveolarum MEU Freshwater 0.5 9.8 0.5    Gloaguen et al. (1995) 
Phormidium minutum D5 Marine habitat 17.1 0.9 4.5    Gloaguen et al. (1995) 
Phormidium minutum NB5 Marine habitat 24.4 tr     Gloaguen et al. (1995) 
Phormidium minutum RT6 Marine habitat 20.1 7.1 7.7    Gloaguen et al. (1995) 
Phormidium sp. Lake, Antarctica 24.5    13 Matulewicz et al. (1984) 
Phormidium sp. Unknown  5.8     Nicolaus et al. (1999) 
Phormidium sp. 90-14/1 Intertidal habitat, New Guinea 3.0 5.8    Gloaguen et al. (1995) 
Phormidium sp. CCAP1463/4 Phosphorescent bay, Massachusetts 13.0 6.7 3.5    Gloaguen et al. (1995) 
Phormidium sp. CCAP1464/3 Marine habitat 26.1 tr 4.4    Gloaguen et al. (1995) 
Phormidium sp. J-1 Benthic, drainage canal, Israel  34.0  1.65   4.4 Bar-Or & Shilo (1987) 
Phormidium sp. PNG91 Intertidal habitat, New Guinea tr 5.6 3.6    Gloaguen et al. (1995) 
Phormidium tenue Desert algal crusts, China tr 12.7    21.9 Hu et al. (2003a) 
Phormidium uncinatum Unknown <5    Hoiczyk et al. (1998) 
Plectonema battersii Brackish ponds, French Polynesia 11.1 16   11 Richert et al. (2005) 
Plectonema golenkinianum Brackish ponds, French Polynesia 11 20.4   19 Richert et al. (2005) 
Spirulina maxima China     Nie et al. (2002) 
Spirulina platensis China 20.0     Tseng & Zhao (1994) 
Spirulina platensis PCC 8005 Unknown 10 40 13.6    Filali Mouhim et al. (1993) 

The cyanobacteria are sourced from a culture collection unless specified otherwise.

*

Monocyanobacterial culture.

† Field sample.

p, present, but not quantified; tr, trace.

Table 1c

Main constituents of EPS produced by filamentous heterocystous cyanobacteria

Filamentous heterocystous organisms Ecological origin No. of monosaccharides Wt/EPS dry weight (%) References 
Uronic acids Deoxysugars Sulphate Pyruvate Acetate Peptides 
Anabaena cylindrica Unknown     Dunn & Wolk (1970) 
Anabaena cylindrica 10 C Unknown 1.7 10.1    Lama et al. (1996) 
Anabaena cylindrica CCAP1403/2 Freshwater pond, UK 28     Bishop et al. (1954) 
Anabaena flos-aquae Freshwater     Moore & Tischer (1964) 
Anabaena flos-aquae A-37 Unknown 58.4     Wang & Tischer (1973) 
Anabaena flos-aquae A-37 Unknown 0.9     Moore & Tischer (1965) 
Anabaena sp. Water reservoir, Taiwan     Huang et al. (2007) 
Anabaena sp. ATCC 33047 Algal mat, Texas 19.4   Moreno et al. (2000) 
Anabaena sp. C5 Soil, Yugoslavia     51.5 Gantar et al. (1995) 
Anabaena sp. PC-1 Unknown     12 Choi et al. (1998) 
Anabaena sphaerica Unknown     Nicolaus et al. (1999) 
Anabaena spiroides Water reservoir, Brazil 33.9     Gouvea et al. (2005) 
Anabaena torulosa Soil, France 8.7     Nicolaus et al. (1999) 
Anabaenopsis circularis PCC 6720 Drainage canal, Israel     Bar-Or & Shilo (1987) 
Chlorogloeopsis sp. PCC 6912 Soil, India 10.2     Nicolaus et al. (1999) 
Cyanospira capsulata Alkaline lake, Kenya 37.5 12.5   Garozzo et al. (1995) 
Cyanospira capsulata ATCC 43193 Alkaline lake, Kenya 36.5 15.4 1.5 2.0 Vincenzini et al. (1990) 
Fischerella maior Nav 10 bis Catacombs, Italy 12.8 21.4    Bellezza et al. (2006) 
Fischerella muscicola Unknown  17.6     Nicolaus et al. (1999) 
Mastigocladus laminosus Thermal spring, France 11     Gloaguen et al. (1999) 
Nostoc flagelliforme Desert China     Huang et al. (1998) 
Nostoc calcicola 79WA01 Soils, Washington 21.8 15.5    30 Flaibani et al. (1989) 
Nostoc carneum Contaminated soil, India   27.2 Parikh & Madamwar (2006) 
Nostoc commune Mountain area, China 13.3 5.8     Huang et al. (1998) 
Nostoc commune Freshwater, China 18.4     Brüll et al. (2000) 
Nostoc commune DRH-1 Desert, Mongolia 22.7    Helm et al. (2000) 
Nostoc commune UTEX584 Unknown 42     Flaibani et al. (1989) 
Nostoc insulare 54.79 Soil 26.4 tr tr 0.7 Volk et al. (2007) 
Nostoc insulare 54.79 Soil 25.3 8.9    3.5 Fischer et al. (1997) 
Nostoc linckia f. muscorum Unknown     Mehta & Vaidya (1978) 
Nostoc sp. Contaminated soil, India   40.1 Parikh & Madamwar (2006) 
Nostoc sp. Unknown     Moore & Tischer (1964) 
Nostoc sp. Unknown     Mehta & Vaidya (1978) 
Nostoc sp. Desert algal crusts, China 3.5    7.5 Hu et al. (2003a) 
Nostoc sp. 221 Unknown 41.3     Mehta & Vaidya (1978) 
Nostoc sp. 2S9B Soil, Yugoslavia     2.8 Gantar et al. (1995) 
Nostoc sp. D Unknown     Cupac & Gantar (1992) 
Nostoc sp. PCC 6302 Unknown 69.4 3.9 0.5 6.9 De Philippis et al. (2000) 
Nostoc sp. PCC 6310 Pond, Israel 4.3 1.6 1.4 3.3 69.5 De Philippis et al. (2000) 
Nostoc sp. PCC 6705 Botanical garden, California 26.8 2.1 3.2 1.7 6.9 De Philippis et al. (2000) 
Nostoc sp. PCC 6719 Soil water culture, California 9.9 0.7 5.0 2.4 0.8 De Philippis et al. (2000) 
Nostoc sp. PCC 6720 Soil, Indonesia 13.5 4.1 2.1 1.1 3.1 De Philippis et al. (2000) 
Nostoc sp. PCC 7107 Pond, California 26.7 6.7 0.7 2.7 3.4 De Philippis et al. (2000) 
Nostoc sp. PCC 7119 Unknown 5.2 0.5 5.0 3.4 0.9 De Philippis et al. (2000) 
Nostoc sp. PCC 7413 Soil, UK 19.3 2.0 6.2 3.3 0.6 De Philippis et al. (2000) 
Nostoc sp. PCC 7416 Shallow pool, California 23.6 4.6 4.0 9.7 De Philippis et al. (2000) 
Nostoc sp. PCC 7422 Cycas roots 26.8 5.4 2.4 2.0 4.7 De Philippis et al. (2000) 
Nostoc sp. PCC 7423 Dried soil, Senegal 18.8 0.8 3.2 6.8 18.4 De Philippis et al. (2000) 
Nostoc sp. PCC 7706 Water below calcareous stone, France 25.2 1.2 0.8 10.3 De Philippis et al. (2000) 
Nostoc sp. PCC 7803 Sand dunes, UK 22.0 0.8 0.2 1.1 5.5 De Philippis et al. (2000) 
Nostoc sp. PCC 7807 Soil, France 28.7 0.6 6.1 2.0 10.2 De Philippis et al. (2000) 
Nostoc sp. PCC 7906 Freshwater, 37.7 3.3 1.9 15.6 De Philippis et al. (2000) 
Nostoc sp. PCC 7933 Mud, Finland 33.7 4.8 1.4 5.9 De Philippis et al. (2000) 
Nostoc sp. PCC 7936 Rice field, India 51.1 0.6 5.8 1.8 2.1 De Philippis et al. (2000) 
Nostoc sp. PCC 7937 Freshwater, Mississippi 4.9 0.9 3.5 3.0 3.2 De Philippis et al. (2000) 
Nostoc sp. PCC 8009/1 Coralloid roots of Macrozamia lucida 12.7 1.2 0.4 3.7 3.3 De Philippis et al. (2000) 
Nostoc sp. PCC 8109 Unknown 62.4 1.1 0.6 0.7 24.6 De Philippis et al. (2000) 
Nostoc sp. PCC 8112 Laundromat discharge pond, Michigan 42.2 5.0 0.4 0.9 11.7 De Philippis et al. (2000) 
Nostoc sp. PCC 8113 Unknown 6.6 5.1 5.8 3.8 De Philippis et al. (2000) 
Nostoc sp. PCC 8306 Soil, West Africa 56.7 3.2 0.7 21.7 De Philippis et al. (2000) 
Nostoc sp. PCC 9202 Rice field, Spain 37.7 2.0 5.0 De Philippis et al. (2000) 
Nostoc sp. PCC 9305 Anthoceros, California 13.2 4.4 2.3 4.5 De Philippis et al. (2000) 
Nostoc sp. WV2 Unknown     De Philippis & Vincenzini (1998) 
Scytonema hofmanni PCC 7110 Cave (limestone), Bermuda      Nicolaus et al. (1999) 
Scytonema javanicum Desert algal crusts, China 10 tr 7.4    50.2 Hu et al. (2003a) 
Scytonema ocellatum CP8-2 Catacombs, Italy 16.6 12.5    Bellezza et al. (2006) 
Scytonema sp. Thallus of D. glabratum, Brazil 10  11     Sassaki et al. (2005) 
Tolypothrix tenuis PCC 7101 Soil, Borneo  14.3     Nicolaus et al. (1999) 
Filamentous heterocystous organisms Ecological origin No. of monosaccharides Wt/EPS dry weight (%) References 
Uronic acids Deoxysugars Sulphate Pyruvate Acetate Peptides 
Anabaena cylindrica Unknown     Dunn & Wolk (1970) 
Anabaena cylindrica 10 C Unknown 1.7 10.1    Lama et al. (1996) 
Anabaena cylindrica CCAP1403/2 Freshwater pond, UK 28     Bishop et al. (1954) 
Anabaena flos-aquae Freshwater     Moore & Tischer (1964) 
Anabaena flos-aquae A-37 Unknown 58.4     Wang & Tischer (1973) 
Anabaena flos-aquae A-37 Unknown 0.9     Moore & Tischer (1965) 
Anabaena sp. Water reservoir, Taiwan     Huang et al. (2007) 
Anabaena sp. ATCC 33047 Algal mat, Texas 19.4   Moreno et al. (2000) 
Anabaena sp. C5 Soil, Yugoslavia     51.5 Gantar et al. (1995) 
Anabaena sp. PC-1 Unknown     12 Choi et al. (1998) 
Anabaena sphaerica Unknown     Nicolaus et al. (1999) 
Anabaena spiroides Water reservoir, Brazil 33.9     Gouvea et al. (2005) 
Anabaena torulosa Soil, France 8.7     Nicolaus et al. (1999) 
Anabaenopsis circularis PCC 6720 Drainage canal, Israel     Bar-Or & Shilo (1987) 
Chlorogloeopsis sp. PCC 6912 Soil, India 10.2     Nicolaus et al. (1999) 
Cyanospira capsulata Alkaline lake, Kenya 37.5 12.5   Garozzo et al. (1995) 
Cyanospira capsulata ATCC 43193 Alkaline lake, Kenya 36.5 15.4 1.5 2.0 Vincenzini et al. (1990) 
Fischerella maior Nav 10 bis Catacombs, Italy 12.8 21.4    Bellezza et al. (2006) 
Fischerella muscicola Unknown  17.6     Nicolaus et al. (1999) 
Mastigocladus laminosus Thermal spring, France 11     Gloaguen et al. (1999) 
Nostoc flagelliforme Desert China     Huang et al. (1998) 
Nostoc calcicola 79WA01 Soils, Washington 21.8 15.5    30 Flaibani et al. (1989) 
Nostoc carneum Contaminated soil, India   27.2 Parikh & Madamwar (2006) 
Nostoc commune Mountain area, China 13.3 5.8     Huang et al. (1998) 
Nostoc commune Freshwater, China 18.4     Brüll et al. (2000) 
Nostoc commune DRH-1 Desert, Mongolia 22.7    Helm et al. (2000) 
Nostoc commune UTEX584 Unknown 42     Flaibani et al. (1989) 
Nostoc insulare 54.79 Soil 26.4 tr tr 0.7 Volk et al. (2007) 
Nostoc insulare 54.79 Soil 25.3 8.9    3.5 Fischer et al. (1997) 
Nostoc linckia f. muscorum Unknown     Mehta & Vaidya (1978) 
Nostoc sp. Contaminated soil, India   40.1 Parikh & Madamwar (2006) 
Nostoc sp. Unknown     Moore & Tischer (1964) 
Nostoc sp. Unknown     Mehta & Vaidya (1978) 
Nostoc sp. Desert algal crusts, China 3.5    7.5 Hu et al. (2003a) 
Nostoc sp. 221 Unknown 41.3     Mehta & Vaidya (1978) 
Nostoc sp. 2S9B Soil, Yugoslavia     2.8 Gantar et al. (1995) 
Nostoc sp. D Unknown     Cupac & Gantar (1992) 
Nostoc sp. PCC 6302 Unknown 69.4 3.9 0.5 6.9 De Philippis et al. (2000) 
Nostoc sp. PCC 6310 Pond, Israel 4.3 1.6 1.4 3.3 69.5 De Philippis et al. (2000) 
Nostoc sp. PCC 6705 Botanical garden, California 26.8 2.1 3.2 1.7 6.9 De Philippis et al. (2000) 
Nostoc sp. PCC 6719 Soil water culture, California 9.9 0.7 5.0 2.4 0.8 De Philippis et al. (2000) 
Nostoc sp. PCC 6720 Soil, Indonesia 13.5 4.1 2.1 1.1 3.1 De Philippis et al. (2000) 
Nostoc sp. PCC 7107 Pond, California 26.7 6.7 0.7 2.7 3.4 De Philippis et al. (2000) 
Nostoc sp. PCC 7119 Unknown 5.2 0.5 5.0 3.4 0.9 De Philippis et al. (2000) 
Nostoc sp. PCC 7413 Soil, UK 19.3 2.0 6.2 3.3 0.6 De Philippis et al. (2000) 
Nostoc sp. PCC 7416 Shallow pool, California 23.6 4.6 4.0 9.7 De Philippis et al. (2000) 
Nostoc sp. PCC 7422 Cycas roots 26.8 5.4 2.4 2.0 4.7 De Philippis et al. (2000) 
Nostoc sp. PCC 7423 Dried soil, Senegal 18.8 0.8 3.2 6.8 18.4 De Philippis et al. (2000) 
Nostoc sp. PCC 7706 Water below calcareous stone, France 25.2 1.2 0.8 10.3 De Philippis et al. (2000) 
Nostoc sp. PCC 7803 Sand dunes, UK 22.0 0.8 0.2 1.1 5.5 De Philippis et al. (2000) 
Nostoc sp. PCC 7807 Soil, France 28.7 0.6 6.1 2.0 10.2 De Philippis et al. (2000) 
Nostoc sp. PCC 7906 Freshwater, 37.7 3.3 1.9 15.6 De Philippis et al. (2000) 
Nostoc sp. PCC 7933 Mud, Finland 33.7 4.8 1.4 5.9 De Philippis et al. (2000) 
Nostoc sp. PCC 7936 Rice field, India 51.1 0.6 5.8 1.8 2.1 De Philippis et al. (2000) 
Nostoc sp. PCC 7937 Freshwater, Mississippi 4.9 0.9 3.5 3.0 3.2 De Philippis et al. (2000) 
Nostoc sp. PCC 8009/1 Coralloid roots of Macrozamia lucida 12.7 1.2 0.4 3.7 3.3 De Philippis et al. (2000) 
Nostoc sp. PCC 8109 Unknown 62.4 1.1 0.6 0.7 24.6 De Philippis et al. (2000) 
Nostoc sp. PCC 8112 Laundromat discharge pond, Michigan 42.2 5.0 0.4 0.9 11.7 De Philippis et al. (2000) 
Nostoc sp. PCC 8113 Unknown 6.6 5.1 5.8 3.8 De Philippis et al. (2000) 
Nostoc sp. PCC 8306 Soil, West Africa 56.7 3.2 0.7 21.7 De Philippis et al. (2000) 
Nostoc sp. PCC 9202 Rice field, Spain 37.7 2.0 5.0 De Philippis et al. (2000) 
Nostoc sp. PCC 9305 Anthoceros, California 13.2 4.4 2.3 4.5 De Philippis et al. (2000) 
Nostoc sp. WV2 Unknown     De Philippis & Vincenzini (1998) 
Scytonema hofmanni PCC 7110 Cave (limestone), Bermuda      Nicolaus et al. (1999) 
Scytonema javanicum Desert algal crusts, China 10 tr 7.4    50.2 Hu et al. (2003a) 
Scytonema ocellatum CP8-2 Catacombs, Italy 16.6 12.5    Bellezza et al. (2006) 
Scytonema sp. Thallus of D. glabratum, Brazil 10  11     Sassaki et al. (2005) 
Tolypothrix tenuis PCC 7101 Soil, Borneo  14.3     Nicolaus et al. (1999) 

The cyanobacteria are sourced from a culture collection unless specified otherwise.

*

Monocyanobacterial culture.

† Field sample.

p, present, but not quantified; tr, trace.

Cyanobacterial EPS are complex heteropolysaccharides, with c. 75% of the polymers described so far composed of six or more different kinds of monosaccharides. This feature contrasts with the polymers synthesized by other bacteria or macroalgae, which contain a lower number of different monomers, usually less than four (De Philippis & Vincenzini, 1998). To date, up to 12 different monosaccharides have been identified in cyanobacterial EPS (Table 1): the hexoses, glucose, galactose, mannose and fructose, the pentoses, ribose, xylose and arabinose, the deoxyhexoses, fucose, rhamnose and methyl rhamnose, and the acidic hexoses, glucuronic and galacturonic acid (De Philippis & Vincenzini, 1998, 2003; De Philippis et al., 2001). In a few cases, the presence of additional types of monosaccharides (i.e. methyl sugars and/or amino sugars) such as N-acetyl glucosamine, 2,3-O-methyl rhamnose, 3-O-methyl rhamnose, 4-O-methyl rhamnose and 3-O-methyl glucose have been reported (Hu et al., 2003a). The monosaccharide most frequently found at the highest concentration in cyanobacterial EPS is glucose, although there are polymers where other sugars, such as xylose, arabinose, galactose or fucose, are present at higher concentrations than glucose (Tease et al., 1991; Bender et al., 1994; Gloaguen et al., 1995; Fischer et al., 1997; De Philippis & Vincenzini, 1998, 2003; Parikh & Madamwar, 2006).

The high number of different monosaccharides found in cyanobacterial EPS and the consequential variety of linkage types is usually considered a reason for the presence of complex repeating units, as well as for a broad range of possible structures and architectures of these macromolecules. As one consequence of this complexity, the cyanobacterial EPS are less well characterized than those of other microorganisms and only a few structures have been proposed (Table 2). The polysaccharides produced by Nostoc commune DRH-1, Nostoc insulare and Cyanothece sp. ATCC 51142 are composed of repeating units of six, four and three monosaccharides, respectively (Helm et al., 2000; Huang et al., 2000; Shah et al., 2000; Volk et al., 2007). On the other hand, the structures proposed for the EPS produced by Mastigocladus laminosus and Cyanospira capsulata are far more complex, with repeating units of 15 and eight monosaccharides, respectively (Garozzo et al., 1995, 1998; Gloaguen et al., 1995, 1999). For Spirulina platensis, no structure was proposed, but it was demonstrated that its EPS repeating unit contains at least 15 sugar residues (Filali Mouhim et al., 1993).

Table 2

Overview of the published structures of the heteropolysaccharides produced by cyanobacteria

Organisms (ecological origin) Repeating units References 
Unicellular 
Cyanothece sp. ATCC 51142 (intertidal area, Texas) graphic Shah et al. (2000) 
Filamentous heterocystous 
Cyanospira capsulate (unknown) graphic Garozzo et al. (1995, 1998) 
Mastigocladus laminosus (thermal spring, France) graphic Gloaguen et al. (1995) 
Nostoc commune DRH-1 (desert, Mongolia) graphic Helm et al. (2000), Huang et al. (2000) 
Nostoc insulare 54.79 (soil) graphic Volk et al. (2007) 
Organisms (ecological origin) Repeating units References 
Unicellular 
Cyanothece sp. ATCC 51142 (intertidal area, Texas) graphic Shah et al. (2000) 
Filamentous heterocystous 
Cyanospira capsulate (unknown) graphic Garozzo et al. (1995, 1998) 
Mastigocladus laminosus (thermal spring, France) graphic Gloaguen et al. (1995) 
Nostoc commune DRH-1 (desert, Mongolia) graphic Helm et al. (2000), Huang et al. (2000) 
Nostoc insulare 54.79 (soil) graphic Volk et al. (2007) 

The cyanobacteria are sourced from a culture collection unless specified otherwise.

GlcA, glucuronic acid; GalA, galacturonic acid; NosA, nosturonic acid; Ido, idose; Glc, glucose; Gal, galactose; Fuc, fucose; Ara, arabinose; Man, mannose; Rha, rhamnose; Xyl, xylose; Rib, ribose. p, pyranose form; f, furanose form; α, anomer α; β, anomer β.

*

Field sample.

The knowledge of the structure of a polysaccharide is generally considered necessary to infer its physicochemical properties (De Philippis & Vincenzini, 1998). Indeed, the interest in cyanobacteria as producers of high-molecular-weight polysaccharides is related to the capability of these biopolymers to modify the rheological properties of water, acting as thickening agents (Sutherland, 1996), and to stabilize the flow properties of aqueous solutions. Thus, one of the key features of a polysaccharide, which determines most of the properties generally considered to be useful for industrial applications, is its high molecular mass (Shepherd et al., 1995), as this characteristic has a direct influence on the rheological properties of solutions of the polymer (Kamal et al., 2003). The molecular masses reported thus far for the exopolysaccharides released by cyanobacteria are listed in Table 3; the highest molecular masses were found for the polysaccharides produced by C. capsulata, Anabaena spiroides and Phormidium 94, which are about 2 MDa. These values, significantly higher than that of xanthan gum, which has a molecular mass of about 1 MDa (Kamal et al., 2003), point to the potential of these polymers for biotechnological exploitation as viscosifying or suspending agents. In this context, it is worth mentioning that the viscosity of some of the cyanobacterial exopolysaccharides is comparable to, or even higher than, that of aqueous solutions of xanthan gum at similar concentrations (Sutherland, 1996; De Philippis, 2000). However, even if only a very limited number of cyanobacterial EPS have been fully described regarding their flow properties (Cesàro et al., 1990; Navarini et al., 1990; Lapasin et al., 1992; Moreno et al., 2000; Morris et al., 2001), there are a few reports emphasizing the dependence of viscosity on the shear rate of water solutions of cyanobacterial EPS and of commercial xanthan gum. Comparing the viscosity data (Table 4), it is possible to conclude that some of the RPS produced by cyanobacteria (e.g. the RPS synthesized by Cyanothece strains CE4 and CA3) possess very high viscosities, up to four times higher than that of xanthan gum. However, it should be stressed that, to make a reliable comparison of the flow properties of two polysaccharides, it is necessary to evaluate additional rheological properties, as well as to assess the dependence of these properties on factors such as pH, temperature and the ionic strength of the solution.

Table 3

Molecular masses of the EPS released by cyanobacteria

Organism Ecological origin Apparent molecular mass (kDa) References 
Unicellular 
Chroococcus minutus B 41.79 Water reservoir, India 1200–1600 Fischer et al. (1997) 
Filamentous 
Microcoleus vaginatus Desert algal crusts, China 380 Hu et al. (2003a) 
Oscillatoria sp. Microbial mats, Florida ≥200 Bender et al. (1994) 
Phormidum 94a Arid soil, Mexico 2000 Vicente-Garcia et al. (2004) 
Phormidium J-1 Drainage canal, Israel 1200 Bar-Or & Shilo (1987) 
Phormidum tenue Desert algal crusts, China 380 Hu et al. (2003a) 
Spirulina platensis China 81–98 Tseng & Zhao (1994) 
Filamentous heterocystous 
Anabaena circularis PCC 6720 Drainage canal, Israel >1200 Bar-Or & Shilo (1987) 
Anabaena spiroides Water reservoir, Brazil 2000 Colombo et al. (2004) 
Anabaena sp. ATCC 33047 Algal mat, Texas 1350 Moreno et al. (2000) 
Cyanospira capsulata ATCC 43193 Alkaline lake, Kenya 1400–1900 Vincenzini et al. (1993), Cesàro et al. (1990) 
Nostoc insulare 54.79 Soil 540–1300 Fischer et al. (1997) 
Nostoc sp. Desert algal crusts, China 460 Hu et al. (2003a) 
Schizothrix sp. Intertidal marine stromatolites, Bahamas 300 Kawaguchi & Decho (2002) 
Scytonema javanicum Desert algal crusts, China 110–380 Hu et al. (2003a) 
Organism Ecological origin Apparent molecular mass (kDa) References 
Unicellular 
Chroococcus minutus B 41.79 Water reservoir, India 1200–1600 Fischer et al. (1997) 
Filamentous 
Microcoleus vaginatus Desert algal crusts, China 380 Hu et al. (2003a) 
Oscillatoria sp. Microbial mats, Florida ≥200 Bender et al. (1994) 
Phormidum 94a Arid soil, Mexico 2000 Vicente-Garcia et al. (2004) 
Phormidium J-1 Drainage canal, Israel 1200 Bar-Or & Shilo (1987) 
Phormidum tenue Desert algal crusts, China 380 Hu et al. (2003a) 
Spirulina platensis China 81–98 Tseng & Zhao (1994) 
Filamentous heterocystous 
Anabaena circularis PCC 6720 Drainage canal, Israel >1200 Bar-Or & Shilo (1987) 
Anabaena spiroides Water reservoir, Brazil 2000 Colombo et al. (2004) 
Anabaena sp. ATCC 33047 Algal mat, Texas 1350 Moreno et al. (2000) 
Cyanospira capsulata ATCC 43193 Alkaline lake, Kenya 1400–1900 Vincenzini et al. (1993), Cesàro et al. (1990) 
Nostoc insulare 54.79 Soil 540–1300 Fischer et al. (1997) 
Nostoc sp. Desert algal crusts, China 460 Hu et al. (2003a) 
Schizothrix sp. Intertidal marine stromatolites, Bahamas 300 Kawaguchi & Decho (2002) 
Scytonema javanicum Desert algal crusts, China 110–380 Hu et al. (2003a) 

The cyanobacteria are sourced from a culture collection unless specified otherwise.

*

Monocyanobacterial culture.

† Field sample.

Table 4

Viscosity (expressed as mPa s and measured at 10.1 s−1 shear rate) of 0.1% (w/v) water solutions of pure cyanobacterial polysaccharides (RPS) or of xanthan gum (Kelco Keltrol, commercial grade)

Organism Viscosity (mPa s) References 
Anabaena ATCC 33047 100.0 Moreno et al. (2000) 
Aphanothece halophytia GR02 9.5 Morris et al. (2001) 
Cyanospira capsulata 158.5 De Philippis & Vincenzini (1998) 
Cyanothece CA3 398.1 De Philippis & Vincenzini (1998) 
Cyanothece CE4 400.0 De Philippis et al. (2001) 
Cyanothece ET2 5.6 De Philippis & Vincenzini (1998) 
Cyanothece IR20 80.0 De Philippis & Vincenzini (1998) 
Cyanothece PE14 158.5 De Philippis & Vincenzini (1998) 
Nostoc cameum 6.9 Parikh & Madamwar (2006) 
Nostoc PCC 6705 40.0 De Philippis et al. (2001) 
Nostoc PCC 6705 19.5 De Philippis et al. (2000) 
Nostoc PCC 7119 125.9 De Philippis et al. (2000) 
Nostoc PCC 7422 7.9 De Philippis et al. (2000) 
Nostoc PCC 7423 158.5 De Philippis et al. (2000) 
Nostoc PCC 7937 12.3 De Philippis et al. (2000) 
Nostoc sp. 11.7 Parikh & Madamwar (2006) 
Oscillatoria sp. 12.1 De Philippis et al. (2000) 
Xanthan gum 78.9 De Philippis & Vincenzini (1998) 
Organism Viscosity (mPa s) References 
Anabaena ATCC 33047 100.0 Moreno et al. (2000) 
Aphanothece halophytia GR02 9.5 Morris et al. (2001) 
Cyanospira capsulata 158.5 De Philippis & Vincenzini (1998) 
Cyanothece CA3 398.1 De Philippis & Vincenzini (1998) 
Cyanothece CE4 400.0 De Philippis et al. (2001) 
Cyanothece ET2 5.6 De Philippis & Vincenzini (1998) 
Cyanothece IR20 80.0 De Philippis & Vincenzini (1998) 
Cyanothece PE14 158.5 De Philippis & Vincenzini (1998) 
Nostoc cameum 6.9 Parikh & Madamwar (2006) 
Nostoc PCC 6705 40.0 De Philippis et al. (2001) 
Nostoc PCC 6705 19.5 De Philippis et al. (2000) 
Nostoc PCC 7119 125.9 De Philippis et al. (2000) 
Nostoc PCC 7422 7.9 De Philippis et al. (2000) 
Nostoc PCC 7423 158.5 De Philippis et al. (2000) 
Nostoc PCC 7937 12.3 De Philippis et al. (2000) 
Nostoc sp. 11.7 Parikh & Madamwar (2006) 
Oscillatoria sp. 12.1 De Philippis et al. (2000) 
Xanthan gum 78.9 De Philippis & Vincenzini (1998) 
*

Exopolysaccharides in a 0.4% (w/w) solution.

Exopolysaccharides in a 0.6% (w/v) solution.

Intrinsic viscosity (μ) in deionized water.

It has been reported that cyanobacterial EPS are not only composed of carbohydrates but also of other macromolecules such as polypeptides (Kawaguchi & Decho, 2000). Polypeptides enriched with glycine, alanine, valine, leucine, isoleucine and phenylalanine have been reported in the EPS of C. capsulata and Nucula calcicola (Flaibani et al., 1989; Marra et al., 1990), and in Schizothrix sp., small proteins specifically enriched with aspartic and glutamic acid have been observed (Kawaguchi & Decho, 2002). In general, the chemical composition, the type and the amount of the exopolysaccharides produced by a given cyanobacterial strain are stable features, mostly depending on the species and the cultivation conditions (Nicolaus et al., 1999). However, the sugar composition of the EPS produced by a certain strain may, qualitatively and quantitatively, vary slightly, especially with the age of the culture (Gloaguen et al., 1995; De Philippis & Vincenzini, 1998).

According to the chemical and physicochemical features of the cyanobacterial exopolysaccharides summarized above, there are at least three possible fields of application for these polymers: (1) in the food, cosmetic, textile or painting industries, for the modification of the flow properties of water, i.e. as thickening, suspending or emulsifying agents (De Philippis & Vincenzini, 1998, 2003; Li et al., 2002; Parikh & Madamwar, 2006); (2) in the pharmaceutical industry, because of their antiviral or immuno-stimulating properties or the capability of slowly releasing drugs (Schaeffer & Krylov, 2000; Jensen et al., 2001; Pugh et al., 2001; Ghosh et al., 2009); (3) in waste water treatment plants or the goldsmith industry, for the chelation of toxic or valuable metal ions from water solutions, i.e. as biosorbents (De Philippis & Micheletti, 2009).

Considering the extensive literature claiming the potential for industrial exploitation of these biopolymers, one would expect that at least for some of them the technology transfer had already occurred. However, in spite of a significant number of patents available, covering the use of cyanobacterial polysaccharides in various industrial fields (see, for instance, the review published in 2006 by Sekar & Paulraj on the patents filed at the US Patent and Trademark Office), no industrial product derived from these biopolymers is available in the market. In our opinion, the main reason for this discrepancy is the presence in the market of well-established industrial processes for heterotrophic microorganisms that in the short term would be expensive to convert for cyanobacteria. In the case of thickening agents in foods, it has to be stressed that there are already other microbial polysaccharides in the market, the most important being xanthan gum, gellan and pullulan, respectively, produced by Xanthomonas campestris, Pseudomonas elodea and Aureobasidium pullulans, and dextran, produced by several lactic acid bacteria belonging to the genera Leuconostoc, Lactobacillus and Streptococcus. These biopolymers have already undergone the complex, expensive and time-consuming procedures for their approval as food additives. Thus, even if some of the cyanobacterial exopolysaccharides, such as the one produced by C. capsulata (Navarini et al., 1990), show better rheological properties, the differences would not be significant enough to risk a new technology transfer in competition with well-established commercial products. Similarly, the exploitation of cyanobacteria producing polysaccharides with good antiviral activity has not been considered worth developing new drugs. This is due to the long and very expensive procedures needed for the commercialization of new pharmaceutical products.

The possible use of exopolysaccharide-producing cyanobacteria for the recovery of valuable metals from industrial wash waters seems to be more promising than most of the above-mentioned applications. Indeed, the high economical value of the metal, which can be easily recovered from the biosorbent, might justify the investment necessary for the production of the biomass. However, this field of application is still in its infancy and needs more research to establish a simple and cheap technology for the production and utilization of the cyanobacterial biomass as biosorbent, as well as for the recovery of the metal.

Putative roles of EPS in cyanobacteria

The capability of cyanobacteria to survive in severe habitats (e.g. at the surface of a sand dune in a desert or exposed to high UV radiation on the lithic surfaces of monuments) has been related to the protective mechanisms that they have developed. Among these mechanisms, one of the most diffused within the cyanobacteria is the ability to synthesize external polysaccharidic layers that protect the cells from unfavourable environmental conditions. Many studies, in fact, have shown that a coating of extracellular polysaccharidic material can protect bacteria against dehydration, phagocytosis, antibody recognition and even lysis by viruses (Dudman, 1977; Tease & Walker, 1987; Hill et al., 1994; Scott et al., 1996; Hoiczyk, 1998; De Vuyst & Degeest, 1999; Sutherland, 1999; Ruas-Madiedo et al., 2002; De Philippis & Vincenzini, 2003; Tsuneda et al., 2003; Welman & Maddox, 2003), or confer to the cells the ability to adhere to a solid substrate, preventing them from being washed away from their natural habitat by water flow (Dudman, 1977; Scott et al., 1996; De Philippis et al., 2005).

A number of cyanobacteria are capable of surviving nearly without water, producing both internal and external polysaccharides, which help to stabilize the macromolecular constituents of the cell, as well as the cell structure. It has been suggested that these polysaccharides can form hydrogen bonds with proteins, lipids and DNA, thus replacing the water shell that usually surrounds these macromolecules (Potts et al., 1994). EPS, owing to their hydrophilic/hydrophobic characteristics (see previous section), are able to trap and accumulate water, creating a gelatinous layer around the cells that regulates water uptake and loss, and stabilizes the cell membrane during periods of desiccation (Grilli Caiola et al., 1993, 1996; Tamaru et al., 2005). Upon rehydration, cyanobacteria can rapidly recover metabolic activities and repair cellular components (Scherer et al., 1984, 1986; Satoh et al., 2002; Fleming & Castenholz, 2007). A good example of this is the filamentous EPS-producing cyanobacterium N. commune, which is ubiquitously distributed from the tropics to the polar regions of the Earth. These cyanobacteria form macroscopic colonies in which the entangled filaments are embedded in massive polysaccharidic structures. In their natural environment, these colonies are subjected to frequent desiccation and rewetting cycles, during which they release large quantities of protective proteins and compounds such as mycosporine-like amino acids, UV-screen pigments and active Fe-containing superoxide dismutase (Hill et al., 1994; Böhm et al., 1995; Shirkey et al., 2000).

Another important consequence of the above-described hydrophobicity of the cyanobacterial EPS becomes evident in desert microbial crusts, where the polysaccharides contribute to the hydrological properties of the soil by clogging sand particles and by causing the run-off of water on the dune, protecting the microbial community of the crusts from being washed away by the water flow (Mazor et al., 1996; Kidron et al., 1999).

Recently, it was demonstrated that the cyanobacterial sheath can protect the cells from the detrimental process of biomineralization (Phoenix et al., 2000; Benning & Mountain, 2004). In fact, permeability studies demonstrated that the sheath of Calothrix sp. was impermeable to particles of at least 11 nm diameter, thus preventing the colloids from biomineralizing the sensitive components of the cell wall (Phoenix et al., 2000; Benning et al., 2004).

Furthermore, the presence of negatively charged polysaccharidic layers surrounding cyanobacterial cells may play an important role in the sequestration of metal cations, and in creating a microenvironment enriched in those metals that are essential for cell growth but are present at very low concentrations in some environments (Parker et al., 1996; Sutherland et al., 1999). On the other hand, the presence of a polysaccharidic layer surrounding the cells can also prevent direct contact between the cells and toxic heavy metals that may be present in the environment. Actually, it was recently suggested that the high viscosity of the cultures of C. capsulata, due to the solubilization in the culture medium of large amounts of a high molecular mass RPS, hindered the free diffusion of copper ions into the culture (De Philippis et al., 2007).

The UV-absorbing pigment scytonemin was found in the sheath of a number of cyanobacteria living in environments characterized by a high level of solar irradiation (Garcia-Pichel & Castenholz, 1991; Ehling-Schulz et al., 1997; Ehling-Schulz & Scherer, 1999). Moreover, in the sheath of some cyanobacterial strains, mycosporine-like amino acid compounds (MMAs) were also found (Adhikary & Sahu, 1998), confirming the role of the sheath in harbouring UV-absorbing substances, and thus protecting the cyanobacterial cells from the deleterious effects of UV radiation.

EPS may also play an important role in the locomotion of gliding cyanobacteria. Indeed, the secretion of slime can provide the necessary propulsive force for movement (Li et al., 2002). Cyanobacterial exopolysaccharides may also protect nitrogenase (the complex responsible for nitrogen fixation) from the deleterious effects of oxygen (Kallas et al., 1983).

Only a few of the ecological roles attributed to the cyanobacterial exopolysaccharides are fully supported by experimental data or detailed ecological observations. For instance, their role in protecting the cells against desiccation was experimentally demonstrated by a number of authors, in particular by Malcom Potts' group (Potts et al., 1994, 1999, 2004; Shaw et al., 2003; Wright et al., 2005) and Tamaru et al. (2005). These publications described in detail some of the chemical and molecular mechanisms by which the exocellular polysaccharidic layers prevent possible cell damage caused by desiccation and rewetting processes. Moreover, there is evidence that most of the cyanobacteria isolated from very dry environments (desert soils, lithic surfaces of monuments located in arid environments, etc.) are characterized by the capacity to synthesize large amounts of exocellular polysaccharidic material (Danin et al., 1998; Brüll et al., 2000; Belnap & Lange, 2001; Hu et al., 2003b;,Crispim & Gaylarde, 2005; Rivera-Aguilar et al., 2006; Zhang et al., 2006), thus supporting the role of these macromolecules in the survival of cyanobacteria in arid habitats. Another possible role that has been thoroughly investigated is the capacity of the sheath, capsules and slime to protect the cyanobacterial cells from the harmful effects of UV radiations. It was demonstrated that UV irradiation induces the synthesis of the extracellular polysaccharidic matrix in N. commune (Ehling-Schulz et al., 1997; Wright et al., 2005) and also that the UV-screen pigments are accumulated in the sheath and in the extracellular matrix, constituting a barrier against the penetration of the harmful UV radiations (Böhm et al., 1995; Ehling-Schulz & Scherer, 1999; Dillon et al., 2002; Fleming & Castenholz, 2007, 2008).

On the other hand, the observed capacity of the cyanobacterial exopolysaccharides to chelate metal ions has been reported to enable cells to accumulate the metals necessary for their growth and/or to prevent cells from direct contact with metals with toxic effects. Indeed, this assumption arises from experiments demonstrating that most cyanobacterial EPS are anionic in nature due to the presence of charged constituents, such as uronic acids, sulphate and ketal-linked pyruvate groups (Table 1). Additionally, many studies demonstrated the affinity of exopolysaccharides for metals (Micheletti et al., 2008a;,De Philippis & Micheletti, 2009). However, direct experimental evidence demonstrating the ecological role of this metal-uptake capacity is not yet available.

The role of the cyanobacterial polysaccharidic investments seems to differ from strain to strain, and to be dependent on the physical and chemical characteristics of the natural habitat or culture medium in which the organism grows. A more accurate perception of the ecological roles of these polymers will be possible when the information on the genetic machinery related to their production is available. This will enable the conditions under which the genes are transcribed/expressed to be investigated.

Factors affecting biosynthesis of cyanobacterial EPS

The use of cyanobacterial EPS for biotechnological applications depends on the identification of culture parameters that influence the synthesis and/or the characteristics of the EPS, and, subsequently, the establishment and control of the conditions that optimize the productivity and the suitable characteristics of the polymer. During the last three decades, several main factors controlling the production of the cyanobacterial EPS have been identified. These include energy availability and the C: N ratio (De Philippis & Vincenzini, 1998; Li et al., 2002). However, other important factors such as the amounts of other nutrients as well as growth parameters such as light intensity, salinity and temperature have been largely disregarded, and very few exhaustive studies on factors influencing the production of cyanobacterial EPS are available in the literature. Moreover, the responses of cyanobacteria to changes in culture conditions appear to be frequently strain-dependent, making the optimization of EPS production even more difficult. The known key factors affecting EPS production are summarized in Table 5.

Table 5

Effects of culture conditions on the EPS production in cyanobacteria

Organisms  Effects References 
 Presence of combined nitrogen Phosphate starvation Increase in NaCl concentration Continuous air flow Increase in temperature Continuous light Increase in light intensity 
Unicellular 
Aphanocapsa halophyta MN11 + − +    + Sudo et al. (1995), Matsunaga et al. (1996) 
Cyanothece sp. 113 +  + +  + + Su et al. (2007) 
Cyanothece sp. 16Som2  + =     De Philippis et al. (1993), De Philippis & Vincenzini (1998) 
Cyanothece sp. ATCC 51142 +  +     Nicolaus et al. (1999), Shah et al. (1999) 
Gloeocapsa gelatinosa +     + + Raungsomboon et al. (2006) 
Gloeothece sp. ATCC 27152 +       Tease & Walker (1987) 
Synechococcus elongatus f. A. nidulans +       Sangar & Dugan (1972) 
Synechococcus sp. + + =     Roux et al. (1996) 
Synechococcus sp. BG0011      +  De Philippis & Vincenzini (1998) 
Filamentous 
Microcoleus vaginatus +  +     Hu et al. (2003a), Chen et al. (2006) 
Phormidium laminosum (OH-1-pCl1       Fresnedo & Serra (1992) 
Phormidium sp. +   +  +  Nicolaus et al. (1999) 
Phormidium tenue +       Hu et al. (2003a) 
Spirulina sp.  + +     Nicolaus et al. (1999) 
Filamentous heterocystous 
Anabaena cylindrica 10 C +       Lama et al. 1996) 
Anabaena flos-aquae A37 =       Tischer & Davis (1971) 
Anabaena sp. ATCC 33047    + +  + Moreno et al. (1998) 
Anabaena sp. PC-1 +  +     Choi et al. (1998) 
Anabaena sp. WSAF +   +  +  Nicolaus et al. (1999) 
Anabaena sp. + +      Huang et al. (2007) 
Anabaena torulosa +   +  +  Nicolaus et al. (1999) 
Cyanospira capsulata  = =   +  De Philippis et al. (1991) 
Nostoc commune +       Huang et al. (1998) 
Nostoc sp.        Hu et al. (2003a) 
Nostoc sp. PCC 7413 +      + Otero & Vincenzini (2003) 
Nostoc sp. PCC 7936     =  + Otero & Vincenzini (2003, 2004) 
Nostoc sp. PCC 8113       + Otero & Vincenzini (2003, 2004) 
Scytonema javanicum        Hu et al. (2003a) 
Westiellopsis prolifica ARM 366   +     Jha et al. (1987) 
Organisms  Effects References 
 Presence of combined nitrogen Phosphate starvation Increase in NaCl concentration Continuous air flow Increase in temperature Continuous light Increase in light intensity 
Unicellular 
Aphanocapsa halophyta MN11 + − +    + Sudo et al. (1995), Matsunaga et al. (1996) 
Cyanothece sp. 113 +  + +  + + Su et al. (2007) 
Cyanothece sp. 16Som2  + =     De Philippis et al. (1993), De Philippis & Vincenzini (1998) 
Cyanothece sp. ATCC 51142 +  +     Nicolaus et al. (1999), Shah et al. (1999) 
Gloeocapsa gelatinosa +     + + Raungsomboon et al. (2006) 
Gloeothece sp. ATCC 27152 +       Tease & Walker (1987) 
Synechococcus elongatus f. A. nidulans +       Sangar & Dugan (1972) 
Synechococcus sp. + + =     Roux et al. (1996) 
Synechococcus sp. BG0011      +  De Philippis & Vincenzini (1998) 
Filamentous 
Microcoleus vaginatus +  +     Hu et al. (2003a), Chen et al. (2006) 
Phormidium laminosum (OH-1-pCl1       Fresnedo & Serra (1992) 
Phormidium sp. +   +  +  Nicolaus et al. (1999) 
Phormidium tenue +       Hu et al. (2003a) 
Spirulina sp.  + +     Nicolaus et al. (1999) 
Filamentous heterocystous 
Anabaena cylindrica 10 C +       Lama et al. 1996) 
Anabaena flos-aquae A37 =       Tischer & Davis (1971) 
Anabaena sp. ATCC 33047    + +  + Moreno et al. (1998) 
Anabaena sp. PC-1 +  +     Choi et al. (1998) 
Anabaena sp. WSAF +   +  +  Nicolaus et al. (1999) 
Anabaena sp. + +      Huang et al. (2007) 
Anabaena torulosa +   +  +  Nicolaus et al. (1999) 
Cyanospira capsulata  = =   +  De Philippis et al. (1991) 
Nostoc commune +       Huang et al. (1998) 
Nostoc sp.        Hu et al. (2003a) 
Nostoc sp. PCC 7413 +      + Otero & Vincenzini (2003) 
Nostoc sp. PCC 7936     =  + Otero & Vincenzini (2003, 2004) 
Nostoc sp. PCC 8113       + Otero & Vincenzini (2003, 2004) 
Scytonema javanicum        Hu et al. (2003a) 
Westiellopsis prolifica ARM 366   +     Jha et al. (1987) 

+, positive effect (increased production); , negative effect (decreased production); =, no changes.

Nitrogen

Nitrogen is one of the most important elements for the synthesis of cell material, and cyanobacteria are either dependent on a combined nitrogen source or, in a restricted number of strains, can fix atmospheric nitrogen. Correlation between the source/amount of nitrogen and the production of EPS has been evaluated for several cyanobacteria and different results were observed depending on the strain tested. Usually, as can be observed in Table 5, the presence of a combined nitrogen source in the culture medium resulted in an increase in EPS synthesis, probably due to the lower energy requirement necessary for the assimilation of combined nitrogen compared with the energy needed for nitrogen fixation (Otero & Vincenzini, 2003; Kumar et al., 2007). In some cyanobacteria, the amount of polymer produced varied according to the nitrogen source used (De Philippis & Vincenzini, 1998), whereas Anabaena flos-aquae A37 showed similar EPS production when supplied with different nitrogen sources such as Mg(NO3)2, KNO3, NaNO3, NH4NO3 and NH4Cl (Tischer & Davis, 1971). Moreover, it was also demonstrated that the composition of the polymer released by Anabaena cylindrica 10C was slightly modified when the strain was cultivated with different nitrogen sources (De Philippis & Vincenzini, 1998). Nitrogen starvation has often been described as a condition that enhances EPS synthesis (De Philippis et al., 1993; Otero & Vincenzini, 2003), probably because this contributes to the increase in the C: N ratio, thus promoting the incorporation of carbon into polymers (Otero & Vincenzini, 2003; Kumar et al., 2007). Nevertheless, it is difficult to detect a direct correlation between diazotrophic and nitrogen-limiting conditions because other factors, such as differences in the carbon fixation efficiency and in the control of the equilibrium between internal and extracellular carbon pools, may explain the variations observed in the production of EPS under different culture conditions (De Philippis & Vincenzini, 1998; Otero & Vincenzini, 2003). Indeed, it was observed that in the nitrogen-fixing cyanobacterium C. capsulata, the mere diversion of carbon flux from protein synthesis, caused by the addition of various inhibitors of nitrogen assimilation, induced the accumulation of intracellular carbohydrate reserves (i.e. glycogen), whereas an effective enhancement of the amount of carbon available to the cells, induced by the addition of glyoxylate, which is known to stimulate the CO2 fixation rate, caused an increase in the amount of EPS synthesized and released by the cells (De Philippis et al., 1996).

Phosphate

The importance of phosphate supply in regulating the growth of cyanobacteria is widely recognized, especially in aquatic environments. Increased phosphate levels together with favourable weather conditions, for example water surface temperatures over 20 °C, often result in the development of widespread cyanobacterial blooms. The relationship between the available amounts of phosphate and the production of EPS is not straightforward, as the overall effect might be dependent on a set of interlinked variables such as the amount of phosphate, nitrate and sulphate (Grillo & Gibson, 1979). In most cases, phosphate starvation or low levels of phosphate induced an increase in EPS production (De Philippis et al., 1993; Roux, 1996; Nicolaus et al., 1999; Huang et al., 2007); however, in C. capsulata, the absence of phosphate had no significant effect (De Philippis et al., 1991), and in Anabaena spp. and Phormidium sp., it significantly decreased EPS production (Nicolaus et al., 1999). Generally, an increase in phosphate concentration in the growth medium has little effect on the amount of exopolymers.

Sulphate

Cyanobacterial EPS contain sulphate groups, a unique feature among bacteria and shared by the EPS produced by archaea and eukaryotes (Sutherland, 1994; De Philippis et al., 1998; De Philippis & Vincenzini, 2003; Micheletti et al., 2008b). It has been reported that sulphur limitation has a dramatic impact on the cells, resulting in morphological and physiological changes similar to those due to nitrogen limitation (Wanner et al., 1986). In Gloeothece sp. PCC 6909, sulphur starvation caused significant morphological alterations in the cells, such as the synthesis of a structureless sheath, the accumulation of cyanophycin, polyhydroxybutyrate and glycogen granules and the disintegration of thylakoid membranes. Most of these changes were reversed by the addition of sulphate to the culture (Ortega-Calvo & Stal et al., 1994; Ariño et al., 1995).

Salt (NaCl)

The acquisition of salt tolerance in some cyanobacteria living in extreme environments induces various structural and metabolic changes, including a decrease in respiration and an increase in the production of some carbohydrates, notably sucrose, which functions as an osmotic solute protecting membranes from desiccation (Chen et al., 2006). Generally, under salt stress (about 0.5 M), cyanobacteria also produce larger amounts of EPS (Table 5). It has been postulated that the increased export of EPS can have a function equivalent to that of sucrose, i.e. improving salt tolerance and carbohydrate metabolism (Chen et al., 2003). However, some exceptions are reported, in which an increase in NaCl concentration did not affect or even lowered the EPS productivity. In C. capsulata (De Philippis et al., 1991) and Cyanothece sp. 16Som2 (De Philippis & Vincenzini, 1998), the presence of a thick and firmly attached capsule probably provided enough protection against osmotic shocks, and in Synechococcus sp., EPS production increased only in the stationary phase, possibly because a nutrient limitation is necessary for the activation of EPS production (Roux et al., 1996). In Anabaena sp. ATCC 33047 growing under diazotrophic conditions, EPS production was enhanced only under conditions in which the nitrogenase activity and phycobiliprotein content were low, and production decreased in the presence of higher NaCl concentrations. However, the authors did not provide any explanation for this behaviour (Moreno et al., 1998). In the halophilic cyanobacterium Aphanothece halophytica GR02 grown in the presence of various NaCl concentrations, a variation in the relative amounts of rhamnose and galactose, two of the seven monosaccharides constituting the RPS, was observed (Li et al., 2001).

Aeration

Aeration seems to be vital for increasing the production of EPS by cyanobacteria, with the few studies available reporting that EPS production reached a maximum with continuous aeration (Moreno et al., 1998; Nicolaus et al., 1999; Su et al., 2007). A possible explanation is that the increase in culture turbulence may facilitate the release of the polysaccharides from the cell surface, thus stimulating the synthesis of new exopolysaccharides. However, it is also possible that the higher turbulence due to the aeration provides a better stirring of the viscous cultures, which may increase the light penetration and consequently may induce a higher biosynthetic activity of the cells.

Temperature

The majority of the studies dealing with the production of EPS in cyanobacteria use the optimal growth temperature for the organism under investigation and, again, the limited data available indicate that the effect of the temperature variation is strain dependent. For Anabaena sp. ATCC 33047, an increase in the temperature (from 30/35 to 40/45 °C) led to a noticeable increase in the production of the EPS (Moreno et al., 1998), probably because at higher temperatures, the time required to reach the onset of stationary phase was shorter than that required at 30/35 °C. In contrast, the temperature increase (from 30 to 35 °C) did not affect the EPS productivity in Nostoc sp. PCC 7936 (Otero & Vincenzini, 2004), and temperatures >30 °C even caused a small decrease in EPS production in Spirulina sp. (Nicolaus et al., 1999).

Light

The synthesis and release of EPS are particularly light dependent, even though different light regimens (continuous light and light–dark cycles) do not seem to have a significant effect on the quality of the polymer, i.e. monosaccharidic composition and relative proportions of the sugar units (Vincenzini et al., 1993; De Philippis & Vincenzini, 1998). However, generally, EPS production is enhanced by continuous light and high light intensities (up to 400 μmol photons m−2 s−1), but it is important to consider both the culture volume and the geometry of the culture flasks/bioreactors when adjusting the light intensity (see, e.g. Fischer et al., 1997). Moreover, it was demonstrated that certain wavelengths influence EPS production; notably, in the heterocystous N. commune, UV-B irradiation stimulates extracellular glycan production as well as induces the synthesis of photoprotective pigments (Ehling-Schulz et al., 1997).

Other factors

Many other factors that can influence EPS production, notably pH, dilution rate, growth phase, presence/absence of magnesium, calcium, potassium and heavy metals, as well as the addition of glycoxylate, acetate, valerate, glucose, citrate and EDTA have been sporadically studied (Li et al., 2002), but not consistently evaluated.

In summary, although the key factors controlling the production of the cyanobacterial EPS have been identified, comprehensive strain-specific studies taking into account the interaction between the variables to understand the system response to changes, are still missing. This requires a better knowledge of the genes and metabolic pathways involved in the production of EPS in cyanobacteria.

Genes and biosynthetic pathways related to the production of EPS

Over the past decade, several studies have been initiated to try to understand the genetics and biochemistry of EPS biosynthesis in bacteria (Van Kranenburg et al., 1999; De Vuyst et al., 2001; Jolly & Stingele, 2001; Laws et al., 2001; Sutherland, 2001; Welman & Maddox, 2003; Whitfield, 2006). However, cyanobacteria have not been thoroughly examined and, consequently, the information available is extremely limited (Yoshimura et al., 2007). Studies performed in both Gram-negative and Gram-positive bacteria revealed that the EPS biosynthetic pathways are very complex, including, besides the enzymes directly involved in the EPS synthesis, enzymes engaged in the formation of the cell wall polysaccharides and lipopolysaccharides (Mozzi et al., 2003). However, the mechanisms involved in the synthesis of EPS are relatively conserved throughout bacteria. Typically, this process comprises four distinct steps occurring in different cellular compartments: (1) the activation of the monosaccharides and conversion into sugar nucleotides in the cytoplasm, (2) the assembly of the repeating units by sequential addition of sugars onto a lipid carrier by glycosyltransferases at the plasma membrane, (3) the polymerization of the repeating units at the periplasmic face of the plasma membrane and (4) the export of the polymer to the cell surface (Yamazaki et al., 1996; De Vuyst & Degeest, 1999; Kleerebezem et al., 1999; Whitfield & Roberts, 1999; De Vuyst et al., 2001; Jolly & Stingele, 2001; Sutherland, 2001). A schematic representation is depicted in Fig. 1. The sugar activation/modification enzymes and the glycosyltransferases are strain dependent, whereas the proteins involved in the polymerization, chain length control and export are conserved among bacteria. Some of these conserved proteins, as well as their interactions, are highlighted in Fig. 1, and their putative roles are discussed below.

Figure 1

Sequence and compartmentalization of the putative biosynthetic pathway, polymerization and export of EPS in cyanobacteria, based on the information gathered for other bacteria as well as the genes present in the available cyanobacterial genomes. Some of the proteins involved in the polymerization, chain length control and export are highlighted along with the interactions among them (dashed line arrows).

Figure 1

Sequence and compartmentalization of the putative biosynthetic pathway, polymerization and export of EPS in cyanobacteria, based on the information gathered for other bacteria as well as the genes present in the available cyanobacterial genomes. Some of the proteins involved in the polymerization, chain length control and export are highlighted along with the interactions among them (dashed line arrows).

The genes related to the production of surface polysaccharides can be divided into three classes: (1) those encoding the enzymes involved in the biosynthetic pathways of nucleotide sugars, or other components, needed for polysaccharide synthesis and not otherwise available in the cells; (2) those coding for the glycosyltransferases; and (3) those required for the oligosaccharide or polysaccharide processing (Reeves et al., 1996).

The first class is a vast and diverse group of genes not specific for EPS biosynthesis, given that sugar nucleotides are needed for the synthesis of a range of polysaccharides, and this group, therefore, will not be extensively discussed in this work. Among these genes are rfbABCD, also frequently called rml genes (Reeves et al., 1996), which encode proteins involved in the biosynthesis of l-rhamnose. l-Rhamnose is a 6-deoxyhexose commonly present in bacteria, but only as a component of surface polysaccharides (Li & Reeves, 2000). Indeed, dTDP-rhamnose is commonly found in the EPS of Gram-negative and Gram-positive bacteria (Li & Reeves, 2000) and is a key constituent of the O-antigens of lipopolysaccharides of Gram-negative bacteria (Reeves, 1993). Furthermore, rhamnose is one of the sugars frequently found in the cyanobacterial EPS, and the proteins encoded by the rfb genes are listed in CyanoBase (http://bacteria.kazusa.or.jp/cyanobase/) as involved in the assembly of cyanobacterial surface polysaccharides. However, the participation of these proteins in the biosynthesis of both lipopolysaccharides and EPS makes it very difficult to determine their specific role. Moreover, the presence of several acidic or neutral monosaccharides in cyanobacterial EPS indicates that their biosynthetic pathway may be even more complex (Sutherland, 2001; Li et al., 2002).

Glycosyltransferases are key enzymes for the biosynthesis of the EPS repeating unit, catalyzing the transfer of the sugar nucleotides from activated donor molecules to specific acceptor molecules – most probably a lipid carrier – in the plasma membrane. A large number of genes encoding glycosyltransferases have been identified, given the structural diversity of the bacterial extracellular polysaccharides, and consequently the number of possible linkages. The diverse function of the transferases, which in addition are strain specific, is reflected in the heterogeneity of their DNA sequences (Reeves et al., 1996; De Vuyst et al., 2001; Jolly & Stingele, 2001; Samuel & Reeves, 2003). In silico analysis of the cyanobacterial genomes revealed the presence of numerous genes putatively encoding glycosyltransferases; however, the enzymes have not been biochemically characterized, which makes it impossible to assign their function to the synthesis of EPS.

In bacteria, the genes encoding the proteins responsible for polymer extension and processing are usually clustered and organized in a similar way (De Vuyst & Degeest, 1999), often constituting long operons. Within these clusters, three different regions can be discerned: a central region constituted by the genes encoding the glycosyltransferases, flanked by two regions comprising the genes encoding enzymes involved in the polysaccharide polymerization, chain length control and export (De Vuyst & Degeest, 1999). The nomenclature of the latter genes is very diverse, for example being named eps and cps for lactic acid bacteria, wz_ and kps for Escherichia coli, exo for Sinorhizobium meliloti and gum for X. campestris (De Vuyst & Degeest, 1999; De Vuyst et al., 2001; Jolly & Stingele, 2001; Sutherland, 2001; Welman & Maddox, 2003; Whitfield & Paiment, 2003; Whitfield, 2006). Recently, a region containing 18 ORFs putatively involved in polysaccharide biosynthesis was identified for the cyanobacterium Anabaena sp. PCC 7120 (Yoshimura et al., 2007).

Despite the variety of bacterial exopolysaccharides, bacteria use a limited repertoire of assembly and secretion strategies, which are represented in E. coli (Whitfield & Roberts, 1999; Whitfield & Paiment, 2003; Whitfield et al., 2006). For this organism, two models have been proposed for the biosynthesis and assembly of the different types of capsules based on genetic and biochemical criteria, with the one proposed for the capsules of groups 1 and 4 being the most common among Gram-negative bacteria (Rahn et al., 1999; Whitfield et al., 2006; Whitfield & Larue, 2008). This mechanism is Wzy-dependent, in contrast to the mechanism for groups 2 and 3 capsules, which are assembled via ABC-transporter-dependent pathways (Whitfield, 2006). Using the E. coli Wzy-dependent model, together with the information derived from Anabaena sp. PCC 7120 (Yoshimura et al., 2007) and the cyanobacterial genome sequences, a putative mechanism was put forward for cyanobacteria (Fig. 2). This is a hypothetical working model, on which further studies aiming to elucidate the mechanisms involved in the production of cyanobacterial EPS can be based. Assuming that a lipid carrier (in most of the Gram-negative bacteria an undecaprenol diphosphate – see Skorupska et al., 2006) is also present in cyanobacteria, the glycosyltransferases will pass the sugar nucleotides to this acceptor, where repeating units are assembled. This step takes place at the interface between the cytoplasm and the plasma membrane. The newly synthesized lipid-linked repeating units are then flipped across the membrane in a process requiring Wzx, an integral plasma membrane protein. This provides the substrate for the blockwise polymerization of the repeating units that takes place at the periplasmic face of the membrane, a step carried out by the Wzy protein. The polymerization also requires the auxiliary protein Wzc to act at the interface between the membrane and the periplasmic space (Skorupska et al., 2006), probably for the control of the chain length of the growing polymer. Transphosphorylation of Wzc and its dephosphorylation by Wzb is required to regulate the polysaccharide polymerization and export. The translocation process is mediated by the outer-membrane auxiliary protein Wza, which forms a channel, allowing the externalization of the growing polysaccharide to the cell surface. The translocation may require the physical association of proteins located in both membranes, notably Wzc and Wza (Whitfield & Paiment, 2003; Skorupska et al., 2006; Whitfield, 2006; Collins & Derrick, 2007).

Figure 2

Proposed model for the assembly and export of cyanobacterial EPS based on the information gathered both for other bacteria and genes found in cyanobacterial genomes. (1) Glycosyltransferases transfer the nucleotide sugars onto a putative lipid carrier, and the lipid-linked repeated units are assembled at the interface between the cytoplasm and the plasma membrane. (2) Newly synthesized units are ‘flipped’ across the membrane in a process requiring the integral membrane protein Wzx. Subsequently, Wzy assembles the polysaccharide by addition of new repeating units to the growing polysaccharide chain. (3) The polymer is translocated in a process requiring the Wzc and Wzb proteins. In the final stage, the carbohydrate polymer is translocated across the outer membrane through the outer-membrane lipoprotein Wza (adapted from Whitfield et al., 2006). OM, outer membrane; PM, plasma membrane.

Figure 2

Proposed model for the assembly and export of cyanobacterial EPS based on the information gathered both for other bacteria and genes found in cyanobacterial genomes. (1) Glycosyltransferases transfer the nucleotide sugars onto a putative lipid carrier, and the lipid-linked repeated units are assembled at the interface between the cytoplasm and the plasma membrane. (2) Newly synthesized units are ‘flipped’ across the membrane in a process requiring the integral membrane protein Wzx. Subsequently, Wzy assembles the polysaccharide by addition of new repeating units to the growing polysaccharide chain. (3) The polymer is translocated in a process requiring the Wzc and Wzb proteins. In the final stage, the carbohydrate polymer is translocated across the outer membrane through the outer-membrane lipoprotein Wza (adapted from Whitfield et al., 2006). OM, outer membrane; PM, plasma membrane.

An in silico analysis of the cyanobacterial genomes revealed that the genes putatively involved in the production of exopolysaccharides are sometimes clustered, present in different regions of the genome, and often occur in multiple copies. This last feature is not common in E. coli, Klebsiella pneumoniae and lactic acid bacteria, where the genes are frequently clustered and transcribed as one or two operons (Roberts, 1996; De Vuyst & Degeest, 1999; De Vuyst et al., 2001; Jolly & Stingele, 2001; Whitfield & Paiment, 2003; Whitfield, 2006). Examples of the physical organization of wz_ genes in three morphologically distinct types of cyanobacteria are depicted in Fig. 3. For the unicellular Cyanothece sp. only two copies of each gene were found, with the exception of wzx, which appears to be single (its sequence may not be complete). It was not possible to determine the relative position of these genes for this organism as the genome annotation process is still in progress. In general, as the complexity of the organism/size of the genome increases, more copies of the genes putatively involved in the production of the EPS are found, as can be observed for Lyngbya sp. and Nostoc punctiforme. In the last case, one needs to consider the presence of heterocysts that also have a polysaccharidic layer in their envelope. However, in the filamentous strains, a genome region containing all wz_, except wzb, could be identified, but it remains to be shown whether these genes are indeed specifically related to EPS production, and whether they constitute a transcriptional unit. Only by construction of deletion mutants will it be possible to understand the function of each of the proteins encoded by these ORFs and to start to unveil the biosynthetic pathways of cyanobacterial EPS.

Figure 3

Physical map of the putative genes involved in the polymerization, chain length control and export of EPS in the three morphologically distinct types of cyanobacteria. The deduced protein sequences encoded by these genes were submitted to an in silico analysis to identify the conserved motifs of interest. This analysis was performed using the following bioinformatic tools: blastp, cdart (at NCBI –http://www.ncbi.nlm.nih.gov/), and smart (at EMBL –http://smart.embl-heidelberg.de/). In general, several copies of a specific gene could be identified in a single cyanobacterial strain. In a given organism, the copy that has the highest probability to be related to EPS production is designated by subscript 1 (taking into account both the percentage of identity with the corresponding sequences in other organisms and the position of the gene in relation to others involved in the same process); the other copies are numbered subsequently. In Lyngbya sp. and Nostoc punctiforme, the genome region containing all wz_, except wzb, is underlined with a dashed line.? indicates that the gene wzy2 from Lyngbya is the one with the lowest homology to the available wzy sequences. Genbank accession numbers: AAXW00000000 (Cyanothece sp. CCY 0110), AAVU00000000 (Lyngbya sp. PCC 8106) and CP001037 (N. punctiforme ATCC 29133).

Figure 3

Physical map of the putative genes involved in the polymerization, chain length control and export of EPS in the three morphologically distinct types of cyanobacteria. The deduced protein sequences encoded by these genes were submitted to an in silico analysis to identify the conserved motifs of interest. This analysis was performed using the following bioinformatic tools: blastp, cdart (at NCBI –http://www.ncbi.nlm.nih.gov/), and smart (at EMBL –http://smart.embl-heidelberg.de/). In general, several copies of a specific gene could be identified in a single cyanobacterial strain. In a given organism, the copy that has the highest probability to be related to EPS production is designated by subscript 1 (taking into account both the percentage of identity with the corresponding sequences in other organisms and the position of the gene in relation to others involved in the same process); the other copies are numbered subsequently. In Lyngbya sp. and Nostoc punctiforme, the genome region containing all wz_, except wzb, is underlined with a dashed line.? indicates that the gene wzy2 from Lyngbya is the one with the lowest homology to the available wzy sequences. Genbank accession numbers: AAXW00000000 (Cyanothece sp. CCY 0110), AAVU00000000 (Lyngbya sp. PCC 8106) and CP001037 (N. punctiforme ATCC 29133).

The synthesis and secretion of EPS in cyanobacteria probably follow the pathways previously described for other bacteria. However, as a consequence of the cyanobacteria's ability to perform oxygenic photosynthesis and the unique characteristics of their EPS, some differences are expected. The production of exopolysaccharides is intimately dependent on the balance between the catabolic pathways of sugar degradation and the anabolic pathways of sugar nucleotide synthesis. This balance is certainly different in cyanobacteria compared with heterotrophic bacteria. Moreover, the presence of a higher number of different sugars in cyanobacterial EPS suggests that the synthesis of the sugar nucleotides is more complex, involving a higher number of different enzymatic reactions. In addition, although several genes encoding proteins putatively involved in the Wzy-dependent mechanism of EPS polymerization and export were identified in cyanobacterial genomes, their physical organization differs from what is observed in other microorganisms, suggesting that in cyanobacteria, this mechanism may be under a different type of regulation.

Concluding remarks

As discussed previously by De Philippis & Vincenzini (1998), the data on the chemical composition and on the rheological properties of the cyanobacterial EPS are not always comparable due to the different hydrolytic procedures and analytical methods used. Therefore, some of the results reported in the literature were not included in this review as they were not consistent with the majority of the data available.

The information gathered strongly underlines the complexity of both the chemical features of the cyanobacterial EPS and their putative biosynthetic pathways. As a result, it is not surprising that the data available on the structures of these macromolecules are still scarce and little is known about the genes encoding the proteins involved in their synthesis. Consequently, it is important to generate knowledge to unveil the pathways utilized by cyanobacteria for the synthesis of these biopolymers, which not only play a decisive ecological role, allowing these organisms to survive in adverse environmental conditions, but also have a high potential for biotechnological applications. The identification of the genes involved in the biosynthesis of EPS would also offer the possibility to investigate (1) the factors regulating the expression of these genes and (2) the possible genetic modification that could be introduced. This will make it possible to maximize the production of the polymer, as well as to introduce specific alterations in the composition/structure, producing polymers more suitable for specific applications. The construction of deletion mutants will help to define the role of each gene product and to clarify the function of EPS in natural habitats.

Acknowledgements

This work was supported by Fundação Calouste Gulbenkian: Programa Ambiente e Saúde, Proc. No. 76910; FCT (SFRH/BD/22733/2005 and SFRH/BPD/37045/2007), POCI 2010 (III Quadro Comunitário de Apoio) and by Acordo de Cooperação Científica e Tecnológica GRICES/CNR, Proc. 4.1.1., 2007.

References

Adhikary
SP
Sahu
JK
(
1998
)
UV protecting pigment of the terrestrial cyanobacterium Tolypothrix byssoidea
.
J Plant Physiol
 
153
:
770
773
.
Arias
S
Del Moral
A
Ferrer
MR
Tallon
R
Quesada
E
Béjar
V
(
2003
)
Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology
.
Extremophiles
 
7
:
319
326
.
Ariño
X
Ortega-Calvo
JJ
Hernandez-Marine
M
Saint-Jimenez
C
(
1995
)
Effect of sulfur starvation on the morphology and ultrastructure of the cyanobacterium Gloeothece sp. PCC 6909
.
Arch Microbiol
 
163
:
447
453
.
Arskold
E
Svensson
M
Grage
H
Roos
S
Radstrom
P
Van Niel
EWJ
(
2007
)
Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730
.
Int J Food Microbiol
 
116
:
159
167
.
Bahat-Samet
E
Castro-Sowinski
S
Okon
Y
(
2004
)
Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense
.
FEMS Microbiol Lett
 
237
:
195
203
.
Bar-Or
Y
Shilo
M
(
1987
)
Characterization of macromolecular flocculants produced by Phormidium sp. strain J-1 and by Anabaenopsis circularis PCC 6720
.
Appl Environ Microb
 
53
:
2226
2230
.
Bellezza
S
Albertano
P
De Philippis
R
Paradossi
G
(
2006
)
Exopolysaccharides of two cyanobacterial strains from roman hypogea
.
Geomicrobiol J
 
23
:
301
310
.
Belnap
J
Lange
OL
(
2001
)
Biological soil crusts: characteristics and distribution
.
Biological Soil Crusts: Structure, Function and Management
  (
Belnap
J
Lange
OL
, eds), pp.
3
30
.
Springer-Verlag
, Berlin.
Bender
J
Rodriguez-Eaton
S
Ekanemesang
UM
Phillips
P
(
1994
)
Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats
.
Appl Environ Microb
 
60
:
2311
2315
.
Benning
LG
Mountain
BW
(
2004
)
The silicification of microorganisms
: a comparison between in situ experiments in the field and in the laboratory.
11th International Symposium on Water–Rock Interactions
  (
Wanty
R
Seal
R
Balkema
AA
, eds), pp.
3
10
.
Taylor & Francis
, London.
Benning
LG
Phoenix
VR
Yee
N
Tobin
MJ
(
2004
)
Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy
.
Geochim Cosmochim Ac
 
68
:
729
741
.
Bergman
B
Gallon
JR
Rai
AN
Stal
LJ
(
1997
)
N2-fixation by non-heterocystous cyanobacteria
.
FEMS Microbiol Rev
 
19
:
139
185
.
Bertocchi
C
Navarini
L
Cesàro
A
(
1990
)
Polysaccharides from cyanobacteria
.
Carbohyd Polym
 
12
:
127
153
.
Bishop
CT
Adams
GA
Hughes
EO
(
1954
)
A polysaccharide from the blue-green alga, Anabaena cylindrica
.
Can J Chem
 
32
:
999
1003
.
Boels
IC
Van Kranenburg
R
Hugenholtz
J
Kleerebezem
M
DeVos
WM
(
2001
)
Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria
.
Int Dairy J
 
11
:
723
732
.
Böhm
GA
Pfleiderer
W
Boger
P
Scherer
S
(
1995
)
Structure of a novel oligosaccharide–mycosporine–amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune
.
J Biol Chem
 
270
:
8536
8539
.
Brown
MJ
Lester
JN
(
1982
)
Role of bacterial extra-cellular polymers in metal uptake in pure bacterial culture and activated sludge
.
Water Res
 
16
:
1539
1548
.
Brüll
LP
Huang
Z
Thomas-Oates
JE
Paulsen
BS
Cohen
EH
Michaelsen
TE
(
2000
)
Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: structural characterization and effect on the complement system of polysaccharides from Nostoc commune
.
J Phycol
 
36
:
871
881
.
Cesàro
A
Liut
G
Bertocchi
C
Navarini
L
Urbani
R
(
1990
)
Physicochemical properties of the exocellular polysaccharide from Cyanospira capsulata
.
Int J Biol Macromol
 
12
:
79
84
.
Chen
L
Li
D
Liu
Y
(
2003
)
Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates
.
J Arid Environ
 
55
:
645
656
.
Chen
LZ
Li
DH
Song
LR
Hu
CX
Wang
GH
Liu
YD
(
2006
)
Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus Gom
.
J Integr Plant Biol
 
48
:
914
919
.
Chi
Z
Su
CD
Lu
WD
(
2007
)
A new exopolysaccharide produced by marine Cyanothece sp. 113
.
Bioresource Technol
 
98
:
1329
1332
.
Choi
CW
Yoo
SA
Oh
IH
Park
SH
(
1998
)
Characterization of an extracellular flocculating substance produced by a planktonic cyanobacterium, Anabaena sp
.
Biotechnol Lett
 
20
:
643
646
.
Collins
RF
Derrick
JP
(
2007
)
Wza: a new structural paradigm for outer membrane secretory proteins?
Trends Microbiol
 
15
:
96
100
.
Colombo
V
Vieira
AAH
Moraes
G
(
2004
)
Activity of glycosidases from freshwater heterotrophic microorganisms on the degradation of extracellular polysaccharide produced by Anabaena spiroides (Cyanobacteria)
.
Braz J Microbiol
 
35
:
110
116
.
Crispim
CA
Gaylarde
CC
(
2005
)
Cyanobacteria and biodeterioration of cultural heritage: a review
.
Microb Ecol
 
49
:
1
9
.
Cupac
S
Gantar
M
(
1992
)
Chemical composition and morphological structure of the mucilage sheath of the cyanobacterium Nostoc D
.
Biomed Lett
 
47
:
133
138
.
Danin
A
Dor
I
Sandler
A
Amit
R
(
1998
)
Desert crust morphology and its relations to microbiotic succession at Mt. Sedom, Israel
.
J Arid Environ
 
38
:
161
174
.
Decho
AW
(
1990
)
Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes
.
Oceanogr Mar Biol
 
28
:
73
153
.
De Philippis
R
Micheletti
E
(
2009
)
Heavy metal removal with exopolysaccharide-producing cyanobacteria
.
Heavy Metals in the Environment
  (
Wang
LK
Chen
JP
Hung
YT
Shammas
NK
, eds), pp.
89
122
.
CRC Press
, Boca Raton, FL.
De Philippis
R
Vincenzini
M
(
1998
)
Exocellular polysaccharides from cyanobacteria and their possible applications
.
FEMS Microbiol Rev
 
22
:
151
175
.
De Philippis
R
Vincenzini
M
(
2003
)
Outermost polysaccharidic investments of cyanobacteria: nature, significance and possible applications
.
Recent Res Dev Microbiol
 
7
:
13
22
.
De Philippis
R
Sili
C
Tassinato
G
Vincenzini
M
Materassi
R
(
1991
)
Effects of growth conditions on exopolysaccharide production by Cynospira capsulata
.
Bioresource Technol
 
38
:
101
104
.
De Philippis
R
Margheri
MC
Pelosi
E
Ventura
S
(
1993
)
Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat
.
J Appl Phycol
 
5
:
387
394
.
De Philippis
R
Sili
C
Vincenzini
M
(
1996
)
Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux
.
J Appl Phycol
 
8
:
275
281
.
De Philippis
R
Margheri
MC
Materassi
R
Vincenzini
M
(
1998
)
Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers
.
Appl Environ Microb
 
64
:
1130
1132
.
De Philippis
R
Ena
A
Paperi
R
Sili
C
Vincenzini
M
(
2000
)
Assessment of the potential of Nostoc strains from pasteur culture collection for the production of polysaccharides of applied interest
.
J Appl Phycol
 
12
:
401
407
.
De Philippis
R
Sili
C
Paperi
R
Vincenzini
M
(
2001
)
Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review
.
J Appl Phycol
 
13
:
293
299
.
De Philippis
R
Faraloni
C
Sili
C
Vincenzini
M
(
2005
)
Populations of exopolysaccharide-producing cyanobacteria and diatoms in the mucilaginous benthic aggregates of the Tyrrhenian Sea (Tuscan Archipelago)
.
Sci Total Environ
 
353
:
360
368
.
De Philippis
R
Paperi
R
Sili
C
(
2007
)
Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria
.
Biodegradation
 
18
:
181
187
.
De Vuyst
L
Degeest
B
(
1999
)
Heteropolysaccharides from lactic acid bacteria
.
FEMS Microbiol Rev
 
23
:
153
177
.
De Vuyst
L
De Vin
F
Vaningelgem
F
Degeest
B
(
2001
)
Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria
.
Int Dairy J
 
11
:
687
708
.
Dillon
JG
Tatsumi
CM
Tandingan
PG
Castenholz
RW
(
2002
)
Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.)
.
Arch Microbiol
 
177
:
322
331
.
Dudman
WF
(
1977
)
The role of surface polysaccharides in natural environments
.
Surface Carbohydrates of the Prokaryotic Cell
  (
Sutherland
IW
, ed), pp.
357
414
.
Academic Press
, New York.
Dunn
JH
Wolk
CP
(
1970
)
Composition of the cellular envelopes of Anabaena cylindrica
.
J Bacteriol
 
130
:
153
158
.
Ehling-Schulz
M
Scherer
S
(
1999
)
UV protection in cyanobacteria
.
Eur J Phycol
 
34
:
329
338
.
Ehling-Schulz
M
Bilger
W
Scherer
S
(
1997
)
UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune
.
J Bacteriol
 
179
:
1940
1945
.
Fay
P
(
1992
)
Oxygen relations of nitrogen fixation in cyanobacteria
.
Microbiol Rev
 
56
:
340
373
.
Filali Mouhim
R
Cornet
JF
Fontaine
T
Fournet
B
Dubertret
G
(
1993
)
Production, isolation and characterization of the exopolysaccharide of the cyanobacterium spirulina platensis
.
Biotechnol Lett
 
15
:
567
575
.
Fischer
D
Schlösser
UG
Pohl
P
(
1997
)
Exopolysaccharide production by cyanobacteria grown in closed photobioreactors and immobilized using white cotton towelling
.
J Appl Phycol
 
9
:
205
213
.
Fischer
SE
Marioli
JM
Mori
G
(
2003
)
Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress
.
FEMS Microbiol Lett
 
219
:
53
62
.
Flaibani
A
Olsen
Y
Painter
TJ
(
1989
)
Polysaccharides in desert reclamation: composition of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae
.
Carbohyd Res
 
190
:
235
248
.
Fleming
ED
Castenholz
RW
(
2007
)
Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria
.
Environ Microbiol
 
9
:
1448
1455
.
Fleming
ED
Castenholz
RW
(
2008
)
Effects of nitrogen source on the synthesis of the UV-screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC73102
.
FEMS Microbiol Ecol
 
63
:
301
308
.
Forni
C
Telo
FR
Caiola
MG
(
1997
)
Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta)
.
Phycologia
 
36
:
181
185
.
Fresnedo
O
Serra
JL
(
1992
)
Effect of nitrogen starvation on the biochemistry of Phormidium laminosum (Cyanophyceae)
.
J Phycol
 
28
:
786
793
.
Gantar
M
Rowell
P
Kerby
NW
Sutherland
IW
(
1995
)
Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria
.
Biol Fert Soils
 
19
:
41
48
.
Garcia-Pichel
F
Castenholz
RW
(
1991
)
Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment
.
J Phycol
 
27
:
395
409
.
Garozzo
D
Impallomeni
G
Spina
E
Sturiale
L
Cesaro
A
Cescutti
P
(
1995
)
Identification of N-acetylglucosamine and 4-O-[1-carboxyethyl]mannose in the exopolysaccharide from Cyanospira capsulata
.
Carbohyd Res
 
270
:
97
106
.
Garozzo
D
Impallomeni
G
Spina
E
Sturiale
L
(
1998
)
The structure of the exocellular polysaccharide from the cyanobacterium Cyanospira capsulata
.
Carbohyd Res
 
307
:
113
124
.
Ghosh
T
Chattopadhyay
K
Marschall
M
Karmakar
P
Mandal
P
Ray
B
(
2009
)
Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation
.
Glycobiology
 
19
:
2
15
.
Girard
M
Schaffer-Lequart
C
(
2007
)
Gelation and resistance to shearing of fermented milk: role of exopolysaccharides
.
Int Dairy J
 
17
:
666
673
.
Gloaguen
V
Morvan
H
Hoffmann
L
(
1995
)
Released and capsular polysaccharides of Oscillatoriaceae (Cyanophyceae, Cyanobacteria)
.
Alg Studies
 
78
:
53
69
.
Gloaguen
V
Morvan
H
Hoffmann
L
Plancke
Y
Wieruszeski
JM
Lippens
G
Strecker
G
(
1999
)
Capsular polysaccharide produced by the thermophilic cyanobacterium Mastigocladus laminosus. Structural study of an undecasaccharide obtained by lithium degradation
.
Eur J Biochem
 
266
:
762
770
.
Gouvea
SP
Vieira
AAH
Lombardi
AT
(
2005
)
Copper and cadmium complexation by high molecular weight materials of dominant microalgae and of water from a eutrophic reservoir
.
Chemosphere
 
60
:
1332
1339
.
Grilli Caiola
M
Ocampo-Friedmann
R
Friedmann
EI
(
1993
)
Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales)
.
Phycologia
 
32
:
315
322
.
Grilli Caiola
M
Billi
D
Friedmann
EI
(
1996
)
Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales)
.
Eur J Phycol
 
31
:
97
105
.
Grillo
JF
Gibson
J
(
1979
)
Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus
.
J Bacteriol
 
140
:
508
517
.
Helm
RF
Huang
Z
Edwards
D
Leeson
H
Peery
W
Potts
M
(
2000
)
Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1
.
J Bacteriol
 
182
:
974
982
.
Hill
DR
Peat
A
Potts
M
(
1994
)
Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (Cyanobacteria)
.
Protoplasma
 
182
:
126
148
.
Hoiczyk
E
(
1998
)
Structural and biochemical analysis of the sheath of Phormidium uncinatum
.
J Bacteriol
 
180
:
3923
3932
.
Hoiczyck
E
Hansel
A
(
2000
)
Cyanobacterial cell walls: news from an unusual prokaryotic envelope
.
J Bacteriol
 
182
:
1191
1199
.
Hu
C
Liu
Y
Paulsen
BS
Petersen
D
Klaveness
D
(
2003a
)
Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain
.
Carbohyd Polym
 
54
:
33
42
.
Hu
C
Zhang
D
Huang
Z
Liu
YD
(
2003b
)
The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts
.
Plant Soil
 
257
:
97
111
.
Huang
WJ
Lai
CH
Cheng
YL
(
2007
)
Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir
.
Sci Total Environ
 
377
:
214
223
.
Huang
Z
Liu
Y
Paulsen
BS
Klaveness
D
(
1998
)
Studies on polysaccharides from three edible species of Nostoc (Cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures
.
J Phycol
 
34
:
962
968
.
Huang
Z
Prickett
T
Potts
M
Helm
FR
(
2000
)
The use of the 2-aminobenzoic acid tag for oligosaccharide gel electrophoresis
.
Carbohyd Res
 
328
:
78
83
.
Jensen
GS
Ginsberg
DI
Deapeau
C
(
2001
)
Blue-green algae as an immuno-enhancer and biomodulator
.
JANA
 
3
:
24
30
.
Jha
MN
Venkataraman
GS
Kaushik
BD
(
1987
)
Response of Westiellopsis prolifica and Anabaena sp. to salt stress
.
World J Microb Biot
 
3
:
307
317
.
Jolly
L
Stingele
F
(
2001
)
Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria
.
Int Dairy J
 
11
:
733
745
.
Kabata
K
Okamoto
C
Sasada
N
Ono
M
Igoshi
K
Kobayashi
H
Masuoka
C
Ito
Y
(
2005
)
Studies on the analysis of cultivation conditions and constitutive monosaccharides, and function for food in Suizenjinori (Aphanothece sacrum (Sur.) Okada) indigenous to Japan
.
Proc School Agric Kyushu Tokai Univ
 
24
:
37
43
.
Kallas
T
Rebière
MC
Rippka
R
Tandeau de Marsac
N
(
1983
)
The structural nif genes of the cyanobacteria Gloeothece sp. and Calothrix sp. share homology with those of Anabaena sp., but the Gloeothece genes have a different arrangement
.
J Bacteriol
 
155
:
427
431
.
Kamal
F
Mehrgan
H
Assadi
MM
Mortazavi
SA
(
2003
)
Mutagenesis of Xanthomonas campestris and selection of strain with enhanced xanthan production
.
Iran Biomed J
 
7
:
567
572
.
Kawaguchi
T
Decho
AW
(
2000
)
Biochemical characterization of cyanobacterial extracellular polymers (EPS) from modern marine stromatolites
.
Prep Biochem Biotech
 
30
:
321
330
.
Kawaguchi
T
Decho
AW
(
2002
)
Isolation and biochemical characterization of extracellular polymeric secretions (eps) from modern soft marine stromatolites (bahamas) and its inhibitory effect on CaCO3 precipitation
.
Prep Biochem Biotech
 
32
:
51
63
.
Kidron
GJ
Yaalon
DH
Vonshak
A
(
1999
)
Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging
.
Soil Sci
 
164
:
18
27
.
Kleerebezem
M
Van Kranenburg
R
Tuinier
R
Boels
IC
Zoon
P
Looijesteijn
E
Hugenholtz
J
De Vos
WM
(
1999
)
Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties?
Antonie Van Leeuwenhoek
 
76
:
357
365
.
Kumar
AS
Mody
K
Jha
B
(
2007
)
Bacterial exopolysaccharides – a perception
.
J Basic Microb
 
47
:
103
117
.
Kumar
CG
Joo
HS
Choi
JW
Koo
YM
Chang
CS
(
2004
)
Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450
.
Enzyme Microb Tech
 
34
:
673
681
.
Lama
L
Nicolaus
B
Calandrelli
V
Manca
MC
Romano
I
Gambacorta
A
(
1996
)
Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C
.
Phytochemistry
 
42
:
655
650
.
Lapasin
R
Pricl
S
Bertocchi
C
Navarini
L
Cesàro
A
De Philippis
R
(
1992
)
Rheology of culture broths and exopolysaccharide of Cyanospira capsulata at different stages of growth
.
Carbohyd Polym
 
17
:
1
10
.
Laws
A
Gu
Y
Marshall
V
(
2001
)
Biosynthesis, characterization, and design of bacterial exopolysaccharides from lactic acid bacteria
.
Biotechnol Adv
 
18
:
597
625
.
Leppard
GG
Heissenberger
A
Herndl
GJ
(
1996
)
Ultrastructure of marine snow, I: transmission electron microscopy methodology
.
Mar Ecol Prog Ser
 
135
:
289
298
.
Li
P
Liu
Z
Xu
R
(
2001
)
Chemical characterisation of the released polysaccharide from the cyanobacterium Aphanothece halophytica GR02
.
J Appl Phycol
 
13
:
71
77
.
Li
P
Harding
SE
Liu
Z
(
2002
)
Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications
.
Biotechnol Genet Eng
 
18
:
375
404
.
Li
Q
Reeves
PR
(
2000
)
Genetic variation of dTDP-l-rhamnose pathway genes in Salmonella enterica
.
Microbiology
 
146
:
2291
2307
.
Mancuso Nichols
CA
Guezennec
J
Bowman
JP
(
2005
)
Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review
.
Mar Biotechnol
 
7
:
253
271
.
Marra
M
Palmeri
A
Ballio
A
Segre
A
Slodki
ME
(
1990
)
Structural characterization of the exocellular polysaccharide from Cyanospira capsulata
.
Carbohyd Res
 
197
:
338
344
.
Matsunaga
T
Sudo
H
Takemasa
H
Wachi
Y
Nakamura
N
(
1996
)
Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia immobilized on light-diffusing optical fibers
.
Appl Microbiol Biotechnol
 
45
:
24
27
.
Matulewicz
CM
Percival
EE
Weigel
H
(
1984
)
Water-soluble polysaccharides of antarctic and cultured Phormidium species of Cyanophyceae
.
Phytochemistry
 
23
:
103
105
.
Mazor
G
Kidron
GJ
Vonshak
A
Abeliovich
A
(
1996
)
The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts
.
FEMS Microbiol Ecol
 
21
:
121
130
.
Mehta
VB
Vaidya
BS
(
1978
)
Cellular and extracellular polysaccharides of the blue-green alga Nostoc
.
J Exp Bot
 
29
:
1423
1430
.
Micheletti
E
Colica
G
Viti
C
Tamagnini
P
De Philippis
R
(
2008a
)
Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria
.
J Appl Microbiol
 
105
:
88
94
.
Micheletti
E
Pereira
S
Mannelli
F
Moradas-Ferreira
P
Tamagnini
P
De Philippis
R
(
2008b
)
Sheathless mutant of the cyanobacterium Gloeothece sp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions
.
Appl Environ Microb
 
74
:
2797
2804
.
Moore
BG
Tischer
RG
(
1964
)
Extracellular polysaccharides of algae: effects on life-support systems
.
Science
 
145
:
586
587
.
Moore
BG
Tischer
RG
(
1965
)
Biosynthesis of extracellular polysaccharides by the blue-green alga Anabaena flos-aquae
.
Can J Microbiol
 
11
:
877
885
.
Moreno
J
Vargas
MA
Olivares
H
Rivas
J
Guerrero
MG
(
1998
)
Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture
.
J Biotechnol
 
60
:
175
182
.
Moreno
J
Vargas
MA
Madiedo
JM
Munoz
J
Rivas
J
Guerrero
MG
(
2000
)
Chemical and rheological properties of extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047
.
Biotechnol Bioeng
 
67
:
283
290
.
Morris
GA
Li
P
Puaud
M
Liu
Z
Mitchell
JR
Harding
SE
(
2001
)
Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan
.
Carbohyd Polym
 
44
:
261
268
.
Morvan
H
Gloaguen
V
Vebret
L
Joset
F
Hoffmann
L
(
1997
)
Structure–function investigations on capsular polymers as a necessary step for new biotechnological applications: the case of the cyanobacterium Mastigocladus laminosus
.
Plant Physiol Bioch
 
35
:
671
683
.
Mozzi
F
Savoy de Giori
G
Font de Valdez
G
(
2003
)
UDP-galactose 4-epimerase: a key enzyme in exopolysaccharide formation by Lactobacillus casei CRL 87 in controlled pH batch cultures
.
J Appl Microbiol
 
94
:
175
183
.
Navarini
L
Bertocchi
C
Cesàro
A
Lapasin
R
(
1990
)
Rheology of aqueous solutions of an extracellular polysaccharide from Cyanospira capsulata
.
Carbohyd Polym
 
12
:
169
187
.
Neu
TR
Marshall
KC
(
1990
)
Bacterial polymers: physicochemical aspects of their interactions at interfaces
.
J Biomater Appl
 
5
:
107
127
.
Neu
TR
Dengler
T
Jann
B
Poralla
K
(
1992
)
Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive hydrophobic Rhodococcus strain
.
J Gen Microbiol
 
138
:
2531
2537
.
Nicolaus
B
Panico
A
Lama
L
Romano
I
Manca
MC
De Giulio
A
Gambacorta
A
(
1999
)
Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria
.
Phytochemistry
 
52
:
639
647
.
Nie
ZY
Xia
JL
Levert
JM
(
2002
)
Fractionation and characterization of polysaccharides from cyanobacterium Spirulina (Arthrospira) maxima in nitrogen-limited batch culture
.
J Cent South Univ T
 
9
:
81
86
(English edition).
Ortega-Calvo
JJ
Stal
LJ
(
1994
)
Sulphate-limited growth in the N2-fixing unicellular cyanobacterium Gloeothece (Nageli) sp. PCC 6909
.
New Phytol
 
128
:
273
281
.
Otero
A
Vincenzini
M
(
2003
)
Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity
.
J Biotechnol
 
102
:
143
152
.
Otero
A
Vincenzini
M
(
2004
)
Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism
.
J Phycol
 
40
:
74
81
.
Panhota
RS
Bianchini
I
Vieira
AAH
(
2007
)
Glucose uptake and extracellular polysaccharides (EPS) produced by bacterioplankton from an eutrophic tropical reservoir (Barra Bonita, SP-Brazil)
.
Hydrobiologia
 
583
:
223
230
.
Panoff
JM
Priem
B
Morvan
H
Joset
F
(
1988
)
Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714
.
Arch Microbiol
 
150
:
558
563
.
Parikh
A
Madamwar
D
(
2006
)
Partial characterization of extracellular polysaccharides from cyanobacteria
.
Bioresource Technol
 
97
:
1822
1827
.
Parker
DL
Schram
B
Plude
JL
Moore
RE
(
1996
)
Effect of metal cations on the viscosity of a pectin-like capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40
.
Appl Environ Microb
 
62
:
1208
1213
.
Phoenix
VR
Adams
DG
Konhauser
KO
(
2000
)
Cyanobacterial viability during hydrothermal biomineralization
.
Chem Geol
 
169
:
329
338
.
Piro
G
Congedo
C
Leucci
MR
Lenucci
M
Dalessandro
G
(
2005
)
The biosynthesis of exo- and cell wall-polysaccharides is sensitive to brefeldin A in the cyanobacterium Leptolyngbya VRUC 135
.
Plant Biosyst
 
139
:
107
112
.
Plude
JL
Parker
DL
Schommer
OJ
Timmerman
RJ
Hagstrom
SA
Joers
JM
Hnasko
R
(
1991
)
Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40
.
Appl Environ Microb
 
57
:
1696
1700
.
Potts
M
(
1994
)
Desiccation tolerance of prokaryotes
.
Microbiol Rev
 
58
:
755
805
.
Potts
M
(
1999
)
Mechanisms of desiccation tolerance in cyanobacteria
.
Eur J Phycol
 
34
:
319
328
.
Potts
M
(
2004
)
Nudist colonies: a revealing glimpse of cyanobacterial extracellular polysaccharide
.
J Phycol
 
40
:
1
3
.
Pugh
N
Ross
A
Elsohly
HN
Elsohly
MA
Pasco
D
(
2001
)
Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa
.
Planta Med
 
67
:
737
742
.
Rahn
A
Drummelsmith
J
Whitfield
C
(
1999
)
Expression of Escherichia coli group 1 K antigens: relationship to the Colanic Acid Biosynthesis Locus and the cps Genes from Klebsiella pneumoniae
.
J Bacteriol
 
181
:
2307
2313
.
Raungsomboon
S
Amnat
C
Boosya
B
Duangrat
I
Narumon
WH
(
2006
)
Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa
.
Water Res
 
40
:
3759
3766
.
Reeves
PR
(
1993
)
Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale
.
Trends Genet
 
9
:
17
22
.
Reeves
PR
Hobbs
M
Valvano
MA
Skurnik
M
Whitfield
C
Coplin
D
Kido
N
Klena
J
Maskell
D
Raetz
CRH
Rick
PD
(
1996
)
Bacterial polysaccharide synthesis and gene nomenclature
.
Trends Microbiol
 
4
:
495
503
.
Ricciardi
A
Parente
E
Crudele
MA
Zanetti
F
Scolari
G
Mannazzu
I
(
2002
)
Exopolysaccharide production by Streptococcus thermophilus SY: production and preliminary characterization of the polymer
.
J Appl Microbiol
 
92
:
297
306
.
Richert
L
Golubic
S
Le Guédès
R
Ratiskol
J
Payri
C
Guezennec
J
(
2005
)
Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats
.
Curr Microbiol
 
51
:
379
384
.
Rivera-Aguilar
V
Montejano
G
Rodríguez-Zaragoza
S
Durán-Díaz
A
(
2006
)
Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the Tehuacán Valley, Puebla, México
.
J Arid Environ
 
67
:
208
225
.
Roberts
IS
(
1996
)
The biochemistry and genetics of capsular polysaccharide production in bacteria
.
Annu Rev Microbiol
 
50
:
285
315
.
Roux
JM
(
1996
)
Production of polysaccharide slime by microbial mats in the hypersaline environment of a Western Australian solar saltfield
.
Int J Salt Lake Res
 
5
:
103
130
.
Ruas-Madiedo
P
De los Reyes-Gavilan
CG
(
2005
)
Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria
.
J Dairy Sci
 
88
:
843
856
.
Ruas-Madiedo
P
Hugenholtz
J
Zoon
P
(
2002
)
An overview of the functionality of exopolysaccharides produced by lactic acid bacteria
.
Int Dairy J
 
12
:
163
171
.
Samuel
G
Reeves
P
(
2003
)
Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly
.
Carbohyd Res
 
338
:
2503
2519
.
Sangar
VK
Dugan
PR
(
1972
)
Polysaccharide produced by Anacystis nidulans: its ecological implication
.
Appl Microbiol
 
24
:
732
734
.
Sassaki
GL
Gorin
PA
Reis
RA
Serrato
RV
Elífio
SL
Iacomini
M
(
2005
)
Carbohydrate, glycolipid, and lipid components from the photobiont (Scytonema sp.) of the lichen, Dictyomema glabratum
.
Carbohydr Res
 
340
:
1808
1817
.
Satoh
K
Hirai
M
Nishio
J
Yamaji
T
Kashino
Y
Koike
H
(
2002
)
Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune
.
Plant Cell Physiol
 
43
:
170
176
.
Schaeffer
DJ
Krylov
VS
(
2000
)
Anti-HIV activity of extracts and compounds from algae and cyanobacteria
.
Ecotox Environ Safe
 
45
:
208
227
.
Scherer
S
Ernst
A
Chen
TW
Böger
P
(
1984
)
Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation
.
Oecologia
 
62
:
418
423
.
Scherer
S
Chen
TW
Böger
P
(
1986
)
Recovery of adenine-nucleotide pools in terrestrial blue-green algae after prolonged drought periods
.
Oecologia
 
68
:
585
588
.
Scott
C
Fletcher
RL
Bremer
GB
(
1996
)
Observations of the mechanisms of attachment of some marine fouling blue-green algae
.
Biofouling
 
10
:
161
173
.
Sekar
S
Paulraj
P
(
2006
)
Strategic mining of cyanobacterial patents from the USPTO patent database and analysis of their scope and implications
.
J Appl Phycol
 
19
:
277
292
.
Selbmann
L
Onofri
S
Fenice
M
Federici
F
Petruccioli
M
(
2002
)
Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080
.
Res Microbiol
 
153
:
585
592
.
Shah
V
Garg
N
Madamwar
D
(
1999
)
Exopolysaccharide production by a marine cyanobacterium Cyanothece sp. Application in dye removal by its gelation phenomenon
.
Appl Biochem Biotech Part A
 
82
:
81
90
.
Shah
V
Ray
A
Garg
N
Madamwar
D
(
2000
)
Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions
.
Curr Microbiol
 
40
:
274
278
.
Shaw
E
Hill
DR
Brittain
N
Wright
DJ
Täuber
U
Marand
H
Helm
RF
Potts
M
(
2003
)
Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune
.
Appl Environ Microb
 
69
:
5679
5684
.
Shepherd
R
Rockey
J
Sutherland
IW
Roller
S
(
1995
)
Novel bioemulsifiers from microorganisms for use in foods
.
J Biotechnol
 
40
:
207
217
.
Shirkey
B
Kovarcik
DP
Wright
DJ
Wilmoth
G
Prickett
TF
Helm
RF
(
2000
)
Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation
.
J Bacteriol
 
182
:
189
197
.
Skorupska
A
Janczarek
M
Marczak
M
Mazur
A
Król
J
(
2006
)
Rhizobial exopolysaccharides: genetic control and symbiotic functions
.
Microb Cell Fact
 
5
:
7
.
Stewart
I
Schluter
PJ
Shaw
GR
(
2006
)
Cyanobacterial lipopolysaccharides and human health – a review
.
Environ Health
 
5
:
7
.
Su
C
Zhenming
C
Weidong
Lu
(
2007
)
Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113
.
Chin J Oceanol Limnol
 
25
:
411
417
.
Sudo
H
Burgess
JG
Takemasa
H
Nakamura
N
Matsunaga
T
(
1995
)
Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia
.
Curr Microbiol
 
30
:
219
222
.
Sutherland
IW
(
1994
)
Structure–function relationships in microbial exopolysaccharides
.
Biotechnol Adv
 
12
:
393
448
.
Sutherland
IW
(
1996
)
Extracellular polysaccharides
.
Biotechnology
 , Vol.
6
(
Rehm
HJ
Reed
G
, eds), pp.
615
657
.
VCH
, Weinheim.
Sutherland
IW
(
1999
)
Polysaccharases for microbial exopolysaccharides
.
Carbohyd Polym
 
38
:
310
328
.
Sutherland
IW
(
2001
)
Microbial polysaccharides from Gram-negative bacteria
.
Int Dairy J
 
11
:
663
674
.
Tamaru
Y
Takani
Y
Yoshida
T
Sakamoto
T
(
2005
)
Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune
.
Appl Environ Microb
 
71
:
7327
7333
.
Tease
B
Jurgens
UJ
Golecki
JR
Heinrich
UR
Rippka
R
Weckesser
J
(
1991
)
Fine-structural and chemical analyses on inner and outer sheath of the cyanobacterium Gloeothece sp. PCC 6909
.
Antonie Van Leeüwenhoek
 
59
:
27
34
.
Tease
BE
Walker
RW
(
1987
)
Comparative composition of the sheath of the cyanobacterium Gloeothece ATCC 27152 cultured with and without combined nitrogen
.
J Gen Microbiol
 
133
:
3331
3339
.
Tischer
RG
Davis
EB
(
1971
)
The effect of various nitrogen sources upon the production of extracellular polysaccharide by blue-green alga Anabaena flos-aquae A 37
.
J Exp Bot
 
22
:
546
551
.
Tseng
CT
Zhao
Y
(
1994
)
Extraction, purification and identification of polysaccharides of Spirulina (Arthrospira) platensis (Cyanophyceae)
.
Alg Stud
 
75
:
303
312
.
Tsuneda
S
Aikawa
H
Hayashi
H
Yuasa
A
Hirata
A
(
2003
)
Extracellular polymeric substances responsible for bacterial adhesion onto solid surface
.
FEMS Microbiol Lett
 
223
:
287
292
.
Van Hijum
SAFT
Kralj
S
Ozimek
LK
Dijkhuizen
L
Van Geel-Schutten
IGH
(
2006
)
Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria
.
Microbiol Mol Biol R
 
70
:
157
176
.
Vaningelgem
F
Zamfir
M
Mozzi
F
Adriany
T
Vancanneyt
M
Swings
J
De Vuyst
L
(
2004
)
Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics
.
Appl Environ Microb
 
70
:
900
912
.
Van Kranenburg
R
Boels
IC
Kleerebezem
M
De Vos
WM
(
1999
)
Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides
.
Curr Opin Biotech
 
10
:
498
504
.
Vicente-García
V
Ríos-Leal
E
Calderón-Domínguez
G
Cañizares-Villanueva
RO
Olvera-Ramírez
R
(
2004
)
Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico
.
Biotechnol Bioeng
 
85
:
306
310
.
Vincenzini
M
De Philippis
R
Sili
C
Materassi
R
(
1990
)
Studies on exopolysaccharide release by diazotrophic batch cultures of Cyanospira capsulata
.
Appl Microbiol Biot
 
34
:
392
396
.
Vincenzini
M
De Philippis
R
Sili
C
Materassi
R
(
1993
)
Stability of molecular and rheological properties of the exopolysaccharide produced by Cyanospira capsulata cultivated under different growth conditions
.
J Appl Phycol
 
5
:
539
541
.
Volk
RB
Venzke
K
Blaschek
W
(
2007
)
Structural investigation of a polysaccharide released by the cyanobacterium Nostoc insulare
.
J Appl Phycol
 
19
:
255
262
.
Wang
WS
Tischer
RG
(
1973
)
Study of the extracellular polysaccharides produced by a blue-green alga, Anabaena flos-aquae A-37
.
Arch Microbiol
 
91
:
77
81
.
Wanner
G
Henkelmann
G
Schmidt
A
Kost
HP
(
1986
)
Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301. An ultrastructural, morphometrical, and biochemical comparison
.
Z Naturforsch
 
41c
:
741
750
.
Welman
AD
Maddox
IS
(
2003
)
Exopolysaccharides from lactic acid bacteria: perspectives and challenges
.
Trends Biotechnol
 
21
:
269
274
.
Whitfield
C
(
2006
)
Biosynthesis and assembly of capsular polysaccharides in Escherichia coli
.
Annu Rev Biochem
 
75
:
39
68
.
Whitfield
C
Larue
K
(
2008
)
Stop and go: regulation of chain length in the biosynthesis of bacterial polysaccharides
.
Nat Struct Mol Biol
 
15
:
121
123
.
Whitfield
C
Paiment
A
(
2003
)
Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria
.
Carbohyd Res
 
338
:
2491
2502
.
Whitfield
C
Roberts
IS
(
1999
)
Structure, assembly and regulation of expression of capsules in Escherichia coli
.
Mol Microbiol
 
31
:
1307
1319
.
Whitton
BA
Potts
M
(
2000
)
Introduction to the cyanobacteria
.
The Ecology of Cyanobacteria
  (
Whitton
BA
Potts
M
, eds), pp.
1
11
.
Kluwer Academic Publishers
, Dordrecht.
Wright
DJ
Smith
SC
Joardar
V
Scherer
S
Jervis
J
Warren
A
Helm
RF
Potts
M
(
2005
)
UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria)
.
J Biol Chem
 
280
:
40271
40281
.
Yamazaki
M
Thorne
L
Mikolajczak
M
Armentrout
RW
Pollock
TJ
(
1996
)
Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88
.
J Bacteriol
 
178
:
2676
2687
.
Yoshimura
H
Okamoto
S
Tsumuraya
Y
Ohmori
M
(
2007
)
Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyanobacterium Anabaena sp. strain PCC 7120
.
DNA Res
 
14
:
13
24
.
Zhang
YM
Wang
HL
Wang
XQ
Yang
WK
Zhang
DY
(
2006
)
The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China
.
Geoderma
 
132
:
441
449
.
Editor: Ferran Garcia-Pichel