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ABSTRACT

The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its
widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in
explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple
genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the
evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of
laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable
environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities.
Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social
lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in
experimental design and data analysis would be essential in improving the understanding of
genotype–environment–phenotype relationships.
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INTRODUCTION

In laboratories, Saccharomyces cerevisiae is usually grown in isola-
tion and under well-defined conditions. Laboratory experiments
therefore only faintly represent the challenges in the natural
ecological habitats ofwild and domesticated (i.e. strains adapted
to human use for food and beverage fermentation already thou-
sands of years ago) S. cerevisiae. Furthermore, in a natural habi-
tat, the yeast metabolism needs to adapt and respond to the
presence of other species. The absence of interspecies social
life and unrepresentative growth conditions in laboratory ex-
periments may thus hide the evolutionarily shaped operating
principles of S. cerevisiaemetabolic and regulatory networks. Fur-
thermore, minimal spatial variation in liquid laboratory cultures
hardly supports the phenotypic heterogeneity arising due to
chemical gradients and physical proximity (Campbell et al. 2015;

Campbell, Vowinckel and Ralser 2016). The laboratory studies
of S. cerevisiae, with the above-mentioned limitations, are also
generally limited to few strains. All these factors may have
unforeseen and fundamental effects on the interpretation of
experimental data and thereby present a challenge for build-
ing a quantitative understanding of the genotype–phenotype
relationship.

Saccharomyces cerevisiae metabolic responses are yet
difficult to predict

Genome-scale metabolic models can be used to predict the
phenotype dependence on the status of metabolic genes
(Forster et al. 2003; Herrgard et al. 2008). These models are a
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gene-annotated stoichiometric representation of the full
metabolic potential of a species augmented with thermody-
namic and reaction capacity constraints. Despite the wealth
of knowledge represented by these models, the prediction of
gene essentiality is not yet flawless (Heavner and Price 2015),
and the ability to predict the dependence of the metabolic flux
distribution on the gene status (presence/absence) has been
found to be poor (Pereira, Nielsen and Rocha 2016). In addition,
the prediction accuracy of conditional gene essentialities in
prototrophic deletion mutants on different carbon and nitrogen
source has been found to be weak (VanderSluis et al. 2014).
Furthermore, synthetic lethal phenotypes arising from genetic
interactions can hardly be explained using metabolic models
(Szappanos et al. 2011; Brochado et al. 2012). In auxotrophic labo-
ratory strains grown on supplementedmedia, the interpretation
of phenotypes is further complicated by yeast metabolizing the
supplements, and the cessation of pathways because of the
end product availability. This has shown to lead to complex
molecular phenotypes through epistatic effects (Brem et al.
2002; Mulleder et al. 2012; Campbell et al. 2015).

Saccharomyces cerevisiae laboratory genotypes

A majority of laboratory experiments are performed with only
a few strains of S. cerevisiae which may not represent the full
genetic potential of the species (Steinmetz et al. 2002; Carreto
et al. 2008; Ehrenreich et al. 2010; Warringer et al. 2011; Strope
et al. 2015). S. cerevisiae strains from genotypically different pop-
ulation origins exhibit large trait divergence in terms of growth
characteristics on various substrates, in the presence of toxins or
effectors, and mineral and vitamin limitations (Warringer et al.
2011). A laboratory strain may even lack evolutionary streamlin-
ing of the genotype–phenotype relation if its genome has not
undergone the evolutionary selection under the corresponding
growth conditions. Indeed, Qian et al. (2012) observed that in
a common laboratory culture media, a laboratory strain of S.
cerevisiae expresses genes that are rather deleterious than ben-
eficial, indicating antagonistic pleiotropy that has not been re-
solved by adaptation to the corresponding environment (Qian
et al. 2012). Relaxation of natural selection pressures has also
been found to enrich, possibly through genetic drift, population
specific alleles (Warringer et al. 2011; Zorgo et al. 2012). Addition-
ally, auxotrophies commonly present in laboratory strains have
been shown to affect the expression of a large number of genes
and metabolite levels even when the growth medium is ade-
quately supplemented (Brem et al. 2002; Mulleder et al. 2012). The
supplementation thus causes effects beyond the stoichiometric
fulfillment of the nutrients corresponding to the auxotrophies.

Habitats of Saccharomyces cerevisiae

The ecology of the wild S. cerevisiae is relatively poorly under-
stood (Boynton and Greig 2014), mainly because of early domes-
tication (Sicard and Legras 2011) and widespread use of com-
modity strains. S. cerevisiae has been used for food and bever-
age fermentation for several thousand years due to its unique
metabolic properties: fermentative metabolism, resistance to
high sugar and ethanol concentrations, and production of spe-
cific aroma compounds. Humans have therefore significantly fa-
cilitated dispersal of the yeast (Goddard et al. 2010). For instance,
the strains used for wine fermentation in Australia, Chile and
New Zealand have shared recent ancestors with European wine
strains (Legras et al. 2007; Liti et al. 2009; Goddard et al. 2010;
Dunn et al. 2012). Through a large-scale population history study

the genotypes of S. cerevisiae were found to fit to five primary
lineages with shared ancestor populations (i.e. Malaysian, West
African, North American, European and Sake) (Liti et al. 2009; Liti
2015). The genetic variations found in strains in a lineage were
unique and equally distributed in the genome (Liti et al. 2009).
However, a separate investigation of Chinese wild S. cerevisiae
isolates revealed a larger and hitherto unknown reservoir of ge-
netic variation (Wang et al. 2012). The natural history of S. cere-
visiae including the known genetic variation is comprehensively
reviewed by Liti (Liti 2015).

While S. cerevisiae is very abundant in human-made environ-
ments, such as wineries (Ciani et al. 2004), it appears to be rather
rare in natural reservoirs (Goddard and Greig 2015). Thus, in-
vestigations of wild isolates are hindered by small population
sizes (Liti 2015). In a search for the natural S. cerevisiae habi-
tats, it has been isolated from plants (Wang et al. 2012), and the
bark and leaves of oak trees and oak-associated soil (Sniegowski,
Dombrowski and Fingerman 2002; Sampaio and Goncalves 2008;
Zhang et al. 2010). Recently, Kowallik and Greig (2016) observed
that yeast was more abundant in oak leaf litter than in the oak
bark and that the leaf litter provides a refuge all year round
(Kowallik and Greig 2016). Consistently, it has also been con-
firmed that S. cerevisiae can sporulate in soil and survive in
this stress-resistant state until more nutritious conditions arise
(Knight and Goddard 2016). S. cerevisiae indeed seems to respond
to lignocellulosic solids from Birch tree by activating stress tol-
erance mechanisms—an observation that we suggest could be
due to its evolutionary linkage to the bark niche (Koppram et al.
2016). Despite the common belief that yeasts are naturally found
on the surface of grapes, a study finds that only one in thousand
grapes are positive for S. cerevisiae (Mortimer and Polsinelli 1999).
In cases of damaged fruit or berries, on the other hand, the oc-
currence and cell counts of S. cerevisiae were found to be higher
(Mortimer and Polsinelli 1999). Interestingly, insects serve also
as natural reservoirs and vectors that promote yeast dispersal: S.
cerevisiae can be found associated with flies (Chandler, Eisen and
Kopp 2012), social wasps (Stefanini et al. 2012) and bees (Goddard
et al. 2010). Given the hitherto focus on prokaryotes in microbial
diversity analysis due to sample preparation constraints, further
natural reservoirs of the yeast might not have been discovered
yet.

The knownnatural reservoirs of S. cerevisiae are usually nutri-
ent poorwith occasional periods of rich resource availability (e.g.
after a transfer from oak bark to a faulty fruit by an insect) (Liti
2015). Therefore, unlike human-associated yeasts, wild strains
most likely spend the most of their life in a dormant state. It
has been argued that S. cerevisiae does not show adaptations to
any particular habitat, but rather an ability to survive in a wide
range of conditions (such as temperature, pH, nutrient concen-
trations and osmolarity) (Goddard andGreig 2015). The tolerance
to a variety of environmental perturbations is consistent with
the lifestyle of nomadic generalist that inhabits diverse niches
at low abundance. High adaptability of yeast is supported by a
remarkable chromosomal number plasticity (Pavelka et al. 2010;
Liu et al. 2015; Selmecki et al. 2015). Furthermore, yeast is capa-
ble of sexual reproduction, which also facilitates rapid adapta-
tion (Goddard 2016). Nevertheless, variation in the natural eco-
logical niches is shown to be reflected in trait divergence within
S. cerevisiae strains associated with different population origins
(Warringer et al. 2011).

Upon sudden exposure to excess glucose, even under aerobic
conditions, S. cerevisiae exhibits high glycolytic and fermentative
fluxes (Pronk, Steensma and vanDijken 1996)—a complex trait
called short-term Crabtree effect. Several traits that contribute
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to the short-term Crabtree effect have appeared along the evo-
lutionary history of Saccharomyceta (Hagman et al. 2013). Thus,
S. cerevisiae exhibits an evolutionarily shaped trait to tolerate or
even benefit from a sudden change in glucose availability.

In contrast to the natural reservoirs, usual laboratory growth
medium is either a definedmedium optimized for short genera-
tion times or a rich medium like in food and beverage fermenta-
tion applications of S. cerevisiae. Thus, the metabolism of S. cere-
visiae is best understood in the fast growing states of fermen-
tation. Wild strains from natural environments generally show
lower glucose utilization rate than the domesticated strains of
S. cerevisiae that have been selected in conditions of high glu-
cose availability (Spor et al. 2009). Modeling results by Nidelet
et al. (2016) accordingly suggest that the intracellular metabolic
fluxes vary among S. cerevisiae strains from different ecological
origins (bread, rum, wine, flour, Mediterranean and American
oak) (Nidelet et al. 2016). Their results suggest that while the
glycolytic and fermentative fluxes are similar between strains,
the flux through the pentose phosphate pathway is strain de-
pendent. Surprisingly, the domesticated (i.e. for food and bev-
erage fermentation) strains show generally higher phenotypic
diversity, in terms of growth characteristics under different en-
vironmental conditions, than the investigated wild strains of
S. cerevisiae, even though the wild strains are genetically more
diverse and show stronger geographical patterning (Warringer
et al. 2011). The phenotypic diversity of the domesticated strains
may result from selection for traits associated with specific fer-
mentation substrates (e.g. rice fermentation for sake, grape for
wine and barley for beer) (Liti et al. 2009; Boynton and Greig 2014;
Gallone et al. 2016). For example, wine fermentations present
challenging conditions such as high sugar concentration and
low pH. Due to the equal abundance of glucose and fructose
in the grape must, the total sugar concentration is extremely
high creating challenging conditions of high osmolarity. The low
pH of grape must originates from the presence of organic acids.
When exposed to wine fermentation mimicking conditions, S.
cerevisiae strains from different sources (i.e. laboratory strains,
wild strains, clinical isolates, vineyard isolates, bakery strains,
commercial wine strains, strains domesticated for other fer-
mentation processes) showed distinct fermentation character-
istics (Camarasa et al. 2011). While commercial wine yeasts were
able to performas they have been selected to, i.e. to complete the
fermentation, strains from other sources commonly grew poorly
and could not ferment the sugars completely. Notably, under
the challenging conditions laboratory strains diverged from all
the rest of the strains in their poor biomass formation and fer-
mentation capability and in their product profile. Furthermore,
since wine fermentations are commonly unsterilized, the do-
mesticated S. cerevisiae wine strains have been simultaneously
exposed to the extreme abiotic conditions in grape must and
challenged with social life with other species.

Social life of Saccharomyces cerevisiae—symbionts
impact yeast metabolism

In addition to a dynamic abiotic environment, co-habiting or-
ganisms constitute another important ecological dimension
shaping S. cerevisiae metabolism (Fig. 1). This social dimension
also applies, despite being removed from their original eco-
logical context, to domesticated yeasts growing in human cre-
ated/controlled environments. Wine fermentation is perhaps
the best-studied environment of S. cerevisiae with respect to
the interspecies interactions (Mortimer and Polsinelli 1999; Fleet
2003; Alexandre et al. 2004; Comitini et al. 2005; Ciani et al. 2010;

Barata, Malfeito-Ferreira and Loureiro 2012; Branco et al. 2014;
Jolly, Varela and Pretorius 2014; Ramirez et al. 2015; Ciani et al.
2016; Liu et al. 2016; Wang, Mas and Esteve-Zarzoso 2016). Since
grape must is typically not sterilized for wine fermentations,
they represent a multispecies ecosystem. The yeast spectrum
in the ecosystems includes over 40 different species that have
been isolated from grape must (Jolly, Varela and Pretorius 2014).
Understanding the interactions between fermenting yeasts and
other microorganisms in wine has a distinct economic and gus-
tatory incentive (Fleet 2003). More recently, social life of yeast
has been observed also in other environments such as kefir (i.e.
fermentedmilk product with originating from Caucasianmoun-
tains) (Simova et al. 2002; Farnworth 2005), sourdough (De Vuyst
et al. 2014) and biofuel production cultures (Watanabe, Naka-
mura and Shima 2008; Lucena et al. 2010; Tiukova, Eberhard and
Passoth 2014). Lactic acid bacteria (LAB) are commonly found to-
gether with S. cerevisiae in the domestic applications (e.g. wine,
sourdough and kefir), but also in nature in overripened or faulty
fruits (Barata, Malfeito-Ferreira and Loureiro 2012). Furthermore,
LAB are common spoilage organisms in open S. cerevisiae fer-
mentations used for biofuel production (Watanabe, Nakamura
and Shima 2008; Lucena et al. 2010; Tiukova, Eberhard and Pas-
soth 2014). In bioethanol production, Lactobacillus fermentum and
L. brevis have been reported as the most common contaminants
(Watanabe, Nakamura and Shima 2008). Tiukova, Eberhard and
Passoth (2014) observed that L. vini in co-cultures with S. cere-
visiae or Dekkera bruxellensis causes bacteria–yeast aggregation,
thereby decreasing the ethanol production by yeast (Tiukova,
Eberhard and Passoth 2014). S. cerevisiae can in turn benefit from
the presence of LAB, for example, in lactose-rich environments.
While S. cerevisiae is not able to utilize lactose, LAB are able to
cleave it into glucose and galactose, which can be readilymetab-
olized by the yeast (Mendes et al. 2013) (Fig. 1). Organic acids pro-
duced by fermentative microbes may also benefit yeast. S. cere-
visiae is capable of consuming lactate during cheese ripening,
simultaneously producing valuable aroma compounds (Kagkli
et al. 2006). Though active transport of other acids such asmalate
and succinate across the cell membrane is not known in S.
cerevisiae, these may diffuse into the cell contributing to the
metabolism (Barnett and Kornberg 1960). The laboratory strains
of S. cerevisiae show specific regulatory responses towards weak
acids (Mira, Teixeira and Sa-Correia 2010), but the dependence of
this response on the natural habitat or the origin of S. cerevisiae
strains is yet unexplored.

In addition to organic acids, other compounds secreted by
coexisting species may affect S. cerevisiae phenotypes by directly
triggering regulatory networks. Recently, some bacteria were
found to partially release glucose repression in S. cerevisiae by
inducing a prion-like element through secretion of a yet uniden-
tified small molecule(Jarosz et al. 2014a,b) (Fig. 1). Several differ-
ent bacteria were shown to relieve glucose repression when co-
cultured with S. cerevisiae. This was found to benefit both the
bacterial and yeast symbionts. While lower ethanol production
reduced the toxic effect on bacteria, the yeast gained an abil-
ity to utilize other carbon sources, which was found particularly
advantageous in mixed carbon source media (e.g. molasses).

Fungal symbionts of yeast can also impact its growth and
metabolism through toxins and signaling molecules (Fig. 1). For
instance, a toxin-secreting Torulaspora delbrueckii strain is able to
kill S. cerevisiae (Ramirez et al. 2015). Another example is growth
impairment of S. cerevisiae by Candida albicans through secretion
of farnesol, a quorum-sensing molecule (Machida et al. 1998).
Farnesol is an isoprenoid alcohol that interferes with the cell
cycle signaling in S. cerevisiae in particular, but also affects the
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Figure 1. The social life of S. cerevisiae. Yeast shows numerous interactions with bacteria, other fungi and higher eukaryotes. Niche engineering is performed by the
yeast and interacting organisms. S. cerevisiae cells communicate also within species by modifying the chemical environment. Yeast–plant interactions have not been

considered here.

mitochondrial function through increased generation of reac-
tive oxygen species (Machida et al. 1998, 1999). Aromatic alco-
hols tyrosol, tryptophol and phenylethanol are further fungal
quorum-sensingmolecules,which S. cerevisiae is also able to pro-
duce (Bruce et al. 2004) and can induce changes in growth mor-
phology (Cottier and Muhlschlegel 2012).

Certain volatiles produced by yeast, commonly higher al-
cohols and their esters, attract flies, social wasps and bees.
These insects can thereby transport S. cerevisiae to new habi-
tats (Chandler, Eisen and Kopp 2012) (Fig. 1). Yeasts in turn can
benefit its host through establishing a mutualistic interaction.
While S. cerevisiae that attract flies better get an advantage of ef-
fective dispersal (Gilbert 1980; Chandler, Eisen and Kopp 2012;
Hoang, Kopp and Chandler 2015) and outbreeding (Reuter, Bell
and Greig 2007), Drosophila populated with more attractive yeast
species demonstrate higher fecundity (Buser et al. 2014). Larvae
of flies also benefit from yeast symbiont, mainly as a dietary
supplement facilitating development and survival (Anagnostou,
Dorsch and Rohlfs 2010).

Social life of Saccharomyces cerevisiae—yeast impacts
community composition

Metabolites and peptides secreted by yeast can have a sub-
stantial impact on its co-habitants. Metabolites produced by

S. cerevisiae have been found to reduce the cultivability of a
number of non-Saccharomyces yeasts during co-fermentation or
in conditioned medium (Wang, Mas and Esteve-Zarzoso 2016).
S. cerevisiae produces high concentrations of ethanol that are
toxic for many other microbial species. Saccharomyceta have
gained traits contributing to the high fermentative capacity
along their evolutionary history (Hagman et al. 2013). Only more
recently S. cerevisiae with its closely related species gained a
further increased ethanol production capability through a trait
in which respiration becomes repressed in a high glucose en-
vironment even when oxygen is available (i.e. long-term Crab-
tree effect; Pronk, Steensma and vanDijken 1996) (Hagman and
Piskur 2015). The high fermentative capacity allows to convert
sugar to ethanol at a fast rate, and later shift to a respiratory
metabolic phenotype to consume the ethanol (diauxic shift).
The yeast thus seems to apply a make-accumulate-consume
strategy in high glucose environments (Piskur et al. 2006).

While ethanol has considered to be the toxic product which
S. cerevisiae benefits from the most, it has recently become ev-
ident that it may not be the most efficient of the weapons
of S. cerevisiae. S. cerevisiae employs a 2-fold strategies to in-
hibit the growth of bacteria and fungi: secretion of small
molecules and proteinaceous compounds such as peptides
and physical cell–cell contact (Nissen, Nielsen and Arneborg
2003; Piskur et al. 2006; Branco et al. 2014; Wang, Mas and
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Esteve-Zarzoso 2016) (Fig. 1). In addition to ethanol, S. cerevisiae
produces volatile compounds such as aromatic alcohols, which
are implicated in inhibition of other fungi (Bruce et al. 2004;
Cottier and Muhlschlegel 2012). S. cerevisiae secretes antimicro-
bial peptides that have either fungistatic (e.g. against Lachanchea
thermotolerans (Kluyveromyces thermotolerans) and T. delbrueckii) or
even fungisidic (e.g. against Kluyveromyces marxianus) effects on
other fungal microbes (Albergaria et al. 2010). When exposed to
S. cerevisiae’s antimicrobial peptides, Hanseniaspora guilliermondii
suffers from alterations in membrane permeability leading to a
severe loss of intracellular pH homeostasis (Branco et al. 2015).
Interestingly, it was recently found that anti-fungal and anti-
bacterial killer peptides secreted by S. cerevisiae during wine fer-
mentation include peptides of glyceraldehyde dehydrogenase
(GAPDH), a glycolytic enzyme (Branco et al. 2014). The polypep-
tides of the GAPDH isoenzymes have been observed to be asso-
ciated also with the cell wall (Delgado et al. 2001) where they are
amenable for interactions with other species.

Cell–cell contact with S. cerevisiae has been found to con-
tribute to the death of La. thermotolerans (K. thermotolerans) and T.
delbrueckii in wine fermentations (Nissen, Nielsen and Arneborg
2003; Kemsawasd et al. 2015). This phenomenon could possibly
bemediated by the anti-fungal peptides residing attached to the
cell membrane.

Besides producing toxic compounds to fight competitors, S.
cerevisiae can also provide benefits to other species. Already in
1965, commensalism of bacterium Proteus vulgaris with S. cere-
visiae was observed (Shindala et al. 1965). The growth benefit of
co-culturing with the yeast was found dependent on a niacin-
like nutrient secreted by S. cerevisiae and essential for P. vulgaris.
Megee et al. (1972) reported that they had been able to create vari-
ous relationships (i.e. commensalism, competition and mutual-
ism) between S. cerevisiae and Lactobacillus casei by varying the
concentrations of glucose and riboflavin in the medium (Megee
et al. 1972).

The stationary state survival of Pseudomonas putida increases
substantially in co-culture with S. cerevisiae, which consumes
glucose rapidly and lowers the pH (Romano andKolter 2005). Sac-
charomyces cerevisiae has also been shown to support the growth
of L. delbrueckii ssp. bulgaricus in lactose media by supplying L-
Alanine and CO2 to the bacteria (Mendes et al. 2013). In return,
the bacteria provided galactose, as a cleavage product of lactose,
for S. cerevisiae growth.

In the late stages of wine fermentation, yeast can either pro-
mote or inhibit the growth of LAB involved in malolactic fer-
mentation (Liu et al. 2016). The yeast inhibiting bacteria secretes
sulfur-containing peptides, in distinction to the yeast pheno-
type creating a supporting niche for LAB. Together with LAB,
acetic acid bacteria (AAB) commonly co-occur with S. cerevisiae
(Farnworth 2005; Camu et al. 2007). Acetobacter, Gluconobacter
and Gluconacetobacter species of AAB are the most prevalent co-
occurring taxons. S. cerevisiae togetherwith LAB andAAB species
has been found for instance in spontaneous cocoa bean (Camu
et al. 2007), kefir (Farnworth 2005) and kombucha (Jayabalan et al.
2014) fermentations. In spontaneous cocoa bean fermentations,
yeasts, including S. cerevisiae, togetherwith LAB engineer a niche
for AAB. LAB consume citrate initially present, thus, increas-
ing pH that favors AAB. Mainly Acetobacter pasteurianus oxidizes
ethanol produced by the yeasts (Fig. 1). Oxygen-dependent con-
version of ethanol to acetate and/or acetoin increases the tem-
perature until the microbial activities cease. Ethanol and ac-
etate diffuse into the cocoa beans creating the desired flavor and
color characteristics. In addition to ethanol, AAB oxidize lactic
acid secreted by LAB and are also able to oxidize glucose to glu-

conic acid and mannitol into fructose, at least in the presence
of ethanol (Moens, Lefeber and De Vuyst 2014). Thus, ethanol
produced by yeast enables AAB to oxidize a wider range of sub-
strates.

Phenotypic heterogeneity and cross-feeding in yeast
populations

In a yeast colony, the cells encounter a variable chemical
environment depending on their location. This may induce
phenotypic heterogeneity within species, possibly enhanced
by intraspecies communication by secreted metabolites. While
complementary auxotrophic strains of S. cerevisiae have been
found to fail to cross-feed sufficiently for survival, a viable com-
plementary cross-feeding community is formed when the aux-
otrophs emerge from a self-supporting cell during colony for-
mation (Campbell et al. 2015; Campbell, Vowinckel and Ralser
2016). This phenomenon was discovered in a system where the
cells carried in separate plasmids the genes for the synthesis
of four compounds essential for growth (i.e. histidine, leucine,
uracil and methionine). During colony development, prototro-
phy was progressively lost leading to phenotypic heterogeneity,
but the community could survive by exchanging the essential
nutrients.

In colony development, S. cerevisiae cells behave periodically
with acidic and alkali phases (Palkova et al. 1997). When the
cells switch from an acidic phase to an alkaline phase, they
produce volatile ammonia as a pulse, which triggers ammo-
nia production in surrounding colonies. The released ammo-
nia signals for the synchronization of nutrient starvation re-
sponse. Ammonium secreted by S. cerevisiae could potentially
be sensed by other yeasts as well (Gori et al. 2007). Other small
molecules can alsomediate communication between yeast cells
(Fig. 1). At high cell densities in liquid cultures, S. cerevisiae
cells synchronize their metabolism with secreted acetaldehyde
(Richard et al. 1996). Other fungi can thus also influence S.
cerevisiaemetabolism through acetaldehyde (Cheraiti, Guezenec
and Salmon 2005). Other examples of communication include
bicarbonate for synchronization of the onset of sporulation or
meiosis (Hayashi, Ohkuni and Yamashita 1998; Ohkuni, Hayashi
and Yamashita 1998), small peptide pheromones used to facili-
tate partner finding during sexual reproduction (Jones and Ben-
nett 2011) and secreted Hsp12p protein as a ‘danger signal’ in
order to activate the stress response in the surrounding yeast
cells (Rivero et al. 2015).

CONCLUSIONS

Most of the current knowledge of S. cerevisiae metabolism per-
tains to (or is interpreted in the context of) its life as a single
entity, devoid of species interactions, and in a limited set of lab-
oratory conditions. The limited understanding of the challenges
and possibilities that have evolutionarily shaped the metabolic
and regulatory systems of yeast may be the major factor hin-
dering us from explaining complex genotype–environment–
phenotype interactions. Accounting for the ecological context
of yeast could also help us to assign functions to the uncharac-
terized 10% of genes (669 uncharacterized open reading frames,
www.yeastgenome.org, on 15 August 2016) in the yeast genome,
and to identify moonlighting functions of metabolic enzymes.
Mainly pioneered by enological research, phenotypic peculiari-
ties arising from the social life of yeast are increasingly being re-
vealed. These findings present an excellent opportunity towards
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building more accurate models of metabolic and regulatory net-
works. The full phenotypic potential to be revealed will also in-
crease the application possibilities of the already widely used
industrial production host.
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