Abstract

Relationships among species assigned to the yeast genera Pichia, Issatchenkia and Williopsis, which are characterized by the ubiquinone CoQ-7 and inability to utilize methanol, were phylogenetically analyzed from nucleotide sequence divergence in the genes coding for large and small subunit rRNAs and for translation elongation factor-1α. From this analysis, the species separated into five clades. Species of Issatchenkia are members of the Pichia membranifaciens clade and are proposed for transfer to Pichia. Pichia dryadoides and Pichia quercuum are basal members of the genus Starmera. Williopsis species are dispersed among hat-spored taxa in each of the remaining three clades, which are proposed as the new genera Barnettozyma, Lindnera and Wickerhamomyces. Lineages previously classified as varieties of Pichia kluyveri, ‘Issatchenkiascutulata, Starmera amethionina and ‘Williopsissaturnus are elevated to species rank based on sequence comparisons.

Introduction

The yeast genus Pichia is characterized by multilateral budding, presence or absence of pseudohyphae and septate hyphae, and by ascospores that may be hat-shaped, hemispheroidal, or spherical with or without a ledge. Some species ferment sugars, whereas others do not. The genus Hansenula was characterized by the same phenotypic traits with the exception that Hansenula species assimilated nitrate as a sole source of nitrogen whereas Pichia species were unable to assimilate nitrate. The demonstration from nuclear DNA reassociation experiments that strains of some species of Pichia could assimilate nitrate whereas strains of some Hansenula species could not assimilate nitrate removed the main character that separated the two genera, which prompted reassignment of Hansenula species to Pichia, the genus of taxonomic priority (Kurtzman, 1984a). With this change, the definition of Pichia was further broadened, and 91 species were accepted in the genus in the most recent monographic treatment (Kurtzman et al., 1998). Since then, many new Pichia species have been described.

Phylogenetic analysis of gene sequences has provided an opportunity for examination of genetic relationships among species of Pichia. Liu & Kurtzman (1991) showed from analysis of partial large (LSU) and small subunit (SSU) rRNA sequences that Saturn-spored species assigned to Pichia represented an isolated clade for which they proposed the genus Saturnispora. Yamada (1994), using analyses of these same rRNA regions, proposed the genus Ogataea for methanol assimilating yeasts in the Pichia angusta (Hansenula polymorpha) clade, and the genus Komagataella for Pichia pastoris (Yamada, 1995a), a methanol-assimilating yeast not closely related to the Ogataea clade. Other new genera derived from Pichia that were proposed by Yamada and colleagues from sequence analyses included Kuraishia for Pichia capsulata (Yamada et al., 1994), Nakazawaea for Pichia holstii (Yamada et al., 1994) and Kodamaea for Pichia ohmeri (Yamada, 1995b). More recently, Kregervanrija was described to accommodate Pichia fluxuum and related species (Kurtzman et al., 2006).

In the present study, we analyzed sequences from the nearly entire LSU and SSU rRNA genes, as well as a section of the translation elongation factor-1α (EF-1α) gene, to determine phylogenetic placement of species assigned to Pichia, Issatchenkia, Starmera and Williopsis, all of which form coenzyme Q-7 as their major ubiquinone. We excluded from our study those CoQ-7-producing species that are now assigned to the genus Ogataea, as well as species that form CoQ-8 and CoQ-9, all of which were shown in earlier studies to be members of other clades (Kurtzman & Robnett et al., 1998, 2007). The chemical composition of coenzyme Q often serves as a guide for yeast classification. Ascomycetous yeasts form coenzyme Q with 5–10 isoprene units in the side chain, i.e., Q-5–Q-10, and the type of CoQ is generally shared by members of broad phylogenetic groups such as families or groups of families. Our analysis resolved the CoQ-7 species under study into five clades. Species assigned to Issatchenkia are members of the Pichia membranifaciens clade whereas species assigned to Williopsis are members of three different clades. Of the five clades resolved, three represent new genera, which are described here.

Materials and methods

Species examined

The species examined are given in Table 1 with their culture collection strain numbers and GenBank accession numbers for the genes sequenced.

1

Yeast strains compared in this study

Species Strain designation GenBank accession numbers 
NRRL CBS LSU SSU EF-1α MtSm/ITS* 
Brettanomyces custersianus Y-6653T 4805 EF550261 EF550399 EF552485 EF547711 
B. naardenensis Y-17526T 6042 EF550260 EF550398 EF552484 EF547710 
B. nanus Y-17527T 1945 EF550259 EF550397 EF552483 EF547709 
Candida abiesophila Y-11514T 5366 EF550212 EF550350 EF552436 EF547662 
C. berthetii Y-17644T 5452 EF550288 EF550426 EF552512  
C. californica Y-27254 4875 EF550230 EF550368 EF552454 EF547680 
C. dendrica Y-7775T 6151 EF550289 EF550427 EF552513  
C. diversa Y-5713T 4074 EF550213 EF550351 EF552437 EF547663 
C. ethanolica Y-12615T 8041 EF550225 EF550363 EF552449 EF547675 
C. freyschussii Y-7957A 2161 EF550281 EF550419 EF552505  
C. inconspicua Y-2029T 180 EF550240 EF550378 EF552464 EF547690 
C. maritima Y-17775T 5107 EF550332 EF550470 EF552556  
C. montana Y-17326T 8057 EF550275 EF550413 EF552499  
C. mycetangii Y-6843T 8675 EF550330 EF550468 EF552554  
C. norvegica Y-17660T 4239 EF550273 EF550411 EF552497  
C. odintsovae Y-17760T 6026 EF550304 EF550442 EF552528  
C. orba Y-27336T 8782 EF550265 EF550403 EF552489 EF547721 
C. peoriensis YB-1497T 8800 EF550305 EF550443 EF552529  
C. ponderosae YB-2307T 8801 EF550345 EF550483 EF552569  
C. pseudolambica Y-17318T 2063 EF550235 EF550373 EF552459 EF547685 
C. quercuum Y-12942T 6422 EF550292 EF550430 EF552516  
C. rugopelliculosa Y-17079T 6377 EF550238 EF550376 EF552462 EF547688 
C. silvae Y-6725T 5498 EF550215 EF550353 EF552439 EF547665 
C. silvicultrix Y-7789T 6269 EF550338 EF550476 EF552562  
C. solani Y-2224T 1908 EF550336 EF550474 EF552560  
C. sorboxylosa Y-17669T 6378 EF550253 EF550391 EF552477 EF547703 
C. stellimalicola Y-17912T 7853 EF550286 EF550424 EF552510  
C. thaimueangensis Y-27416  EF550231 EF550369 EF552455 EF547681 
C. ulmi YB-2694T 8670 EF550295 EF550433 EF552519  
C. vartiovaarae Y-6701T 4289 EF550315 EF550453 EF552539  
Candida sp. Y-7574  EF550291 EF550429 EF552515  
Candida sp. Y-7615  EF550331 EF550469 EF552555  
Candida sp. Y-17713  EF550285 EF550423 EF552509  
Candida sp. Y-27103 6259 EF550307 EF550445 EF552531  
Candida sp. Y-27127 6163 EF550293 EF550431 EF552517  
Candida sp. Y-27267  EF550314 EF550452 EF552538  
Candida sp. YB-2097  EF550324 EF550462 EF552548  
Candida sp. YB-2243  EF550301 EF550439 EF552525  
Candida sp. YB-3031  EF550297 EF550435 EF552521  
Candida sp. YB-4088  EF550308 EF550446 EF552532  
Citeromyces matritensis Y-2407T 2764 EF550346 EF550484 EF552570 EF547718 
Dekkera anomala Y-17522T 8139 EF550258 EF550396 EF552482 EF547708 
D. bruxellensis Y-12961T 74 EF550257 EF550395 EF552481 EF547707 
Issatchenkia hanoiensis Y-27509T 9198 EF550349   EF547722 
I. occidentalis Y-7552T 5459 EF550236 EF550374 EF552460 EF547686 
I. orientalis Y-5396T 5147 EF550222 EF550360 EF552446 EF547672 
I. scutulata var. scutulata Y-7663T 6670 EF550243 EF550381 EF552467 EF547693 
I. scutulata var. exigua Y-10920T 6836 EF550237 EF550375 EF552461 EF547687 
I. terricola YB-4310T 2617 EF550233 EF550371 EF552457 EF547683 
Issatchenkia sp. Y-12824  EF550246 EF550384 EF552470 EF547696 
Issatchenkia sp. Y-12827  EF550245 EF550383 EF552469 EF547695 
Issatchenkia sp. Y-12830  EF550244 EF550382 EF552468 EF547694 
Komagataella pastoris Y-1603T 704 EF550254 EF550392 EF552478 EF547704 
K. phaffii Y-7556T 2612 EF550256 EF550394 EF552480 EF547706 
K. pseudopastoris Y-27603T 9187 EF550255 EF550393 EF552479 EF547705 
Kregervanrija delftensis Y-7119T 2614 EF550266 EF550404 EF552490 EF547715 
K. fluxuum YB-4273T 2287 EF550268 EF550406 EF552492 EF547717 
K. pseudodelftensis Y-5494T 10105 EF550267 EF550405 EF552491 EF547716 
Kuraishia capsulata Y-1842T 1993 EF550270 EF550408 EF552494 EF547719 
Nakazawaea holstii Y-2155T 4140 EF550347 EF550485 EF552571 EF547720 
Ogataea polymorpha Y-2214 7073 EF550269 EF550407 EF552493  
Pachysolen tannophilus Y-2460T 4044 EU011641 EU011721 EU014751  
Phaffomyces antillensis Y-12881T 7111 EF550262 EF550400 EF552486 EF547712 
P. opuntiae Y-11707T 7010 EF550263 EF550401 EF552487 EF547713 
P. thermotolerans Y-11709T 7012 EF550264 EF550402 EF552488 EF547714 
Pichia alni Y-11625T 6986 EF550294 EF550432 EF552518  
P. americana Y-2156T 5644 EF550328 EF550466 EF552552  
P. amylophila YB-1287T 7020 EF550319 EF550457 EF552543  
P. anomala Y-366NT 5759 EF550341 EF550479 EF552565  
P. barkeri Y-17350T 7256 EF550247 EF550385 EF552471 EF547697 
P. bimundalis Y-5343T 5642 EF550329 EF550467 EF552553  
P. bispora Y-1482T 1890 EF550296 EF550434 EF552520  
P. bovis YB-4184T 2616 EF550298 EF550436 EF552522  
P. cactophila Y-10963T 6926 EF550241 EF550379 EF552465 EF547691 
P. canadensis Y-1888T 1992 EF550300 EF550438 EF552524  
P. chambardii Y-2378T 1900 EF550344 EF550482 EF552568  
P. ciferrii Y-1031T 111 EF550339 EF550477 EF552563  
P. deserticola Y-12918T 7119 EF550226 EF550364 EF552450 EF547676 
P. dryadoides Y-10990T 6154 EF550290 EF550428 EF552514  
P. euphorbiae Y-17232T 8033 EF550326 EF550464 EF552550  
P. euphorbiiphila Y-12742T 8083 EF550312 EF550450 EF552536  
P. fabianii Y-1871T 5640 EF550321 EF550459 EF552545  
P. fermentans Y-1619T 187 EF550234 EF550372 EF552458 EF547684 
P. hampshirensis YB-4128T 7208 EF550334 EF550472 EF552558  
P. hawaiiensis Y-27270T 8760 EF550278 EF550416 EF552502  
P. heedii Y-10967T 6930 EF550252 EF550390 EF552476 EF547702 
P. jadinii Y-1542T 1600 EF550309 EF550447 EF552533  
P. japonica YB-2750T 7209 EF550323 EF550461 EF552547  
P. kluyveri var. kluyveri Y-11519T 188 EF550251 EF550389 EF552475 EF547701 
P. kluyveri var. cephalocereana Y-17225T 7273 EF550250 EF550388 EF552474 EF547700 
P. kluyveri var. eremophila Y-17224T 7272 EF550249 EF550387 EF552473 EF547699 
P. lachancei Y-27008T 8557 EF550313 EF550451 EF552537  
P. lynferdii Y-7723T 6695 EF550342 EF550480 EF552566  
P. maclurae Y-5377T 8671 EF550310 EF550448 EF552534  
P. manshurica Y-17349 7324 EF550223 EF550361 EF552447 EF547673 
P. membranifaciens Y-2026T 107 EF550227 EF550365 EF552451 EF547677 
P. meyerae Y-17236T 7076 EF550327 EF550465 EF552551  
P. mississippiensis YB-1294T 7023 EF550320 EF550458 EF552544  
P. misumaiensis Y-17389T 8062 EF550306 EF550444 EF552530  
P. nakasei Y-7686T 5141 EF550248 EF550386 EF552472 EF547698 
P. norvegensis Y-7687T 6564 EF550240 EF550377 EF552463 EF547689 
P. onychis Y-7123T 5587 EF550279 EF550417 EF552503  
P. petersonii YB-3808T 5555 EF550311 EF550449 EF552535  
P. pijperi YB-4309T 2887 EF550335 EF550473 EF552559  
P. populi Y-12728T 8094 EF550277 EF550415 EF552501  
P. pseudocactophila Y-17239T 6929 EF550242 EF550380 EF552466 EF547692 
P. quercuum YB-4281T 2283 EF550287 EF550425 EF552511  
P. rabaulensis Y-7945T 6797 EF550303 EF550441 EF552527  
P. rhodanensis Y-7854T 5518 EF550325 EF550463 EF552549  
P. salicaria Y-6780T 5456 EF550272 EF550410 EF552496  
P. silvicola Y-1678T 1705 EF550302 EF550440 EF552526  
P. sporocuriosa Y-27347T 8806 EF550232 EF550370 EF552456 EF547682 
P. strasburgensis Y-2383T 2939 EF550333 EF550471 EF552557  
P. subpelliculosa Y-1683T 5767 EF550340 EF550478 EF552564  
P. sydowiorum Y-7130T 5995 EF550343 EF550481 EF552567  
P. veronae Y-7818T 6591 EF550322 EF550460 EF552546  
P. wickerhamii Y-2435T 4107 EF550271 EF550409 EF552495  
Pichia sp. Y-11569 5120 EF550280 EF550418 EF552504  
Pichia sp. Y-17803 5119 EF550299 EF550437 EF552523  
Pichia sp. Y-27259 5129 EF550228 EF550366 EF552452 EF547678 
Pichia sp. Y-27261 5140 EF550229 EF550367 EF552453 EF547679 
Pichia sp. YB-4149  EF550224 EF550362 EF552448 EF547674 
Saturnispora ahearnii Y-7555T 6121 EF550217 EF550355 EF552441 EF547667 
S. besseyi YB-4711T 6343 EF550216 EF550354 EF552440 EF547666 
S. dispora Y-1447T 794 EF550220 EF550358 EF552444 EF547670 
S. hagleri Y-27828T 10007 EF550221 EF550359 EF552445 EF547671 
S. mendoncae Y-11515T 5620 EF550214 EF550352 EF552438 EF547664 
S. saitoi Y-6671T 4910 EF550218 EF550356 EF552442 EF547668 
S. zaruensis Y-7008T 5799 EF550219 EF550357 EF552443 EF547669 
Schizosaccharomyces pombe Y-12796T 356 EF550348 EF550486 EF552572 AF442355 
Starmera amethionina var. amethionina Y-10978T 6940 EF550282 EF550420 EF552506  
S. amethionina var. pachycereana Y-10981T 6943 EF550283 EF550421 EF552507  
S. caribaea Y-17468T 7692 EF550284 EF550422 EF552508  
Williopsis californica Y-17395T 252 EF550414 EF550276 EF552500  
W. mucosa YB-1344T 6341 EF550337 EF550475 EF552561  
W. pratensis Y-12696T 7079 EF550274 EF550412 EF552498  
W. saturnus var. saturnus Y-17396T 254 EF550316 EF550454 EU307981 EU307970* 
Y-1304 5761 EU541540  EU307982 EU307971* 
YB-4312 2564 EU541541  EU307983 EU307972* 
W. saturnus var. mrakii Y-1364T 1707 EF550317 EF550455 EU307984 EU307973* 
YB-3257  EU307992  EU307985 EU307974* 
W. saturnus var. sargentensis YB-4139T 6342 U94936  EU307991 EU307980* 
W. saturnus var. suaveolens Y-17391T 255 EU307993  EU307988 EU307977* 
Y-838  EU541542  EU307990 EU307979* 
Y-1725 1670 EU307993  EU307989 EU307978* 
W. saturnus var. subsufficiens Y-1657T 5763 EF550318 EF550456 EU307986 EU307975* 
YB-1718  EU541543  EU307987 EU307976* 
Species Strain designation GenBank accession numbers 
NRRL CBS LSU SSU EF-1α MtSm/ITS* 
Brettanomyces custersianus Y-6653T 4805 EF550261 EF550399 EF552485 EF547711 
B. naardenensis Y-17526T 6042 EF550260 EF550398 EF552484 EF547710 
B. nanus Y-17527T 1945 EF550259 EF550397 EF552483 EF547709 
Candida abiesophila Y-11514T 5366 EF550212 EF550350 EF552436 EF547662 
C. berthetii Y-17644T 5452 EF550288 EF550426 EF552512  
C. californica Y-27254 4875 EF550230 EF550368 EF552454 EF547680 
C. dendrica Y-7775T 6151 EF550289 EF550427 EF552513  
C. diversa Y-5713T 4074 EF550213 EF550351 EF552437 EF547663 
C. ethanolica Y-12615T 8041 EF550225 EF550363 EF552449 EF547675 
C. freyschussii Y-7957A 2161 EF550281 EF550419 EF552505  
C. inconspicua Y-2029T 180 EF550240 EF550378 EF552464 EF547690 
C. maritima Y-17775T 5107 EF550332 EF550470 EF552556  
C. montana Y-17326T 8057 EF550275 EF550413 EF552499  
C. mycetangii Y-6843T 8675 EF550330 EF550468 EF552554  
C. norvegica Y-17660T 4239 EF550273 EF550411 EF552497  
C. odintsovae Y-17760T 6026 EF550304 EF550442 EF552528  
C. orba Y-27336T 8782 EF550265 EF550403 EF552489 EF547721 
C. peoriensis YB-1497T 8800 EF550305 EF550443 EF552529  
C. ponderosae YB-2307T 8801 EF550345 EF550483 EF552569  
C. pseudolambica Y-17318T 2063 EF550235 EF550373 EF552459 EF547685 
C. quercuum Y-12942T 6422 EF550292 EF550430 EF552516  
C. rugopelliculosa Y-17079T 6377 EF550238 EF550376 EF552462 EF547688 
C. silvae Y-6725T 5498 EF550215 EF550353 EF552439 EF547665 
C. silvicultrix Y-7789T 6269 EF550338 EF550476 EF552562  
C. solani Y-2224T 1908 EF550336 EF550474 EF552560  
C. sorboxylosa Y-17669T 6378 EF550253 EF550391 EF552477 EF547703 
C. stellimalicola Y-17912T 7853 EF550286 EF550424 EF552510  
C. thaimueangensis Y-27416  EF550231 EF550369 EF552455 EF547681 
C. ulmi YB-2694T 8670 EF550295 EF550433 EF552519  
C. vartiovaarae Y-6701T 4289 EF550315 EF550453 EF552539  
Candida sp. Y-7574  EF550291 EF550429 EF552515  
Candida sp. Y-7615  EF550331 EF550469 EF552555  
Candida sp. Y-17713  EF550285 EF550423 EF552509  
Candida sp. Y-27103 6259 EF550307 EF550445 EF552531  
Candida sp. Y-27127 6163 EF550293 EF550431 EF552517  
Candida sp. Y-27267  EF550314 EF550452 EF552538  
Candida sp. YB-2097  EF550324 EF550462 EF552548  
Candida sp. YB-2243  EF550301 EF550439 EF552525  
Candida sp. YB-3031  EF550297 EF550435 EF552521  
Candida sp. YB-4088  EF550308 EF550446 EF552532  
Citeromyces matritensis Y-2407T 2764 EF550346 EF550484 EF552570 EF547718 
Dekkera anomala Y-17522T 8139 EF550258 EF550396 EF552482 EF547708 
D. bruxellensis Y-12961T 74 EF550257 EF550395 EF552481 EF547707 
Issatchenkia hanoiensis Y-27509T 9198 EF550349   EF547722 
I. occidentalis Y-7552T 5459 EF550236 EF550374 EF552460 EF547686 
I. orientalis Y-5396T 5147 EF550222 EF550360 EF552446 EF547672 
I. scutulata var. scutulata Y-7663T 6670 EF550243 EF550381 EF552467 EF547693 
I. scutulata var. exigua Y-10920T 6836 EF550237 EF550375 EF552461 EF547687 
I. terricola YB-4310T 2617 EF550233 EF550371 EF552457 EF547683 
Issatchenkia sp. Y-12824  EF550246 EF550384 EF552470 EF547696 
Issatchenkia sp. Y-12827  EF550245 EF550383 EF552469 EF547695 
Issatchenkia sp. Y-12830  EF550244 EF550382 EF552468 EF547694 
Komagataella pastoris Y-1603T 704 EF550254 EF550392 EF552478 EF547704 
K. phaffii Y-7556T 2612 EF550256 EF550394 EF552480 EF547706 
K. pseudopastoris Y-27603T 9187 EF550255 EF550393 EF552479 EF547705 
Kregervanrija delftensis Y-7119T 2614 EF550266 EF550404 EF552490 EF547715 
K. fluxuum YB-4273T 2287 EF550268 EF550406 EF552492 EF547717 
K. pseudodelftensis Y-5494T 10105 EF550267 EF550405 EF552491 EF547716 
Kuraishia capsulata Y-1842T 1993 EF550270 EF550408 EF552494 EF547719 
Nakazawaea holstii Y-2155T 4140 EF550347 EF550485 EF552571 EF547720 
Ogataea polymorpha Y-2214 7073 EF550269 EF550407 EF552493  
Pachysolen tannophilus Y-2460T 4044 EU011641 EU011721 EU014751  
Phaffomyces antillensis Y-12881T 7111 EF550262 EF550400 EF552486 EF547712 
P. opuntiae Y-11707T 7010 EF550263 EF550401 EF552487 EF547713 
P. thermotolerans Y-11709T 7012 EF550264 EF550402 EF552488 EF547714 
Pichia alni Y-11625T 6986 EF550294 EF550432 EF552518  
P. americana Y-2156T 5644 EF550328 EF550466 EF552552  
P. amylophila YB-1287T 7020 EF550319 EF550457 EF552543  
P. anomala Y-366NT 5759 EF550341 EF550479 EF552565  
P. barkeri Y-17350T 7256 EF550247 EF550385 EF552471 EF547697 
P. bimundalis Y-5343T 5642 EF550329 EF550467 EF552553  
P. bispora Y-1482T 1890 EF550296 EF550434 EF552520  
P. bovis YB-4184T 2616 EF550298 EF550436 EF552522  
P. cactophila Y-10963T 6926 EF550241 EF550379 EF552465 EF547691 
P. canadensis Y-1888T 1992 EF550300 EF550438 EF552524  
P. chambardii Y-2378T 1900 EF550344 EF550482 EF552568  
P. ciferrii Y-1031T 111 EF550339 EF550477 EF552563  
P. deserticola Y-12918T 7119 EF550226 EF550364 EF552450 EF547676 
P. dryadoides Y-10990T 6154 EF550290 EF550428 EF552514  
P. euphorbiae Y-17232T 8033 EF550326 EF550464 EF552550  
P. euphorbiiphila Y-12742T 8083 EF550312 EF550450 EF552536  
P. fabianii Y-1871T 5640 EF550321 EF550459 EF552545  
P. fermentans Y-1619T 187 EF550234 EF550372 EF552458 EF547684 
P. hampshirensis YB-4128T 7208 EF550334 EF550472 EF552558  
P. hawaiiensis Y-27270T 8760 EF550278 EF550416 EF552502  
P. heedii Y-10967T 6930 EF550252 EF550390 EF552476 EF547702 
P. jadinii Y-1542T 1600 EF550309 EF550447 EF552533  
P. japonica YB-2750T 7209 EF550323 EF550461 EF552547  
P. kluyveri var. kluyveri Y-11519T 188 EF550251 EF550389 EF552475 EF547701 
P. kluyveri var. cephalocereana Y-17225T 7273 EF550250 EF550388 EF552474 EF547700 
P. kluyveri var. eremophila Y-17224T 7272 EF550249 EF550387 EF552473 EF547699 
P. lachancei Y-27008T 8557 EF550313 EF550451 EF552537  
P. lynferdii Y-7723T 6695 EF550342 EF550480 EF552566  
P. maclurae Y-5377T 8671 EF550310 EF550448 EF552534  
P. manshurica Y-17349 7324 EF550223 EF550361 EF552447 EF547673 
P. membranifaciens Y-2026T 107 EF550227 EF550365 EF552451 EF547677 
P. meyerae Y-17236T 7076 EF550327 EF550465 EF552551  
P. mississippiensis YB-1294T 7023 EF550320 EF550458 EF552544  
P. misumaiensis Y-17389T 8062 EF550306 EF550444 EF552530  
P. nakasei Y-7686T 5141 EF550248 EF550386 EF552472 EF547698 
P. norvegensis Y-7687T 6564 EF550240 EF550377 EF552463 EF547689 
P. onychis Y-7123T 5587 EF550279 EF550417 EF552503  
P. petersonii YB-3808T 5555 EF550311 EF550449 EF552535  
P. pijperi YB-4309T 2887 EF550335 EF550473 EF552559  
P. populi Y-12728T 8094 EF550277 EF550415 EF552501  
P. pseudocactophila Y-17239T 6929 EF550242 EF550380 EF552466 EF547692 
P. quercuum YB-4281T 2283 EF550287 EF550425 EF552511  
P. rabaulensis Y-7945T 6797 EF550303 EF550441 EF552527  
P. rhodanensis Y-7854T 5518 EF550325 EF550463 EF552549  
P. salicaria Y-6780T 5456 EF550272 EF550410 EF552496  
P. silvicola Y-1678T 1705 EF550302 EF550440 EF552526  
P. sporocuriosa Y-27347T 8806 EF550232 EF550370 EF552456 EF547682 
P. strasburgensis Y-2383T 2939 EF550333 EF550471 EF552557  
P. subpelliculosa Y-1683T 5767 EF550340 EF550478 EF552564  
P. sydowiorum Y-7130T 5995 EF550343 EF550481 EF552567  
P. veronae Y-7818T 6591 EF550322 EF550460 EF552546  
P. wickerhamii Y-2435T 4107 EF550271 EF550409 EF552495  
Pichia sp. Y-11569 5120 EF550280 EF550418 EF552504  
Pichia sp. Y-17803 5119 EF550299 EF550437 EF552523  
Pichia sp. Y-27259 5129 EF550228 EF550366 EF552452 EF547678 
Pichia sp. Y-27261 5140 EF550229 EF550367 EF552453 EF547679 
Pichia sp. YB-4149  EF550224 EF550362 EF552448 EF547674 
Saturnispora ahearnii Y-7555T 6121 EF550217 EF550355 EF552441 EF547667 
S. besseyi YB-4711T 6343 EF550216 EF550354 EF552440 EF547666 
S. dispora Y-1447T 794 EF550220 EF550358 EF552444 EF547670 
S. hagleri Y-27828T 10007 EF550221 EF550359 EF552445 EF547671 
S. mendoncae Y-11515T 5620 EF550214 EF550352 EF552438 EF547664 
S. saitoi Y-6671T 4910 EF550218 EF550356 EF552442 EF547668 
S. zaruensis Y-7008T 5799 EF550219 EF550357 EF552443 EF547669 
Schizosaccharomyces pombe Y-12796T 356 EF550348 EF550486 EF552572 AF442355 
Starmera amethionina var. amethionina Y-10978T 6940 EF550282 EF550420 EF552506  
S. amethionina var. pachycereana Y-10981T 6943 EF550283 EF550421 EF552507  
S. caribaea Y-17468T 7692 EF550284 EF550422 EF552508  
Williopsis californica Y-17395T 252 EF550414 EF550276 EF552500  
W. mucosa YB-1344T 6341 EF550337 EF550475 EF552561  
W. pratensis Y-12696T 7079 EF550274 EF550412 EF552498  
W. saturnus var. saturnus Y-17396T 254 EF550316 EF550454 EU307981 EU307970* 
Y-1304 5761 EU541540  EU307982 EU307971* 
YB-4312 2564 EU541541  EU307983 EU307972* 
W. saturnus var. mrakii Y-1364T 1707 EF550317 EF550455 EU307984 EU307973* 
YB-3257  EU307992  EU307985 EU307974* 
W. saturnus var. sargentensis YB-4139T 6342 U94936  EU307991 EU307980* 
W. saturnus var. suaveolens Y-17391T 255 EU307993  EU307988 EU307977* 
Y-838  EU541542  EU307990 EU307979* 
Y-1725 1670 EU307993  EU307989 EU307978* 
W. saturnus var. subsufficiens Y-1657T 5763 EF550318 EF550456 EU307986 EU307975* 
YB-1718  EU541543  EU307987 EU307976* 

Gene sequences: LSU, nuclear large subunit rRNA; SSU, nuclear small subunit rRNA; EF-1α, translation elongation factor-1α; MtSm, mitochondrial small subunit rRNA; ITS, nuclear internal transcribed spacer (incl. ITS1–5.8S–ITS2). ITS sequences are denoted with an asterisk. Other ITS sequences: Issatchenkia hanoiensis=EF552573, Pichia sporocuriosa=EF558736.

Strain number is that of the Portuguese Yeast Culture Collection (PYCC).

§

Pichia manshurica is represented by NRRL Y-17349, the type strain of the synonym Pichia galeiformis. The type strain of P. manshurica, NRRL Y-27978, and NRRL Y-17349 have identical D1/D2 sequences.

Ogataea polymorpha is represented by NRRL Y-2214, the type strain of Pichia (Hansenula) angusta, which appears conspecific with O. polymorpha from phenotype.

Nuclear DNA reassociation experiments grouped NRRL YB-4312 with Williopsis saturnus var. saturnus (Kurtzman et al., 1991), but the multigene analysis in the present study placed this strain in the W. saturnus var. suaveolens clade (Fig. 3), suggesting an apparent error in the earlier report.

NRRL, ARS Culture Collection; CBS, Centraalbureau voor Schimmelcultures. T, type strain; NT, neotype strain; A, authentic strain.

1

Yeast strains compared in this study

Species Strain designation GenBank accession numbers 
NRRL CBS LSU SSU EF-1α MtSm/ITS* 
Brettanomyces custersianus Y-6653T 4805 EF550261 EF550399 EF552485 EF547711 
B. naardenensis Y-17526T 6042 EF550260 EF550398 EF552484 EF547710 
B. nanus Y-17527T 1945 EF550259 EF550397 EF552483 EF547709 
Candida abiesophila Y-11514T 5366 EF550212 EF550350 EF552436 EF547662 
C. berthetii Y-17644T 5452 EF550288 EF550426 EF552512  
C. californica Y-27254 4875 EF550230 EF550368 EF552454 EF547680 
C. dendrica Y-7775T 6151 EF550289 EF550427 EF552513  
C. diversa Y-5713T 4074 EF550213 EF550351 EF552437 EF547663 
C. ethanolica Y-12615T 8041 EF550225 EF550363 EF552449 EF547675 
C. freyschussii Y-7957A 2161 EF550281 EF550419 EF552505  
C. inconspicua Y-2029T 180 EF550240 EF550378 EF552464 EF547690 
C. maritima Y-17775T 5107 EF550332 EF550470 EF552556  
C. montana Y-17326T 8057 EF550275 EF550413 EF552499  
C. mycetangii Y-6843T 8675 EF550330 EF550468 EF552554  
C. norvegica Y-17660T 4239 EF550273 EF550411 EF552497  
C. odintsovae Y-17760T 6026 EF550304 EF550442 EF552528  
C. orba Y-27336T 8782 EF550265 EF550403 EF552489 EF547721 
C. peoriensis YB-1497T 8800 EF550305 EF550443 EF552529  
C. ponderosae YB-2307T 8801 EF550345 EF550483 EF552569  
C. pseudolambica Y-17318T 2063 EF550235 EF550373 EF552459 EF547685 
C. quercuum Y-12942T 6422 EF550292 EF550430 EF552516  
C. rugopelliculosa Y-17079T 6377 EF550238 EF550376 EF552462 EF547688 
C. silvae Y-6725T 5498 EF550215 EF550353 EF552439 EF547665 
C. silvicultrix Y-7789T 6269 EF550338 EF550476 EF552562  
C. solani Y-2224T 1908 EF550336 EF550474 EF552560  
C. sorboxylosa Y-17669T 6378 EF550253 EF550391 EF552477 EF547703 
C. stellimalicola Y-17912T 7853 EF550286 EF550424 EF552510  
C. thaimueangensis Y-27416  EF550231 EF550369 EF552455 EF547681 
C. ulmi YB-2694T 8670 EF550295 EF550433 EF552519  
C. vartiovaarae Y-6701T 4289 EF550315 EF550453 EF552539  
Candida sp. Y-7574  EF550291 EF550429 EF552515  
Candida sp. Y-7615  EF550331 EF550469 EF552555  
Candida sp. Y-17713  EF550285 EF550423 EF552509  
Candida sp. Y-27103 6259 EF550307 EF550445 EF552531  
Candida sp. Y-27127 6163 EF550293 EF550431 EF552517  
Candida sp. Y-27267  EF550314 EF550452 EF552538  
Candida sp. YB-2097  EF550324 EF550462 EF552548  
Candida sp. YB-2243  EF550301 EF550439 EF552525  
Candida sp. YB-3031  EF550297 EF550435 EF552521  
Candida sp. YB-4088  EF550308 EF550446 EF552532  
Citeromyces matritensis Y-2407T 2764 EF550346 EF550484 EF552570 EF547718 
Dekkera anomala Y-17522T 8139 EF550258 EF550396 EF552482 EF547708 
D. bruxellensis Y-12961T 74 EF550257 EF550395 EF552481 EF547707 
Issatchenkia hanoiensis Y-27509T 9198 EF550349   EF547722 
I. occidentalis Y-7552T 5459 EF550236 EF550374 EF552460 EF547686 
I. orientalis Y-5396T 5147 EF550222 EF550360 EF552446 EF547672 
I. scutulata var. scutulata Y-7663T 6670 EF550243 EF550381 EF552467 EF547693 
I. scutulata var. exigua Y-10920T 6836 EF550237 EF550375 EF552461 EF547687 
I. terricola YB-4310T 2617 EF550233 EF550371 EF552457 EF547683 
Issatchenkia sp. Y-12824  EF550246 EF550384 EF552470 EF547696 
Issatchenkia sp. Y-12827  EF550245 EF550383 EF552469 EF547695 
Issatchenkia sp. Y-12830  EF550244 EF550382 EF552468 EF547694 
Komagataella pastoris Y-1603T 704 EF550254 EF550392 EF552478 EF547704 
K. phaffii Y-7556T 2612 EF550256 EF550394 EF552480 EF547706 
K. pseudopastoris Y-27603T 9187 EF550255 EF550393 EF552479 EF547705 
Kregervanrija delftensis Y-7119T 2614 EF550266 EF550404 EF552490 EF547715 
K. fluxuum YB-4273T 2287 EF550268 EF550406 EF552492 EF547717 
K. pseudodelftensis Y-5494T 10105 EF550267 EF550405 EF552491 EF547716 
Kuraishia capsulata Y-1842T 1993 EF550270 EF550408 EF552494 EF547719 
Nakazawaea holstii Y-2155T 4140 EF550347 EF550485 EF552571 EF547720 
Ogataea polymorpha Y-2214 7073 EF550269 EF550407 EF552493  
Pachysolen tannophilus Y-2460T 4044 EU011641 EU011721 EU014751  
Phaffomyces antillensis Y-12881T 7111 EF550262 EF550400 EF552486 EF547712 
P. opuntiae Y-11707T 7010 EF550263 EF550401 EF552487 EF547713 
P. thermotolerans Y-11709T 7012 EF550264 EF550402 EF552488 EF547714 
Pichia alni Y-11625T 6986 EF550294 EF550432 EF552518  
P. americana Y-2156T 5644 EF550328 EF550466 EF552552  
P. amylophila YB-1287T 7020 EF550319 EF550457 EF552543  
P. anomala Y-366NT 5759 EF550341 EF550479 EF552565  
P. barkeri Y-17350T 7256 EF550247 EF550385 EF552471 EF547697 
P. bimundalis Y-5343T 5642 EF550329 EF550467 EF552553  
P. bispora Y-1482T 1890 EF550296 EF550434 EF552520  
P. bovis YB-4184T 2616 EF550298 EF550436 EF552522  
P. cactophila Y-10963T 6926 EF550241 EF550379 EF552465 EF547691 
P. canadensis Y-1888T 1992 EF550300 EF550438 EF552524  
P. chambardii Y-2378T 1900 EF550344 EF550482 EF552568  
P. ciferrii Y-1031T 111 EF550339 EF550477 EF552563  
P. deserticola Y-12918T 7119 EF550226 EF550364 EF552450 EF547676 
P. dryadoides Y-10990T 6154 EF550290 EF550428 EF552514  
P. euphorbiae Y-17232T 8033 EF550326 EF550464 EF552550  
P. euphorbiiphila Y-12742T 8083 EF550312 EF550450 EF552536  
P. fabianii Y-1871T 5640 EF550321 EF550459 EF552545  
P. fermentans Y-1619T 187 EF550234 EF550372 EF552458 EF547684 
P. hampshirensis YB-4128T 7208 EF550334 EF550472 EF552558  
P. hawaiiensis Y-27270T 8760 EF550278 EF550416 EF552502  
P. heedii Y-10967T 6930 EF550252 EF550390 EF552476 EF547702 
P. jadinii Y-1542T 1600 EF550309 EF550447 EF552533  
P. japonica YB-2750T 7209 EF550323 EF550461 EF552547  
P. kluyveri var. kluyveri Y-11519T 188 EF550251 EF550389 EF552475 EF547701 
P. kluyveri var. cephalocereana Y-17225T 7273 EF550250 EF550388 EF552474 EF547700 
P. kluyveri var. eremophila Y-17224T 7272 EF550249 EF550387 EF552473 EF547699 
P. lachancei Y-27008T 8557 EF550313 EF550451 EF552537  
P. lynferdii Y-7723T 6695 EF550342 EF550480 EF552566  
P. maclurae Y-5377T 8671 EF550310 EF550448 EF552534  
P. manshurica Y-17349 7324 EF550223 EF550361 EF552447 EF547673 
P. membranifaciens Y-2026T 107 EF550227 EF550365 EF552451 EF547677 
P. meyerae Y-17236T 7076 EF550327 EF550465 EF552551  
P. mississippiensis YB-1294T 7023 EF550320 EF550458 EF552544  
P. misumaiensis Y-17389T 8062 EF550306 EF550444 EF552530  
P. nakasei Y-7686T 5141 EF550248 EF550386 EF552472 EF547698 
P. norvegensis Y-7687T 6564 EF550240 EF550377 EF552463 EF547689 
P. onychis Y-7123T 5587 EF550279 EF550417 EF552503  
P. petersonii YB-3808T 5555 EF550311 EF550449 EF552535  
P. pijperi YB-4309T 2887 EF550335 EF550473 EF552559  
P. populi Y-12728T 8094 EF550277 EF550415 EF552501  
P. pseudocactophila Y-17239T 6929 EF550242 EF550380 EF552466 EF547692 
P. quercuum YB-4281T 2283 EF550287 EF550425 EF552511  
P. rabaulensis Y-7945T 6797 EF550303 EF550441 EF552527  
P. rhodanensis Y-7854T 5518 EF550325 EF550463 EF552549  
P. salicaria Y-6780T 5456 EF550272 EF550410 EF552496  
P. silvicola Y-1678T 1705 EF550302 EF550440 EF552526  
P. sporocuriosa Y-27347T 8806 EF550232 EF550370 EF552456 EF547682 
P. strasburgensis Y-2383T 2939 EF550333 EF550471 EF552557  
P. subpelliculosa Y-1683T 5767 EF550340 EF550478 EF552564  
P. sydowiorum Y-7130T 5995 EF550343 EF550481 EF552567  
P. veronae Y-7818T 6591 EF550322 EF550460 EF552546  
P. wickerhamii Y-2435T 4107 EF550271 EF550409 EF552495  
Pichia sp. Y-11569 5120 EF550280 EF550418 EF552504  
Pichia sp. Y-17803 5119 EF550299 EF550437 EF552523  
Pichia sp. Y-27259 5129 EF550228 EF550366 EF552452 EF547678 
Pichia sp. Y-27261 5140 EF550229 EF550367 EF552453 EF547679 
Pichia sp. YB-4149  EF550224 EF550362 EF552448 EF547674 
Saturnispora ahearnii Y-7555T 6121 EF550217 EF550355 EF552441 EF547667 
S. besseyi YB-4711T 6343 EF550216 EF550354 EF552440 EF547666 
S. dispora Y-1447T 794 EF550220 EF550358 EF552444 EF547670 
S. hagleri Y-27828T 10007 EF550221 EF550359 EF552445 EF547671 
S. mendoncae Y-11515T 5620 EF550214 EF550352 EF552438 EF547664 
S. saitoi Y-6671T 4910 EF550218 EF550356 EF552442 EF547668 
S. zaruensis Y-7008T 5799 EF550219 EF550357 EF552443 EF547669 
Schizosaccharomyces pombe Y-12796T 356 EF550348 EF550486 EF552572 AF442355 
Starmera amethionina var. amethionina Y-10978T 6940 EF550282 EF550420 EF552506  
S. amethionina var. pachycereana Y-10981T 6943 EF550283 EF550421 EF552507  
S. caribaea Y-17468T 7692 EF550284 EF550422 EF552508  
Williopsis californica Y-17395T 252 EF550414 EF550276 EF552500  
W. mucosa YB-1344T 6341 EF550337 EF550475 EF552561  
W. pratensis Y-12696T 7079 EF550274 EF550412 EF552498  
W. saturnus var. saturnus Y-17396T 254 EF550316 EF550454 EU307981 EU307970* 
Y-1304 5761 EU541540  EU307982 EU307971* 
YB-4312 2564 EU541541  EU307983 EU307972* 
W. saturnus var. mrakii Y-1364T 1707 EF550317 EF550455 EU307984 EU307973* 
YB-3257  EU307992  EU307985 EU307974* 
W. saturnus var. sargentensis YB-4139T 6342 U94936  EU307991 EU307980* 
W. saturnus var. suaveolens Y-17391T 255 EU307993  EU307988 EU307977* 
Y-838  EU541542  EU307990 EU307979* 
Y-1725 1670 EU307993  EU307989 EU307978* 
W. saturnus var. subsufficiens Y-1657T 5763 EF550318 EF550456 EU307986 EU307975* 
YB-1718  EU541543  EU307987 EU307976* 
Species Strain designation GenBank accession numbers 
NRRL CBS LSU SSU EF-1α MtSm/ITS* 
Brettanomyces custersianus Y-6653T 4805 EF550261 EF550399 EF552485 EF547711 
B. naardenensis Y-17526T 6042 EF550260 EF550398 EF552484 EF547710 
B. nanus Y-17527T 1945 EF550259 EF550397 EF552483 EF547709 
Candida abiesophila Y-11514T 5366 EF550212 EF550350 EF552436 EF547662 
C. berthetii Y-17644T 5452 EF550288 EF550426 EF552512  
C. californica Y-27254 4875 EF550230 EF550368 EF552454 EF547680 
C. dendrica Y-7775T 6151 EF550289 EF550427 EF552513  
C. diversa Y-5713T 4074 EF550213 EF550351 EF552437 EF547663 
C. ethanolica Y-12615T 8041 EF550225 EF550363 EF552449 EF547675 
C. freyschussii Y-7957A 2161 EF550281 EF550419 EF552505  
C. inconspicua Y-2029T 180 EF550240 EF550378 EF552464 EF547690 
C. maritima Y-17775T 5107 EF550332 EF550470 EF552556  
C. montana Y-17326T 8057 EF550275 EF550413 EF552499  
C. mycetangii Y-6843T 8675 EF550330 EF550468 EF552554  
C. norvegica Y-17660T 4239 EF550273 EF550411 EF552497  
C. odintsovae Y-17760T 6026 EF550304 EF550442 EF552528  
C. orba Y-27336T 8782 EF550265 EF550403 EF552489 EF547721 
C. peoriensis YB-1497T 8800 EF550305 EF550443 EF552529  
C. ponderosae YB-2307T 8801 EF550345 EF550483 EF552569  
C. pseudolambica Y-17318T 2063 EF550235 EF550373 EF552459 EF547685 
C. quercuum Y-12942T 6422 EF550292 EF550430 EF552516  
C. rugopelliculosa Y-17079T 6377 EF550238 EF550376 EF552462 EF547688 
C. silvae Y-6725T 5498 EF550215 EF550353 EF552439 EF547665 
C. silvicultrix Y-7789T 6269 EF550338 EF550476 EF552562  
C. solani Y-2224T 1908 EF550336 EF550474 EF552560  
C. sorboxylosa Y-17669T 6378 EF550253 EF550391 EF552477 EF547703 
C. stellimalicola Y-17912T 7853 EF550286 EF550424 EF552510  
C. thaimueangensis Y-27416  EF550231 EF550369 EF552455 EF547681 
C. ulmi YB-2694T 8670 EF550295 EF550433 EF552519  
C. vartiovaarae Y-6701T 4289 EF550315 EF550453 EF552539  
Candida sp. Y-7574  EF550291 EF550429 EF552515  
Candida sp. Y-7615  EF550331 EF550469 EF552555  
Candida sp. Y-17713  EF550285 EF550423 EF552509  
Candida sp. Y-27103 6259 EF550307 EF550445 EF552531  
Candida sp. Y-27127 6163 EF550293 EF550431 EF552517  
Candida sp. Y-27267  EF550314 EF550452 EF552538  
Candida sp. YB-2097  EF550324 EF550462 EF552548  
Candida sp. YB-2243  EF550301 EF550439 EF552525  
Candida sp. YB-3031  EF550297 EF550435 EF552521  
Candida sp. YB-4088  EF550308 EF550446 EF552532  
Citeromyces matritensis Y-2407T 2764 EF550346 EF550484 EF552570 EF547718 
Dekkera anomala Y-17522T 8139 EF550258 EF550396 EF552482 EF547708 
D. bruxellensis Y-12961T 74 EF550257 EF550395 EF552481 EF547707 
Issatchenkia hanoiensis Y-27509T 9198 EF550349   EF547722 
I. occidentalis Y-7552T 5459 EF550236 EF550374 EF552460 EF547686 
I. orientalis Y-5396T 5147 EF550222 EF550360 EF552446 EF547672 
I. scutulata var. scutulata Y-7663T 6670 EF550243 EF550381 EF552467 EF547693 
I. scutulata var. exigua Y-10920T 6836 EF550237 EF550375 EF552461 EF547687 
I. terricola YB-4310T 2617 EF550233 EF550371 EF552457 EF547683 
Issatchenkia sp. Y-12824  EF550246 EF550384 EF552470 EF547696 
Issatchenkia sp. Y-12827  EF550245 EF550383 EF552469 EF547695 
Issatchenkia sp. Y-12830  EF550244 EF550382 EF552468 EF547694 
Komagataella pastoris Y-1603T 704 EF550254 EF550392 EF552478 EF547704 
K. phaffii Y-7556T 2612 EF550256 EF550394 EF552480 EF547706 
K. pseudopastoris Y-27603T 9187 EF550255 EF550393 EF552479 EF547705 
Kregervanrija delftensis Y-7119T 2614 EF550266 EF550404 EF552490 EF547715 
K. fluxuum YB-4273T 2287 EF550268 EF550406 EF552492 EF547717 
K. pseudodelftensis Y-5494T 10105 EF550267 EF550405 EF552491 EF547716 
Kuraishia capsulata Y-1842T 1993 EF550270 EF550408 EF552494 EF547719 
Nakazawaea holstii Y-2155T 4140 EF550347 EF550485 EF552571 EF547720 
Ogataea polymorpha Y-2214 7073 EF550269 EF550407 EF552493  
Pachysolen tannophilus Y-2460T 4044 EU011641 EU011721 EU014751  
Phaffomyces antillensis Y-12881T 7111 EF550262 EF550400 EF552486 EF547712 
P. opuntiae Y-11707T 7010 EF550263 EF550401 EF552487 EF547713 
P. thermotolerans Y-11709T 7012 EF550264 EF550402 EF552488 EF547714 
Pichia alni Y-11625T 6986 EF550294 EF550432 EF552518  
P. americana Y-2156T 5644 EF550328 EF550466 EF552552  
P. amylophila YB-1287T 7020 EF550319 EF550457 EF552543  
P. anomala Y-366NT 5759 EF550341 EF550479 EF552565  
P. barkeri Y-17350T 7256 EF550247 EF550385 EF552471 EF547697 
P. bimundalis Y-5343T 5642 EF550329 EF550467 EF552553  
P. bispora Y-1482T 1890 EF550296 EF550434 EF552520  
P. bovis YB-4184T 2616 EF550298 EF550436 EF552522  
P. cactophila Y-10963T 6926 EF550241 EF550379 EF552465 EF547691 
P. canadensis Y-1888T 1992 EF550300 EF550438 EF552524  
P. chambardii Y-2378T 1900 EF550344 EF550482 EF552568  
P. ciferrii Y-1031T 111 EF550339 EF550477 EF552563  
P. deserticola Y-12918T 7119 EF550226 EF550364 EF552450 EF547676 
P. dryadoides Y-10990T 6154 EF550290 EF550428 EF552514  
P. euphorbiae Y-17232T 8033 EF550326 EF550464 EF552550  
P. euphorbiiphila Y-12742T 8083 EF550312 EF550450 EF552536  
P. fabianii Y-1871T 5640 EF550321 EF550459 EF552545  
P. fermentans Y-1619T 187 EF550234 EF550372 EF552458 EF547684 
P. hampshirensis YB-4128T 7208 EF550334 EF550472 EF552558  
P. hawaiiensis Y-27270T 8760 EF550278 EF550416 EF552502  
P. heedii Y-10967T 6930 EF550252 EF550390 EF552476 EF547702 
P. jadinii Y-1542T 1600 EF550309 EF550447 EF552533  
P. japonica YB-2750T 7209 EF550323 EF550461 EF552547  
P. kluyveri var. kluyveri Y-11519T 188 EF550251 EF550389 EF552475 EF547701 
P. kluyveri var. cephalocereana Y-17225T 7273 EF550250 EF550388 EF552474 EF547700 
P. kluyveri var. eremophila Y-17224T 7272 EF550249 EF550387 EF552473 EF547699 
P. lachancei Y-27008T 8557 EF550313 EF550451 EF552537  
P. lynferdii Y-7723T 6695 EF550342 EF550480 EF552566  
P. maclurae Y-5377T 8671 EF550310 EF550448 EF552534  
P. manshurica Y-17349 7324 EF550223 EF550361 EF552447 EF547673 
P. membranifaciens Y-2026T 107 EF550227 EF550365 EF552451 EF547677 
P. meyerae Y-17236T 7076 EF550327 EF550465 EF552551  
P. mississippiensis YB-1294T 7023 EF550320 EF550458 EF552544  
P. misumaiensis Y-17389T 8062 EF550306 EF550444 EF552530  
P. nakasei Y-7686T 5141 EF550248 EF550386 EF552472 EF547698 
P. norvegensis Y-7687T 6564 EF550240 EF550377 EF552463 EF547689 
P. onychis Y-7123T 5587 EF550279 EF550417 EF552503  
P. petersonii YB-3808T 5555 EF550311 EF550449 EF552535  
P. pijperi YB-4309T 2887 EF550335 EF550473 EF552559  
P. populi Y-12728T 8094 EF550277 EF550415 EF552501  
P. pseudocactophila Y-17239T 6929 EF550242 EF550380 EF552466 EF547692 
P. quercuum YB-4281T 2283 EF550287 EF550425 EF552511  
P. rabaulensis Y-7945T 6797 EF550303 EF550441 EF552527  
P. rhodanensis Y-7854T 5518 EF550325 EF550463 EF552549  
P. salicaria Y-6780T 5456 EF550272 EF550410 EF552496  
P. silvicola Y-1678T 1705 EF550302 EF550440 EF552526  
P. sporocuriosa Y-27347T 8806 EF550232 EF550370 EF552456 EF547682 
P. strasburgensis Y-2383T 2939 EF550333 EF550471 EF552557  
P. subpelliculosa Y-1683T 5767 EF550340 EF550478 EF552564  
P. sydowiorum Y-7130T 5995 EF550343 EF550481 EF552567  
P. veronae Y-7818T 6591 EF550322 EF550460 EF552546  
P. wickerhamii Y-2435T 4107 EF550271 EF550409 EF552495  
Pichia sp. Y-11569 5120 EF550280 EF550418 EF552504  
Pichia sp. Y-17803 5119 EF550299 EF550437 EF552523  
Pichia sp. Y-27259 5129 EF550228 EF550366 EF552452 EF547678 
Pichia sp. Y-27261 5140 EF550229 EF550367 EF552453 EF547679 
Pichia sp. YB-4149  EF550224 EF550362 EF552448 EF547674 
Saturnispora ahearnii Y-7555T 6121 EF550217 EF550355 EF552441 EF547667 
S. besseyi YB-4711T 6343 EF550216 EF550354 EF552440 EF547666 
S. dispora Y-1447T 794 EF550220 EF550358 EF552444 EF547670 
S. hagleri Y-27828T 10007 EF550221 EF550359 EF552445 EF547671 
S. mendoncae Y-11515T 5620 EF550214 EF550352 EF552438 EF547664 
S. saitoi Y-6671T 4910 EF550218 EF550356 EF552442 EF547668 
S. zaruensis Y-7008T 5799 EF550219 EF550357 EF552443 EF547669 
Schizosaccharomyces pombe Y-12796T 356 EF550348 EF550486 EF552572 AF442355 
Starmera amethionina var. amethionina Y-10978T 6940 EF550282 EF550420 EF552506  
S. amethionina var. pachycereana Y-10981T 6943 EF550283 EF550421 EF552507  
S. caribaea Y-17468T 7692 EF550284 EF550422 EF552508  
Williopsis californica Y-17395T 252 EF550414 EF550276 EF552500  
W. mucosa YB-1344T 6341 EF550337 EF550475 EF552561  
W. pratensis Y-12696T 7079 EF550274 EF550412 EF552498  
W. saturnus var. saturnus Y-17396T 254 EF550316 EF550454 EU307981 EU307970* 
Y-1304 5761 EU541540  EU307982 EU307971* 
YB-4312 2564 EU541541  EU307983 EU307972* 
W. saturnus var. mrakii Y-1364T 1707 EF550317 EF550455 EU307984 EU307973* 
YB-3257  EU307992  EU307985 EU307974* 
W. saturnus var. sargentensis YB-4139T 6342 U94936  EU307991 EU307980* 
W. saturnus var. suaveolens Y-17391T 255 EU307993  EU307988 EU307977* 
Y-838  EU541542  EU307990 EU307979* 
Y-1725 1670 EU307993  EU307989 EU307978* 
W. saturnus var. subsufficiens Y-1657T 5763 EF550318 EF550456 EU307986 EU307975* 
YB-1718  EU541543  EU307987 EU307976* 

Gene sequences: LSU, nuclear large subunit rRNA; SSU, nuclear small subunit rRNA; EF-1α, translation elongation factor-1α; MtSm, mitochondrial small subunit rRNA; ITS, nuclear internal transcribed spacer (incl. ITS1–5.8S–ITS2). ITS sequences are denoted with an asterisk. Other ITS sequences: Issatchenkia hanoiensis=EF552573, Pichia sporocuriosa=EF558736.

Strain number is that of the Portuguese Yeast Culture Collection (PYCC).

§

Pichia manshurica is represented by NRRL Y-17349, the type strain of the synonym Pichia galeiformis. The type strain of P. manshurica, NRRL Y-27978, and NRRL Y-17349 have identical D1/D2 sequences.

Ogataea polymorpha is represented by NRRL Y-2214, the type strain of Pichia (Hansenula) angusta, which appears conspecific with O. polymorpha from phenotype.

Nuclear DNA reassociation experiments grouped NRRL YB-4312 with Williopsis saturnus var. saturnus (Kurtzman et al., 1991), but the multigene analysis in the present study placed this strain in the W. saturnus var. suaveolens clade (Fig. 3), suggesting an apparent error in the earlier report.

NRRL, ARS Culture Collection; CBS, Centraalbureau voor Schimmelcultures. T, type strain; NT, neotype strain; A, authentic strain.

DNA isolation, sequencing and phylogenetic analysis

Methods for DNA isolation and sequencing of the genes for nuclear LSU, SSU, and internal transcribed spacer (ITS) rRNA, mitochondrial SSU rRNA and EF-1α were given previously in detail (Kurtzman & Robnett et al., 1998, 2003, 2007). The following two additional EF-1α primers were included in the present study and were also used for generation of amplicons and for sequencing. The primer sequences were provided by Stephen Rehner (pers. commun.) and are the following: 983, 5′-GCYCCYGGHCAYCGTGAYTTYAT (forward) and 2218, 5′-ATGACACCRACRGCRACRGTYTG (reverse). Both strands of the DNAs analyzed were sequenced with the ABI BigDye Terminator Cycle Sequencing kit (Applied Biosystems) using an ABI 3730 automated DNA sequencer according to the manufacturer's instructions. For phylogenetic analysis, sequences were visually aligned and regions of uncertain alignment were removed. Phylogenetic relatedness among the species was determined using the maximum parsimony and neighbor-joining progams of paup* 4.063a (Swofford et al., 1998). Bootstrap support for the phylogenetic trees was determined from 1000 replicates.

Results and discussion

The 140 taxa included in the present study were initially treated as a single group and phylogenetically analyzed using a concatenated dataset of gene sequences from the nearly entire SSU rRNA, LSU rRNA and EF-1α. Analysis was performed using maximum parsimony and neighbor joining with the Kimura-2 parameter correction. In all analyses, the species separated into two large clades, which are shown in Figs 1 and 2. Species in Fig. 1 include the P. membranifaciens clade and the genera Saturnispora, Kregervanrija, Komagataella, Phaffomyces and various reference species. Species in Fig. 2 include numerous Pichia species as well as species assigned to Williopsis and Starmera. Each of these clades is examined in the following discussion.

1

Phylogeny of the genera Pichia, Saturnispora, Kregervanrija, Komagataella, Phaffomyces and reference taxa as represented by the single MPT determined from maximum parsimony analysis of concatenated gene sequences from EF-1α and the nearly entire LSU and SSU rRNAs. The analysis included 6419 characters of which 2240 were parsimony informative. Consistency index (CI)=0.439, retention index (RI)=0.712, rescaled consistency index (RC)=0.313, homoplasy index (HI)=0.561. Bootstrap values are from 1000 replicates and are given at branch nodes. Schizosaccharomyces pombe served as outgroup species. T, type strain.

2

Phylogeny of the Barnettozyma, Lindnera, Starmera and Wickerhamomyces clades as represented by one of four most parsimonious trees from maximum parsimony analysis of concatenated gene sequences from EF-1α and the nearly entire LSU and SSU rRNAs. The analysis included 4986 characters of which 706 were parsimony informative. CI=0.324, RI=0.671, RC=0.218, HI=0.676. Bootstrap values are from 1000 replicates and the outgroup species was Schizosaccharomyces pombe. Fewer characters are present in this dataset than in that used for Fig. 1 because a greater number of regions of uncertain alignment were deleted from analysis. See the text for additional comments. T, type strain; NT, neotype strain; A, authentic strain.

Pichia, Saturnispora, Kregervanrija, Komagataella and Phaffomyces clades

Relationships among species are shown in Fig. 1 and were determined using maximum parsimony analysis of combined sequences from the nearly entire LSU rRNA, SSU rRNA and EF-1α genes. Analysis of individual gene sequences gave highly congruent placement of closely related species, but subclades with low bootstrap support sometimes differed in their positions in the trees. The LSU rRNA gene [number of taxa=63, characters=3574, phylogenetically informative characters (PIC)=1279, most parsimonious trees (MPT)=2] contributed slightly greater than half of the phylogenetic signal, followed by the SSU rRNA gene (characters=1858, PIC=548, MPT ≥100), and the EF-1α gene (characters=987, PIC=413, MPT=5). Although bootstrap support for subclades was often weak when single genes were analyzed, combining gene sequences in all possible pairings as well as combining all three genes, progressively increased bootstrap support for individual nodes, suggesting little phylogenetic conflict among the genes.

Support for clades recognized in this study as genera ranged from 95% to 100% in the analysis that included all three gene sequences (Fig. 1). Support for deeper nodes is less strong and therefore genus relationships may be tentative. This is especially apparent for placement of the Dekkera/Brettanomyces clade and for the clade that includes the genera Ogataea, Kuraishia, Citeromyces, Pachysolen and Nakazawaea. The genera Komagataella and Phaffomyces paired with moderate support (79%) in the tree shown in Fig. 1. Analysis of the rRNA genes gave much the same relationship (SSU, 66% support, LSU, 63% support, SSU+LSU, 74% support), but the two genera were well-separated clades when analyzed with EF-1α alone. Nonetheless, combining the three genes increased bootstrap support for this pair of genera to 79%. Given the long branches supporting these two genera and the disparity in the EF-1α tree, the relationship of these taxa needs further attention.

From the preceding analyses, it is seen that the genus Pichia is now phylogenetically circumscribed around P. membranifaciens, the type species of the genus (Fig. 1). The analysis also shows that the genus Issatchenkia is not phylogenetically separate from Pichia. Issatchenkia was proposed by Kudryavtsev (1960) for the ascosporic state of Candida krusei and was characterized by formation of spherical, possibly roughened, ascospores formed in a persistent ascus. Von Arx (1977) accepted Issatchenkia as a valid genus and Kurtzman (1980b) assigned additional species to this genus. However, D1/D2 LSU rRNA gene sequence analysis suggested that Issatchenkia species were members of the P. membranifaciens clade (Kurtzman & Robnett et al., 1998), which has been demonstrated with greater confidence in the present study. As shown in Fig. 1, species of Issatchenkia do not cluster, but are widely distributed within the Pichia clade. Some Issatchenkia species were described initially in Pichia and a valid name in this genus already exists for Pichia scutulata and Pichia terricola. Because of prior usage of the name Pichia orientalis (Beijerinck) Guilliermond, a taxon for which a culture no longer exists (Kurtzman et al., 1998), transfer of Issatchenkia orientalis back to Pichia requires use of a new species name. The name Pichia kudriavzevii was proposed by Boidin (1965) when the issue of valid species names arose during earlier taxonomic studies, and this name should be used to replace I. orientalis. This and other taxonomic changes proposed for the genus Pichia are the following:

Issatchenkia hanoiensis (Thanh et al., 2003) was recognized in the present study to be a synonym of Pichia sporocuriosa (Péter et al., 2000). We found that the D1/D2 LSU, ITS and mitochondrial SSU rRNA gene sequences of the type strains of the two taxa are identical. When described, I. hanoiensis was not recognized as conspecific with P. sporocuriosa because D1/D2 diagnostic sequences were not then available for P. sporocuriosa.

Issatchenkia occidentalis was recognized from nuclear DNA reassociation as a distinct species from among strains identified as P. kudriavzevii and this taxon was initially described as a species of Issatchenkia (Kurtzman, 1980b). Based on phylogenetic placement (Fig. 1), we propose that this species be transferred to Pichia as a new combination.

Pichia occidentalis (Kurtzman, Smiley & Johnson) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Issatchenkia occidentalis Kurtzman, Smiley & Johnson (1980) Int J Syst Bacteriol30:506.

Pichia (Issatchenkia) scutulata and its variety exigua were initially separated from one another by their different growth reactions on glycerol and osmotic medium and from their geographically separate habitats (Phaff et al., 1976). Kurtzman (1980b) showed low nuclear DNA relatedness (25%) between the varieties, but because F2 progeny from intervarietal crosses showed some viability, the varietal designations were maintained. As seen from Table 2, the two varieties show sequence divergence typical of other independent but closely related species for the four genes compared. In view of this divergence, along with reduced nuclear DNA complementarity and low intervarietal fertility, it is proposed to elevate the var. exigua to species level.

2

Extent of nuclear DNA reassociation and gene sequence divergence between closely related species included in the present study

Species pair Percent DNA reassociation Genes (substitutions–indels) 
D1/D2 SSU EF-1α MtSm 
Lindnera (Pichia) amylophilaL. mississippiensis 25 2–2 4–0 19–0  
L. amylophila–L. fabianii  9–2 19–2 39–0  
L. mississippiensis–L. fabianii  7–0 15–2 51–0  
Lindnera (Pichia) americana–L. bimundalis 21 2–0 0–0 22–0  
Lindnera (Williopsis) saturnus–L. mrakii 52 1–0 0–0 12–0  
L. mrakii–L. subsufficiens 44 4–0 0–0 12–0  
L. saturnus–L. subsufficiens 56 5–0 0–0 12–0  
Pichia cactophila–P. pseudocactophila 34 11–8 1–3 14–0 0–0 
P. cactophila–Candida inconspicua  1–1 0–0 0–0 0–0 
Pichia kluyveri–P. eremophila 66 7–1 5–0 26–0 1–0 
P. kluyveri–P. cephalocereana 72 3–0 2–0 11–0 1–0 
P. eremophila–P. cephalocereana 69 7–1 4–0 25–0 1–0 
Pichia (Issatchenkia) scutulata– P.exigua 25 20–7 7–1 36–0 10–4 
Starmera amethionina–S. pachycereana 65 8–10 5–3 12–0  
S. amethionina–S. caribaea 40 21–2 8–3 11–0  
S. pachycereana–S. caribaea 37 17–5 9–5 6–0  
Species pair Percent DNA reassociation Genes (substitutions–indels) 
D1/D2 SSU EF-1α MtSm 
Lindnera (Pichia) amylophilaL. mississippiensis 25 2–2 4–0 19–0  
L. amylophila–L. fabianii  9–2 19–2 39–0  
L. mississippiensis–L. fabianii  7–0 15–2 51–0  
Lindnera (Pichia) americana–L. bimundalis 21 2–0 0–0 22–0  
Lindnera (Williopsis) saturnus–L. mrakii 52 1–0 0–0 12–0  
L. mrakii–L. subsufficiens 44 4–0 0–0 12–0  
L. saturnus–L. subsufficiens 56 5–0 0–0 12–0  
Pichia cactophila–P. pseudocactophila 34 11–8 1–3 14–0 0–0 
P. cactophila–Candida inconspicua  1–1 0–0 0–0 0–0 
Pichia kluyveri–P. eremophila 66 7–1 5–0 26–0 1–0 
P. kluyveri–P. cephalocereana 72 3–0 2–0 11–0 1–0 
P. eremophila–P. cephalocereana 69 7–1 4–0 25–0 1–0 
Pichia (Issatchenkia) scutulata– P.exigua 25 20–7 7–1 36–0 10–4 
Starmera amethionina–S. pachycereana 65 8–10 5–3 12–0  
S. amethionina–S. caribaea 40 21–2 8–3 11–0  
S. pachycereana–S. caribaea 37 17–5 9–5 6–0  
*

Species pairs are represented by type strains. Newly proposed genus names are listed with the previous genus name in parentheses. Culture collection strain numbers are given in Table 1.

GenBank accession numbers for the gene sequences compared are given in Table 1.

§

Data presented here indicate that P. cactophila and C. inconspicua are conspecific.

D1/D2, domains 1 and 2, large subunit rRNA; SSU, small subunit rRNA; EF-1α, translation elongation factor-1α; MtSm, mitochondrial small subunit rRNA.

2

Extent of nuclear DNA reassociation and gene sequence divergence between closely related species included in the present study

Species pair Percent DNA reassociation Genes (substitutions–indels) 
D1/D2 SSU EF-1α MtSm 
Lindnera (Pichia) amylophilaL. mississippiensis 25 2–2 4–0 19–0  
L. amylophila–L. fabianii  9–2 19–2 39–0  
L. mississippiensis–L. fabianii  7–0 15–2 51–0  
Lindnera (Pichia) americana–L. bimundalis 21 2–0 0–0 22–0  
Lindnera (Williopsis) saturnus–L. mrakii 52 1–0 0–0 12–0  
L. mrakii–L. subsufficiens 44 4–0 0–0 12–0  
L. saturnus–L. subsufficiens 56 5–0 0–0 12–0  
Pichia cactophila–P. pseudocactophila 34 11–8 1–3 14–0 0–0 
P. cactophila–Candida inconspicua  1–1 0–0 0–0 0–0 
Pichia kluyveri–P. eremophila 66 7–1 5–0 26–0 1–0 
P. kluyveri–P. cephalocereana 72 3–0 2–0 11–0 1–0 
P. eremophila–P. cephalocereana 69 7–1 4–0 25–0 1–0 
Pichia (Issatchenkia) scutulata– P.exigua 25 20–7 7–1 36–0 10–4 
Starmera amethionina–S. pachycereana 65 8–10 5–3 12–0  
S. amethionina–S. caribaea 40 21–2 8–3 11–0  
S. pachycereana–S. caribaea 37 17–5 9–5 6–0  
Species pair Percent DNA reassociation Genes (substitutions–indels) 
D1/D2 SSU EF-1α MtSm 
Lindnera (Pichia) amylophilaL. mississippiensis 25 2–2 4–0 19–0  
L. amylophila–L. fabianii  9–2 19–2 39–0  
L. mississippiensis–L. fabianii  7–0 15–2 51–0  
Lindnera (Pichia) americana–L. bimundalis 21 2–0 0–0 22–0  
Lindnera (Williopsis) saturnus–L. mrakii 52 1–0 0–0 12–0  
L. mrakii–L. subsufficiens 44 4–0 0–0 12–0  
L. saturnus–L. subsufficiens 56 5–0 0–0 12–0  
Pichia cactophila–P. pseudocactophila 34 11–8 1–3 14–0 0–0 
P. cactophila–Candida inconspicua  1–1 0–0 0–0 0–0 
Pichia kluyveri–P. eremophila 66 7–1 5–0 26–0 1–0 
P. kluyveri–P. cephalocereana 72 3–0 2–0 11–0 1–0 
P. eremophila–P. cephalocereana 69 7–1 4–0 25–0 1–0 
Pichia (Issatchenkia) scutulata– P.exigua 25 20–7 7–1 36–0 10–4 
Starmera amethionina–S. pachycereana 65 8–10 5–3 12–0  
S. amethionina–S. caribaea 40 21–2 8–3 11–0  
S. pachycereana–S. caribaea 37 17–5 9–5 6–0  
*

Species pairs are represented by type strains. Newly proposed genus names are listed with the previous genus name in parentheses. Culture collection strain numbers are given in Table 1.

GenBank accession numbers for the gene sequences compared are given in Table 1.

§

Data presented here indicate that P. cactophila and C. inconspicua are conspecific.

D1/D2, domains 1 and 2, large subunit rRNA; SSU, small subunit rRNA; EF-1α, translation elongation factor-1α; MtSm, mitochondrial small subunit rRNA.

Pichia exigua (Phaff, M.W. Miller & Miranda) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia scutulata Phaff, M.W. Miller & Miranda var. exigua Phaff, M.W. Miller & Miranda (1976) Int J Syst Bacteriol26:327.

Return of Issatchenkia species to Pichia does not cause a significant change in the phenotypic description of the genus because species with spherical ascospores are already assigned to Pichia. Most notably, strains of the type species P. membranifaciens form ascospores that range from hat shaped to spherical, to spherical with a partial or complete equatorial ledge (Kurtzman et al., 1998).

Phaff (1987) demonstrated three genetically divergent populations among Pichia kluyveri isolates following an extensive survey of yeasts from rotting cacti, and proposed the names P. kluyveri var. kluyveri, var. cephalocereana and var. eremophila for these lineages. Although the variety kluyveri is widely distributed in nature, the variety cephalocereana was only isolated from columnar cacti on the Caribbean island of Montserrat, and the variety eremophila seems nearly exclusive to Opuntia cactus rots in southern Arizona and Texas. Nuclear DNA reassociation experiments showed about 70% relatedness between the new varieties and between each of the varieties with P. kluyveri var. kluyveri (Phaff et al., 1987). Pichia kluyveri and the two varieties are heterothallic and the taxa were further characterized from mating experiments. For nearly all crosses, intervarietal fertility was lower than intravarietal fertility. Nonetheless, there was some genetic exchange between the varieties and Phaff (1987) elected to give these taxa varietal status rather than designating them as separate species. Our analysis of four gene sequences shows the extent of divergence between the varieties to be similar to that of other closely related species (Table 2; Kurtzman & Robnett et al., 1998; Kurtzman et al., 2006) and for this reason, as well as the reduced fertility demonstrated earlier, we propose that P. kluyveri var. cephalocereana and P. kluyveri var. eremophila be elevated to species status.

Pichia cephalocereana (Phaff, Starmer & Tredick-Kline) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia kluyveri Bedford ex Kudryavtsev var. cephalocereana Phaff, Starmer & Tredick-Kline (1987) Studies Mycol30:412.

Pichia eremophila (Phaff, Starmer & Tredick-Kline) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia kluyveri Bedford ex Kudryavtsev var. eremophila Phaff, Starmer & Tredick-Kline (1987) Studies Mycol30:412.

Barnettozyma, Lindnera, Starmera, Wickerhamomyces clades

The primary clade for this group of species includes 75 taxa and has strong (100%) bootstrap support (Fig. 2) when analyzed from the concatenated gene sequences of SSU rRNA, LSU rRNA and EF-1α. The species in this clade are apparently more diverse that those compared in Fig. 1, resulting in a larger number of indels in aligned datasets of the rRNA genes. These regions of uncertain alignment, not surprisingly, are far fewer for the individual clades. For the analysis presented in Fig. 2, the regions of uncertain alignment were removed with the expectation that a truer phylogenetic reconstruction would be obtained. Removal of the regions of uncertain alignment resulted in deletion of 940 of 3574 characters for the LSU sequence and 493 of 1858 characters for the SSU sequence. Interestingly, trees from both the modified and unmodified datasets were essentially congruent with the exception of sister species Pichia pijperi and Candida solani, which were basal to the Wickerhamomyces and Lindnera clades in the full dataset, rather than being basal members of the Wickerhamomyces clade as shown in Fig. 2. Removal of areas of possible uncertain alignment markedly reduced bootstrap support for many of the subclades. For example, Barnettozyma changed from 100% to 63%, Starmera from 86% to 66% and Lindnera from 96% to 84%. Support for the Wickerhamomyces clade was not affected. Despite differences in bootstrap support, species in each of the clades remained the same, except as noted for P. pijperi and C. solani, and analysis of each dataset resolved the same four major clades. When individual gene sequences were analyzed, closely related species remained together, suggesting the genes presented congruent relationships. Because of character removal in the dataset used to generate Fig. 2, EF-1α gene sequences provided about half of the phylogenetic signal (987 characters, 312 PIC, 64 MPT) followed by LSU rRNA (2634 characters, 231 PIC, ≥100 MPT) and SSU rRNA (1365 characters, 155 PIC, ≥100 MPT).

The preceding four clades are interpreted as individual genera. Although most of the ascosporic species are characterized by hat-shaped ascospores, species of the Saturn-spored genus Williopsis are found in three of the clades. Williopsis was described by Zender (1925) for species that formed Saturn-shaped ascospores and that utilized nitrate as a sole source of nitrogen. Williopsis was not initially widely recognized (Wickerham et al., 1970), but was later accepted by von Arx (1977). Liu & Kurtzman (1991) examined relationships among species of Williopsis from phylogenetic analysis of partial LSU and SSU rRNAs and pointed out that many of the species appeared only distantly related. This lack of species coherence was also noted from phylogenetic analysis of D1/D2 sequences (Kurtzman & Robnett et al., 1998). These earlier observations were confirmed in the present multigene study, thus demonstrating once again that ascospore morphology and nitrate utilization do not reliably predict phylogenetic relationships.

Selection of genus names for the four clades recognized in Fig. 2 requires consideration of previously used names and their possible application following emendation. Williopsis species are distributed among three clades and the name is not a good choice for the reasons discussed above. Reuse of the name Hansenula would also lead to confusion because species previously assigned to this genus are found in all four clades. The monotypic genus Waltiozyma (Muller & Kock et al., 1986), based on the apparently unique fatty acid profile of Pichia mucosa, would be an unsatisfactory choice as well. Our proposal is to retain the genus Starmera with the additional species associated with this clade and to provide new genus names for members of the other three clades. Each of these four genera has basal species with weak support, and we predict that discovery of additional new species related to these basal members will lead to their future separation into sister genera. Nonetheless, the present proposals, which are based on the species known, will provide a phylogeny-based taxonomic placement of these taxa that are phylogenetically separate from Pichia.

Barnettozyma clade

Latin diagnosis of Barnettozyma Kurtzman, Robnett et Basehoar-Powers gen. nov.

Asci conjugati vel inconjugati, rumpentur aut non rumpentur, et habentes 1–4 ascosporae petasiformes aut saturniformes. Cellulae vegetativae globosae, ovoidae et elongatae. Pseudohyphae fiunt (variabile); hyphae septatae non fiunt. Sacchara fermentantur (variabile). Methanolum et hexadecanum non assimilantur; nitras kalicus assimilantur (variabile). Systema coenzymatis Q-7 adest. Diazonium caerulian B non respondens. Genus novus sequentibus nucleotiditis nuclei grandis et parvique submonades rRNA genorum et traductionis elongationis factor-1α geni distinguendus. Species typica: Barnettozyma populi (Phaff, Y. Yamada, Tredick et Miranda) Kurtzman, Robnett et Basehoar-Powers comb. nov.

Description of Barnettozyma Kurtzman, Robnett & Basehoar-Powers gen. nov.

Asci are globose to ellipsoid, unconjugated or arise from conjugation between a cell and its bud or between independent cells. Some species are heterothallic. Asci may be deliquescent or persistent and form one to four ascospores that are hat shaped or spherical with an equatorial ledge. Cell division is by multilateral budding on a narrow base and budded cells are spherical, ovoid or elongate. Pseudohyphae are formed by some species and true hyphae may be formed by one species (B. wickerhamii). Glucose is fermented by most species and some species ferment other sugars as well. A variety of sugars, polyols and other carbon sources are assimilated by most species, but not methanol and hexadecane. Nitrate is utilized by some species. Where determined, the predominant ubiquinone is CoQ-7. The diazonium blue B reaction is negative. The genus is phylogenetically circumscribed from analysis of LSU and SSU rRNA and EF-1α gene sequences.

Type species: Barnettozyma populi (Phaff, Y. Yamada, Tredick & Miranda) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Etymology: The genus Barnettozyma is named in honor of Dr James A. Barnett, University of East Anglia, Norwich, UK, for his efforts to facilitate yeast identification through extensive phenotypic characterization.

Proposed new species combinations for Barnettozyma

1. Barnettozyma californica (Lodder) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Zygohansenula californica Lodder (1932) Zentralbl Bakteriol Parasitenkd Abt. II86:227.

2. Barnettozyma hawaiiensis (Phaff, Starmer & Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia hawaiiensis Phaff, Starmer & Kurtzman (2000) Int J Syst Evol Microbiol50:1684.

3. Barnettozyma populi (Phaff, Y. Yamada, Tredick & Miranda) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula populi Phaff, Yamada, Tredick & Miranda (1983) Int J Syst Bacteriol33:377.

4. Barnettozyma pratensis (Babjeva & Reshetova) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Williopsis pratensis Babjeva & Reshetova (1979) Mikrobiologiya48:1041.

5. Barnettozyma salicaria (Phaff, M.W. Miller & Spencer) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia salicaria Phaff, M.W. Miller & Spencer (1964) Antonie van Leeuwenhoek30:139.

6. Barnettozyma wickerhamii (van der Walt) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Endomycopsis wickerhamii van der Walt (1959) Antonie van Leeuwenhoek25:347.

Lindnera clade

Species of the Lindnera clade, as defined from multigene phylogenetic analysis, differ considerably in ascospore morphology. Pichia jadinii is characterized by distinct hat-shaped ascospores whereas the spores produced by Pichia maclurae and Pichia misumaiensis are spherical. One further variation is the Saturn-shaped ascospores of Williopsis saturnus. From the differences seen among these apparently closely related species (Fig. 2), it is clear that ascospore morphology does not reflect phylogenetic relatedness.

Separation of taxa in the W. saturnus species complex has been problematic. Wickerham (1970) recognized two varieties among strains of the species, var. saturnus and var. subsufficiens, with the latter requiring an exogenous source of vitamins for growth. Earlier, some strains had been assigned to the species Hansenula beijerinckii, Hansenula coprophila, Hansenula mrakii and Hansenula suaveolens, which Wickerham (1970) regarded as synonyms of Hansenula saturnus. Wickerham (1969), Naumov (1985) and Naumov (1987) attempted to resolve species limits in this complex from genetic crosses. Because the species are homothallic, various nutritional and auxotrophic markers were used to monitor the resulting progeny. However, results from these three studies were often unclear because of inconsistencies in extent of fertility among the various pairings.

Kurtzman (1991) compared the preceding species and varieties from extent of nuclear DNA reassociation and detected five groups that separated from one another by 37–79% DNA relatedness. The groups were viewed as subspecies of W. saturnus, but for purposes of classification, each was designated as a variety under the following names: var. saturnus, var. mrakii, var. sargentensis, var. suaveolens and var. subsufficiens. Naumova (2004) reexamined the W. saturnus lineages from electrokaryotypes and PCR-banding profiles generated with universal primer N21. Strains from each of the five W. saturnus varieties showed six to eight chromosome bands but the patterns were quite similar. In contrast, the N21 PCR-banding profiles were unique for each of the varieties, further reflecting their genetic differences.

Pairwise nucleotide differences among type strains of the five varieties of W. saturnus for D1/D2 LSU rRNA, ITS1+2 rRNA and EF-1α are given in Table 3, and presented for all included strains of each variety in Fig. 3. D1/D2 sequences resolved three varietal groups but did not separate the varieties saturnus, sargentensis and suaveolens from each other. However, both ITS and EF-1α sequences did separate the varieties into the five groups that were earlier recognized from nuclear DNA reassociation studies (Kurtzman et al., 1991). Nucleotide substitutions in ITS and EF-1α are relatively proportional between varietal pairings, but less so for D1/D2 sequences (Table 3). From the foregoing studies, it is clear that the five W. saturnus varieties represent distinct lineages. Because there is no empirical genetic definition for either varieties or subspecies, we suggest that the five varieties of W. saturnus represent closely related, but genetically distinct taxa that can be regarded as species.

3

Nucleotide differences among type strains of the five varieties of Williopsis saturnus from comparison of gene sequences for D1/D2 LSU rRNA, ITS1+2 rRNA and EF-1α

Variety/NRRL Number D1/D2 ITS (Substitutions–indel) EF-1α 
sarg sat suav sub sarg sat suav sub sarg sat suav sub 
mrakii Y-1364 8–0 2–1 3–1 5–4 17 12 12 13 
sargentensis YB-4139   5–2 4–2 4–5  21 21 18 
saturnus Y-17396     1–0 3–3   12 
suaveolens Y-17391       4–3    13 
Variety/NRRL Number D1/D2 ITS (Substitutions–indel) EF-1α 
sarg sat suav sub sarg sat suav sub sarg sat suav sub 
mrakii Y-1364 8–0 2–1 3–1 5–4 17 12 12 13 
sargentensis YB-4139   5–2 4–2 4–5  21 21 18 
saturnus Y-17396     1–0 3–3   12 
suaveolens Y-17391       4–3    13 
*

Insertion or deletion.

Variety subsufficiens NRRL Y-1657.

3

Nucleotide differences among type strains of the five varieties of Williopsis saturnus from comparison of gene sequences for D1/D2 LSU rRNA, ITS1+2 rRNA and EF-1α

Variety/NRRL Number D1/D2 ITS (Substitutions–indel) EF-1α 
sarg sat suav sub sarg sat suav sub sarg sat suav sub 
mrakii Y-1364 8–0 2–1 3–1 5–4 17 12 12 13 
sargentensis YB-4139   5–2 4–2 4–5  21 21 18 
saturnus Y-17396     1–0 3–3   12 
suaveolens Y-17391       4–3    13 
Variety/NRRL Number D1/D2 ITS (Substitutions–indel) EF-1α 
sarg sat suav sub sarg sat suav sub sarg sat suav sub 
mrakii Y-1364 8–0 2–1 3–1 5–4 17 12 12 13 
sargentensis YB-4139   5–2 4–2 4–5  21 21 18 
saturnus Y-17396     1–0 3–3   12 
suaveolens Y-17391       4–3    13 
*

Insertion or deletion.

Variety subsufficiens NRRL Y-1657.

3

Phylogenetic relationships among the five varieties of Williopsis saturnus as represented by one of two MPTs determined from maximum parsimony analysis of a concatenated dataset of gene sequences from D1/D2 LSU rRNA, ITS rRNA and EF-1α. The analysis included 2126 characters of which 31 were parsimony informative. Bootstrap values from 1000 replications are given over each branch and numbers of nucleotide changes are given under each branch. NRRL Y-1304 and NRRL Y-17396 were designated as the outgroup for the analysis. T, type strain.

Latin diagnosis of Lindnera Kurtzman, Robnett et Basehoar-Powers gen. nov.

Asci conjugati vel inconjugati, rumpentur aut non rumpentur, et habentes 1–4 ascosporae petasiformes, globosae aut saturniformes. Cellulae vegetativae globosae, ovoidae et elongatae. Pseudohyphae et hyphae septatae fiunt (variabile). Sacchara fermentantur. Methanolum et hexadecanum non assimilantur; nitras kalicus assimilantur (variabile). Systema coenzymatis Q-7 adest. Diazonium caerulian B non respondens. Genus novus sequentibus nucleotiditis nuclei grandis et parvique submonades rRNA genorum et traductionis elongationis factor-1α geni distinguendus. Species typica: Lindnera americana (Wickerham) Kurtzman, Robnett et Basehoar-Powers comb. nov.

Description of Lindnera Kurtzman, Robnett & Basehoar-Powers gen. nov.

Asci are globose to ellipsoid, unconjugated or they arise from conjugation between a cell and its bud or between independent cells. Some species are heterothallic. Asci may be deliquescent or persistent and form one to four ascospores that are hat-shaped, spherical, or spherical with an equatorial ledge. Cell division is by multilateral budding on a narrow base and budded cells are spherical, ovoid or elongate. Pseudohyphae and true hyphae are formed by some species. Glucose is fermented and some species ferment other sugars as well. A variety of sugars, polyols and other carbon sources are assimilated by most species, but not methanol and hexadecane. Nitrate is utilized by some species. Where determined, the predominant ubiquinone is CoQ-7. The diazonium blue B reaction is negative. The genus is phylogenetically circumscribed from analysis of LSU and SSU rRNA and EF-1α gene sequences.

Type species: Lindnera americana (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Etymology: The genus Lindnera is named in honor of Prof. Paul Lindner, an early German mycologist who described Schizosaccharomyces pombe, Saccharomycopsis (Endomyces) fibuligera and various species of Saccharomyces and Pichia.

Proposed new species combinations for Lindnera

1. Lindnera americana (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula bimundalis Wickerham & Santa María var. americana Wickerham (1965) Mycopathol Mycol Appl26:97.

2. Lindnera amylophila (Kurtzman, Smiley, Johnson, Wickerham & Fuson) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia amylophila Kurtzman, Smiley, Johnson, Wickerham & Fuson (1980) Int J Syst Bacteriol30:209.

3. Lindnera bimundalis (Wickerham & Santa María) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula bimundalis Wickerham & Santa María (1965) Mycopathol Mycol Appl26:96.

4. Lindnera euphorbiae (van der Walt & Opperman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia euphorbiae van der Walt & Opperman (1983) Antonie van Leeuwenhoek49:55.

5. Lindnera euphorbiiphila (van der Walt) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula euphorbiiphila van der Walt (1982) Antonie van Leeuwenhoek48:467.

6. Lindnera fabianii (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula fabianii Wickerham (1965) Mycopathol Mycol Appl26:84.

7. Lindnera jadinii (A. & R. Sartory, Weill & Meyer) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Saccharomyces jadinii A. & R. Sartory, Weill & Meyer (1932) C R Acad Sci194:1690.

8. Lindnera japonica (Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia japonica Kurtzman (1987) Mycologia79:413.

9. Lindnera lachancei (Phaff, Starmer & Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia lachancei Phaff, Starmer & Kurtzman (1999) Int J Syst Bacteriol49:1296.

10. Lindnera maclurae (Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia maclurae Kurtzman (2000) Int J Syst Evol Microbiol50:398.

11. Lindnera meyerae (van der Walt) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia meyerae van der Walt (1982) Antonie van Leeuwenhoek48:385.

13. Lindnera mississippiensis (Kurtzman, Smiley, Johnson, Wickerham & Fuson) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia mississippiensis Kurtzman, Smiley, Johnson, Wickerham & Fuson (1980) Int J Syst Bacteriol30:212.

14. Lindnera misumaiensis (Sasaki & Yoshida ex Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia misumaiensis Sasaki & Yoshida ex Kurtzman (2000) Int J Syst Evol Microbiol50:399.

15. Lindnera mrakii (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula mrakii Wickerham (1951). US Dept Agric Tech Bull1029:40.

16. Lindnera petersonii (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula petersonii Wickerham (1964) Mycologia56:404.

17. Lindnera rhodanensis (C. Ramírez & Boidin) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Saccharomyces rhodanensis C. Ramírez & Boidin (1953) Rev Mycol18:149.

18. Lindnera sargentensis (Wickerham & Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia sargentensis Wickerham & Kurtzman (1971) Mycologia63:1016.

19. Lindnera saturnus (Klöcker) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Saccharomyces saturnus Klöcker (1902) Zentralbl Bakteriol Parasitenkd, Abt II, 8:129.

20. Lindnera suaveolens (Klöcker) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia suaveolens Klöcker (1912) Zentralbl Bakteriol Parasitenkd, Abt II, 35:371.

21. Lindnera subsufficiens (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula saturnus (Klöcker) H. & R. Sydow var. subsufficiens Wickerham (1969). Mycopathol Mycol Appl37:30.

22. Lindnera veronae (K. Kodama) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia veronae K. Kodama (1974) J Ferm Technol52:609.

Starmera clade

The genus Starmera was proposed by Yamada (1997) for Pichia amethionina and its variety pachycereana, which were shown from partial LSU and SSU rRNA sequences to be isolated from other species that were classified in Pichia. Later, Pichia caribaea was transferred to Starmera (Yamada et al., 1999). Our multigene analysis supports the proposal of Starmera and also places Pichia dryadoides and Pichia quercuum in this clade (Fig. 2). The latter two Pichia species are basal to the S. amethionina subclade and future studies that include additional species may place them in a sister genus.

We also propose elevation of the two varieties of S. amethionina to species status. The variety amethionina is predominantly associated with cacti of the subtribe Stenocereinae, whereas the variety pachycereana has been isolated from cacti of the subtribe Pachycereinae. This host specialization is also reflected in reduced fertility among F1 progeny from intervarietal crosses. Because there was some intervarietal fertility, Starmer (1978) chose to regard the two populations as varieties rather than as separate species. Later, it was found that the two varieties have reduced nuclear DNA complementarity (64%) (cited in Shen & Lachance et al., 1993), which is also seen from divergence in the D1/D2 LSU, SSU and EF-1α gene sequences (Table 2). In view of decreased fertility, diminished nuclear DNA relatedness and the above noted gene sequence divergence, we propose that the varieties amethionina and pachycereana be regarded as separate species, albeit closely related.

Proposed new species combinations for Starmera

1. Starmera dryadoides (Scott & van der Walt) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula dryadoides Scott & van der Walt (1971) Antonie van Leeuwenhoek37:171.

2. Starmera pachycereana (Starmer, Phaff, Miranda & M.W. Miller) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia amethionina Starmer, Phaff, Miranda & M.W. Miller var. pachycereana Starmer, Phaff, Miranda & M.W. Miller (1978) Int J Syst Bacteriol28:435.

3. Starmera quercuum (Phaff & Knapp) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia quercuum Phaff & Knapp. Antonie van Leeuwenhoek (1956) 22:126.

Wickerhamomyces clade

Latin diagnosis of Wickerhamomyces Kurtzman, Robnett et Basehoar-Powers gen. nov.

Asci conjugati vel inconjugati, rumpentur aut non rumpentur, et habentes 1–4 ascosporae petasiformes aut saturniformes. Cellulae vegetativae globosae, ovoidae et elongatae. Pseudohyphae et hyphae septatae fiunt (variabile). Sacchara fermentantur (variabile). Methanolum et hexadecanum non assimilantur; nitras kalicus assimilantur (variabile). Systema coenzymatis Q-7 adest. Diazonium caerulian B non respondens. Genus novus sequentibus nucleotiditis nuclei grandis et parvique submonades rRNA genorum et traductionis elongationis factor-1α geni distinguendus. Species typica: Wickerhamomyces canadensis (Wickerham) Kurtzman, Robnett et Basehoar-Powers comb. nov.

Description of Wickerhamomyces Kurtzman, Robnett & Basehoar-Powers gen. nov.

Asci are globose to ellipsoid, unconjugated or arise from conjugation between a cell and its bud or between independent cells. Some species are heterothallic. Asci may be deliquescent or persistent and form one to four ascospores that are hat-shaped or spherical with an equatorial ledge. Cell division is by multilateral budding on a narrow base and budded cells are spherical, ovoid or elongate. Pseudohyphae and true hyphae are formed by some species. Glucose is fermented by most species and some species ferment other sugars as well. A variety of sugars, polyols and other carbon sources are assimilated by most species, but not methanol and hexadecane. Nitrate is utilized by some species. Where determined, the predominant ubiquinone is CoQ-7. The diazonium blue B reaction is negative. The genus is phylogenetically circumscribed from analysis of LSU and SSU rRNA and EF-1α gene sequences. Type species: Wickerhamomyces canadensis (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Etymology: The genus Wickerhamomyces is named in honor of Dr Lynferd J. Wickerham, formerly of the National Center for Agricultural Utilization Research, for his extensive studies of yeast taxonomy and ecology and for development of growth tests used worldwide for phenotypic characterization of yeasts.

Proposed new species combinations for Wickerhamomyces

1. Wickerhamomyces alni (Phaff, M.W. Miller & Miranda) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula alni Phaff, M.W. Miller & Miranda (1979) Int J Syst Bacteriol29:61.

2. Wickerhamomyces anomalus (Hansen) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Saccharomyces anomalus Hansen (1891) Ann Microgr3:467.

3. Wickerhamomyces bisporus (Beck) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Endomyces bisporus Beck (1922) Ann Mycol20:219.

4. Wickerhamomyces bovis (van Uden & do Carmo-Sousa) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia bovis van Uden & do Carmo-Sousa (1957) J Gen Microbiol16:385.

5. Wickerhamomyces canadensis (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula canadensis Wickerham (1951) US Dept Agric Tech Bull1029:28.

6. Wickerhamomyces chambardii (C. Ramírez & Boidin) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Saccharomyces chambardii C. Ramírez & Boidin (1954) Rev Mycol19:98.

7. Wickerhamomyces ciferrii (Lodder) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula ciferrii Lodder (1932) Zentralbl Bakteriol Parasitenkd, Abt II, 86:245.

8. Wickerhamomyces hampshirensis (Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia hampshirensis Kurtzman (1987) Mycologia79:412.

9. Wickerhamomyces lynferdii (van der Walt & Johannsen) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula lynferdii van der Walt & Johannsen (1975) Antonie van Leeuwenhoek41:13.

10. Wickerhamomyces mucosa (Wickerham & Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia mucosa Wickerham & Kurtzman (1971) Mycologia63:1014.

11. Wickerhamomyces onychis (Yarrow) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia onychis Yarrow (1965) Antonie van Leeuwenhoek31:465.

12. Wickerhamomyces pijperi (van der Walt & Tscheuschner) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia pijperi van der Walt & Tscheuschner (1957) Antonie van Leeuwenhoek23:189. 1957.

13. Wickerhamomyces rabaulensis (Soneda & Uchida) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia rabaulensis Soneda & Uchida (1971). Bull Nat Sci Mus Jpn14:451.

14. Wickerhamomyces silvicola (Wickerham) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula silvicola Wickerham (1951) US Dept Agric Tech Bull1029:30.

15. Wickerhamomyces strasburgensis (C. Ramírez & Boidin) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Saccharomyces strasburgensis C. Ramírez & Boidin (1953) Rev Mycol18:149.

16. Wickerhamomyces subpelliculosa (Kurtzman) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Pichia subpelliculosa Kurtzman (1984) Antonie van Leeuwenhoek50:214.

17. Wickerhamomyces sydowiorum (Scott & van der Walt) Kurtzman, Robnett & Basehoar-Powers comb. nov.

Basionym: Hansenula sydowiorum Scott & van der Walt (1970) Antonie van Leeuwenhoek36:46.

The preceding four genera, Barnettozyma, Lindnera, Starmera and Wickerhamomyces, are members of a large well-supported clade (Fig. 2) that we interpret as a family. Consequently, we propose the following new family, which is typified on the genus Wickerhamomyces.

Latin diagnosis of Wickerhamomycetaceae Kurtzman, Robnett et Basehoar-Powers fam. nov.

Cellulae globosae vel elongatae, gemmatione multilaterali propagantes; pseudohyphae et hyphae septatae praesentes vel absens. Asci globosae vel ellipsoideae, conjugati vel non conjugati, persistentes vel deliquescens; 1–4 ascosporae, petasiformes, globosae aut saturniformes. Sacchara fermentantur aut non fermentantur. Methanolum et hexadecanum non assimilantur. Systema coenzymatis Q-7 adest. Diazonium caerulian B non respondens. Familia nova sequentibus nucleotiditis nuclei grandis et parvique submonades rRNA genorum et traductionis elongationis factor-1α geni distinguendus. Genus typicus: Wickerhamomyces Kurtzman, Robnett et Basehoar-Powers gen. nov.

Description of the family Wickerhamomycetaceae Kurtzman, Robnett & Basehoar-Powers fam. nov.

Asexual reproduction is by multilateral budding on a narrow base. Cells are globose to elongate. Pseudohyphae and true hyphae may be present or absent. Asci are globose to ellipsoid and may be unconjugated or show conjugation between a cell and its bud or between independent cells. Asci may be persistent or deliquescent. One to four ascospores are formed per ascus and may be hat-shaped, spherical or spherical with an equatorial ledge. Some species ferment sugars, others do not. Methanol and hexadecane are not utilized as carbon sources. The major ubiquinone present is Q-7. The diazonium blue B reaction is negative. The family is phylogenetically circumscribed from analysis of LSU and SSU rRNA and EF-1α gene sequences. The genus Wickerhamomyces typifies this family.

Species resolution

The proposed reclassification in this study of taxa designated as varieties once again raises the question of how to circumscribe species from gene sequence analysis and other molecular comparisons. Earlier studies that relied on extent of nuclear DNA reassociation between strain pairs led to the suggestion that 70–80% relatedness between strains indicated conspecificity (Price et al., 1978; Kurtzman, 1980b). Using as a reference strain pairs characterized from DNA reassociation, Kurtzman & Robnett (1998) suggested that conspecific strains may show up to three nucleotide differences in D1/D2 sequences and that strain pairs showing six (c. 1%) or greater differences in this sequence are likely to be separate species. This approach has provided a rapid, generally accurate diagnostic method for species identification.

Comparisons presented in Tables 2 and 3 allow us to further examine gene sequence divergence and species circumscription. For most pairs of taxa, the prediction concerning D1/D2 divergence and species separation appears correct and substitutions in D1/D2 generally parallel extent of DNA reassociation. However, if we accept that the W. saturnus varieties are separate species, then D1/D2 comparisons will not resolve them reliably. Substitutions in EF-1α between these closely related species are much greater than for D1/D2, and this gene offers added utility for resolution of closely related lineages. ITS also offers resolution of some species pairs (Table 3). The lack of divergence in mitochondrial SSU rRNA gene sequences for pairings that include Pichia cactophila and P. kluyveri is surprising when compared with the greater divergence found among species in the Saccharomyces cerevisiae clade (Kurtzman & Robnett et al., 2003).

As seen from earlier studies, single gene comparisons do not always resolve individual species (Peterson & Kurtzman et al., 1991; Kurtzman & Robnett et al., 1998), and a multigene analysis provides a surer appraisal of kinship. From the comparative data presented in Tables 2 and 3, the elevation of varieties to species status in this study appears to better reflect the genetic divergence observed.

Conclusions

On the basis of various gene sequence comparisons, the genus Pichia has been shown to be polyphyletic with species distributed throughout the Saccharomycetales (James et al., 1997, Kurtzman & Robnett et al., 1998; Suzuki et al., 1999). Polyphyly resulted because there are few phenotypic differences among the species and those that are shared often do not reflect genetic relatedness. In the present study, our multigene analyses gave greater resolution than was possible from earlier single gene studies, permitting detection of distinct clades that we have interpreted as genera. Some of these generic boundaries will change in the future as additional species are discovered, but the present demarcation brings a phylogenetic framework to the classification of these species. Despite this new understanding of species relationships, lack of unique phenotypes for the newly proposed genera requires that they be recognized from gene sequence analyses.

Acknowledgements

Don Fraser is gratefully acknowledged for preparation of final figures. The mention of company names or trade products does not imply that they are endorsed or recommended by the United States Department of Agriculture over other companies or similar products not mentioned.

References

Boidin
J
Pignal
MC
Besson
M
(
1965
)
Le genre Pichia sensu lato (Deuxième Contribution)
.
Bull Soc Mycol France
81
:
566
606
.

Holzschu
DL
Phaff
HJ
Tredick
J
Hedgecock
D
(
1983
)
Pichia pseudocactophila, a new species of yeast occurring in necrotic tissue of columnar cacti in the North American Sonoran Desert
.
Can J Microiol
29
:
1314
1322
.

James
SA
Cai
J
Roberts
IN
Collins
MD
(
1997
)
A phylogenetic analysis of the genus Saccharomyces based on 18S rRNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces martiniae sp. nov
.
Int J Syst Bacteriol
47
:
453
460
.

Kudryavtsev
VI
(
1960
)
Die Systematik der Hefen
.
Akademie Verlag
,
Berlin
.

Kurtzman
CP
(
1984a
)
Synonymy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness
.
Antonie van Leeuwenhoek
50
:
209
217
.

Kurtzman
CP
(
1984b
)
Resolution of varietal relationships within the species Hansenula anomala, Hansenula bimundalis and Pichia nakazawae through comparisons of DNA relatedness
.
Mycotaxon
19
:
271
279
.

Kurtzman
CP
(
1991
)
DNA relatedness among saturn-spored yeasts assigned to the genera Williopsis and Pichia
.
Antonie van Leeuwenhoek
60
:
13
19
.

Kurtzman
CP
(
1998
)
Pichia E.C. Hansen emend. Kurtzman
.
The Yeasts, A Taxonomic Study
, 4th edn (
Kurtzman
CP
Fell
JW
, eds), pp.
273
352
.
Elsevier Science B.V
.,
Amsterdam
.

Kurtzman
CP
(
2006
)
New species and new combinations in the yeast genera Kregervanrija gen. nov., Saturnispora and Candida
.
FEMS Yeast Res
6
:
288
297
.

Kurtzman
CP
Robnett
CJ
(
1998
)
Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences
.
Antonie van Leeuwenhoek
73
:
331
371
.

Kurtzman
CP
Robnett
CJ
(
2003
)
Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses
.
FEMS Yeast Res
3
:
417
432
.

Kurtzman
CP
Robnett
CJ
(
2007
)
Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations
.
FEMS Yeast Res
7
:
141
151
.

Kurtzman
CP
Smiley
MJ
Johnson
CJ
Wickerham
LJ
Fuson
GB
(
1980a
)
Two new and closely related heterothallic species, Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation
.
Int J Syst Bacteriol
30
:
208
216
.

Kurtzman
CP
Smiley
MJ
Johnson
CJ
(
1980b
)
Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure
.
Int J Syst Bacteriol
30
:
503
513
.

Liu
Z
Kurtzman
CP
(
1991
)
Phylogenetic relationships among species of Williopsis and Saturnospora gen nov. as determined from partial rRNA sequences
.
Antonie van Leeuwenhoek
60
:
21
30
.

Muller
HB
Kock
JLF
(
1986
)
Waltiozyma gen. nov. (Saccharomycetaceae), a new genus of the Endomycetales
.
S Afr J Sci
82
:
491
492
.

Naumov
GI
(
1987
)
Developments in the genosystematics of the yeast genera Williopsis Zender and Zygowilliopsis Kudriavzev
.
Mol Genet Mikrobiol Virusol
2
:
3
7
.

Naumov
GI
Vustin
MM
Bab'eva
IP
Reshetova
IS
(
1985
)
Additions to the genotaxonomy of Williopsis and Zygowilliopsis yeast genera
.
Mikrobiologiya
54
:
239
244
.

Naumova
ES
Naumov
GI
Nosek
J
Tomáška
L
(
2004
)
Differentiation of the yeasts Williopsis, Zygowilliopsis and Komagataea by karyotypic and PCR analyses
.
Syst Appl Microbiol
27
:
192
197
.

Péter
G
Tornai-Lehoczki
J
Dlauchy
D
Vitányi
G
(
2000
)
Pichia sporocuriosa sp. nov., a new yeast isolated from rambutan
.
Antonie van Leeuwenhoek
77
:
37
42
.

Peterson
SW
Kurtzman
CP
(
1991
)
Ribosomal RNA sequence divergence among sibling species of yeasts
.
Syst Appl Microbiol
14
:
124
129
.

Phaff
HJ
Miller
MW
Miranda
M
(
1976
)
Pichia scutulata, a new species from tree exudates
.
Int J Syst Bacteriol
26
:
326
331
.

Phaff
HJ
Starmer
WT
Tredick-Kline
J
(
1987
)
Pichia kluyveri sensu lato– a proposal for two new varieties and a new anamorph
.
Studies Mycol
30
:
403
414
.

Phaff
HJ
Starmer
WT
Lachance
MA
Aberdeen
V
Tredick-Kline
J
(
1992
)
Pichia caribaea, a new species of yeast occurring in necrotic tissue of cacti in the Caribbean area
.
Int J Syst Bacteriol
42
:
459
462
.

Price
CW
Fuson
GB
Phaff
HJ
(
1978
)
Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia
.
Microbiol Rev
42
:
161
193
.

Shen
R
Lachance
MA
(
1993
)
Phylogenetic study of ribosomal DNA of cactophilic Pichia species by restriction mapping
.
Yeast
9
:
315
330
.

Starmer
WT
Phaff
HJ
Miranda
M
Miller
MW
(
1978
)
Pichia amethionina, a new heterothallic yeast associated with the decaying stems of cereoid cacti
.
Int J Syst Bacteriol
28
:
433
441
.

Suzuki
M
Suh
S-O
Sugita
T
Nakase
T
(
1999
)
A phylogenetic study on galactose-containing Candida species based on 18S ribosomal DNA sequences
.
J Gen Appl Microbiol
45
:
229
238
.

Swofford
DL
(
1998
)
PAUP*4.0: Phylogenetic Analysis Using Parsimony
.
Sinauer Associates
,
Sunderland, MA
.

Thanh
VN
Hai
DA
Lachance
MA
(
2003
)
Issatchenkia hanoiensis, a new yeast species isolated from frass of the litchi fruit borer Conopomorpha cramerella Snellen
.
FEMS Yeast Res
4
:
113
117
.

Von Arx
JA
Rodrigues de Miranda
L
Smith
MTh
Yarrow
D
(
1977
)
The genera of yeasts and the yeast-like fungi
.
Studies Mycol
14
:
1
42
.

Wickerham
LJ
(
1969
) Hybridization as a basis for speciation in the genus Hansenula. Proc II Int Symp Yeasts 1966, pp.
41
44
. Bratislava.

Wickerham
LJ
(
1970
)
Hansenula H. et P. Sydow. The Yeasts, A Taxonomic Study
, 2nd edn (
Lodder
J
, ed), pp.
226
315
.
North-Holland
,
Amsterdam
.

Yamada
Y
Maeda
K
Mikata
K
(
1994
)
The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea
.
Biosci Biotechnol Biochem
58
:
1245
1257
.

Yamada
Y
Matsuda
M
Maeda
K
Mikata
K
(
1995a
)
The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae)
.
Biosci Biotechnol Biochem
59
:
439
444
.

Yamada
Y
Suzuki
T
Matsuda
M
Mikata
K
(
1995b
)
The phylogeny of Yamadazyma ohmeri (Etchells et Bell) Billon-Grand based on partial sequences of 18S and 26S ribosomal RNAs: the proposal of Kodamaea gen. nov. (Saccharomycetaceae)
.
Biosci Biotechnol Biochem
59
:
1172
1174
.

Yamada
Y
Higashi
T
Ando
S
Mikata
K
(
1997
)
The phylogeny of strains of species of the genus Pichia Hansen (Saccharomycetaceae) based on the partial sequences of 18S ribosomal RNA: the proposals of Phaffomyces and Starmera, the new genera
.
Bull Fac Agric Shizuoka Univ
47
:
23
35
.

Yamada
Y
Kawasaki
H
Nagatsuka
Y
Mikata
K
Seki
T
(
1999
)
The phylogeny of the cactophilic yeasts based on the 18S ribosomal RNA gene sequences: the proposals of Phaffomyces antillensis and Starmera caribaea, new combinations
.
Biosci Biotechnol Biochem
63
:
827
833
.

Zender
J
(
1925
)
Sur la classification des Endomycétacées
.
Bull Soc Bot Genève
17
:
272
302
.

Author notes

Editor: Teun Boekhout