Abstract

Cryptococcus gattii is a primary pathogenic basidiomycetous yeast comprising four genotypic groups. Here we present data on two mitochondrial loci (MtLrRNA and ATP6). Two of the genotypic groups, namely amplified fragment length polymorphism (AFLP)5/VGIII and AFLP6/VGII, formed monophyletic lineages. The AFLP4/VGI genotypic group, however, possessed five different mitochondrial genotypes that did not form a monophyletic lineage. The majority of these isolates contained mitochondrial genomes that are partially identical to those found in isolates belonging to AFLP6/VGII, which is causing the ongoing and expanding Vancouver Island outbreak. Two out of four AFLP7/VGIV isolates contained an AFLP4/VGI allele of MtLrRNA. These observations are best explained by assuming a process of mitochondrial recombination. If this is true, mitochondrial recombination seems possible between cells belonging to different genotypic groups of C. gattii, especially between AFLP6/VGII or AFLP7/VGIV and AFLP4/VGI. We also have to assume that mitochondria, most likely, were transferred from cells belonging to AFLP6/VGII to AFLP4/VGI. As such a process of mitochondrial recombination is only possible after cell–cell conjugation, this may also allow the further exchange of genetic material, for example nuclear or plasmid in nature, between different genotypes of C. gattii. This may be relevant as it may provide a possible mechanism contributing to the modulation of virulence attributes of isolates, such as has been observed in the ongoing Vancouver Island outbreak of C. gattii.

Introduction

Cryptococcus gattii is a primary pathogenic basidiomycetous yeast that has previously been considered a variety of Cryptococcus neoformans (Kwon-Chung, 1982). Recently, C. gattii has been described as a distinct species because of differences in ecology, epidemiology, biochemical and molecular characteristics (Kwon-Chung, 2002; Kwon-Chung & Varma, 2006). Both C. gattii and C. neoformans may cause meningoencephalitis, but the primary pathogen C. gattii can cause disease in otherwise healthy individuals, whereas the opportunist C. neoformans primarily infects immunocompromised patients (Speed & Dunt, 1995). Cryptococcus gattii has been found on several tree species since its first isolation from Eucalyptus camaldulensis (Ellis & Pfeiffer, 1990; Callejas, 1998; Lazéra, 1998, 2000; Fortes, 2001; Krockenberger, 2002; Fraser, 2003; Randhawa, 2003; Granados & Castañeda, 2005; Escandón, 2006; Kidd, 2007), suggesting that trees might be the primary ecological niche of the species. In contrast, Kidd (2007) suggested that soil may be the principal reservoir for C. gattii. Cryptococcus gattii occurs predominantly in subtropical areas (Kwon-Chung & Bennett, 1984), but has also been isolated in Europe (Viviani, 2006) and in a temperate climate zone in Colombia (Escandón, 2006). Furthermore, C. gattii is responsible for the ongoing outbreak of cryptococcosis on Vancouver Island, Canada (Stephen, 2002; Hoang, 2004; Kidd, 2004) and the further spread of this outbreak to the Pacific Northwest of the United States (MacDougall, 2007; Upton, 2007). Taken together, these reports indicate that C. gattii also occur in more temperate climate zones.

Several molecular methods have identified four major genotypic groups within C. gattii (Ruma, 1996; Ellis, 2000; Chaturvedi, 2002; Biswas, 2003; Latouche, 2003; Meyer, 2003; Butler & Poulter, 2005; Diaz, 2005; Fraser, 2005; Kidd, 2005; Bovers, 2008b, c). An overview of these genotypic groups is given in Table 1. All these studies used nuclear regions to study the genotypic structure of C. gattii. Mitochondrial regions are useful genetic markers as well, because mitochondria evolve independently from the nuclear genome and thus provide an additional, independent dataset. In C. neoformans, mitochondria are usually uniparentally inherited from the MATa parent, although mitochondrial inheritance from the MATα parent may also occur at low frequency (Xu, 2000;; Yan & Xu, 2003; Toffaletti, 2004; Yan, 2004, 2007a, b). In our study, the partial nucleotide sequence of two mitochondrial regions, namely large ribosomal subunit RNA (MtLrRNA) and ATP synthase subunit 6 (ATP6), was investigated for 51 isolates representing all C. gattii genotypic groups. The sequences obtained were used for phylogenetic analyses and the resulting genealogies were compared with the genealogy obtained by analyses of six nuclear regions (Bovers, 2008b). Surprisingly, the analysis of the mitochondrial regions showed that the majority of amplified fragment length polymorphism AFLP4/VGI isolates studied possessed a mitochondrial genome that contained sequences that were partially identical to those found in AFLP6/VGII isolates. These findings are discussed and explained by assuming a process of mitochondrial recombination between the different genotypic groups of C. gattii.

1

Overview of Cryptococcus gattii genotypes as identified by several molecular methods

Serotype AFLP genotype Molecular genotype IGS genotype ITS genotype Intein genotype 
B/(C) 4A/4B VGI 4a/4b/4c 3/7 ig-I 
B/C 5A/5B/5C VGIII ig-III 
B/(C) VGII ig-II 
B/C VGIV ig-IV 
Serotype AFLP genotype Molecular genotype IGS genotype ITS genotype Intein genotype 
B/(C) 4A/4B VGI 4a/4b/4c 3/7 ig-I 
B/C 5A/5B/5C VGIII ig-III 
B/(C) VGII ig-II 
B/C VGIV ig-IV 
‡‡

‡‡Serotypes indicated between parentheses were not included in our study.

Materials and methods

Isolates

Fifty-one haploid isolates belonging to all C. gattii genotypic groups from clinical (59%), veterinary (8%), environmental (24%), laboratory (6%) and unknown (3%) origin were analyzed (Table 2). Cryptococcus neoformans isolates (125.91, H99, WM714, CBS6886 and JEC20) were used as outgroup in phylogenetic analyses, as C. neoformans is the species that is most closely related to C. gattii (Fell, 2000; Kwon-Chung, 2002).

2

AFLP genotype, molecular type, serotype and origin of Cryptococcus gattii and Cryptococcus neoformans isolates

Isolate Origin Sero type Mating type Nuclear genotype* AFLP geno type‡§ Mole cular type¶ MtLrRNA haplotype ATP6 haplotype References /sources MtLrRNA ATP6 ITS IGS RPB1 RPB2 CNLAC1 TEF1α 
C. gattii AFLP4=VGI    
48A (=CBS11230) Lung of a goat, Spain α 4A 4A ND Diaz (2000) EF544832 EF544778 EF211195 AJ300934∥ EF211403 EF211523 EF211643 EF211758 
503 2738 (=WM1251) Human, Papua, New Guinea α VGI Katsu (2004) EF544833 EF544779 EF211196 EF211302 EF211404 EF211524 EF211644 EF211759 
56A (=CBS11231) Gut of a goat, Spain α 4A 4A ND Diaz (2000) EF544834 EF544780 EF211197 AJ300932∥ EF211405 EF211525 EF211645 EF211760 
CBS883 (T) Infected skin, syntype Cryptococcus hondurianus, Honduras α 4B ND Boekhout (1997) EF544835 EF544781 EF211198 EF211303 EF211406 EF211526 EF211646 EF211761 
CBS919 (T) Meningoencephalic lesion, type strain of Torulopsis neoformans var. sheppei α 4B ND Boekhout (1997) EF544836 EF544782 EF211199 AJ300928∥ EF211407 EF211527 EF211647 EF211762 
CBS1622 Man, Tumour, Lille, France α 4B ND Boekhout (1997) EF102067** EF102038** EF102028** EF102032** EF102061** EF102051** EF102071** EF102047** 
CBS6289 (=CBS8273, =RV20186, =NIHB-3939) Subculture of type strain of Cryptococcus gattii (RV 20186) a 4A 4A ND Boekhout (1997) EF544837 EF544783 EF211200 AJ300937∥ EF211408 EF211528 EF211648 EF211763 
CBS6290 Man, Congo (Zaire) α 4A 4A ND Boekhout (1997) EF544838 EF544784 EF211201 AJ300930∥ EF211409 EF211529 EF211649 EF211764 
CBS6992 (=NIH 17) Man α 4B ND Boekhout (1997) EF102068** EF102039** EF102029** AJ300923∥ EF102033** EF102062** EF102052** EF102072** EF102048** 
CBS6998 (=NIH 365) Human, Thailand a ND Boekhout (1997) EF544839 EF544785 EF211202 AJ300925∥ EF211410 EF211530 EF211650 EF211765 
CBS7229 (T) Meningitis, type strain Cryptococcus neoformans var. shanghaiensis, China a 4B ND Boekhout (1997) EF544840 EF544786 EF211203 AJ300926∥ EF211411 EF211531 EF211651 EF211766 
CBS7748 (=IFM50902) Air in Eucalyptus camaldulensis hollow, Balranald, SA, Australia α 4B VGI Boekhout (1997) EF544841 EF544787 EF211204 AJ300927∥ EF211412 EF211532 EF211652 EF211767 
CBS8273 (=CBS6289, =RV20186, =NIH B-3939) Subculture of type strain of Cryptococcus gattii (RV 20186) a 4A ND Boekhout (1997) EF544842 EF544788 EF211205 EF211304 EF211413 EF211533 EF211653 EF211768 
E566 (=CBS11233) E. camaldulensis tree #19 hollow 4, Renmark Australia a VGI Halliday (2000) EF544843 EF544789 EF211206 EF211305 EF211414 EF211534 EF211654 EF211769 
RV20186 (=CBS6289, =CBS8273, =NIH B-3939) (T) Cerebrospinal fluid, type strain of Cryptococcus gattii, Congo (Zaire) a 4A 4A ND Gatti & Eeckels (1970) EF544844 EF544790 EF211207 EF211306 EF211415 EF211535 EF211655 EF211770 
RV54130 Second isolate of C. neoformans var. shanghaiensis, China a 4B ND Boekhout (2001) EF544845 EF544791 EF211208 EF211307 EF211416 EF211536 EF211656 EF211771 
WM176 Eucalyptus citriodora,USA α 4B ND Boekhout (2001) EF544846 EF544792 EF211209 EF211308 EF211417 EF211537 EF211657 EF211772 
WM179 (R) Immunocompetent human, reference strain of molecular type VGI, Sydney, Australia α VGI Meyer (2003) EF544847 EF544793 EF211210 EF211309 EF211418 EF211538 EF211658 EF211773 
WM276 (=CBS10510) Eucalyptus tereticornis, Mt. Annan, NSW, Australia α VGI Kidd (2005) EF544848 EF544794 EF211211 EF211310 EF211419 EF211539 EF211659 EF211774 
WM830 Immunocompetent, Human, Papua. New Guinea a VGI Katsu (2004) EF544849 EF544795 EF211212 EF211311 EF211420 EF211540 EF211660 EF211775 
C. gattii AFLP5=VGIII 
380C Unknown α 5C ND Boekhout (2001) EF544850 EF544796 EF211213 EF211312 EF211421 EF211541 EF211661 EF211776 
384C Patient α 5C ND Boekhout (2001) EF544851 EF544797 EF211214 EF211313 EF211422 EF211542 EF211662 EF211777 
CBS5758 Unknown α 5C ND Boekhout (1997) EF544852 EF544798 EF211215 AJ300929∥ EF211423 EF211543 EF211663 EF211778 
CBS6955 (T) (=NIH 191) Human, type strain of Cryptococcus bacillisporus, CA, USA a 5C ND Boekhout (1997) EF544853 EF544799 EF211216 AJ300940∥ EF211424 EF211544 EF211664 EF211779 
CBS6993 (=NIH 18) Human, CA, USA α 5C ND Boekhout (1997) EF544854 EF544800 EF211217 EF211314 EF211425 EF211545 EF211665 EF211780 
CBS6996 Man α 5C ND Boekhout (1997) EF544855 EF544801 EF211218 AJ300939∥ EF211426 EF211546 EF211666 EF211781 
CBS8755 (=HOO58-I-682) Detritus of almond tree, Colombia α 5A ND Boekhout (2001) EF544856 EF544802 EF211219 EF211315 EF211427 EF211547 EF211667 EF211782 
CN043 (=CBS11247) Human, Auckland, New Zealand α VGIII Katsu (2004) EF544857 EF544803 EF211220 EF211316 EF211428 EF211548 EF211668 EF211783 
WM161 (R) Eucalyptus camaldulensis wood from hollow, reference strain of molecular type VGIII, San Diego, CA, USA α 5B 5B VGIII Meyer (2003) EF544858 EF544804 EF211221 EF211317 EF211429 EF211549 EF211669 EF211784 
WM726 Eucalyptus citriodora, San Diego, CA, USA α 5B 5B VGIII Boekhout (2001) EF544859 EF544805 EF211222 EF211318 EF211430 EF211550 EF211670 EF211785 
WM728 Eucalyptus sp. debris from car park of zoo, San Diego, CA, USA α 5B 5B VGIII Boekhout (2001) EF544860 EF544806 EF211223 EF211319 EF211431 EF211551 EF211671 EF211786 
C. gattii AFLP6=VGII 
A1M F2866 (=CBS11240) Dead wild Dall's porpoise lymph node, Shores of Gulf Island, Canada α 6A VGIIa Kidd (2004) EF544861 EF544807 EF211224 EF211320 EF211432 EF211552 EF211672 EF211787 
A1M F2932 (=CBS11235) Immunocompetent male, lung, Kelowna, Canada α 6A VGIIa Kidd (2004) EF544862 EF544808 EF211225 EF211321 EF211433 EF211553 EF211673 EF211788 
A1M R265 (=CBS10514) Immunocompetent male, Duncan, Vancouver Island, Canada α 6A VGIIa Kidd (2004) EF544863 EF544809 EF211226 EF211322 EF211434 EF211554 EF211674 EF211789 
A1M R269 (=CBS11236) Immunocompetent female, Victoria, Canada α 6A VGIIa Kidd (2004) EF544864 EF544810 EF211227 EF211323 EF211435 EF211555 EF211675 EF211790 
A1M R271 (=CBS11237) Immunocompetent male, Nanoose Bay, Vancouver Island, Canada α 6A VGIIa Kidd (2004) EF544865 EF544811 EF211228 EF211324 EF211436 EF211556 EF211676 EF211791 
A1M R368 (=CBS11238) Immunocompetent male, Victoria, Canada α 6A VGIIa Kidd (2004) EF544866 EF544812 EF211229 EF211325 EF211437 EF211557 EF211677 EF211792 
A1M R406 (=CBS11239) Immunocompetent female, Nanaimo, Vancouver Island, Canada α 6A VGIIa Kidd (2004) EF544867 EF544813 EF211230 EF211326 EF211438 EF211558 EF211678 EF211793 
A1M R409 Immunocompetent female, Victoria, Canada α 6A VGIIa Kidd (2004) EF544868 EF544814 EF211231 EF211327 EF211439 EF211559 EF211679 EF211794 
CBS1930 Sick goat, Aruba a 6B ND Boekhout (1997) EF544869 EF544815 EF211232 AJ300919∥ EF211440 EF211560 EF211680 EF211795 
CBS6956 (=NIH 444, =ATCC32609) Immunocompetent human, Seattle, WA, USA α 6A VGII Boekhout (1997) EF544870 EF544816 EF211233 AJ300920∥ EF211441 EF211561 EF211681 EF211796 
CBS7750 Eucalyptus camaldulensis bark debris, San Francisco, CA, USA α 6A VGII Boekhout (1997) EF544871 EF544817 EF211234 AJ300922∥ EF211442 EF211562 EF211682 EF211797 
CBS8684 Nest of wasp, Uruguay α 6B ND Boekhout (2001) EF544872 EF544818 EF211235 EF211328 EF211443 EF211563 EF211683 EF211798 
HEC11102 Human, Rio de Janeiro, Brazil a 6B VGII Katsu (2004) EF544873 EF544819 EF211236 EF211329 EF211444 EF211564 EF211684 EF211799 
ICB184 (=MTPI2, =CBS11251) Hollow trees, Piaui, Brazil α 6B ND Barreto de Oliveira (2004) EF544874 EF544820 EF211237 EF211330 EF211445 EF211565 EF211685 EF211800 
RAM2 Eucalyptus camaldulensis, Arnhemland, NT, Australia α 6B VGII Katsu (2004) EF544875 EF544821 EF211238 EF211331 EF211446 EF211566 EF211686 EF211801 
WM178 (=IFM 50894) (R) Immunocompetent human, lung, reference strain of molecular type VGII, Sydney, Australia α 6A VGII Meyer (2003) EF544876 EF544822 EF211239 EF211332 EF211447 EF211567 EF211687 EF211802 
C. gattii AFLP7=VGIV 
B-5742 Human, Punjab, India α VGIV Katsu (2004) EF544877 EF544823 EF211240 EF211333 EF211448 EF211568 EF211688 EF211803 
B-5748 HIV positive patient, India α ND Diaz & Fell (2005) EF544878 EF544824 EF211241 EF211334 EF211449 EF211569 EF211689 EF211804 
M27055 Clinical, Johannesburg, South Africa α VGIV Latouche (2002) EF544879 EF544825 EF211242 EF211335 EF211450 EF211570 EF211690 EF211805 
WM779 (=IFM50896) (R) Cheetah, reference strain of molecular type VGIV, Johannesburg, South Africa α VGIV Meyer (2003) EF544880 EF544826 EF211243 EF211336 EF211451 EF211571 EF211691 EF211806 
C. neoformans var. grubii outgroup isolates 
125.91 (=CBS10512) Cryptococcal meningitis patient, Tanzania a ND NA NA Lengeler (2002) EF544827 EF544773 EF211129 EF211249 EF211337 EF211457 EF211577 EF211692 
H99 (=CBS8710, =CBS10515) (T) Patient with Hodgkin's disease, type strain of Cryptococcus neoformans var. grubii, NY, USA α VNI NA NA Franzot (1999) EF544828 EF544774 EF211146 EF211264 EF211354 EF211474 EF211594 EF211709 
WM714 Cat paranasal, Australia α 1B 1B ND NA NA Boekhout (2001) EF544829 EF544775 EF211174 EF211289 EF211382 EF211502 EF211622 EF211737 
C. neoformans var. neoformans outgroup isolates 
CBS6886 (=NIH 430) Dropping of pigeon α ND NA NA Boekhout (1997) EF544830 EF544776 EF211182 AJ300886∥ EF211390 EF211510 EF211630 EF211745 
JEC20 (=CBS10511, =NIH-B4476) Congenic pair with JEC21 that differs only in matingtype a ND NA NA Kwon-Chung (1992) EF544831 EF544777 EF211189 EF211296 EF211397 EF211517 EF211637 EF211752 
Isolate Origin Sero type Mating type Nuclear genotype* AFLP geno type‡§ Mole cular type¶ MtLrRNA haplotype ATP6 haplotype References /sources MtLrRNA ATP6 ITS IGS RPB1 RPB2 CNLAC1 TEF1α 
C. gattii AFLP4=VGI    
48A (=CBS11230) Lung of a goat, Spain α 4A 4A ND Diaz (2000) EF544832 EF544778 EF211195 AJ300934∥ EF211403 EF211523 EF211643 EF211758 
503 2738 (=WM1251) Human, Papua, New Guinea α VGI Katsu (2004) EF544833 EF544779 EF211196 EF211302 EF211404 EF211524 EF211644 EF211759 
56A (=CBS11231) Gut of a goat, Spain α 4A 4A ND Diaz (2000) EF544834 EF544780 EF211197 AJ300932∥ EF211405 EF211525 EF211645 EF211760 
CBS883 (T) Infected skin, syntype Cryptococcus hondurianus, Honduras α 4B ND Boekhout (1997) EF544835 EF544781 EF211198 EF211303 EF211406 EF211526 EF211646 EF211761 
CBS919 (T) Meningoencephalic lesion, type strain of Torulopsis neoformans var. sheppei α 4B ND Boekhout (1997) EF544836 EF544782 EF211199 AJ300928∥ EF211407 EF211527 EF211647 EF211762 
CBS1622 Man, Tumour, Lille, France α 4B ND Boekhout (1997) EF102067** EF102038** EF102028** EF102032** EF102061** EF102051** EF102071** EF102047** 
CBS6289 (=CBS8273, =RV20186, =NIHB-3939) Subculture of type strain of Cryptococcus gattii (RV 20186) a 4A 4A ND Boekhout (1997) EF544837 EF544783 EF211200 AJ300937∥ EF211408 EF211528 EF211648 EF211763 
CBS6290 Man, Congo (Zaire) α 4A 4A ND Boekhout (1997) EF544838 EF544784 EF211201 AJ300930∥ EF211409 EF211529 EF211649 EF211764 
CBS6992 (=NIH 17) Man α 4B ND Boekhout (1997) EF102068** EF102039** EF102029** AJ300923∥ EF102033** EF102062** EF102052** EF102072** EF102048** 
CBS6998 (=NIH 365) Human, Thailand a ND Boekhout (1997) EF544839 EF544785 EF211202 AJ300925∥ EF211410 EF211530 EF211650 EF211765 
CBS7229 (T) Meningitis, type strain Cryptococcus neoformans var. shanghaiensis, China a 4B ND Boekhout (1997) EF544840 EF544786 EF211203 AJ300926∥ EF211411 EF211531 EF211651 EF211766 
CBS7748 (=IFM50902) Air in Eucalyptus camaldulensis hollow, Balranald, SA, Australia α 4B VGI Boekhout (1997) EF544841 EF544787 EF211204 AJ300927∥ EF211412 EF211532 EF211652 EF211767 
CBS8273 (=CBS6289, =RV20186, =NIH B-3939) Subculture of type strain of Cryptococcus gattii (RV 20186) a 4A ND Boekhout (1997) EF544842 EF544788 EF211205 EF211304 EF211413 EF211533 EF211653 EF211768 
E566 (=CBS11233) E. camaldulensis tree #19 hollow 4, Renmark Australia a VGI Halliday (2000) EF544843 EF544789 EF211206 EF211305 EF211414 EF211534 EF211654 EF211769 
RV20186 (=CBS6289, =CBS8273, =NIH B-3939) (T) Cerebrospinal fluid, type strain of Cryptococcus gattii, Congo (Zaire) a 4A 4A ND Gatti & Eeckels (1970) EF544844 EF544790 EF211207 EF211306 EF211415 EF211535 EF211655 EF211770 
RV54130 Second isolate of C. neoformans var. shanghaiensis, China a 4B ND Boekhout (2001) EF544845 EF544791 EF211208 EF211307 EF211416 EF211536 EF211656 EF211771 
WM176 Eucalyptus citriodora,USA α 4B ND Boekhout (2001) EF544846 EF544792 EF211209 EF211308 EF211417 EF211537 EF211657 EF211772 
WM179 (R) Immunocompetent human, reference strain of molecular type VGI, Sydney, Australia α VGI Meyer (2003) EF544847 EF544793 EF211210 EF211309 EF211418 EF211538 EF211658 EF211773 
WM276 (=CBS10510) Eucalyptus tereticornis, Mt. Annan, NSW, Australia α VGI Kidd (2005) EF544848 EF544794 EF211211 EF211310 EF211419 EF211539 EF211659 EF211774 
WM830 Immunocompetent, Human, Papua. New Guinea a VGI Katsu (2004) EF544849 EF544795 EF211212 EF211311 EF211420 EF211540 EF211660 EF211775 
C. gattii AFLP5=VGIII 
380C Unknown α 5C ND Boekhout (2001) EF544850 EF544796 EF211213 EF211312 EF211421 EF211541 EF211661 EF211776 
384C Patient α 5C ND Boekhout (2001) EF544851 EF544797 EF211214 EF211313 EF211422 EF211542 EF211662 EF211777 
CBS5758 Unknown α 5C ND Boekhout (1997) EF544852 EF544798 EF211215 AJ300929∥ EF211423 EF211543 EF211663 EF211778 
CBS6955 (T) (=NIH 191) Human, type strain of Cryptococcus bacillisporus, CA, USA a 5C ND Boekhout (1997) EF544853 EF544799 EF211216 AJ300940∥ EF211424 EF211544 EF211664 EF211779 
CBS6993 (=NIH 18) Human, CA, USA α 5C ND Boekhout (1997) EF544854 EF544800 EF211217 EF211314 EF211425 EF211545 EF211665 EF211780 
CBS6996 Man α 5C ND Boekhout (1997) EF544855 EF544801 EF211218 AJ300939∥ EF211426 EF211546 EF211666 EF211781 
CBS8755 (=HOO58-I-682) Detritus of almond tree, Colombia α 5A ND Boekhout (2001) EF544856 EF544802 EF211219 EF211315 EF211427 EF211547 EF211667 EF211782 
CN043 (=CBS11247) Human, Auckland, New Zealand α VGIII Katsu (2004) EF544857 EF544803 EF211220 EF211316 EF211428 EF211548 EF211668 EF211783 
WM161 (R) Eucalyptus camaldulensis wood from hollow, reference strain of molecular type VGIII, San Diego, CA, USA α 5B 5B VGIII Meyer (2003) EF544858 EF544804 EF211221 EF211317 EF211429 EF211549 EF211669 EF211784 
WM726 Eucalyptus citriodora, San Diego, CA, USA α 5B 5B VGIII Boekhout (2001) EF544859 EF544805 EF211222 EF211318 EF211430 EF211550 EF211670 EF211785 
WM728 Eucalyptus sp. debris from car park of zoo, San Diego, CA, USA α 5B 5B VGIII Boekhout (2001) EF544860 EF544806 EF211223 EF211319 EF211431 EF211551 EF211671 EF211786 
C. gattii AFLP6=VGII 
A1M F2866 (=CBS11240) Dead wild Dall's porpoise lymph node, Shores of Gulf Island, Canada α 6A VGIIa Kidd (2004) EF544861 EF544807 EF211224 EF211320 EF211432 EF211552 EF211672 EF211787 
A1M F2932 (=CBS11235) Immunocompetent male, lung, Kelowna, Canada α 6A VGIIa Kidd (2004) EF544862 EF544808 EF211225 EF211321 EF211433 EF211553 EF211673 EF211788 
A1M R265 (=CBS10514) Immunocompetent male, Duncan, Vancouver Island, Canada α 6A VGIIa Kidd (2004) EF544863 EF544809 EF211226 EF211322 EF211434 EF211554 EF211674 EF211789 
A1M R269 (=CBS11236) Immunocompetent female, Victoria, Canada α 6A VGIIa Kidd (2004) EF544864 EF544810 EF211227 EF211323 EF211435 EF211555 EF211675 EF211790 
A1M R271 (=CBS11237) Immunocompetent male, Nanoose Bay, Vancouver Island, Canada α 6A VGIIa Kidd (2004) EF544865 EF544811 EF211228 EF211324 EF211436 EF211556 EF211676 EF211791 
A1M R368 (=CBS11238) Immunocompetent male, Victoria, Canada α 6A VGIIa Kidd (2004) EF544866 EF544812 EF211229 EF211325 EF211437 EF211557 EF211677 EF211792 
A1M R406 (=CBS11239) Immunocompetent female, Nanaimo, Vancouver Island, Canada α 6A VGIIa Kidd (2004) EF544867 EF544813 EF211230 EF211326 EF211438 EF211558 EF211678 EF211793 
A1M R409 Immunocompetent female, Victoria, Canada α 6A VGIIa Kidd (2004) EF544868 EF544814 EF211231 EF211327 EF211439 EF211559 EF211679 EF211794 
CBS1930 Sick goat, Aruba a 6B ND Boekhout (1997) EF544869 EF544815 EF211232 AJ300919∥ EF211440 EF211560 EF211680 EF211795 
CBS6956 (=NIH 444, =ATCC32609) Immunocompetent human, Seattle, WA, USA α 6A VGII Boekhout (1997) EF544870 EF544816 EF211233 AJ300920∥ EF211441 EF211561 EF211681 EF211796 
CBS7750 Eucalyptus camaldulensis bark debris, San Francisco, CA, USA α 6A VGII Boekhout (1997) EF544871 EF544817 EF211234 AJ300922∥ EF211442 EF211562 EF211682 EF211797 
CBS8684 Nest of wasp, Uruguay α 6B ND Boekhout (2001) EF544872 EF544818 EF211235 EF211328 EF211443 EF211563 EF211683 EF211798 
HEC11102 Human, Rio de Janeiro, Brazil a 6B VGII Katsu (2004) EF544873 EF544819 EF211236 EF211329 EF211444 EF211564 EF211684 EF211799 
ICB184 (=MTPI2, =CBS11251) Hollow trees, Piaui, Brazil α 6B ND Barreto de Oliveira (2004) EF544874 EF544820 EF211237 EF211330 EF211445 EF211565 EF211685 EF211800 
RAM2 Eucalyptus camaldulensis, Arnhemland, NT, Australia α 6B VGII Katsu (2004) EF544875 EF544821 EF211238 EF211331 EF211446 EF211566 EF211686 EF211801 
WM178 (=IFM 50894) (R) Immunocompetent human, lung, reference strain of molecular type VGII, Sydney, Australia α 6A VGII Meyer (2003) EF544876 EF544822 EF211239 EF211332 EF211447 EF211567 EF211687 EF211802 
C. gattii AFLP7=VGIV 
B-5742 Human, Punjab, India α VGIV Katsu (2004) EF544877 EF544823 EF211240 EF211333 EF211448 EF211568 EF211688 EF211803 
B-5748 HIV positive patient, India α ND Diaz & Fell (2005) EF544878 EF544824 EF211241 EF211334 EF211449 EF211569 EF211689 EF211804 
M27055 Clinical, Johannesburg, South Africa α VGIV Latouche (2002) EF544879 EF544825 EF211242 EF211335 EF211450 EF211570 EF211690 EF211805 
WM779 (=IFM50896) (R) Cheetah, reference strain of molecular type VGIV, Johannesburg, South Africa α VGIV Meyer (2003) EF544880 EF544826 EF211243 EF211336 EF211451 EF211571 EF211691 EF211806 
C. neoformans var. grubii outgroup isolates 
125.91 (=CBS10512) Cryptococcal meningitis patient, Tanzania a ND NA NA Lengeler (2002) EF544827 EF544773 EF211129 EF211249 EF211337 EF211457 EF211577 EF211692 
H99 (=CBS8710, =CBS10515) (T) Patient with Hodgkin's disease, type strain of Cryptococcus neoformans var. grubii, NY, USA α VNI NA NA Franzot (1999) EF544828 EF544774 EF211146 EF211264 EF211354 EF211474 EF211594 EF211709 
WM714 Cat paranasal, Australia α 1B 1B ND NA NA Boekhout (2001) EF544829 EF544775 EF211174 EF211289 EF211382 EF211502 EF211622 EF211737 
C. neoformans var. neoformans outgroup isolates 
CBS6886 (=NIH 430) Dropping of pigeon α ND NA NA Boekhout (1997) EF544830 EF544776 EF211182 AJ300886∥ EF211390 EF211510 EF211630 EF211745 
JEC20 (=CBS10511, =NIH-B4476) Congenic pair with JEC21 that differs only in matingtype a ND NA NA Kwon-Chung (1992) EF544831 EF544777 EF211189 EF211296 EF211397 EF211517 EF211637 EF211752 
*

Bovers et al. (2008c). †Boekhout (2001).

§

F. Hagen, (unpublished data).

MtLrRNA and ATP6 haplotypes are indicated for Cryptococcus gattii isolates and GenBank accession numbers are given for all sequenced regions.

ND, not determined; NA, not applicable; (T), type strain; (R), reference strain.

Cultivation, DNA extraction, PCR reaction and sequencing

Cultivation and DNA extraction of C. neoformans and C. gattii isolates was carried out using an optimized protocol of Bolano (2001), which has been described previously (Bovers, 2006). PCR reactions were performed in a total volume of 50 μL containing 10 × PCR buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin, 0.1% Triton X-100, pH 8.3), 0.2 mM dNTPs, 0.6 μM of primer, 1.0 U Taq DNA polymerase (Gentaur, Brussels, Belgium) and 1–2 μL genomic DNA. Amplification of MtLrRNA was carried out using primers MtLrRNA-F (5′-GACCCTATGCAGCTTCTACTG-3′) and MtLrRNA-R (5′-TTATCCCTAGCGTAACTTTTATC-3′) (White, 1990). Amplification conditions were 94 °C for 3 min, followed by 35 cycles of 94 °C for 1 min, 50 °C for 1 min and 72 °C for 1 min, with a final extension step of 72 °C for 5 min. Mitochondrial ATP6 was amplified using primers ATP6-F (5′-ATTACATCTCCACTAGAACAATTC-3′) and ATP6-R (5′-AGTTCAATGGCATCCTTGATATAG-3′). Amplification conditions were 94 °C for 5 min, followed by 35 cycles of 94 °C for 1 min, 54 °C for 1 min and 72 °C for 2 min, with a final extension step of 72 °C for 5 min. Amplicons were purified with the GFX™ PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NY) and used for sequencing. Sequencing reactions were performed with the BigDye v3.1 Chemistry kit (Applied Biosystems, Foster City, CA) using primers that had been used in the initial PCR reactions. Sequencing reactions were purified with Sephadex G-50 Superfine columns (Amersham Biosciences) and a MultiScreen HV plate (Millipore, Billerica, MA). An ABI 3700XL DNA analyzer (Applied Biosystems) was used to determine the sequences. GenBank accession numbers are listed in Table 2. Three isolates (CBS6289, CBS8273 and RV20186) were independently included in the analysis, but could be traced back to the same original isolate, and accordingly were found to have the same mitochondrial haplotypes. To confirm the correctness of our sequence data, especially related to the observed chimeric sequences, single colonies were selected, and processed for DNA extraction, PCR and sequence analysis. Furthermore, in an independent research project, a number of isolates from each lineage that were included in the present study were independently processed for the analysis of ATP6 sequences. Both gave the same sequences; hence, we are confident that we have been working with correct sequences (F. Hagen & T. Boekhout, unpublished data).

Alignment and phylogenetic analyses

The program seqman 5.03 (DNASTAR, Madison, WI) was used to assemble consensus sequences and these were checked manually. Sequences were aligned using clustalx version 1.8 (Thompson, 1997) and visually corrected using genedoc version 2.5.000 (http://www.nrbsc.org/downloads/). Neighbor-Joining (NJ) and Maximum Parsimony (MP) phylogenetic analyses were performed using paup* (phylogenetic analysis using parsimony) version 4.0b10 (Swofford, 2000). NJ analyses were carried out with the uncorrected (‘p’), Jukes–Cantor, Kimura two-parameter and HKY85 substitution models. Any ties that were encountered were broken randomly. Bootstrap analysis (Hillis & Bull, 1993) with 1000 replicates was used to determine the significance of branches. MP analyses were carried out (heuristic search, stepwise addition, random taxon addition, 1000 maximum trees) with tree bisection and reconstruction as the branch-swapping algorithm. All characters were unordered and of equal weight; gaps were treated both as missing and as a new character state. Bootstrap analysis was performed with 1000 replicates.

Results

ATP6

Analysis of partial ATP6 sequences showed that among 611 analyzed nucleotides, 34 nucleotides were polymorphic within C. gattii. Nine haplotypes could be identified (Fig. 1a). Haplotype 1 was present in AFLP4/VGI isolates 503 2738, CBS7229, RV54130, WM176, WM276 and WM830. All AFLP6/VGII isolates and AFLP4/VGI isolates WM179, E566, CBS883, CBS919 and CBS7748 possessed haplotype 2. Haplotype 3 was identified in AFLP4/VGI isolates CBS1622 and CBS6992. Haplotype 4 was found in AFLP4/VGI isolates 48A, 56A, CBS6289, CBS6290, CBS6998, CBS8273 and RV20186. AFLP5/VGIII isolates 380C, CBS5758, CBS6993, CBS8755, WM161, WM726 and WM728 possessed haplotype 5, whereas haplotype 6 was present in AFLP5/VGIII isolate CN043. Haplotype 7 was found in AFLP5/VGIII isolate CBS6955 and haplotype 8 was present in AFLP5/VGIII isolates 384C and CBS6996. All AFLP7/VGIV isolates possessed haplotype 9. The ATP6 haplotype of each isolate is indicated in Fig. 1a and Table 2. The alignment of the partial ATP6 sequences is given in Supporting Information, Fig. S1.

1

Phylogenetic tree of Cryptococcus gattii obtained by analysis of (a) partial ATP6 sequences. Presented is one of the four most parsimonious trees (length 83, consistency index 0.819, retention index 0.974) computed with gaps treated as missing data. Data consisted of 611 characters of which 64 characters were parsimony informative; (b) partial MtLrRNA sequences. Presented is one of three most parsimonious trees (length 15, consistency index 1.000, retention index 1.000) computed with gaps treated as missing data. Data consisted of 299 characters of which 13 characters were parsimony informative. Bootstrap values (1000 replicates) are indicated for the main branches. h, haplotype number; M, mitochondrial genotype. Haplotypes of both ATP6 and MtLrRNA are indicated by the colors given in Fig. 2. In addition, those not included in Fig. 2 are as follows: ATP6 – h5, grey; h6, ochre; h7, orange; h8, brown; h9, black; MtLrRNA – h3, black; h5, grey.

1

Phylogenetic tree of Cryptococcus gattii obtained by analysis of (a) partial ATP6 sequences. Presented is one of the four most parsimonious trees (length 83, consistency index 0.819, retention index 0.974) computed with gaps treated as missing data. Data consisted of 611 characters of which 64 characters were parsimony informative; (b) partial MtLrRNA sequences. Presented is one of three most parsimonious trees (length 15, consistency index 1.000, retention index 1.000) computed with gaps treated as missing data. Data consisted of 299 characters of which 13 characters were parsimony informative. Bootstrap values (1000 replicates) are indicated for the main branches. h, haplotype number; M, mitochondrial genotype. Haplotypes of both ATP6 and MtLrRNA are indicated by the colors given in Fig. 2. In addition, those not included in Fig. 2 are as follows: ATP6 – h5, grey; h6, ochre; h7, orange; h8, brown; h9, black; MtLrRNA – h3, black; h5, grey.

NJ and MP analyses showed a division of C. gattii into two clades. One clade consisted of haplotypes 1–3, and was found to be supported by bootstrap values ranging from 84% to 91% for NJ and MP analyses, respectively. The other clade contained haplotypes 4–9 and was found to be strongly supported by bootstrap values ranging from 93% to 99% for NJ and MP analyses. Haplotype 1 formed a separate cluster supported by bootstrap values ranging from 94% to 99% for NJ and from 75% to 76% for MP analyses. The cluster consisting of haplotypes 2 and 3 was strongly supported by bootstrap values ranging from 95% to 100% for NJ and MP analyses. Haplotype 4 formed a separate cluster supported by bootstrap values ranging from 97% to 99% for NJ and from 74% to 75% for MP analyses. Haplotypes 5–8 formed a cluster that was supported by bootstrap values ranging from 92% to 94% for NJ and MP analyses. Haplotype 5 formed a separate cluster in NJ analyses, supported by bootstrap values ranging from 87% to 97% in NJ and 94% in MP analyses. Haplotypes 6–8 also formed a strongly supported cluster with bootstrap values ranging from 93% to 95% for NJ and from 82 to 83% for MP analyses. A separate haplotype 8 cluster was strongly supported by bootstrap values ranging from 98% to 99% for NJ and MP analyses. Haplotype 9 formed a separate cluster strongly supported by bootstrap values ranging from 97% to 100%.

MtLrRNA

Analysis of partial MtLrRNA sequences resulted in the identification of five C. gattii haplotypes (Fig. 1b, Table 2). The alignment of the five haplotypes is shown in Fig. S2. Four polymorphic nucleotides, which are indicated within brackets, were present among 299 analyzed nucleotides. Haplotype 1 (CTAG) was present in all AFLP6/VGII isolates and in AFLP4/VGI isolates WM179 and E566; haplotype 2 (CTAC) was present in most of the AFLP4/VGI isolates and in AFLP7/VGIV isolates M27055 and WM779; haplotype 3 (CTTC) was present in AFLP7/VGIV isolates B5742 and B5748; haplotype 4 (CGAC) was present in AFLP4/VGI isolates CBS883, CBS919 and CBS7748; and haplotype 5 (GTAA) was present in all AFLP5/VGIII isolates. An overview of the MtLrRNA haplotype of all isolates is given in Table 2. Both NJ and MP analyses positioned haplotype 1 basal to the other haplotypes, but the topology of the tree of haplotypes 1–4 was not well supported. Haplotype 5 formed a separate cluster in NJ and MP analyses with bootstrap values ranging from 80% to 86%.

Combined analysis of mitochondrial data

All AFLP6/VGII isolates contained MtLrRNA haplotype 1 and ATP6 haplotype 2, whereas AFLP7/VGIV isolates possessed MtLrRNA haplotypes 2 or 3 that differed by one nucleotide, and ATP6 haplotype 9. The AFLP5/VGIII isolates contained MtLrRNA haplotype 5 and ATP6 haplotypes 5–8 that formed one cluster. AFLP4/VGI isolates possessed MtLrRNA haplotypes 1–4 and ATP6 haplotypes 1–4. Surprisingly, these haplotypes did not cluster together. The AFLP4/VGI isolates could be divided into five mitochondrial genotypes based on the presence of ATP6 and MtLrRNA alleles (viz. M1–M5). Genotype AFLP4/VGI-M1 (MtLrRNA haplotype 2 and ATP6 haplotype 4, i.e. isolates 48A, 56A, CBS6289, CBS6290, CBS6998, CBS 8273, RV 20186) corresponded to the previously described genotypic subgroup AFLP4A (Boekhout, 2001). This genotype formed a clade with AFLP5/VGIII and AFLP7/VGIV isolates in the ATP6 analyses (Fig. 1a) similar to the topology obtained by analyses of six concatenated nuclear regions (see Bovers, 2008b, Fig. 3). Genotype AFLP4/VGI-M1 thus appears to be the core AFLP4/VGI genotype, because they contain AFLP4/VGI-typical alleles of both the nuclear and mitochondrial loci, and in the phylogenetic analysis of the nuclear genes these isolates appeared basal. Genotype M2 of AFLP4/VGI (MtLrRNA haplotype 2 and ATP6 haplotype 1, i.e. isolates 503 2738, CBS7229, RV54130, WM176, WM276 and WM830) possessed the core AFLP4/VGI MtLrRNA sequence. Interestingly, the ATP6 sequence of this genotype, i.e. haplotype 1, was found to be a chimerical sequence in all the isolates studied. This sequence was partially identical to the sequence found in AFLP6/VGII isolates (i.e. h2) and partially identical to the sequence of isolates with a core AFLP4/VGI mitochondrial sequence (i.e. h4, Fig. S3). Genotype AFLP4/VGI-M3 (MtLrRNA haplotype 2 and ATP6 haplotype 3, i.e. isolates CBS1622, CBS6992) possessed the core AFLP4/VGI MtLrRNA sequence and an ATP6 sequence that differed only at one nucleotide position from the ATP6 sequence found in AFLP6/VGII isolates. Genotype AFLP4/VGI-M4 (MtLrRNA haplotype 4 and ATP6 haplotype 2, i.e. isolates CBS883, CBS919, CBS7748) possessed a MtLrRNA sequence that differed one nucleotide from the core AFLP4/VGI MtLrRNA sequence and an ATP6 sequence identical to that of AFLP6/VGII isolates. Genotype AFLP4/VGI-M5 (MtLrRNA haplotype 1 and ATP6 haplotype 2, i.e. isolates E566, WM179 possessed MtLrRNA and ATP6 sequences identical to those found in AFLP6/VGII isolates. Isolate WM179 and isolate E566 that both belong to the mitochondrial genotype M5, have MATα and MATa, respectively. This indicates that the presence of the AFLP6/VGII allele in AFLP4/VGI isolates does not depend on the MAT locus. Thus, the mitochondrial genome of part of the AFLP4/VGI isolates contained sequences that were partially identical to those found in AFLP6/VGII isolates. The incongruence between the mitochondrial genotypes of AFLP4/VGI and the topology of the AFLP4/VGI clade as derived from the analysis of six concatenated nuclear regions (Bovers, 2008b) is illustrated in Fig. 2.

2

Comparison of mitochondrial genotypes and a phylogenetic tree of genotype AFLP4/VGI of Cryptococcus gattii obtained by analysis of six concatenated nuclear regions (RPB1, RPB2, CNLAC1, TEF1α, IGS1 and internal transcribed spacer). Presented is one of the 60 most parsimonious trees (length 847, consistency index 0.902, retention index 0.961) computed with gaps treated as missing data. Data consisted of 3932 characters of which 459 characters were parsimony informative. Bootstrap values (1000 replicates) are indicated. The mitochondrial genotype as well as the ATP6 and MtLrRNA haplotypes are shown. T, type strain; R, molecular type reference strain (Meyer, 2003). Haploid isolates are underlined.

2

Comparison of mitochondrial genotypes and a phylogenetic tree of genotype AFLP4/VGI of Cryptococcus gattii obtained by analysis of six concatenated nuclear regions (RPB1, RPB2, CNLAC1, TEF1α, IGS1 and internal transcribed spacer). Presented is one of the 60 most parsimonious trees (length 847, consistency index 0.902, retention index 0.961) computed with gaps treated as missing data. Data consisted of 3932 characters of which 459 characters were parsimony informative. Bootstrap values (1000 replicates) are indicated. The mitochondrial genotype as well as the ATP6 and MtLrRNA haplotypes are shown. T, type strain; R, molecular type reference strain (Meyer, 2003). Haploid isolates are underlined.

Phylogenetic analyses of partial ATP6 sequences were also carried out without the presence of the AFLP4/VGI isolates that contained sequences that are partially identical to those found in AFLP6/VGII isolates. These AFLP4/VGI isolates were excluded because their presence might obscure the genotypic structure of C. gattii. The topology obtained is depicted in Fig. 3. The cluster that contained isolates with core AFLP4/VGI alleles and AFLP7/VGIV isolates formed a sister group to the AFLP5/VGIII isolates, and this AFLP4/VGI-AFLP7/VGIV-AFLP5/VGIII clade was strongly supported with bootstrap values ranging from 98% to 99% for NJ and from 94% to 95% for MP analyses. The AFLP6/VGII isolates clustered basal to the other C. gattii genotypic groups in both the mitochondrial and nuclear analyses with strong support.

3

Phylogenetic tree of Cryptococcus gattii obtained by analysis of (a) partial ATP6 sequences. AFLP4/VGI isolates that possessed mitochondrial sequences identical to sequences found in AFLP6/VGII isolates were excluded from the analysis. Presented is the most parsimonious tree (length 79, consistency index 0.861, retention index 0.978) computed with gaps treated as missing data. Data consisted of 611 characters of which 64 characters were informative of parsimony; (b) six concatenated nuclear regions (RPB1, RPB2, CNLAC1, TEF1α, IGS1 and internal transcribed spacer). Presented is one of the 60 most parsimonious trees (length 847, consistency index 0.902, retention index 0.961) computed with gaps treated as missing data. Data consisted of 3932 characters of which 459 characters were informative of parsimony. Bootstrap values (1000 replicates) are indicated for the main branches. T, type strain; R, molecular type reference strain (Meyer, 2003).

3

Phylogenetic tree of Cryptococcus gattii obtained by analysis of (a) partial ATP6 sequences. AFLP4/VGI isolates that possessed mitochondrial sequences identical to sequences found in AFLP6/VGII isolates were excluded from the analysis. Presented is the most parsimonious tree (length 79, consistency index 0.861, retention index 0.978) computed with gaps treated as missing data. Data consisted of 611 characters of which 64 characters were informative of parsimony; (b) six concatenated nuclear regions (RPB1, RPB2, CNLAC1, TEF1α, IGS1 and internal transcribed spacer). Presented is one of the 60 most parsimonious trees (length 847, consistency index 0.902, retention index 0.961) computed with gaps treated as missing data. Data consisted of 3932 characters of which 459 characters were informative of parsimony. Bootstrap values (1000 replicates) are indicated for the main branches. T, type strain; R, molecular type reference strain (Meyer, 2003).

Discussion

Phylogenetic analyses of partial mitochondrial sequences of C. gattii showed that AFLP6/VGII isolates clustered basal to all other C. gattii genotypic groups. These results correspond to the topology that was found after the analysis of six concatenated nuclear regions (Bovers, 2008b; Fig. 3).

Surprisingly, two AFLP4/VGI isolates (AFLP4/VGI-M5) were found that possessed MtLrRNA and ATP6 sequences identical to those found in AFLP6/VGII isolates. In addition, three AFLP4/VGI isolates (AFLP4/VGI-M4) possessed a MtLrRNA sequence that differed by one nucleotide from the core AFLP4/VGI sequence, but the ATP6 sequence was identical to the sequence found in all AFLP6/VGII isolates. Furthermore, two AFLP4/VGI isolates (AFLP4/VGI-M3) possessed the core AFLP4/VGI MtLrRNA sequence, whereas the ATP6 sequence differed by one nucleotide from the sequence found in AFLP6/VGII isolates. In addition, six AFLP4/VGI isolates (AFLP4/VGI-M2) possessed the core AFLP4/VGI MtLrRNA sequence, but here the ATP6 sequence appeared to be a chimera between core AFLP4/VGI and AFLP6/VGII sequences.

Our results show that AFLP4/VGI isolates exist that possess mitochondrial genomes that consist completely of AFLP6/VGII sequences or that contain a combination of AFLP4/VGI and AFLP6/VGII sequences. It could be argued that the presence of AFLP6/VGII mitochondrial sequences in AFLP4/VGI isolates is a retained ancestral character state, because genotype AFLP6/VGII was found to be the ancestral lineage (Bovers, 2008b). However, in that case AFLP6/VGII mitochondrial sequences would be expected to occur in other genotypic groups of C. gattii as well, especially in AFLP7/VGIV as this genotypic group is most closely related to AFLP6/VGII (Bovers, 2008b). We have to keep in mind, however, that the number of available AFLP7/VGII isolates is small (i.e. only four strains are currently know to belong to this group); thus, it is possible that nucleotide variation in this lineage remains to be detected in the future when more isolates will become available. In the case that ancestral mitochondrial sequences remained preserved in the more derived lineages, viz., AFLP7/VGIV, AFLP5/VGIII and AFLP4/VGI, one would expect that the same or similar sequences would be present in the phylogenetically intermediate genotypes because the patterns of divergence of the various genotypic groups is well supported by a phylogenetic analysis of six nuclear genes (Bovers, 2008b). Moreover, one would expect that some polymorphisms would be present due to ongoing evolution since the initial divergence of the various genotypic groups of C. gattii. In contrast with these suppositions, we observed only AFLP4/VGI isolates that possessed ATP6 sequences identical to those found in AFLP6/VGII isolates. These sequences did not occur in any of the other, phylogenetically intermediate, genotypes, viz., AFLP7/VGIV and AFLP5/VGIII. This suggests that the presence of AFLP6/VGII mitochondrial sequences in AFLP4/VGI isolates is not a retained ancestral character state but, more likely, is a consequence of mitochondrial recombination. The likelihood of mitochondrial recombination is further supported by the presence of the MtLrRNA haplotype 2 allele of AFLP4/VGI in two isolates of AFLP7/VGIV. If this would be the result of retaining ancestral sequences, this process would contradict the well-supported phylogeny based on six nuclear genes in which genotype AFLP4/VGI is more derived than AFLP7/VGIII (Bovers, 2008b).

AFLP4/VGI and AFLP6/VGII isolates have been isolated from the same geographic regions (Sorrell, 1996; Kidd, 2003, 2005, 2007; Campbell, 2005a, b), which indicates that these genotypic groups occur in the same areas and may physically interact. Interestingly, AFLP4/VGI isolates that possessed mitochondrial genomes with (partial) AFLP6/VGII sequences were all isolated from countries near the Pacific Ocean, whereas isolates with core AFLP4/VGI sequences originated from Africa and Europe. Although the number of isolates included in our study is small, this may indicate that the atypical AFLP4/VGI isolates originated in the region of the Pacific Ocean.

If mitochondrial recombination has occurred, one has to assume a process of somatic fusion or mating to occur between cells of the recombining genotypes. To the best of our knowledge, somatic fusion without mating has never been reported in C. neoformans or in C. gattii. Mating usually occurs between isolates of opposite mating type (MATa and MATα) (Kwon-Chung, 1975, 1976a, b), but has also been reported between isolates of identical mating type (Lin, 2005). During mating, the nucleus of the MATα cell migrates into the conjugation tube and the recipient MATa cell generates a hypha (McClelland, 2004). Previous reports indicated that mitochondria in C. neoformans were uniparentally inherited from the MATa parent (Xu, 2000; Yan & Xu, 2003), probably because the MATa cell produces the hypha. However, recent studies have shown that in some cases mitochondrial inheritance from the MATα may occur as well (Yan & Xu, 2003; Toffaletti, 2004; Yan, 2004, 2007a, b) resulting in the presence of MATα parental mitochondria in the progeny. Recent studies on other fungal species have shown that strictly uniparental or biparental mitochondrial inheritance is rare (Yan & Xu, 2005), and it has therefore been suggested to treat mitochondrial inheritance as a quantitative rather than a qualitative trait (Birky, 1995). In cells of the mitochondrial genotype M5, which combine a nuclear genome of the genotype AFLP4/VGI with the presence of the mitochondrial alleles ATP6 and MtLrRNA from AFLP6/VGII, cells of both MATa (i.e. isolate E566) and MATα (i.e. isolate WM179) seem to have functioned as a donor for mitochondrial genes. Therefore, in these cases, the transfer of mitochondria does not seem to be regulated by the mating type. Mitochondrial inheritance following AFLP4/VGI × AFLP6/VGII mating may have resulted in a cell with both types of mitochondria. Subsequent mitotic divisions and mitochondrial selection could have resulted in isolates that possessed a complete AFLP6/VGII mitochondrial genome. In addition, recombination between the two types of mitochondria that were present may have resulted in mitochondrial genomes with both AFLP4/VGI and AFLP6/VGII sequences. It is important to note that recombination between mitochondria has been observed in other fungi under laboratory conditions, for example Agaricus bisporus (De la Bastide & Horgen, 2003), Agrocybe aegerita (Barroso & Labarère, 1997), Neurospora intermedia (Yang & Griffiths, 1992), Saccharomyces cerevisiae (Nakagawa, 1992), as well as in natural populations, for example A. aegerita (Barroso, 1995), Armillaria gallica (Saville, 1998), Candida albicans (Anderson, 2001; Jacobsen, 2008) and Neurospora crassa (Taylor, 1986). In addition, mitochondrial recombination has been observed in laboratory crossings of C. neoformans isolates (Toffaletti, 2004; Yan, 2007b).

Here we suggest the occurrence of mitochondrial recombination among environmental, veterinary and clinical isolates of C. gattii. Recombination between two mitochondrial genomes from different genotypes is only possible after cell–cell conjugation occurs. However, in that case one might expect the occurrence of hybrid nuclear genomes within the populations, and this is not the case with the loci that we have studied (Bovers, 2008b). Hybrid isolates between the two C. neoformans varieties and between C. neoformans and C. gattii have been described (Tanaka, 1999; Cogliati, 2000; Boekhout, 2001; Bovers, 2006, 2008c), as has DNA exchange between serotype A and serotype D isolates of C. neoformans (Kavanaugh, 2006). The resulting hybrid isolates are diploid or aneuploid (Tanaka, 1999; Cogliati, 2000; Lengeler, 2001; Bovers, 2006, 2008c) and possess alleles from both parents. However, all AFLP4/VGI isolates that had been studied using flow cytometry were found to be haploid (M. Bovers & H. Hoogveld, unpublished data) and nuclear AFLP6/VGII sequences have not been found in these AFLP4/VGI isolates (Bovers, 2008b), which indicates that the isolates, most likely, are not hybrids. Possibly, mating between different C. gattii genotypic groups does not result in the formation of hybrid nuclear genomes, but may lead to transfer of mitochondria and subsequent mitochondrial recombination. Moreover, the predominant uniparental inheritance of mitochondria as well as the small size of the mitochondrial genome increases the chance of incorporation of foreign alleles by drift and selection (Martinsen, 2001; Funk & Omland, 2003; Ballard & Whitlock, 2004). The predominant uniparental inheritance and the haploid nature of mitochondria both decrease the effective population size and thereby increase the chance of fixation by drift (Funk & Omland, 2003; Ballard & Whitlock, 2004). In addition, the small genome size decreases the probability of counter selection because negative gene interactions are less likely to occur (Martinsen, 2001; Ballard & Whitlock, 2004). These processes could explain why mitochondrial regions, but not nuclear regions, were incorporated in a different genetic background. Another possibility is that smaller regions of the AFLP6/VGII genome have been incorporated in parts of the nuclear genome of AFLP4/VGI isolates, but that these have escaped detection.

Mitochondria play a central role in energy production and in responses to stresses (Osiewacz & Kimpel, 1999; Ahkter, 2003). These processes play a key role in the fitness of an organism, and the mitochondrial genotype may therefore influence fitness as well. A different mitochondrial genotype may have a positive effect on fitness, as was observed in S. cerevisiae when mitochondria of wine yeasts were transferred to a laboratory yeast, resulting in an increased viability and increased ethanol and temperature tolerance (Jiménez & Benítez, 1988). However, the mitochondrial genotype does not always affect fitness, and no difference in virulence or high-temperature growth rate could be found for strains with mitochondria derived from both C. neoformans varieties (Toffaletti, 2004). In addition, the mitochondrial genotype may also have a negative effect on fitness. Several mitochondrial proteins are produced in the nucleus (Osiewacz & Kimpel, 1999; Burton, 2006) and these nuclear encoded proteins interact with mitochondrial encoded proteins, for example in the electron transport system. The presence of a mitochondrial genotype different from the nuclear genotype may therefore negatively affect fitness as both genomes have coevolved (Burton, 2006). Cryptococcus gattii isolates with different mitochondrial genotypes should be further studied to investigate whether the mitochondrial genotype affects their fitness.

Our results indicate that conjugation may have occurred between AFLP4/VGI and isolates of both AFLP6/VGII and AFLP7/VGIV leading to the generation of cells with an AFLP4/VGI nuclear genotype and a partial AFLP6/VGII or AFLP7/VGIV mitochondrial genotype. Our study is the first to report on mitochondrial inheritance in C. gattii and provides evidence for mitochondrial recombination occurring in nature. Furthermore, the high percentage of AFLP4/VGI isolates studied that possessed a recombined mitochondrial genome (65%) indicates that recombination occurs frequently in nature. Recently, recombination has been demonstrated to occur in natural populations of genotype AFLP4/VGI of C. gattii using AFLP analysis (Saul, 2008). Future research is needed to elucidate the genetic mechanism of the intergenotypic transfer of mitochondria in C. gattii and the effect this has on phenotypic properties. The occurrence of mitochondrial recombination between isolates of genotypes AFLP4/VGI and AFLP6/VGII may also be important, because strains of the latter are involved in the ongoing Vancouver Island outbreak of C. gattii (Kidd, 2004; MacDougall, 2007). Plasmogamy between cells belonging to different genotypes may allow the exchange and introgression of genetic elements in either genetic background, as has also been observed between isolates of serotype A and serotype D of C. neoformans (Kavanaugh, 2006), and such processes may contribute to the formation of C. gattii strains that differ in virulence. It is likely that such genetic transfer events may have an effect on the virulence properties, and this alternative hypothesis concurs with the same sex mating hypothesis (Fraser, 2005; Lin, 2005) that has been proposed to explain the origin of hypervirulence of isolates involved in the ongoing Vancouver Island outbreak of C. gattii.

Acknowledgements

Isolates were kindly donated by the following researchers: J.W. Kronstad, K.J. Kwon-Chung, M.S. Lazera, D. Swinne, W. Meyer and J.M. Torres-Rodríguez. We would like to thank Cañan Bayrakdar and Hans Hoogveld for technical assistance. Work of M.B. was supported by the ‘Odo van Vloten fonds’. E.E.K. and F.H. were funded by the Strategy Fund of the Royal Netherlands Academy of Arts and Sciences (RNAAS-KNAW).

Authors' contributions

M.B. and F.H. equally contributed to the work, M.B. and F.H. performed the work, T.B. designed the research, and M.B., F.H., E.E.K. and T.B. wrote the paper.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Alignment of Cryptococcus gattii partial ATP6 sequences.

Fig. S2. Alignment of Cryptococcus gattii partial MtLrRNA sequences.

Fig. S3. Alignment of Cryptococcus gattii partial ATP6 sequences for haplotypes 1, 2 and 4.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

References

Ahkter
S
McDade
HC
Gorlach
JM
Heinrich
G
Cox
GM
Perfect
JR
(
2003
)
Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans
.
Infect Immun
 
71
:
5794
5802
.
Anderson
JB
Wickens
C
Khan
M
Cowen
LE
Federspiel
N
Jones
T
Kohn
LM
(
2001
)
mtDNA recombination in a natural population
.
J Bacteriol
 
183
:
865
872
.
Ballard
JWO
Whitlock
MC
(
2004
)
The incomplete natural history of mitochondria
.
Mol Ecol
 
13
:
729
744
.
Barreto de Oliveira
MT
Boekhout
T
Theelen
B
Hagen
F
Baroni
FA
Lazera
MS
Lengeler
KB
Heitman
J
Rivera
ING
Paula
CR
(
2004
)
Cryptococcus neoformans shows a remarkable genotypic diversity in Brazil
.
J Clin Microbiol
 
42
:
1356
1359
.
Barroso
G
Labarère
J
(
1997
)
Genetic evidence for nonrandom sorting of mitochondria in the basidiomycete Agrocybe aegerita
.
Appl Environ Microbiol
 
63
:
4686
4691
.
Barroso
G
Blesa
S
Labarere
J
(
1995
)
Wide distribution of mitochondrial genome rearrangements in wild strains of the cultivated basidiomycete Agrocybe aegerita
.
Appl Environ Microbiol
 
61
:
1187
1193
.
Birky
CW
(
1995
)
Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution
.
P Natl Acad Sci USA
 
92
:
11331
11338
.
Biswas
SK
Wang
L
Yokoyama
K
Nishimura
K
(
2003
)
Molecular analysis of Cryptococcus neoformans mitochondrial cytochrome b gene sequences
.
J Clin Microbiol
 
41
:
5572
5576
.
Boekhout
T
Van Belkum
A
Leenders
ACAP
Verbrugh
HA
Mukamurangwa
P
Swinne
D
Scheffers
WA
(
1997
)
Molecular typing of Cryptococcus neoformans: taxonomic and epidemiological aspects
.
Int J Syst Bacteriol
 
47
:
432
442
.
Boekhout
T
Theelen
B
Diaz
M
Fell
JW
Hop
WCJ
Abeln
ECA
Dromer
F
Meyer
W
(
2001
)
Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans
.
Microbiology
 
147
:
891
907
.
Bolano
A
Stinchi
S
Preziosi
R
Bistoni
F
Allegrucci
M
Baldelli
F
Martini
A
Cardinali
G
(
2001
)
Rapid methods to extract DNA and RNA from Cryptococcus neoformans
.
FEMS Yeast Res
 
1
:
221
224
.
Bovers
M
Hagen
F
Kuramae
EE
Diaz
MR
Spanjaard
L
Dromer
F
Hoogveld
HL
Boekhout
T
(
2006
)
Unique hybrids between fungal pathogens Cryptococcus neoformans and Cryptococcus gattii
.
FEMS Yeast Res
 
6
:
599
607
.
Bovers
M
Hagen
F
Boekhout
T
(
2008a
)
Diversity of the Cryptococcus neoformansCryptococcus gattii species complex
.
Rev Iberoam Mycol
 
25
:
S4
S12
.
Bovers
M
Hagen
F
Kuramae
EE
Boekhout
T
(
2008b
)
Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing
.
Fungal Genet Biol
 
45
:
400
421
.
Bovers
M
Hagen
F
Kuramae
EE
Hoogveld
HL
Dromer
F
St-Germain
G
Boekhout
T
(
2008c
)
AIDS patient death caused by novel Cryptococcus neoformans×C. gattii hybrid
.
Emerg Infect Dis
 
14
:
1105
1108
.
Burton
RS
Ellison
CK
Harrison
JS
(
2006
)
The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations
.
Am Nat
 
168
:
S14
S24
.
Butler
MI
Poulter
RTM
(
2005
)
The PRP8 inteins in Cryptococcus are a source of phylogenetic and epidemiological information
.
Fungal Genet Biol
 
42
:
452
463
.
Callejas
A
Ordóñez
N
Rodriguez
MC
Castañeda
E
(
1998
)
First isolation of Cryptococcus neoformans var. gattii, serotype C, from the environment in Colombia
.
Med Mycol
 
36
:
341
344
.
Campbell
LT
Currie
BJ
Krockenberger
M
Malik
R
Meyer
W
Heitman
J
Carter
D
(
2005a
)
Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii
.
Eukaryot Cell
 
4
:
1403
1409
.
Campbell
LT
Fraser
JA
Nichols
CB
Dietrich
FS
Carter
D
Heitman
J
(
2005b
)
Clinical and environmental isolates of Cryptococcus gattiifrom Australia retain sexual fecundity
.
Eukaryot Cell
 
4
:
1410
1419
.
Chaturvedi
V
Fan
J
Stein
B
Behr
MJ
Samsonoff
WA
Wickes
BL
Chaturvedi
S
(
2002
)
Molecular genetic analyses of mating pheromones reveal intervariety mating or hybridization in Cryptococcus neoformans
.
Infect Immun
 
70
:
5225
5235
.
Cogliati
M
Allaria
M
Liberi
G
Tortorano
AM
Viviani
MA
(
2000
)
Sequence analysis and ploidy determination of Cryptococcus neoformans var. neoformans
.
J Mycol Med
 
10
:
171
176
.
De la Bastide
PY
Horgen
PA
(
2003
)
Mitochondrial inheritance and the detection of non-parental mitochondrial DNA haplotypes in crosses of Agaricus bisporus homokaryons
.
Fungal Genet Biol
 
38
:
333
342
.
Diaz
MR
Fell
JW
(
2005
)
Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex
.
J Clin Microbiol
 
43
:
3662
3672
.
Diaz
MR
Boekhout
T
Theelen
B
Fell
JW
(
2000
)
Molecular sequence analyses of the intergenic spacer (IGS) associated with rDNA of the two varieties of the pathogenic yeast, Cryptococcus neoformans
.
Syst Appl Microbiol
 
23
:
535
545
.
Diaz
MR
Boekhout
T
Kiesling
T
Fell
JW
(
2005
)
Comparative analysis of the intergenic spacer regions and population structure of the species complex of the pathogenic yeast Cryptococcus neoformans
.
FEMS Yeast Res
 
5
:
1129
1140
.
Ellis
D
Marriott
D
Hajjeh
RA
Warnock
D
Meyer
W
Barton
R
(
2000
)
Epidemiology: surveillance of fungal infections
.
Med Mycol
 
38
:
173
182
.
Ellis
DH
Pfeiffer
TJ
(
1990
)
Natural habitat of Cryptococcus neoformans var. gattii
.
J Clin Microbiol
 
28
:
1642
1644
.
Escandón
P
Sánchez
A
Martínez
M
Meyer
W
Castañeda
E
(
2006
)
Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia
.
FEMS Yeast Res
 
6
:
625
635
.
Fell
JW
Boekhout
T
Fonseca
A
Scorzetti
G
Statzell-Tallman
A
(
2000
)
Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis
.
Int J Syst Evol Microbiol
 
50
:
1351
1371
.
Fortes
ST
Lazéra
MS
Nishikawa
MM
Macedo
RCL
Wanke
B
(
2001
)
First isolation of Cryptococcus neoformans var. gattii from a native jungle tree in the Brazilian Amazon rainforest
.
Mycoses
 
44
:
137
140
.
Franzot
SP
Salkin
IR
Casadevall
A
(
1999
)
Cryptococcus neoformans var. grubii: separate varietal status for Cryptococcus neoformans serotype A isolates
.
J Clin Microbiol
 
37
:
838
840
.
Fraser
JA
Subaran
RL
Nichols
CB
Heitman
J
(
2003
)
Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada
.
Eukaryot Cell
 
2
:
1036
1045
.
Fraser
JA
Giles
SS
Wenink
EC
et al.   (
2005
)
Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak
.
Nature
 
437
:
1360
1364
.
Funk
DJ
Omland
KE
(
2003
)
Species-level paraphyly and polyphyly: frequency, causes and consequences, with insights from animal mitochondrial DNA
.
Annu Rev Ecol Evol S
 
34
:
397
423
.
Gatti
F
Eeckels
R
(
1970
)
An atypical strain of Cryptococcus neoformans (Sanfelice) Vuillemin 1894. Part 1. Description of the disease and of the strain
.
Ann Soc Belg Med Tr
 
50
:
689
693
.
Granados
DP
Castañeda
E
(
2005
)
Isolation and characterization of Cryptococcus neoformans varieties recovered from natural sources in Bogotá, Colombia and study of ecological conditions in the area
.
Microbial Ecol
 
49
:
282
290
.
Halliday
CL
(
2000
)
A molecular study of mating type and recombination in Cryptococcus neoformans var. gattii. PhD Thesis
 ,
University of Sydney
,
Sydney, Australia
.
Hillis
DM
Bull
JJ
(
1993
)
An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis
.
Syst Biol
 
42
:
182
192
.
Hoang
LMN
Maguire
JA
Doyle
P
Fyfe
M
Roscoe
DL
(
2004
)
Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997–2002): epidemiology, microbiology and histopathology
.
J Med Microbiol
 
53
:
935
940
.
Jacobsen
MD
Rattray
AMJ
Gow
NAR
Odds
FC
Shaw
DJ
(
2008
)
Mitochondrial haplotypes and recombination in Candida albicans
.
Med Mycol
 
46
:
647
654
.
Jiménez
J
Benítez
T
(
1988
)
Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome
.
Curr Genet
 
13
:
461
469
.
Katsu
M
Kidd
S
Ando
A
Moretti-Branchini
ML
Mikami
Y
Nishimura
K
Meyer
W
(
2004
)
The internal transcribed spacers and 5.8S rRNA gene show extensive diversity among isolates of the Cryptococcus neoformans species complex
.
FEMS Yeast Res
 
4
:
377
388
.
Kavanaugh
LA
Fraser
JA
Dietrich
FS
(
2006
)
Recent evolution of the human pathogen Cryptococcus neoformans by intervarietal transfer of a 14 gene fragment
.
Mol Biol Evol
 
23
:
1879
1890
.
Kidd
SE
Sorrell
TC
Meyer
W
(
2003
)
Isolation of two molecular types of Cryptococcus neoformans var. gattii from insect frass
.
Med Mycol
 
41
:
171
176
.
Kidd
SE
Hagen
F
Tscharke
RL
Huynh
M
Bartlett
KH
Fyfe
M
MacDougall
L
Boekhout
T
Kwon-Chung
KJ
Meyer
W
(
2004
)
A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Colombia, Canada)
.
P Natl Acad Sci USA
 
101
:
17258
17263
.
Kidd
SE
Guo
H
Bartlett
KH
Xu
J
Kronstad
JW
(
2005
)
Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas
.
Eukaryot Cell
 
4
:
1629
1638
.
Kidd
SE
Chow
Y
Mak
S
Bach
PJ
Chen
H
Hingston
AO
Kronstad
JW
Bartlett
KH
(
2007
)
Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and Pacific Northwest USA
.
Appl Environ Microbiol
 
73
:
1433
1443
.
Krockenberger
MB
Canfield
PJ
Malik
R
(
2002
)
Cryptococcus neoformans in the koala (Phascolarctos cinereus): colonization by C. neoformans var. gattii and investigation of environmental sources
.
Med Mycol
 
40
:
263
272
.
Kwon-Chung
KJ
(
1975
)
A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans
.
Mycologia
 
67
:
1197
1200
.
Kwon-Chung
KJ
(
1976a
)
Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans
.
Mycologia
 
68
:
821
833
.
Kwon-Chung
KJ
(
1976b
)
A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes
.
Mycologia
 
68
:
942
946
.
Kwon-Chung
KJ
Bennett
JE
(
1984
)
Epidemiological differences between the two varieties of Cryptococcus neoformans
.
Am J Epidemiol
 
120
:
123
130
.
Kwon-Chung
KJ
Varma
A
(
2006
)
Do major species concepts support one, two or more species within Cryptococcus neoformans?
FEMS Yeast Res
 
6
:
574
587
.
Kwon-Chung
KJ
Bennett
JE
Rhodes
JC
(
1982
)
Taxonomic studies on Filobasidiella species and their anamorphs
.
Antonie van Leeuwenhoek
 
48
:
25
38
.
Kwon-Chung
KJ
Edman
JC
Wickes
BL
(
1992
)
Genetic association of mating types and virulence in Cryptococcus neoformans
.
Infect Immun
 
60
:
602
605
.
Kwon-Chung
KJ
Boekhout
T
Fell
JW
Diaz
M
(
2002
)
Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae)
.
Taxon
 
51
:
804
806
.
Latouche
GN
Sorrell
TC
Meyer
W
(
2002
)
Isolation and characterisation of the phospholipase B gene of Cryptococcus neoformans var. gattii
.
FEMS Yeast Res
 
2
:
551
561
.
Latouche
GN
Huynh
M
Sorrell
TC
Meyer
W
(
2003
)
Isolation and characterisation of the phospholipase B gene of Cryptococcus neoformans var. gattii
.
Appl Environ Microbiol
 
69
:
2080
2086
.
Lazéra
MS
Cavalcanti
MA
Trilles
L
Nishikawa
MM
Wanke
B
(
1998
)
Cryptococcus neoformans var. gattii– evidence for a natural habitat related to decaying wood in a pottery tree hollow
.
Med Mycol
 
36
:
119
122
.
Lazéra
MS
Salmito Cavalcanti
MA
Londero
AT
Trilles
L
Nishikawa
MM
Wanke
B
(
2000
)
Possible primary ecological niche of Cryptococcus neoformans
.
Med Mycol
 
38
:
379
383
.
Lengeler
KB
Cox
GM
Heitman
J
(
2001
)
Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus
.
Infect Immun
 
69
:
115
122
.
Lengeler
KB
Wang
P
Cox
GM
Perfect
JR
Heitman
J
(
2002
)
Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct
.
P Natl Acad Sci USA
 
97
:
14455
14460
.
Lin
X
Hull
CM
Heitman
J
(
2005
)
Sexual reproduction between partners of the same mating type in Cryptococcus neoformans
.
Nature
 
434
:
1017
1021
.
Litvintseva
AP
Thakur
R
Vilgalys
R
Mitchell
TG
(
2006
)
Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana
.
Genetics
 
172
:
2223
2238
.
MacDougall
L
Kidd
SE
Galanis
E
Mak
S
Leslie
MJ
Cieslak
PR
Kronstad
JW
Morshed
MG
Bartlett
KH
(
2007
)
Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA
.
Emerg Infect Dis
 
13
:
42
50
.
Martinsen
GD
Whitham
TG
Turek
RJ
Keim
P
(
2001
)
Hybrid populations selectively filter gene introgression between species
.
Evolution
 
55
:
1325
1335
.
McClelland
CM
Chang
YC
Varma
A
Kwon-Chung
KJ
(
2004
)
Uniqueness of the mating system in Cryptococcus neoformans
.
Trends Microbiol
 
12
:
208
212
.
Meyer
W
Castañeda
A
Jackson
S
Huynh
M
Castañeda
E
and the IberoAmerican Cryptococcal, study, group
(
2003
)
Molecular typing of IberoAmerican Cryptococcus neoformans isolates
.
Emerg Infect Dis
 
9
:
189
195
.
Nakagawa
K
Morishima
N
Shibata
T
(
1992
)
An endonuclease with multiple cutting sites, Endo.SceI, initiates genetic recombination at its cutting site in yeast mitochondria
.
EMBO J
 
11
:
2707
2715
.
Osiewacz
HD
Kimpel
E
(
1999
)
Mitochondrial-nuclear interactions and lifespan control in fungi
.
Exp Gerontol
 
34
:
901
909
.
Randhawa
HS
Kowshik
T
Khan
ZU
(
2003
)
Decayed wood of Syzygium cumini and Ficus religiosa living trees in Delhi/New Delhi metropolitan area as natural habitat of Cryptococcus neoformans
.
Med Mycol
 
41
:
199
209
.
Ruma
P
Chen
SC
Sorrell
TC
Brownlee
AG
(
1996
)
Characterization of Cryptococcus neoformans by random DNA amplification
.
Lett Appl Microbiol
 
23
:
312
316
.
Saul
N
Krockenberger
M
Carter
D
(
2008
)
Evidence of recombination in mixed-mating-type and alpha-only populations of Cryptococcus gattii sourced from single eucalyptus tree hollows
.
Eukaryot Cell
 
7
:
727
734
.
Saville
BJ
Kohli
Y
Anderson
JB
(
1998
)
mtDNA recombination in a natural population
.
P Natl Acad Sci USA
 
95
:
1331
1335
.
Sorrell
TC
Brownlee
AG
Ruma
P
Malik
R
Pfeiffer
TJ
Ellis
DH
(
1996
)
Natural environmental sources of Cryptococcus neoformans var. gattii
.
J Clin Microbiol
 
34
:
1261
1263
.
Speed
B
Dunt
D
(
1995
)
Clinical and host differences between infections with the two varieties of Cryptococcus neoformans
.
Clin Infect Dis
 
21
:
28
34
.
Stephen
C
Lester
S
Black
W
Fyfe
M
Raverty
S
(
2002
)
Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia
.
Can Vet J
 
43
:
792
794
.
Swofford
DL
(
2000
)
PAUP* 4.0: Phylogenetic Analysis Using Parsimony
 .
Sinauer Associates
,
Sunderland, MA
.
Tanaka
R
Nishimura
K
Miyaji
M
(
1999
)
Ploidy of serotype AD strains of Cryptococcus neoformans
.
Jpn J Med Mycol
 
40
:
31
34
.
Taylor
JW
Smolich
BD
May
G
(
1986
)
Evolution and mitochondrial DNA in Neurospora crassa
.
Evolution
 
40
:
716
739
.
Thompson
JD
Gibson
TJ
Plewniak
F
Jeanmougin
F
Higgins
DG
(
1997
)
The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
.
Nucleic Acids Res
 
24
:
4876
4882
.
Toffaletti
DL
Nielsen
K
Dietrich
F
Heitman
J
Perfect
JR
(
2004
)
Cryptococcus neoformans mitochondrial genomes from serotype A and D strains do not influence virulence
.
Curr Genet
 
46
:
193
204
.
Upton
A
Fraser
JA
Kidd
SE
Bretz
C
Bartlett
KH
Heitman
J
Marr
KA
(
2007
)
First contemporary case of human infection with Cryptococcus gattii in Puget Sound: evidence for spread of the Vancouver Island outbreak
.
J Clin Microbiol
 
45
:
3086
3088
.
Viviani
MA
Cogliati
M
Esposto
MC
Lemmer
K
Tintelnot
K
Colom
MF
Swinnen
D
Velegraki
A
Velho
R
and European Confederation of medical Mycology.
(
2006
)
Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe
.
FEMS Yeast Res
 
6
:
614
619
.
White
TJ
Bruns
T
Lee
S
Taylor
J
(
1990
)
Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics
.
PCR Protocols: A Guide to Methods and Applications
  (
Innis
MA
,
Gelfand
DH
,
Sninsky
JJ
White
TJ
, eds), pp.
315
322
.
Academic Press
,
San Diego
.
Xu
J
Ali
RY
Gregory
DA
Amick
D
Lambert
SE
Yoell
HJ
Vilgalys
RJ
Mitchell
TG
(
2000
)
Uniparental mitochondrial transmission in sexual crosses in Cryptococcus neoformans
.
Curr Microbiol
 
40
:
269
273
.
Yan
Z
Xu
J
(
2003
)
Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans
.
Genetics
 
163
:
1315
1325
.
Yan
Z
Xu
J
(
2005
)
Fungal mitochondrial inheritance and evolution
.
Evolutionary Genetics of Fungi
  (
Xu
J
, ed), pp.
221
252
.
Horizon Bioscience
,
Norfolk, UK
.
Yan
Z
Hull
CM
Heitman
J
Sun
S
Xu
J
(
2004
)
SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans
.
Curr Biol
 
14
:
743
744
.
Yan
Z
Hull
CM
Sun
S
Heitman
J
Xu
J
(
2007a
)
The mating type-specific homeodomain genes SXI1α and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans
.
Curr Genet
 
51
:
187
195
.
Yan
Z
Sun
S
Shahid
M
Xu
J
(
2007b
)
Environment factors can influence mitochondrial inheritance in the fungus Cryptococcus neoformans
.
Fungal Genet Biol
 
44
:
315
322
.
Yang
X
Griffiths
AJF
(
1992
)
Male transmission of linear plasmids and mitochondrial DNA in the fungus Neurospora
.
Genetics
 
134
:
1055
1062
.

Author notes

Present address: Eiko E. Kuramae, Netherlands Institute of Ecology, Centre for Terrestrial Ecology, 6666 ZG Heteren, The Netherlands.
Editor: Cletus Kurtzman