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Abstract: The US Department of Agriculture Forest Service’s focus on hazardous fuels reduction has increased
since the adoption of the National Fire Plan in 2001. However, appropriations for hazardous fuels reduction still
lag behind wildfire suppression spending. Offsetting fuels treatment costs through biomass utilization or by using
innovative administrative mechanisms such as stewardship contracting are two approaches to stretching appro-
priated dollars further across the landscape. We use fuels treatment data (n � 8,451 locations) to ask how wood-
processing infrastructure influences where and how much hazardous fuels treatments, biomass utilization, and
stewardship contracting occur on national forests in Oregon and Washington. We found that national forest
ranger districts that are relatively close in proximity to sawmills or biomass facilities treated more overall ha and
more wildland-urban interface ha and used stewardship contracting on more ha than ranger districts further away
and that there was a threshold distance for these effects (40 minutes). We also found that proximity to sawmills
and biomass facilities influenced the location and extent of hazardous fuels treatments that incorporated biomass
utilization or were administered through a stewardship contract. Our analysis suggests that to be effective at
offsetting some of the costs of hazardous fuels reduction and treat a greater extent of the landscape, policy
strategies may need to focus on supporting a network of wood-processing facilities that is distributed across
forest-based communities. FOR. SCI. 59(5):566–577.
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OVER THE PAST DECADE, severe wildland fire has
become a leading natural resource management
problem for the US Department of Agriculture

(USDA) Forest Service and the US Department of the Interior
(USDOI). The increasing length of the fire season, expansion
of the wildland-urban interface (WUI), the history of fire
suppression, and climate change have all contributed to this
trend (Theobald 2005, Running 2006, Westerling et al. 2006,
Gude et al. 2008). US Forest Service expenditures on fire
suppression have risen dramatically since the 1990s, averaging
more than $1.5 billion per year since 2000 (Prestemon et al.
2008, Gebert and Black 2012). The use of land management
strategies aimed to reduce the amount of hazardous fuels on the
landscape is one approach for preempting the need to so
dramatically prioritize wildfire suppression. Hazardous fuels
reduction includes land management activities that are de-
signed to alter fire behavior and cause wildland fires to burn
with less intensity and severity, reducing the threat they pose to
fire-adapted ecosystems, neighboring landowners, and home-
owners living in the WUI while in many situations contribut-
ing to forest restoration (Pollet and Omi 2002, Gude et al.
2008, Martinson and Omi 2008).

Federal wildfire policy now includes a major focus on
reducing hazardous fuels in the WUI and on federal lands

(Western Governors’ Association 2001, 2006). Hazardous fu-
els reduction has been a key issue for the Forest Service since
the adoption of the first congressional appropriations associ-
ated with the National Fire Plan in 2001. With this focus, the
Forest Service has developed performance measures to evalu-
ate the agency’s accomplishments and annual targets (USDA
2011). Yet, Forest Service appropriations for hazardous fuels
reduction have averaged approximately $300 million per year
between 2001 and 2010 (USDA 2010, 2011): for every dollar
spent on wildfire suppression, only 20 cents is appropriated for
hazardous fuels work. Nonetheless, from fiscal years 2001 to
2008 the major federal land management agencies reported
treating hazardous fuels on more than 10 million ha of feder-
ally managed land (Wildland Fire Leadership Council 2010).
The hectarage of hazardous fuels treated by the Forest Service
has generally increased since 2000, and the agency spent an
estimated $500 million on hazardous fuels reduction and re-
lated activities in fiscal year (FY) 2010 (approximately 24% of
the Wildland Fire Management budget and 9% of the agency’s
total discretionary budget; USDA 2011). However, on many
western national forests, fuels treatments cannot keep pace
with need (Donovan and Brown 2007, Morgan et al. 2011,
North 2012).

The cost of implementing hazardous fuels treatments
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creates a significant challenge for changing fire behavior
across large landscapes (Daugherty and Fried 2007). The
small-diameter wood and brush that pose the greatest risk
for catastrophic wildfire typically have limited commercial
value. Consequently, there is relatively little ability to draw
on traditional wood products markets to help offset the cost
of treatments (Evans 2008, Aguilar and Garrett 2009, Sund-
strom et al. 2012). The financial feasibility of transporting
small-diameter trees over long distances in regions such as
the western United States increases the challenge of finding
markets to help offset the costs of hazardous fuels treat-
ments with a revenue source (Daugherty and Fried 2007). In
an era when congressional funding is increasingly scarce
relative to the scope of the problem (Moseley and Reyes
2008) and traditional wood products markets are increas-
ingly costly to reach, how can the federal government
accomplish hazardous fuels reduction work in a cost-effec-
tive manner and reduce suppression costs, natural resource
damage, and fire risk to local communities?

Adding value to the materials generated from hazardous
fuels treatments continues to have the potential to improve the
financial margins on hazardous fuels reduction work but re-
quires market innovation, planning, and investment to create
value where it did not exist in the past. Use of stewardship
contracting is one way to undertake fuels reduction. Autho-
rized by Congress in the early 2000s, stewardship contacting
allows the Forest Service to sell goods (e.g., timber) and
purchase services (e.g., removal of hazardous fuels) in a single
contract, allowing for more comprehensive and cost-effective
treatment. Stewardship contracting can also help increase so-
cial agreement among forest stakeholders to proceed with
hazardous fuels reduction efforts that involve timber removal
because the stewardship contracting process incorporates
stakeholder collaboration (Moseley and Davis 2010, Becker
et al. 2011a). In addition, stewardship contracting can poten-
tially overcome the supply barrier to developing biomass uti-
lization infrastructure in which federal lands are the main
source of supply and unpredictable harvests have been a prob-
lem in the past (Hjerpe et al. 2009, Becker et al. 2011a).
Stewardship contracts can be awarded for up to 10 years,
increasing the certainty of supply.

In addition to stewardship contracting, policymakers,
forest managers, community organizations, and businesses
have been increasingly focused on biomass utilization. Bio-
mass utilization is often achieved by allowing businesses to
purchase the minimal value materials generated from haz-
ardous fuels projects. The income from sale of the minimal
value biomass can help to reduce the net costs of hazardous
fuels reduction while creating renewable energy and eco-
nomic development opportunities for rural communities
(Aguilar and Garrett 2009, Sundstrom et al. 2012). Biomass
may be used for thermal or electrical energy generation or
for small-diameter wood products; biomass may bring new
and emerging markets into forest management.

Both stewardship contracting and the increasing focus on
biomass utilization are strategies for reducing the net costs
of treating hazardous fuels that rely on the existence or
development of sawmills and biomass facilities with the
capacity to use biomass or small-diameter wood harvested
within a cost-effective distance. However, it has not been

empirically demonstrated whether and to what extent local
markets for biomass affect hazardous fuels reduction, nor is
it clear how close sawmills and biomass utilization facilities
need to be to treatment locations to affect hazardous fuels
reduction efforts. Transportation can be a significant com-
ponent of the costs associated with biomass utilization
(Young et al. 1988, Abbas et al. 2008, Becker et al. 2009,
Wu et al. 2011) and is often cited as a barrier, suggesting
that sawmills and biomass facilities located far from treat-
ment locations may not create viable markets for low-value
material (Becker et al. 2011a). Becker et al. (2009) sug-
gested that decreasing the proximity of markets to harvest
sites is the only strategy that will offset hazardous fuels
reduction costs in a meaningful way. Although there have
been numerous theoretical assessments of supply availabil-
ity (e.g., Daugherty and Fried 2007, Barbour et al. 2008,
Jones et al. 2010, Wu et al. 2011), actual empirical studies
of market influences are limited (however, see Evans 2008).

The objective of this article is to understand the role of
wood products markets in accomplishing hazardous fuels
reduction on national forest lands. Specifically, we examine
the hectarage of hazardous fuels treatments, the utilization
of biomass, and the administration of stewardship contracts
in relation to the location of sawmills and biomass facilities
in Oregon and Washington, USA. We consider three main
research questions:

1. Do forest managers on ranger districts that are located
in closer proximity to sawmills and biomass facilities
use biomass from more hectarage, administer steward-
ship contracts over greater areas, and treat more over-
all hectarage of hazardous fuels than those on ranger
districts located further away?

2. Within a given ranger district, does the location of
sawmills and biomass facilities influence where bio-
mass utilization, stewardship contracting, and other
hazardous fuels treatment activities occur?

3. Does a threshold exist beyond which the proximity to
sawmills and biomass facilities ceases to influence the
location and extent of biomass utilization, stewardship
contracting, and hazardous fuels treatments?

Materials and Methods
Study Area

The Oregon and Washington administrative region of the
Forest Service (Pacific Northwest Region, Region 6) includes
16 national forests and 66 ranger districts that encompass
approximately 10 million ha of Oregon and Washington.1 The
buildup of wildland fuels is increasingly recognized as a prob-
lem in Pacific Northwest forests, especially on the drier, more
fire-adapted East side of the Cascade Mountains and in south-
ern Oregon where forests have increasingly departed from their
historical fire regimes (Daugherty and Fried 2007). Manage-
ment treatments to reduce the impact of fuels on wildfire
hazard are common in these locations, as forest managers and
the public have increasingly reached agreement on the need to
mitigate wildfire hazard around communities and to restore
fire-adapted ecosystems.

Oregon and Washington have a long history of forest
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management and wood products industry infrastructure, in-
cluding sawmills and other facilities that convert wood to
energy. Both states also have enacted policies to develop
and support woody biomass-based energy capacity (Becker
et al. 2011b). The region also has an extensive network of
forest roads and highways and a workforce engaged in
natural resource management. Although the number of saw-
mills has declined over the past several decades, the pro-
ductive forests of western Oregon and Washington sup-
ported nearly 200 primary wood processing mills in 2005
(Prestemon et al. 2005, Spelter and Alderman 2005). Saw-
mill density is more sporadic east of the Cascade Moun-
tains, but mills remain important there for forest manage-
ment. Representative of many of the same challenges and
opportunities faced throughout the western United States
and nationally, the Pacific Northwest provides a microcosm
of forest diversity, management strategies, and distribution
of sawmills and biomass facilities.

Data Sources and Generation

To empirically test the relationship between the location
of wood products markets and implementation of hazardous
fuels treatments, we conducted an analysis based on three
spatial data sets: hazardous fuels treatment records, sawmill
and biomass facility locations, and a detailed road and
highway network for Oregon and Washington (Figure 1).

Hazardous Fuels Treatment Records

In October 2010, we obtained hazardous fuels treatment
records for Region 6 of the Forest Service for FY
2005–2010 from the National Fire Plan Operating and
Reporting System (NFPORS) and the Forest Service Activ-
ity Reporting System (FACTS). Forest Service data in
NFPORS are generated from the FACTS, the agency’s
performance tracking system. NFPORS was originally cre-
ated by the Forest Service and Department of Interior to
track National Fire Plan accomplishments. The data in-
cluded 16,649 treatment records for the two-state study
area. Each treatment record included attributes about the
location, size and type of treatment, funding source, admin-
istrative mechanism used to accomplish the treatment, and
time when the treatment was completed and information on
whether the treatment occurred in the WUI and whether
biomass from the treatment was used. We did not obtain
data on volume of biomass utilization or removal. We used
the latitude and longitude of the treatment locations to map
the activities in a geographic information system (GIS). For
quality control we excluded 25 treatment locations for
which the latitude/longitude was missing, was clearly input
incorrectly (e.g., 1N, �2W), or occurred outside of the
boundaries of Oregon and Washington. We also followed
the methodology of Schoennagel et al. (2009) and deleted
treatment locations that were duplicated more than 10 times
in a given year. Doing so eliminated 47 locations that were
recorded as the treatment location for more than 1,200
treatment observations. The remaining treatment records
included 99.2% of the original treatment locations, two-
thirds of which included only one treatment per location
per year. Last, because a number of administrative units

reported relatively few hazardous fuels treatments, we fo-
cused our analysis on national forest ranger districts that
reported more than 1,000 ha of hazardous fuels treatments
over the 6-year study period. This final step removed an
additional 431 treatment locations, leaving approximately
95% of the original treatment locations.

Primary Wood Processing and Utilization
Facilities

We developed a GIS data set of sawmills and biomass
utilization facilities as a proxy for wood products and wood
fuels markets. We included only the 197 sawmills and
34 biomass facilities that were in operation during the
2005–2010 time period represented by the treatment data.
To develop the facilities data set, we gathered data from a
number of secondary public and private sources, and
ground-truthed the data with assistance from the Oregon
Department of Forestry, the Washington Department of
Natural Resources, and key community and industry infor-
mants. For biomass facilities, we sourced facility locations
from the Oregon Department of Energy’s Oregon Bioen-
ergy Book (Oregon Department of Energy 2009), US States
Environmental Protection Agency’s eGRID database (US
Environmental Protection Agency 2010), and the Northwest
Power and Conservation Council’s biomass generation map
(Northwest Power and Conservation Council 2011). A list
of unique sawmills and wood energy facilities was created
based on information gathered from all sources, and each
facility was attributed with name, type, and location (latitude
and longitude). Facilities were then imported into a GIS and
mapped. Capacity data for the facilities were unavailable.

We included sawmills in our data set because many have
been retooled to process small-diameter trees (down to
7 in. in some cases) and because wood products processing
infrastructure and biomass energy facilities are often co-
dependent (Becker et al. 2011a). We did not include other
mill types (such as cedar and bark products, log furniture,
and post and pole) because many of these facilities have low
capacity and are geared toward smaller niche markets and
are therefore not comparable to sawmills and biomass fa-
cilities in creating market demand for forest products.

Roads and Highways

We obtained detailed digital GIS road and highway cover-
ages from the USDOI Bureau of Land Management Oregon
and Washington regional office (US Department of the Interior
2011). The data include more than 1.8 million road segments
for Oregon and Washington at the 1:24,000 scale and are
derived from a variety of sources including Bureau of Land
Management, Forest Service, US Geological Survey, digital
line graphics, state departments of transportation, counties, and
a variety of other state, federal, and local sources. We used the
ArcGIS integrate tool to perform one major preprocessing step
on the roads and highways layer (using a 0.00025-degree
cluster tolerance) to ensure that all road and highway segments
were spatially connected in the network. The integrate process
simplified the network slightly by merging road and highway
segments within about 15 m of each other. At this scale we
could not account for road closures.
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Generating Proximity Between Treatment
Locations and Facilities

We conducted a network analysis using ESRI’s ArcGIS
Network Analyst tool to generate travel distance and times
from treatment locations to facilities. To run the network
analysis, we first associated all treatment and facility loca-
tions with their closest point in the road network. Second, we
programmed all state highways and interstates with an aver-
age travel speed of 80 km/h, and all other roads with an

average travel speed of 40 km/h. We then selected the short-
est travel time route between each treatment location and a
sawmill or biomass facility. Although the choice of the two
travel speeds greatly oversimplifies reality, we made this de-
cision to increase the likelihood that the network analysis
preferentially generated routes between treatments and facili-
ties that used highways and interstates over other potentially
shorter distances, but longer travel time and more expensive
routes.

Figure 1. Travel time surface for hazardous fuel treatments (black circles) and sawmill and biomass
facilities (orange circles) in Oregon and Washington. National forest boundaries are outlined in green.
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We use the term proximity value to refer to the travel
time generated by the network analysis for each treatment
location to indicate that these results are proximate rather
than precise estimates of travel time. After the generation of
proximity values for each treatment location, we aggregated
the hectarage of hazardous fuels treated in 5-minute bands
of proximity to sawmills and biomass facilities (i.e., the
number of ha treated within 5 minutes, within 10 minutes,
within 15 minutes, and so on) (Figure 2) for each ranger
district. We do not infer or intend to imply that materials
generated from hazardous fuels treatments actually travel
these routes or even leave the treatment locations at all;
rather, we used the ha treated within given bands of prox-
imity to represent the general influence of industry infra-
structure on hazardous fuels treatments.

Data Analysis

We begin by summarizing the hazardous fuels treatment
data for Oregon and Washington according to the number
of treatment locations, total ha of treatments, ha of treatments
in the WUI, ha of treatments by type, ha from which biomass
was used, use of administrative mechanisms for accomplishing
treatments, and treatment proximity to facilities. For each field
we summarize the treatment data by geography (i.e., Oregon
versus Washington), fiscal year (i.e., 2005–2010), treatment
type, administrative mechanism, and market proximity.

To answer our first research question about whether ranger
districts that are closer to facilities conduct more hazardous
fuels treatments, use biomass from more treatments, and use
stewardship contracting for more treatments, we grouped
ranger districts into two groups. The first group included those
ranger districts in which the average proximity of treatments to
sawmills and biomass facilities was at or below the median
proximity for all ranger districts; all other ranger districts were

grouped into the second group. We provide a treatment sum-
mary for both the near and far districts and test whether ranger
districts with relatively close sawmills and biomass facilities
report more hazardous fuels treatments, more biomass utiliza-
tion, and more stewardship contracting than those farther away
using a Student’s t-test to determine whether the differences
between the groups are significant.

To answer our second research question about whether
treatment locations within ranger districts are influenced
by the location of sawmills and biomass facilities, we ex-
amined the hazardous fuels treatment data compiled into
5-minute bands of proximity to sawmills and biomass fa-
cilities. Our analysis is hierarchical, with the treatment data
nested within ranger districts. To account for the hierarchi-
cal nature of our data, we used the Mixed Linear Model
(MIXED) procedure in SAS. The random intercept regres-
sion model allows the regression model to vary by ranger
district and was specified as

yij � �0 � �1x1ij � . . . � �p xpij � �j � �ij , (1)

where yij is the ha treated in proximity band i on ranger district
j, �0 is the average intercept across all ranger districts, �1ij

. . .

�pij is the set of p slope coefficients for fixed effects x1ij
. . . xpij,

and �j are �ij are uncorrelated random error terms (with a mean
of 0 and variance parameterized by the data). �j can also be
interpreted as the random intercept coefficient that specifies for
a given ranger district the deviation in ha treated for that ranger
district from the average ranger district. In essence, the random
intercept corrects for differences in the magnitude of ha treated
by different ranger districts. We used this model specification
to create three regressions, each with different dependent vari-
ables: total ha treated, ha treated from which biomass was
used, and ha treated in which the treatment occurred using
stewardship contracting.

Our primary independent variable of interest was the prox-
imity bandwidth value. We first tested for the significance
of the proximity coefficient, expecting that, if significant, the
proximity coefficient would be negative, reflecting fewer treat-
ments occurring in areas further from facilities. We also in-
cluded the hectarage treated within the WUI as a covariate in
each regression so that any significant effects from proximity
could be attributed independently of forest manager WUI
preference. The Healthy Forest Restoration Act directs forest
managers to use no less than 50% of allocated hazardous fuels
funding to treat WUI areas (16 USC § 6513 (d)(1)(A)), and US
wildfire policy provides more general direction to give priority
to treatments in WUI areas over other areas (Vaughn and
Cortner 2005, Schoennagel et al. 2009). We also controlled for
the size of the ranger district (in ha) to ensure that our results
were not simply an artifact of larger ranger districts accom-
plishing more treatments. In both covariate cases, we tested for
the significance of the variables in explaining the hectarage of
hazardous fuels treatments at a given proximity to facilities,
expecting that if significant the covariate coefficient signs
would be positive, reflecting a positive relationship between
the reported hectarage of hazardous fuels treatments and pref-
erence for WUI and ranger district size. We also expected the
results of the random intercept model to affirm our first re-
search question, such that positive intercept values (i.e., more
treatment hectarage) would be associated with ranger districts

Figure 2. Conceptual diagram of hazardous fuels treatment
proximity to wood-using markets. Each black dot represents 1
acre treated and the treatment summary represents the num-
ber of acres treated within each bandwidth of time from the
wood-using sawmills and biomass facilities.
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with relatively nearby sawmills and biomass facilities, and
negative intercept values (i.e., less treatment hectarage) would
be associated with ranger districts that are relatively farther
away.

To answer our third research question, we examined the
concept of a threshold beyond which sawmills and biomass
facilities had no influence on hazardous fuels treatments. First,
to identify a potential threshold, we iteratively reran the ran-
dom intercept regressions. In the first iteration, we included
only those ranger districts for which the average proximity
value was greater than 20 minutes. In the second iteration, we
reran the random intercept regressions using only data from
ranger districts for which the average proximity value was
greater than 30 minutes, and so on in 10-minute increments
through 60 minutes. We expected that at some threshold of
proximity the effect of sawmill and biomass facility locations
would cease to influence the hectarage of hazardous fuels
treatments reported. Second, we examined the specific effects
of proximity on individual ranger districts by reprogramming
the random intercept regression to allow a full random effects
model, incorporating both random slopes and intercepts by
ranger district. We specified the new model similar to the
random intercept model but with the addition of a slope coef-
ficient estimated for each ranger district

yij � �0 � �1X1ij � . . . � �p Xpij � �0j

� �1jProximityij � �ij , (2)

where �0j is a random intercept coefficient for ranger district
j and �1j is the slope coefficient for the random effect of
proximity for ranger district j. We present the number of
random slope coefficients that were significant, the number
of ranger districts that were within the distance threshold, a
�2 test for association between the two, and the odds that
random slope coefficients are significant for ranger districts
within and outside the threshold.2

Results
Hazardous Fuels Treatments in Oregon and
Washington

We excluded 20 ranger districts that reported fewer than
1,000 ha of hazardous fuels treatments over the 2005–2010
study period from the analysis. Excluded ranger districts
reported an average of 460 ha treated per ranger district,
ranging from 2 to about 1,000 ha 14 of these ranger districts
were located west of the Cascade Mountains where wild-
fires are less common. Excluded districts did not exhibit
bias in the average proximity to mills.

The remaining 46 ranger districts reported a total of
328,940 ha of hazardous fuels reduction at 8,451 treatment
locations (Table 1), approximately 40% of which were re-
ported to occur in a WUI area (Figure 3A). Over three-quarters
of the reported hectarage treated occurred on forests in Oregon
east of the Cascade Mountains (Figure 3B). The hectarage of
reported hazardous fuels treatments increased from 12,576 ha
in fiscal year 2005 to more than 80,000 ha reported in fiscal
years 2009 and 2010 (Figure 3C). Administratively, the in-
house workforce accomplished the most treatment hectarage;
service contracts and timber sales were used to accomplish

the second and third most hectarage, respectively. Steward-
ship contracts were used to accomplish only about 3% of all
hectarage reported (Figure 3D). The majority of hectarage
treated was accomplished mechanically3 rather than with pre-
scribed fire or other methods (Figure 3E). Nearly two-thirds of
all reported hectarage treated occurred within approximately
50 minutes of sawmills and biomass facilities, yet some vol-
ume of biomass was used from only about 9% of the treated
hectarage (Figure 3F).

Do Closer Ranger Districts Conduct
Hazardous Fuels Treatments Differently than
Those Farther Away?

The average proximity to sawmills and biomass facilities of
the median ranger district was 43 minutes. Taken together, the
23 “closer” ranger districts reported nearly 75,000 more total
ha treated, 60,000 more ha treated in a WUI, more hectarage
from which biomass was used, and more hectarage adminis-
tered with a stewardship contract than the 23 ranger districts
for which the average treatment location was farther from a
facility than the median proximity (Table 2). Closer ranger
districts reported treating more than 8,500 ha on average;
ranger districts farther than the median proximity reported
treating only about 5,500 ha (t � 1.74; P � 0.08). These close
ranger districts also reported nearly 2.9 times the number of
ha treated in the WUI (t � 2.35; P � 0.02) and administered
more than 4.5 times the ha treated using stewardship contract-
ing (t � 1.94; P � 0.05) than their counterparts on ranger
districts far from sawmills and biomass facilities. Although
closer ranger districts also reported more biomass utilization,
the average hectarage of treatment from which biomass was
used did not significantly differ between the two groups of
ranger districts (t � 1.24; P � 0.22).

Mixed-effects regression results also support the finding
that ranger districts closer to sawmills and biomass facilities
conduct more total treatments, use biomass from a greater
number of their treated ha, and administer more ha of treat-
ments through stewardship contracts, even after controlling for
the number of ha treated in the WUI and the size of the ranger
district. As expected, random intercept values varied from
negative to positive, with closer ranger districts tending to have
greater intercept values and farther ranger districts having
smaller intercept values, indicating that ranger districts in
closer proximity to markets tend to do more overall treatments,
biomass utilization, and stewardship contracting.

Does Proximity to Facilities Influence Where
Hazardous Fuels Treatments Occur within a
Ranger District?

Travel times from treatment locations to the closest fa-
cility in our model ranged from less than 5 minutes to nearly
200 minutes and varied substantially by ranger district.
Proximity to sawmills and biomass facilities did not signif-
icantly influence where on a ranger district the hectarage of
all hazardous fuels treatments occurred. However, proxim-
ity did significantly influence where the hectarage treated
occurred from which biomass was used and for which
stewardship contracts were used (Table 3, Panel A). Prox-
imity regression coefficients for both the biomass utilization
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and stewardship contracting regression were negative, indi-
cating that within a given ranger district, fewer ha were
treated using these mechanisms as the distance to facilities
increased. The WUI was also a significant influence on each
of the models, indicating that WUI treatment ha positively
influence the total hectarage of treatments, biomass utiliza-
tion, and stewardship contracting. However, in the biomass
utilization and stewardship contracting models, the strength
of the influence of WUI was substantially smaller than the
influence of proximity, a further indication of the impor-
tance of nearby sawmills and biomass facilities for biomass
utilization and stewardship contracting. Ranger district size
did not significantly influence any of the three models.

Does a Threshold Exist Beyond which
Proximity to Facilities Has No Influence on
Hazardous Fuels Treatments?

The influence of proximity to sawmills and biomass
facilities on biomass utilization and stewardship contracting
was not consistently significant across all ranger districts.
Proximity ceased to influence biomass utilization and stew-
ardship contracting when we included only those ranger
districts for which the average treatment was greater than

40 minutes from a facility (Table 3, Panel B). In each of
these subset regressions, the results demonstrated patterns
of overall model fit similar to the full regression, with a
similar influence from the WUI treatments (remaining a
relatively smaller effect than proximity), and no significant
influences from ranger district size.

Reprogramming the regression model to allow the effect
of proximity to vary by ranger district (i.e., random slope
and random intercept models) helped to identify specific
ranger districts for which the influence of proximity to
sawmills and biomass facilities was a significant influence
on the variables of interest in this study. Most of the ranger
districts on which proximity influenced where hazardous
fuels treatments were located were within the 40-minute
threshold. We used a contingency table to cross-tabulate the
count of significant random slope coefficients and the count
of being within the 40-minute threshold to compare the odds
of having a significant slope coefficient relative to being
near to or far from market infrastructure (Table 4). Ranger
districts within the 40-minute threshold exhibited 5.3 times
greater odds of exhibiting a pattern of locating hazardous
fuels treatments disproportionately closer to sawmills and
biomass facilities (�2 � 4.03, P � 0.05) than those ranger
districts beyond the 40-minute threshold, which were more

Table 1. Hazardous fuels treatment attributes for Oregon and Washington reported by USDA Forest Service Region 6 to the
National Fire Plan Operating and Reporting System.

Treatment
locations

Total
treatments

WUI
treatments

Mechanical
treatments

Market proximity

�50 min �50 min

. . . . . . . . . . . . . . . .(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(ha) . . . . . . . . . . . . . . .

Total 8,451 328,940 126,427 175,953 218,904 110,036
Oregon

Eastside 5,210 213,851 64,422 116,091 152,986 60,865
Westside 1,139 43,519 15,521 25,558 31,174 12,345

Washington
Eastside 1,887 68,023 46,259 32,628 31,341 36,682
Westside 220 3,547 225 1,675 3,404 144

Fiscal years
2005 368 12,576 7,235 10,128 11,086 1,491
2006 484 21,830 6,485 11,416 12,593 9,237
2007 1,728 66,768 24,434 32,105 41,056 26,522
2008 1,619 58,591 22,921 28,895 35,544 23,048
2009 1,993 87,285 33,982 46,147 63,368 23,917
2010 2,259 81,889 31,370 47,261 55,259 26,630

Treatment types
Prescribed fire 2,651 145,174 49,139 12,111 82,420
Mechanical thinning 4,780 103,602 42,687 76,172 27,430
Other mechanical 2,705 55,512 29,358 44,129 11,384
Forest harvest 666 16,839 2,310 12,111 4,728

Other treatments 146 7,814 2,932 4,073 3,741
Administrative mechanism

In-house workforce 3,260 147,626 60,148 23,742 88,805 58,822
Service contracts 3,363 92,243 40,095 86,945 68,615 23,628
Timber sale 1,465 42,149 11,484 42,139 31,775 10,374
Stewardship contract 183 10,850 4,398 10,419 9,045 1,805
Grants and agreements 36 4,347 3,641 4,016 3,380 966
Other mechanisms 125 31,724 6,661 8,692 17,284 14,440

Market proximity
�50 min 5,923 218,905 93,750 132,412 218,904 -
�50 min 2,528 110,036 32,676 43,541 - 110,036
Biomass utilized 1,218 31,007 11,129 29,760 22,504 8,504

Only ranger districts that treated more than 1,000 ha are included. The 20 ranger districts that treated fewer total acres averaged 459 ha treated over the
6-year study period; 14 of these 20 ranger districts were westside ranger districts.
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likely to locate hazardous fuels treatments randomly with
respect to the distance to market infrastructure.

Biomass utilization also exhibited a meaningful pattern.
Of the ranger districts within the 40-minute threshold,
45% (9 of 20) exhibited a significant effect of proximity to
sawmills or biomass facilities on biomass utilization,
whereas only 15% (4 of 26) of ranger districts beyond the
threshold exhibited this effect (�2 � 4.55, P � 0.03).
Finally, proximity to sawmills and biomass facilities
strongly influenced the use of stewardship contracting. Ev-
ery ranger district for which there was a significant rela-
tionship between proximity and the location of hazardous
fuels treatments administered by stewardship contracting
was within the 40-minute threshold (�2� 10.36, P � 0.01).
These observed patterns indicate that proximity to market
infrastructure can play an important role in hazardous fuels
treatment decisions, especially for forest managers within
reach of market infrastructure.

Discussion

The task of making hazardous fuels treatments more
cost-effective to reduce wildfire risks to communities and
forest resources rests heavily on adding value to the mate-
rials generated from hazardous fuels reduction. Markets can

help offset the costs of hazardous fuels treatments through
the utilization of woody biomass and other small-diameter
materials generated from treatments (Becker and Viers
2007). We examined hazardous fuels reduction accomplish-
ments on national forests in Oregon and Washington to
investigate whether the location of sawmills and biomass
facilities affected the number of ha treated, the location of
treatments, and the types of treatments and mechanisms
used to accomplish hazardous fuels reduction. We also
examined how close sawmills and biomass facilities need to
be to national forests to significantly influence hazardous
fuels reduction accomplishments.

We found that although nearly two-thirds of hazardous
fuels treatments were located within about 60 km (about
50 minutes) of sawmills and biomass facilities, biomass was
used from only about 9% of the hectarage treated. Forest
managers on ranger districts that were closer than the me-
dian ranger district to sawmills and biomass facilities re-
ported significantly higher overall treatment hectarages,
more treated ha in the WUI, and more use of stewardship
contracting. In addition, although not statistically signifi-
cant, these ranger districts also used biomass from 70%
more total ha; the greater hectarage constituted a similar
proportion of their total treatment area (Table 2).

Figure 3. Summary of hazardous fuels treatment characteristics on national forests in Oregon
and Washington between fiscal years 2005 and 2010.
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Mixed-effects regression also confirmed that ranger dis-
tricts closer to infrastructure conduct more total treatments,
do more treatments that use biomass, and do more treat-
ments with stewardship contracts than those further away.
The threshold for these effects was 40 minutes. Proximity
influenced total ha treated on only 2 of 26 districts that were
further than 40 minutes from a facility. Proximity did not
influence the area of treatments from which biomass was
used or for which stewardship contracting was used beyond
40-minutes travel time.

Proximity to sawmills and biomass facilities also in-
fluenced where treatments occurred within a ranger dis-
trict, especially for biomass utilization and stewardship
contracting and especially on ranger districts close to saw-

mills and biomass facilities. Hazardous fuels treatments
on ranger districts within 40 minutes of sawmills and bio-
mass facilities were more than 5 times as likely to exhibit
a significant relationship between the hectarage of haz-
ardous fuels treated and the proximity of those ha to saw-
mills and biomass facilities and 4 times as likely to ex-
hibit a significant relationship between the hectarage from
which biomass was used and the proximity of those ha to
sawmills and biomass facilities. All ranger districts in
which there was a significant relationship between the
hectarage of stewardship contracting and the proximity
of those ha to sawmills and biomass facilities were less
than 40 minutes on average from sawmills and biomass
facilities.

Table 3. Mixed-effects regressions of proximity on respective dependent variables controlling for ha of treatments within the WUI
and national forest size, with random intercept summary by national forest ranger district (Panel A) and subset regressions
indicating that proximity for biomass utilization and stewardship contracting ceases to be significant on ranger districts where the
average treatment is >40 minutes from a sawmill or biomass facility (Panel B).

Dependent variable
Total acres treated
for hazardous fuels

Acres from which
biomass was used

Acres administered by
stewardship contracting

Panel A
Parameters: coefficient
Intercept (fixed) 272.73† 102.20 47.34
Proximitya �0.71 �0.49* �0.36†
WUI 1.20‡ 0.08‡ 0.02†

District size �0.00 ��0.00 �0.00
Random intercept average (range) 0.00 (�375.20 to 431.99) 0.00 (�72.98 to 185.82) 0.00 (�27.88 to 117.07)
Model fit (�2) 39.31‡ 55.80‡ 58.45‡
R2 (predicted versus observed) 0.63 0.32 0.29
Panel B: proximity coefficientb

Average proximity (no. of ranger districts)
�20 min (n � 44) �0.50* �0.36†
�30 min (n � 35) �0.55* �0.37*
�40 min (n � 26) �0.08 0.03
�50 min (n � 15) �0.08 �0.08
�60 min (n � 11) �0.27 �0.03

a Proximity is the modeled travel time from treatment locations to sawmills or biomass facilities. Negative coefficients indicate that greater travel times
result in fewer ha treated.
b Subset regressions were not conducted on total acres treated because proximity was not a significant influence in the overall regression.
* P � 0.05.
† P � 0.01.
‡ P � 0.001.

Table 2. Summary of hazardous fuels treatment attributes grouped by those ranger districts that reported treatments closer to and
further from market infrastructure than the median ranger district (43 minutes).

Ranger districts close
to facilities

Ranger districts far
from facilities

No. of ranger districts 23 23
Median treatment proximity to market (minutes) 32 55
Total treatments (ha for all ranger districts)

Treated 201,097 (100%) 127,843 (100%)
Treated in the WUI 93,769 (47%) 32,657 (26%)
Biomass utilization 19,446 (10%) 11,562 (9%)
Stewardship contracting 8,907 (4%) 1,944 (2%)

Average treatments (ha per ranger district)
Treated* 8,743 (100%) 5,558 (100%)
Treated in the WUI† 4,077 (47%) 1,420 (26%)
Biomass utilization 859 (10%) 506 (9%)
Stewardship contracting† 387 (4%) 85 (2%)

Only ranger districts that treated more than 1,000 ha are included. The 20 ranger districts that treated fewer total acres averaged 459 ha treated over the
6-year study period; 14 of these 20 ranger districts were westside ranger districts.
* P � 0.10 (t-tests for differences in average acres treated between groups).
† P � 0.05.
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The 40-minute proximity threshold equates to an approx-
imate 40-km distance threshold. The 40-minute threshold
finding should not be taken as generalizable, however; the
specific threshold of this distance is likely to vary across
regions and time, depending on treatment and transportation
costs (Evans 2008), as well as on road speed, product value,
subsidies, and other factors. A distance of 40 km is shorter
than what others have indicated could be economically
viable. Wu et al. (2011) indicated that certain logging sys-
tems could generate economically viable biomass utilization
even at haul distances of up to about 70 km, and Jones et al.
(2010) found that economic viability in some cases could
extend beyond 128 km. Our finding of a 40-minute prox-
imity threshold is the result of our assumed road network
speeds. Although our road network travel speed assump-
tions oversimplify reality, they serve to identify the most
efficient transportation routes. Furthermore, we did not ex-
amine biomass utilization volumes, which could affect the
travel distance and time that is financially feasible. The key
finding is that there are thresholds beyond which distance to
infrastructure ceases to affect hazardous fuels reduction
activities, and these thresholds can be calculated for partic-
ular places and circumstances. Future efforts to estimate the
effect of proximity on treatment locations may more di-
rectly identify thresholds through the use of nonlinear mod-
els that asymptote at the point where the distance to a
facility ceases to make the treatment economically viable.

Our analysis also suggests that the markets represented
by sawmills and biomass facilities have the most potential
to impact hazardous fuels management and biomass utili-
zation on the forests they are most close to and that any
market influence on hazardous fuels treatments is limited at
longer distances. Furthermore, although the use of steward-
ship contracting is relatively rare, stewardship contracting
is most common when nearby markets exist, allowing the
goods produced from stewardship contracting to obtain their
highest value. Although mostly common sense, these results
have important implications for areas far from existing
market infrastructure, i.e., distance matters.

Furthermore, our analysis suggests that wood products
and biomass energy facilities that are distributed across the

landscape rather than centralized will make it easier for
forest managers to harness powers of the market in address-
ing the high costs of hazardous fuels treatments. Policy
strategies that rely on adding value to the materials gener-
ated from these treatments are most likely to be successful
if sawmills and biomass facilities are in sufficiently close
proximity to the materials they are expected to use. The
current distribution of sawmills and biomass facilities
leaves much of the east side of Oregon and Washington too
far away from markets to efficiently offset costs and add
value to biomass generated from hazardous fuels treatments
(Figure 1). Yet the dry, fire-adapted forests of the Pacific
Northwest region east of the Cascade Range is where haz-
ardous fuels management will continue to be a dominant
issue into the future. A centralized system of sawmills and
electrical generation facilities is not likely to be an econom-
ically or ecologically feasible approach to solving this prob-
lem (Kumar et al. 2003, 2008). In contrast, a network of
multiple processing facilities strategically distributed across
forest-based communities could be more effective for off-
setting some of the costs of hazardous fuels treatments and
increasing the number of acres treated and the frequency of
biomass utilization from hazardous fuels reduction on
Forest Service lands. Such facilities would need to be of a
size and type appropriate to the local resource base and
community.

The economic and market development barriers to bio-
mass utilization are commonly cited challenges to making
biomass utilization relevant in a hazardous fuels context
(Aguilar and Garrett 2009, Becker et al. 2011a, Sundstrom
et al. 2012). Policy incentives and the development of
biomass utilization infrastructure have been identified as
high priorities among national forest managers and staff,
state foresters, and others (Aguilar and Garrett 2009, Sund-
strom et al. 2012). Our findings offer one interpretation of
why adding value to biomass generated from hazardous
fuels treatments is a challenge: markets for the materials
may have relatively little reach and that reach will probably
shrink to the extent that it is influenced by increasing
transportation costs (Jones et al. 2010). However, from
these results, we also find guidance for addressing the

Table 4. Cross-tabulation results of the number of ranger districts within the 40-minute proximity threshold and the number for
which the random proximity slope coefficient is significant.

Parameter
Total hazardous
fuel treatments Biomass utilization Stewardship contracting

A. No. of ranger districts for which average
treatment proximity is less than 40 min

20 20 20

B. No. of ranger districts for which
proximity coefficient is significant

10 13 7

Number of ranger districts meeting both
criteria A and B

8 9 7

�2 statistic 4.03* 4.55* 10.36†
Odds of significance for ranger districts �40

min (90% CI)
5.31 (1.23–22.84) 4.30 (1.34–13.74)

Odds of non-significance for ranger districts
�40 min (90% CI)

2.56 (0.91–7.14) 2.13 (1.04–4.36) 1.54 (1.17–2.01)

Odds ratios significantly greater than 1 indicate that ranger districts within the 40-minute threshold from market infrastructure have a greater likelihood of
being responsive to the influence of the market. CI, confidence interval.
* P � 0.05 for Fisher’s exact test of �2 probability.
† P � 0.01.
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problem through facilities that may be more feasible to site,
finance, and develop in a distributed network at an appro-
priate scale and of a type suitable to local needs, assets, and
annual volume of biomass supply that is available within
a feasible transportation distance. For example, small- and
medium-scale electrical generation (less than 15 mW), pel-
let production, and thermal energy facilities may feasibly
address existing energy demands (Zerbe 2006, Daugherty
and Fried 2007, Neary and Zieroth 2007). Schools, hospi-
tals, and industrial processes are common applications
where replacement of existing petroleum-based heating
systems provides opportunities to substitute imported fuel
sources with local ones that have the cobenefits of offsetting
the cost of hazardous fuels treatments and promoting local
community economic development (Becker and Viers 2007).

We also recognize several limitations in our analysis. We
only examined hazardous fuels treatment completed by the
Forest Service. Incorporation of treatments completed on
other federally managed lands and those completed on state
and private lands would paint a more comprehensive picture
of the extent of hazardous fuels treatment across the land-
scape and how industry infrastructure influences where
those treatments occur. We also had no temporal data on
mill operations. Although our mill data set was compiled for
those facilities that were open during the period of the study,
there was no guarantee that those mills operated at full
capacity and without shutdowns during the study period.
Understanding facility capacity and operations would allow
for more precise estimates of the influences of those facil-
ities on hazardous fuel treatments. Finally, we were only
able to examine the area treated but not the volumes of
material treated or used. We know of no readily available
data that would link treatment locations, areas, and vol-
umes. Collecting and maintaining volume-based data that
are linked spatially to treatment records would greatly en-
hance our understanding of the market’s ability to influence
the location of treatments, offset treatment costs, and facil-
itate treatment of a greater extent of the landscape.

Conclusions

In sum, this study finds that proximity to sawmills and
biomass facilities has a significant influence on the number
of acres treated for hazardous fuels reduction on national
forest lands and on the number of acres treated in the WUI.
It also finds that proximity to infrastructure increases bio-
mass utilization from fuels treatments and use of steward-
ship contracting to accomplish treatments. There are thresh-
olds beyond which distance to infrastructure ceases to affect
hazardous fuels reduction activities, however; the threshold
in this study was 40 minutes or about 40 km. This threshold
is likely to vary by place and circumstance. These results
confirm that distance to infrastructure matters for hazardous
fuels reduction, that transportation costs are important as an
economic constraint in the production of forest-based prod-
ucts and energy (Abbas et al. 2008, Becker et al. 2011, Wu
et al. 2011), and that transportation costs are a critical factor
bearing on the ability to harness market forces in hazardous
fuels reduction. Our data do not draw from beyond Oregon
and Washington, making our findings most applicable to

our study region. Nevertheless, we believe that the general
pattern we found—that the influence of markets on hazard-
ous fuels treatments diminishes with distance—is probably
applicable elsewhere (Wu et al. 2011).

In Oregon and Washington, fuels reduction needs are
greatest east of the Cascades; however, infrastructure is
concentrated west of the Cascades, making it largely too far
away to offset costs and add value to material generated
from fuels treatments. If solving this problem by adding
value to high-cost hazardous fuels treatments byproducts is
an important policy goal, our results indicate that markets
for wood products and biomass energy need to be developed
in a distributed, rather than centralized, network across
forest-based communities. Ideally, this network of facilities
would be appropriately sited, scaled, and typed according to
local environmental, social, and economic circumstances.
Public policy that provides incentives for developing such a
network of wood products and biomass utilization infra-
structure could be an important contribution to an effective
program of reducing wildfire risks across the western
United States.

Endnotes

1. Ranger districts are territorial subdivisions of national forests that
constitute the smallest administrative decision unit on the National
Forest System.

2. Readers interested in the full random intercept, random slope model
results should contact the lead author.

3. We aggregated treatment types into two main categories: mechanical
and prescribed fire. All treatments that used fire were captured in the
prescribed fire category, including broadcast burning, pile burning, fire
use, and others. All treatment that used human labor and human-op-
erated equipment were included in the mechanical category, including
thinning, mastication, chipping, lop and scatter, machine piling, and
others. Undefined treatments and livestock grazing treatments were
aggregated into a third category: other.
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