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Imputing Forest Structure Attributes from Stand
Inventory and Remotely Sensed Data in Western
Oregon, USA
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Janet L. Ohmann

Imputation is commonly used to assign reference stand observations to target stands based on covariate relationships to remotely sensed data to assign inventory
attributes across the entire landscape. However, most remotely sensed data are collected at higher resolution than the stand inventory data often used by operational
foresters. Our primary goal was to compare various aggregation strategies for modeling and mapping forest attributes summarized from stand inventory data, using
predictor variables derived from either light detection and ranging (LiDAR) or Landsat and a US Geological Survey (USGS) digital terrain model (DTM). We found that
LiDAR metrics produced more accurate models than models using Landsat/USGS-DTM predictors. Calculating stand-level means of all predictors or all responses proved
most accurate for developing imputation models or validating imputed maps, respectively. Developing models or validating maps at the unaggregated scale of individual
stand subplots proved to be very inaccurate, presumably due to poor geolocation accuracies. However, using a sample of pixels within stands proved only slightly less
accurate than using all available pixels. Furthermore, bootstrap tests of similarity between imputations and observations showed no evidence of bias regardless of
aggregation strategy. We conclude that pixels sampled from within stands provide sufficient information for modeling or validating stand attributes of interest to
foresters.
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Operational forest managers and planners are constrained to
use the forest inventory data available to them, collected
on the ground and remotely. Most inventory data are in

the form of traditional stand inventories, which provide a reliable
measure of forest stocks at the stand level. Not all stands need to be
measured on the ground to provide a useful landscape-level inven-
tory (Moeur and Stage 1995, McRoberts 2008, Hudak et al. 2012).
Remotely sensed data can be used to predict stand attributes in
unmeasured stands. The predictive model associates the stand struc-
ture attributes of interest, or response variables, to predictor vari-
ables derived from the remotely sensed data. The remotely sensed
data most often used come from Landsat, which is free and available
globally, or similar types of multispectral satellite imagery. Increas-
ingly, light detection and ranging (LiDAR) survey data are used
where available, because LiDAR’s increased sensitivity to canopy
structure variation usually allows for more accurate predictions than

is possible from Landsat, albeit at a cost for collecting the LiDAR
data.

Forestry applications using LiDAR are moving from the research
to operational realms, but many operational foresters remain de-
terred by the usually high initial costs of collecting LiDAR data and
the specialized processing tools and expertise required (Hummel et
al. 2011). Even if foresters were to universally adopt LiDAR-based
forest inventory methods, however, there would remain a huge
amount of underutilized legacy data in the form of traditional stand
inventories. Stand inventory data may lack the spatial detail afforded
by LiDAR but nevertheless accurately represent forest conditions
measured on the ground. Forest planners summarize stand inven-
tory data and consider management alternatives using the Forest
Vegetation Simulator (FVS) (Dixon 2002, Crookston and Dixon
2005) or similar growth-and-yield models. Such models are broadly
used to fill in the temporal intervals between stand inventories,
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whereas imputation models are commonly used to fill in the spatial
gaps between inventoried stands. It is incumbent on the forestry
research community to develop modeling approaches that make
good use of existing stand inventory data, growth-and-yield projec-
tions, and stand imputation methods, even as newer technologies
(such as LiDAR) and tools (such as growth projection and imputa-
tion modeling software) become available.

A traditional stand inventory is composed of a number of sub-
plots; the number is conditioned on the variability in forest condi-
tions sampled to represent the stand. More often than not, stand
inventory subplot locations are not recorded in the field with the
same accuracy or precision as forest inventory plot locations de-
signed for LiDAR-based model calibration and validation. Plots
established to calibrate or validate LiDAR are by design fixed-radius
plots that allow for more accurate tallying of forest attributes within
a defined area, whereas stand inventory subplots may use variable-
radius sampling, fixed-radius plots, or a combination of these and
other sampling methods. Fixed-radius plots typically take longer to
characterize than variable-radius plots, so not as many fixed-radius
plots can be installed across a forested landscape for the same cost.
Hummel et al. (2011) found that the accuracy and cost of LiDAR-
based inventories using fixed-radius plots for training data were
comparable to those of traditional stand inventories using variable-
radius subplots. This cost-benefit analysis did not include other
benefits of LiDAR: the availability of LiDAR over a larger area than
was characterized in the stand units sampled; the higher spatial
resolution of pixel-based maps derived from LiDAR compared with
polygon-based stand maps; and the added benefits of LiDAR data
for other applications besides forestry, such as road planning and
hydrology.

Whereas modelers may have little choice in what type of data are
available (LiDAR or Landsat, plot-level or stand-level), they do have
more flexibility in choosing a modeling method. Regression models
have been broadly used but are typically limited to univariate re-
sponses, which break associations between the independently pre-
dicted stand attributes of interest (Tomppo et al. 2008). Imputation
methods are often preferred for operational use because they pre-
serve associations between multiple stand attributes of interest in the
sample units (e.g., stands) provided that k � 1, with k representing
the number of nearest neighbors (Moeur and Stage 1995, McRob-
erts 2008). Nine nearest neighbor (NN) selection techniques are
available in the yaImpute package (Crookston and Finley 2008) of
the R statistical software suite (R Core Team 2012). Using k � 1,
Hudak et al. (2008, 2009) found that the method based on random
forest (RF) classification trees was most accurate for k-NN imputa-
tion of coniferous forest structure attributes from LiDAR metrics.
Two alternative methods in package yaImpute that have been
widely and successfully applied for k-NN imputation are most sim-
ilar neighbor (MSN) (Moeur and Stage 1995), which uses canonical
correlation analysis and gradient nearest neighbor (GNN) (Ohm-
ann and Gregory 2002), which uses canonical correspondence anal-
ysis. MSN has often been the chosen method to impute stand struc-
ture attributes from reference stands to target stands (Moeur and
Stage 1995, Temesgen et al. 2003); GNN is used for the same
purpose but also to impute species-level or plant community re-
sponses along regional environmental gradients (Ohmann and
Gregory 2002, Ohmann et al. 2011, Wilson et al. 2012). We view
all three as alternative k-NN methods in that they use alternative
methods of computing the distance between reference observations

and target observations. In the simplest case where k � 1, they also
can be referred to as three-neighbor selection methods.

The Oregon Department of Forestry (ODF) possesses stand-
level inventory data across a sizeable portion of state forest lands in
Tillamook District, northwestern Oregon, USA (Figure 1). ODF
currently uses FVS for operational forest planning and seeks to
incorporate k-NN imputation methods into its forest inventory sys-
tem for the purpose of improving the accuracy, confidence, and
utility of its forest inventory estimates. The goal of this study is to
test alternative methods of using ODF’s available forest inventory,
LiDAR, Landsat, and US Geological Survey (USGS) elevation data
sets. Our first objective is to compare the GNN, MSN, and RF
methods of k-NN imputation and choose the most accurate method
with which to proceed using LiDAR or Landsat/USGS-digital ter-
rain model (DTM) predictors. Based on the findings of Hudak et al.
(2008), we hypothesize that RF would be the most accurate neigh-
bor selection method using either LiDAR-derived metrics or
Landsat/USGS-DTM-derived variables. Our second objective is to
compare the accuracies of imputation methods formulated at the
level of inventory stands, inventory subplots, and a hybrid approach
of “stand samples.” We hypothesize that the stand-level approach
will be most accurate. Our third objective is to compare three vali-
dation strategies for imputed map pixels, again at the stand, subplot,
and stand sample levels. We hypothesize that aggregating all im-
puted pixels within reference stands will be most accurate.

Methods
Study Area

The study area (Figure 1) encompasses ODF’s Tillamook Dis-
trict, about 102,000 ha located in northwest Oregon west of the
Oregon Coast Range crest (45.06�45.81° N and 123.43�123.96°
W). The area is within the Coast Range, Volcanics ecoregion (Thor-
son et al. 2003). Predominant soils are gravelly loam of igneous
origin (Soil Survey Staff 2013). The landscape is dominated by
steep, dissected slopes commonly exceeding 80%. Elevations range
from near sea level to �1,000 m (Oregon State Service Center for
GIS 1997). The climate is characterized by cool wet winters and
relatively dry warm summers. Average daily temperature was 5° C in
the winter to 15° C in the summer for the period between 1981 and
2010. For the same time period, average annual precipitation was
about 200 cm at lower elevations to nearly 500 cm at higher eleva-
tions. Most precipitation occurs as rain in the winter months with
some snow accumulating at the upper elevations (Wang et al. 2012).

The western edge of the study area is within the Sitka spruce
(Picea sitchensis) vegetation zone, whereas the majority of the site is
within the western hemlock (Tsuga heterophylla) vegetation zone
(Franklin and Dyrness 1973). A series of intense fires between 1933
and 1951 burned through much of the study area. Salvage logging
and rehabilitation efforts including tree planting and aerial seeding
occurred through the 1970s. Consequently, the bulk of the forest is
relatively young with varying levels of stocking. Predominant coni-
fer species include Douglas-fir (Pseudotsuga menziesii), western hem-
lock (Tsuga heterophylla), Sitka spruce (Picea sitchensis), western red-
cedar (Thuja plicata), and others occurring less frequently. Typical
hardwood tree species include red alder (Alnus rubra) and bigleaf
maple (Acer macrophyllum). Hardwoods occur throughout the forest
but are concentrated along riparian zones and within large patches
in low-lying areas (ODF 2009, 2010).
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Inventory Data

ODF’s stand level inventory (SLI) was originally designed to
support stratified double sampling (ODF 2004). Stands of similar
vegetation and topographic characteristics were delineated and as-
signed a stratum identifier according to predominant tree species,

size class, and estimated stocking. A line plot cruise was used to
collect vegetation estimates for a random sample of stands within
each stratum (Figure 2). A combination of variable and fixed-radius
plots, centered on the subplot location, were used to sample
vegetation data. Large live trees and snags (defined as standing

Figure 1. Location of the Tillamook study area in northwestern Oregon, USA. The southern, straightline edge of the color-shaded area
is the southern boundary of Landsat TM Path/Row 47/28 containing 2007–2010 Landsat time series images processed with LandTrendr.
LiDAR data south of this boundary were not included in the analysis. The background image is a 2006 multiscene LandTrendr-derived
tasseled cap brightness image of broader extent.
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dead trees �1.37 m dbh), with dbh �13.7 cm, were measured
within a variable-radius plot. The basal area factor was held constant
within a stand and was chosen before initiation of a cruise so that
approximately 8–10 live trees would be selected per subplot. Small
trees (6.1 cm � dbh � 13.7 cm) were sampled within a 5.2-m fixed
radius subplot. Seedlings and saplings (dbh �6.1 cm) were sampled
within a 2.4-m fixed-radius subplot. Nontree vegetation was sam-
pled with a 7.3-m fixed-radius subplot. Finally, a 30.5-m planar
transect, originating at the subplot center location and extending in
a random direction, was used to sample downed wood; downed
wood pieces were tallied if �91 cm in length and �15.2 cm in
diameter on either end. In some stands, snags were sampled within
a fixed-radius plot, and the small tree and sapling plot radius varied.
These deviations occurred on �5% of the selected stands.

The following is a summary of data collection procedures fully
described in the SLI Field Guide (ODF 2004). All data were re-
corded with electronic data recorders using custom software devel-
oped in-house by ODF staff. The collection software included rou-
tines for error checks and selection of subsample candidate trees
consistent with the SLI Field Guide. Species, dbh, and visible dam-
age were recorded for each tree and snag on a subplot. Height was
recorded for all trees �10 cm dbh. Large tree height was estimated
from a local regression curve fit to a subsample of at least three trees
for each species and across the dbh range of a stand. Total height,
percent live crown, and crown class were recorded for the height

sample trees. Stand-level site index was estimated from a subsample
of at least three dominant or codominant trees of the most common
species. Site sample trees were measured for total height and an
increment core was taken to estimate age at breast height. Species,
length, small end diameter, diameter at intercept, and large end
diameter were recorded for each downed wood piece. Decay class
and wildlife use codes ( Johnson 1998, ODF 2004) were recorded
for all snags and downed wood pieces. Species, percent cover, and
average height were recorded for nontree vegetation. Slope, aspect,
elevation, plant association, slope position, and other condition
codes were recorded for each subplot. All sample tallies were ex-
panded to per acre values by the data collection software before
being imported into the inventory database.

Sampling intensity was determined before data collection ac-
cording to perceived uniformity within the stand, resulting in 9–25
subplots per stand. Stand boundaries were updated after harvest
operations and other disturbances. Subplots were removed from the
inventory data if they no longer represented the stand. The remain-
ing subplots were assumed to represent the unaltered portion of the
stand and were retained in the inventory database to support forest
operation planning. Of 5,872 stands on state forest lands in
Tillamook District (Figure 1), 2002–2010 inventory data were
available in 1,122 (19% of the stands), 2007–2010 LiDAR data
were available in 4,334 (74% of the stands), and 2007–2010 Land-
sat and USGS-DTM data were available in all stands. Details about

Figure 2. Close-up view of a portion of the Tillamook study area showing estimated subplot locations in reference stands. The
background image is a true-color 2011 image from the National Agriculture Imagery Program.
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how these data sets were processed are described in the following
sections.

Growth Projection
The Pacific Northwest Coast variant (Keyser 2008) of the FVS

(Dixon 2002) was used to estimate stand and subplot conditions for
the years of the LiDAR collection. FVS projections were made at
both the stand and stand subplot levels. Subplot site variables (ele-
vation, slope, aspect, and site index) were used to initialize the FVS
projections. Averages of the subplot site values were computed for
the stand-level projections. Previous work by ODF (2006) found
that the species default values in FVS for maximum stand density
index (SDI) and maximum dbh for red alder, resulted in unrealistic
growth and mortality estimates. Therefore, the following species
level modifiers were added to the FVS projections to maintain con-
sistency with previous ODF growth-and-yield projects: a maximum
SDI of 720 was used for western hemlock, 300 for red alder, and 600
for all other species; a maximum dbh of 61 cm was also specified for
red alder. A projection of each stand and subplot was made for each
of the LiDAR collection years with the growth cycle length set as the
difference between the inventory collection year and the LiDAR
collection year. Only stands sampled during or before a given
LiDAR collection year could be projected. It is recognized that some
bias may be incurred by using growth cycles shorter than the FVS
standard of 10 years. However, no assessment or correction of this
bias was performed for this study. Regeneration and ingrowth were
not included in the FVS projections.

Downed wood samples collected with SLI were converted to tons
per acre for input into FVS. Cubic foot volume by size class was
computed for each downed wood piece using a conical frustum
volume formula for all downed wood pieces. Weight was calculated
by multiplying the computed volume times the specific gravity
(Miles and Smith 2009) of the sample species. The specific gravity of
Douglas-fir was used for samples of unknown species. No adjust-
ment was made for decay class. Downed wood estimates from SLI
were limited to size classes �15.2 cm, and FVS defaults were as-
sumed for the smaller size classes.

FVS was used to summarize projected stand and subplot data,
and the Fire and Fuels Extension (FFE) was used to generate esti-
mates of snags, downed wood, and other forest biomass pools and
their carbon loads (Rebain 2010). The nine “standard” FVS stand
summary variables with broad utility in forestry were selected a
priori as the response variables to impute with the exception of
board feet (Table 1). Because board feet is not the same as merchant-
able volume and does not have an easy equivalent in metric units,
total carbon from the FFE carbon report was selected instead as a
more useful response variable with broad ecological utility. Only
trees of �5.1-cm dbh were included in the FVS summaries of trees
per hectare (TPH), basal area (BA), and quadratic mean diameter
(QMD).

The 2010 inventory included the largest number of reference
stands (n � 1,122), as newly inventoried stands were added to the
geodatabase every year beginning in 2002. There were 856 reference
stands with coincident LiDAR data collected in either 2007, 2008,
2009, or 2010. Matching the inventory growth year to the LiDAR
collection year resulted in 309 reference stands matched in 2007, 59
stands matched in 2008, 241 matched in 2009, and 247 in 2010.
That left 266 reference stands situated completely outside the extent
of the 2007–2010 LiDAR surveys; 2010 stand summaries were
matched to just the Landsat/USGS-DTM data in these cases. Some

2010 reference stands that were new to the inventory (n � 168) were
matched to LiDAR (and Landsat) data collected in one of the earlier
years.

Remotely Sensed Data
LiDAR

ODF has been collecting LiDAR data to support various agency
projects and objectives in earnest since 2007. LiDAR acquisition has
typically occurred opportunistically in cooperation with adjacent land-
owners or other federal and state agency projects. LiDAR data within
the study area were collected under three separate cooperative agree-
ments: first in 2007, second in 2008–2009, and third in 2010 (Table
2). There is a degree of overlap in the acquisition dates between the
2008 and 2009 deliveries; data within the 2009 delivery were wholly
acquired during 2009, whereas portions of the 2008 delivery were ac-
quired during both years (Watershed Sciences 2009).

LiDAR data were delivered as classified binary (.las) files pro-
jected in Oregon State Plane units of feet and the 1983 North
America Datum (NAD83). Each .las file represented a square tile on
the landscape. The large number of tiles dictated that they be sub-
divided into five batches, with the 2007 LiDAR tiles (the largest
coverage) divided into two batches, whereas the 2008, 2009, and
2010 LiDAR tiles were processed as separate batches. The lastile
utility of LAStools (Isenburg 2012) was used to retile the .las tiles
into 1 � 1-km tiles with a 6.1-m overlap to preclude edge artifacts
on subsequent interpolation of a seamless DTM from the classified
ground returns, using the GridSurfaceCreate utility of FUSION
(McGaughey 2012). Canopy height, intensity, density, and topo-
graphic metrics (Table 3) were calculated at 10 � 10-m resolution
using the FUSION LTK batch processor. The output ASCII text
files were converted to image rasters. The outer 30 m of all rasters
was trimmed to eliminate edge artifacts in some metrics along the
edges of the four delivery areas (Figure 1), before mosaicking of the
rasterized metrics derived from the four LiDAR surveys across the
entirety of the study area.

Landsat/USGS-DTM
Landsat image data (30 m) and a 10-m USGS-DTM were avail-

able across the entire study area (Figure 1). Landsat Thematic
Mapper (TM) time series images in Path/Row 47/28 were obtained

Table 1. Nine forest structure attributes chosen as response vari-
ables for the study, summarized with FVS at the stand level (n �
1,122).

Response variable Minimum
1st

quartile Median Mean
3rd

quartile Maximum

TPH (trees/ha) 0.0 368.3 516.6 591.3 714.0 5,116.9
BA (m2/ha) 0.0 32.5 40.4 40.7 48.0 100.8
SDI 0.0 261.0 310.0 319.7 370.8 937.0
CCF 4.0 194.0 237.0 236.1 279.0 500.0
Ht (m) 0.6 26.5 30.0 29.7 33.8 53.3
QMD (cm) 0.0 26.9 31.9 32.4 36.9 68.9
TVol (m3/ha) 0.0 308.8 405.1 428.9 508.1 1,635.4
MVol (m3/ha) 0.0 243.4 328.4 352.5 426.8 1,454.0
TCarb (tonnes/ha) 44.9 210.7 259.6 262.1 306.6 686.0

TPH, trees per ha; BA, basal area; SDI, stand density index; CCF, crown
competition factor; Ht, height; QMD, quadratic mean diameter; TVol, total vol-
ume; MVol, merchantable volume; TCarb, total carbon.
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from the USGS open Landsat archive and already had subpixel
geolocation accuracy, so no further geometric processing was re-
quired. Atmospheric effects were mostly removed using the cosine-
theta (COST) correction of Chavez (1996) as implemented by Schr-
oeder et al. (2006) to a single reference image in the time series.
Cloud-free pixels in the other images in the time series were then
normalized to the COST image using multivariate alteration detec-
tion and calibration (MADCAL) algorithms from Canty et al.
(2004). After normalization of the time series, the Landsat tasseled
cap transformation as defined by Crist (1985) for reflectance data
was applied, producing the brightness, greenness, and wetness tas-
seled cap indices for all images in the time series. Further Landsat
image preprocessing details are available in Kennedy et al. (2010).

The LandTrendr image time series analysis tool is designed to
quantify multiple disturbances of varying duration and magnitude
(Kennedy et al. 2010). Fits of the three tasseled cap bands at an
annual timestep minimize phenology and similarly transient sources
of intra-annual spectral variation, resulting in a more accurate char-
acterization of the scene than would be captured by any individual
image from the time series for a given year (Kennedy et al. 2010).
Which of the four sets of 2007–2010 fitted tasseled cap bands to use
for a given stand was conditioned on the collection year of the
2007–2010 LiDAR, so that the Landsat tasseled cap indices used
were matched to the collection year of the LiDAR where available or
otherwise the 2010 Landsat tasseled cap indices. Topographic met-
rics were calculated from the USGS-DTM using an ERDAS Imag-
ine add-on tool developed at the USFS Remote Sensing Applica-
tions Center (Ruefenacht 2014).

The 10-m resolution USGS-DTM topographic metrics were re-
sampled to 30 m to match the spatial resolution of the tasseled cap
indices from LandTrendr (Table 3). Single pixel values at estimated
subplot locations and zonal means of pixels within stand polygons
were extracted in ArcGIS.

Predictor Variable Selection
The RF method available in the yaImpute R imputation package

builds a set of classification trees (a forest) for each response variable
(Crookston and Finley 2008) by calling the RF of Breiman (2001)
as implemented by Liaw and Wiener (2002) in the randomForest
package of R. The RF method is currently unique among the neigh-
bor selection methods (including GNN and MSN) available in
yaImpute in that it takes advantage of the bootstraping process in
randomForest, thus helping development of more rigorous models

for two reasons. First, randomForest at each iteration extracts a 33%
out-of-bag random sample of the observations with replacement, to
compare against predictions. Second, randomForest at each itera-
tion randomly samples predictor variables from the pool of candi-
date variables to assess the effect on model error rate. Together, these
features are highly effective for preventing model overfit (Breiman
2001, Liaw and Wiener 2002). Variable importance values are gen-
erated by testing how much prediction error increases when a tested
variable is purposely randomized with respect to its actual observa-
tions. The idea is that if addition of noise to the data does not
increase the prediction error, then the variable must not be very
important, but if the error increases, then the information carried by
the variable must be important in making accurate predictions.
Predictor variable importance scores are computed separately for
each forest because each forest is a separate predictor for each re-
sponse variable. These scores are in the unit of measure of the indi-
vidual variable and are not comparable between forests. To pro-
vide for a reasonable way to rank the overall importance of
variables among the forests, they are centered by subtracting their
mean and scaled by dividing by the corresponding SD and reported
as scaled importance scores (SISs). Boxplots of SISs calculated on the
considered predictor variables and sorted on mean SIS decline
asymptotically.

In this study, the mean SIS of the most important 8–10 predictors
was stable between randomForest runs comprising 500 regression trees.
By iteratively running the randomForest selection procedure with vary-
ing combinations of the candidate predictors and assessing SISs, we
determined that 8–10 variables most effectively balanced parsimony
and predictive power. Fewer variables than this tended to yield lower
correlation between predicted and observed values, whereas more vari-
ables only increased correlations marginally. We manually removed
highly redundant variables and reran the procedure until we were sat-
isfied that our choice (and quantity) of predictors was appropriate. We
would thus characterize our “guided” approach as a mixture of quanti-
tative and qualitative methods. For consistency, nine predictors were
selected for both the LiDAR and Landsat/USGS-DTM models to sim-
plify comparisons between the different models and for the added ap-
peal of symmetry with the nine chosen response variables. When
LiDAR data were available, nine LiDAR metrics were selected as pre-
dictors from 75 candidate metrics. Across the whole study area, nine
predictor variables composed of LandTrendr tasseled cap and USGS-
DTM-derived topographic variables were selected from 21 candidate
variables (Table 3).

Table 2. LiDAR collection parameters and quality estimates reported by the vendor.

Collection year 2007 2008 2009 2010

Customer Puget Sound LiDAR Consortium Oregon LiDAR Consortium Oregon LiDAR Consortium Oregon Department of Geology
and Mineral Industries

Acquisition dates Apr. 27, 2007–May 11, 2007 Oct. 23, 2008–June 15, 2009 Apr. 16, 2009–June 15,2009 Jan. 3, 2010–July 14, 2010
Sensor Leica ALS50 phase II Leica ALS60 Leica ALS60 Leica ALS60 and ALS50 phase II
Altitude (m AGL) 900 900 900 900 and 1,300
Scan angle (°) �14 �15 �15 �14
Flight line side-lap (%) 50 60 60 50
Pulse rate (kHz) �105 93–99 93–99 �105
First return density

(points/m2)
7.71 8.61 8.61 9.17

Ground return density
(points/m2)

0.71 0.96 0.96 1.06

Average absolute accuracy
(m RMSE)

0.03 0.03 0.03 0.03

AGL, above ground level; RMSE, root mean square error.
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Imputation
Neighbor Selection

The GNN, MSN, and RF neighbor selection methods in the R
package yaImpute were tested for imputing the nine response vari-
ables summarized at the stand level using FVS (Table 1). For brev-
ity, we decided a priori to use only the most accurate of the stand-
level GNN, MSN, or RF models to pursue the remaining objectives
of this study. Accuracy was assessed using the scaled root mean
square difference (RMSD) between imputations and observations

(Stage and Crookston 2007, Hudak et al. 2008), computed for a
single response variable as follows

RMSD � ��i�1
n 	Ii � Oi


2/n�0.5

(1)

where Ii is the imputed value of a variable, Oi is the observed value,
and n is the number of reference observations. Scaled RMSD is
computed by dividing RMSD by the SD of the variable computed

Table 3. Candidate LiDAR metrics and Landsat/USGS-DTM variables considered for imputation modeling.

LiDAR metrics Landsat and USGS-DTM variables

1. Height and intensity metrics 1. Landsat indices
HMIN, IMIN; height, intensity minimums Brightness;a tasseled cap band 1
HP01; height 1st percentile Greenness;a tasseled cap band 2
HP05; height 5th percentile Wetness;a tasseled cap band 3
HP10; height 10th percentile 2. USGS-DTM variables
HP20; height 20th percentile DTM;a elevation
HP25,a IP25; height, intensity 25th percentiles Slope;a slope
HP30; height 30th percentile Aspect, aspect
HP40; height 40th percentile Trasp, transformed aspect solar radiation index (Roberts and

Cooper 1989)
HMED, IMED; height, intensity medians PlanCurv;a planiform curvature
HP60; height 60th percentile ProfCurv;a profile curvature
HP70; height 70th percentile Curv; total curvature (PlanCurv � ProfCurv)
HP75, IP75; height, intensity 75th percentiles SlpCosAsp;a slope � cosine(Aspect) (Stage 1976)
HP80; height 80th percentile SlpSinAsp;a slope � sine(Aspect) (Stage 1976)
HP90; height 90th percentile RelSlpPos;a relative slope position
HP95; height 95th percentile Convolve; DTM convolution derivative
HP99; height 99th percentile FocalDiv; focal division
HMAX,a IMAX; height, intensity maximums HeatLoad; head load index (McCune and Keon 2002)
HMEAN, IMEAN; height, intensity means LandBolstad; landform Bolstad (Bolstad and Lillesand 1992)
HSTD, ISTD; height, intensity standard deviations LandMcNab; landform McNab (McNab 1989)
HVAR, IVAR; height, intensity variances SurfArea; surface area
HCV, ICV; height, intensity coefficients of variation SAGAR; surface area to ground area ratio
HSKEW, ISKEW; height, intensity skewnesses TRI; terrain ruggedness index (Riley et al. 1999)
HKURT, IKURT; height, intensity kurtoses
HAAD, IAAD; height, intensity average absolute deviations
HIQ, IIQ; height, intensity interquartile ranges
HMODE, IMODE; height, intensity modes
HL1, IL1; height, intensity 1st L-moments (Hosking 1990, Wang 1996)
HL2, IL2; height, intensity 2nd L-moments (Hosking 1990, Wang 1996)
HL3, IL3; height, intensity 3rd L-moments (Hosking 1990, Wang 1996)
HL4, IL4; height, intensity 4th L-moments (Hosking 1990, Wang 1996)
HLCV, ILCV; height, intensity L-moment coefficients of variation (Hosking 1990, Wang 1996)
HLSKEW, ILSKEW; height, intensity L-moment skewnesses (Hosking 1990, Wang 1996)
HLKURT, ILKURT; height, intensity L-moment kurtoses (Hosking 1990, Wang 1996)
HMADmed; height median of absolute deviations from overall median
HMADmode; height mode of absolute deviations from overall median
CRR; canopy relief ratio (Pike and Wilson 1971)

2. Density metrics
Pct1stAboveBH; percentage 1st returns above breast height
Pct1stAboveMean;a percentage 1st returns above height mean
Pct1stAboveMode; percentage 1st returns above height mode
PctAllAboveBH; percentage all returns above breast height
PctAllAboveMean; percentage all returns above height mean
PctAllAboveMode; percentage all returns above height mode
Stratum0; percentage all returns � 0.15 m
Stratum1;a percentage all returns �0.15 and �1.37 m
Stratum2; Percentage all returns �1.37 m and �5 m
Stratum3;a Percentage all returns �5 and �10 m
Stratum4;a Percentage all returns �10 and �20 m
Stratum5;a Percentage all returns �20 and �30 m
Stratum6;a Percentage all returns �30 m

3. Topographic metrics
TopoElev;a elevation
TopoSlope; slope
TopoAsp; aspect
TopoPlan; planiform curvature
TopoProf; profile curvature
TopoSolar; solar radiation index

a Selected predictor variables.
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over the reference observations. Paired t-tests were used to assess
whether differences in RMSD values calculated and scaled across the
response variables were significant between the different stand-level
models.

Model Development
Three modeling strategies were tested in this study (Figure 3A).

The default strategy was the stand model, which was to use FVS to
summarize the response variables in each stand, calculate the mean
of predictor variable pixels within each stand, and model at the stand
level. The stand sample model was to use FVS to summarize the
response variables in each stand (exactly as with the stand model),
calculate the stand-level mean of the predictor variable pixels sam-
pled at estimated subplot locations, and model at the stand level.
The subplot model was to summarize the response variables at every
subplot, extract the predictor variable pixel values at estimated sub-
plot locations, and model at the subplot level, treating the subplots
as independent sample units (although the term “subplots” will
continue to be used rather than “plots” because stands are, in fact,
the sample units). An independent model validation was performed

by splitting the full data set in half, fitting the model based on half
the data, and then applying the model to the other half of the data.

Map Validation
The best LiDAR and Landsat/USGS-DTM models were used to

impute the response variables at 30-m resolution with the yaImpute
package. Next, three validation strategies were tested for comparing
mapped response variables to reference data, which are very nearly
identical to the model strategies just described (Figure 3B). The
default strategy was stand validation, which was to calculate the
mean of all imputed pixels within each stand and compare with
the stand-level reference data. The stand sample strategy was to cal-
culate the stand-level mean of response variable pixels sampled at the
estimated subplot locations and compare these with the stand-level
reference data. The subplot strategy was to extract imputed response
variable pixel values at estimated subplot locations and compare
these with the subplot-level reference data. A simple linear regres-
sion was fit for each response variable at the stand, stand sample, and
subplot levels of aggregation, with observed values modeled as a
function of imputed values, using the function lm (Chambers 1992)

Figure 3. Schematic diagram illustrating the strategies used to impute reference data from remotely sensed data (A) and to validate
imputed maps back against the reference data (B).
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of R. The residual standard error (RSE) for these simple linear
regressions was computed as follows

RSE � ��i�1
n 	ŷi � yi


2/	n � 2
�0.5

(2)

where ŷi is the predicted value, yi is the observed value, and n is the
number of observations � 2 for the 2 df lost to estimating the
slope b1 and intercept b0 parameters of the simple linear model, ŷi �
b1yi � b0.

A problem with calculating the arithmetic mean of imputed
QMD pixels is that it can diverge from the quadratic mean in stands
where tree stem diameters are highly variable (Curtis and Marshall
2000). Therefore, we calculated QMD as follows

QMD � 100 ���i�1
n BAi/n����i�1

n TPHi/n��0.5

(3)

where BA (m2/ha) and TPH (1/ha) are the pixel values, and n is the
number of pixels (either all pixels or a sample of pixels correspond-
ing to the number of stand subplots). This is equivalent to the
formula used by FVS to calculate stand-level QMD from subplot-
level BA and TPH, rather than the arithmetic mean.

Bias and Disproportionality
Bias and disproportionality of imputations relative to reference

observations were assessed using the equivalence package of R, with
observations regressed on imputations in 100 bootstrap iterations
of a simple linear model to test null hypotheses of dissimilarity in
both the intercept and slope terms (Robinson et al. 2005, Robinson

2010). The equivalence tests of these null hypotheses of dissimilarity
are based on bootstrapping to provide more rigorous evidence that
the intercept does not significantly differ from 0 and the slope does
not significantly differ from 1 and therefore can be considered un-
biased and proportional, respectively. The half-length of the region
of similarity was set to the default value of 0.25 relative units in the
equivalence package, for both the intercept and slope terms, and the

Figure 4. Scaled importance values of nine selected predictor variables (Table 3), derived from either LiDAR (A) or multitemporal Landsat
and a USGS DTM (B) using RF imputation. Variables are sorted by mean scaled importance in ascending order from top to bottom.

Figure 5. Scaled RMSD values calculated at reference stands from
GNN, MSN, or RF imputation models developed to predict nine
forest structure attributes at the stand level, using nine predictor
variables derived from either LiDAR or multitemporal Landsat and
a USGS DTM. Each boxplot displays scaled RMSD values calculated
across the nine response variables. Different letters indicate signif-
icant differences (� � 0.05) as determined from paired t-tests.
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default significance level of 0.05 was also used. All statistics pre-
sented in this article were calculated using R statistical software (R
Core Team 2012).

Results
Variable Selection

Nine predictor variables were selected to predict the nine re-
sponse variables from either LiDAR-based or Landsat/USGS-
DTM-based imputation models. Based on the SIS values, HMax
was the most important predictor in the LiDAR model, whereas
Wetness was the most important predictor in the Landsat/USGS-
DTM model (Figure 4). Because highly redundant predictors (i.e.,
Pearson correlation r � 0.9) had been excluded from both models,
the highest Pearson correlation between predictors in the case of the
LiDAR model was r � 0.84 (HMax and Stratum6), whereas in the
case of the Landsat/USGS-DTM model it was r � 0.89 (Greenness
and Brightness).

Neighbor Selection
The best neighbor selection method among the GNN, MSN,

and RF techniques tested was RF, which, according to paired t-tests,
exhibited significantly lower scaled RMSD values for the response
variables than either GNN or MSN. The GNN and MSN methods
performed with similar accuracy using LiDAR metrics, whereas
MSN model RMSD values were significantly lower than GNN
model RMSD values using Landsat/USGS-DTM predictors. More-
over, the imputation models based on LiDAR metrics were invari-
ably more accurate than those based on Landsat/USGS-DTM vari-
ables (Figure 5). These results supported our first hypothesis that the
RF method would be most accurate, so the RF method was chosen
to meet the remaining modeling and mapping objectives of this
study.

Model Development
Stand-level imputation of the response variables proved much

more accurate in terms of the RMSD than subplot-level imputation,
using either LiDAR metrics or Landsat/USGS-DTM variables (Ta-
ble 4). Less markedly, the stand strategy was also more accurate than
the stand sample strategy, supporting our second hypothesis. Height
predicted from LiDAR was the one exception for which the stand
sample strategy was slightly more accurate than the stand strategy
(Table 4).

Figure 6. Scaled RMSD values calculated using RF imputation
based on all available stands (same RF models as in Figure 5)
versus a limited RF model based on 50% of the available stands
versus the other 50% of the stands withheld to validate the
limited RF model. Each boxplot displays scaled RMSD values
calculated across the nine response variables. Different letters
indicate significant differences (� � 0.05) as determined from
paired t-tests.

Table 4. Unscaled imputation model RMSD and imputed map RSE statistics for imputing nine response variables using either LiDAR
metrics or Landsat/USGS-DTM variables as predictor variables.

Response variable

Model RMSD Map RSE

Stand Stand sample Subplot Stand Stand sample Subplot

LiDAR
n 856 847 14,055 856 847 14,312
TPH (trees/ha) 336.97 354.05 715.84 286.69 302.57 644.18
BA (m2/ha) 9.91 9.95 23.01 9.17 9.71 20.84
SDI 88.23 87.44 181.92 76.53 79.03 164.53
CCF 56.86 57.82 142.80 51.96 55.10 126.25
Ht (m) 3.68 3.61 7.85 3.21 3.39 7.04
QMD (cm) 7.15 7.94 17.09 5.89 6.12 15.36
TVol (m3/ha) 132.06 134.49 277.25 117.00 126.82 254.27
MVol (m3/ha) 115.77 116.78 243.47 101.01 110.78 221.76
TCarb (tonnes/ha) 59.59 61.14 116.78 51.40 54.94 107.21

Landsat/USGS-DTM
n 1,122 1,122 19,100 1,122 1,122 19,364
TPH (trees/ha) 387.18 447.04 777.13 290.06 316.63 635.90
BA (m2/ha) 11.74 14.46 23.60 11.28 11.66 21.14
SDI 97.37 113.26 182.20 84.73 88.74 162.96
CCF 65.37 70.60 141.19 57.12 59.08 124.79
Ht (m) 5.39 7.28 9.05 5.07 5.47 8.35
QMD (cm) 8.73 10.04 18.95 7.00 7.55 15.69
TVol (m3/ha) 160.47 219.78 299.41 161.19 166.60 270.57
MVol (m3/ha) 144.29 203.13 268.95 145.51 150.28 241.02
TCarb (tonnes/ha) 70.25 88.77 121.56 64.39 66.25 109.43

Both model and map data were summarized at the stand, stand sample, and subplot levels (Figure 3). TPH, trees per ha; BA, basal area; SDI, stand density index; CCF,
crown competition factor; Ht, height; QMD, quadratic mean diameter; TVol, total volume; MVol, merchantable volume; TCarb, total carbon.
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Model and Map Validation
The stand-level data set was split in half to validate the stand-level

model beyond the systematic bootstrapping approach implemented
by RF. Comparison of the scaled RMSD values between the full
models, based on either all stands with LiDAR data (n � 856) or all
stands with Landsat/USGS-DTM data (n � 1,122), versus the same
model forms based on half the number of stands, revealed only a
slight decrease in accuracy that was not significant, according to
paired t-tests. However, applying the reduced models to impute
values for the withheld validation stands resulted in significant in-
creases in RMSD for the LiDAR model (mean of 15.2%) and the
Landsat/USGS model (mean of 14.2%), according to paired t-tests
(Figure 6).

Having been established as the most accurate, the stand-level
models were used to map the response variables at 30-m resolution.
These maps were validated at three levels of aggregation (Figure 3B);
imputed map accuracies at the three aggregation levels were very
consistent with the imputation model accuracies described in the
preceding subsection. Stand-level validation was consistently the
most accurate in terms of the RSE, supporting our third hypothesis
(Table 4).

The stand-level aggregation of pixels reduced the variance of
the aggregated map imputations about the mean relative to refer-
ence observations, causing the scatter plots to pull away from the 1:1
line compared with the model imputations plotted against the same
reference data (Figures 7 and 8). This departure of aggregated im-
putations from the 1:1 line was most noticeable for the relatively

poorly-predicted QMD and least noticeable for the relatively well-
predicted Ht, whereas BA exhibited an intermediate level of depar-
ture from the 1:1 line.

Bias and Disproportionality
Equivalence tests demonstrated that none of the model imputa-

tions were biased for any response variable, under any modeling
strategy, based on either LiDAR metrics (Table 5) or Landsat/
USGS-DTM predictors (Table 6). Data from the stand and stand
sample map validations were also uniformly unbiased with respect
to the reference data (Tables 5 and 6).

Compared with tests for estimated bias, the tests for dispropor-
tionality produced more mixed results, although the slopes of the
relationship between model imputations and observations at the
stand level were consistently �1 (below the slope region of similar-
ity). Disproportionality at the stand and stand sample levels was less
pronounced if LiDAR metrics were used than if Landsat/USGS-
DTM predictors were used and higher for less accurately predicted
variables such as TPH, SDI, crown completion factor, and QMD
than for more accurately predicted variables such as BA, height, total
volume, merchantable volume, and total carbon. At the subplot
level, all imputations were disproportionately below the slope region
of similarity (Tables 5 and 6).

Although modeled imputations were uniformly below the slope
region of similarity to varying degrees, the slopes of the relationship
between aggregated map pixel imputations and observations were
generally �1, with more aggregated imputations within or slightly

Figure 7. Imputed versus observed scatterplots of three forest structure attributes predicted from nine selected LiDAR metrics using RF to
impute stands with all LiDAR metrics pixels (A), stands with a sample of LiDAR metrics pixels (B), all response pixels aggregated to the
stand level (C), and a sample of response pixels aggregated to the stand level (D). The 1:1 lines are also plotted.
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above the slope region of similarity. This was an unanticipated,
beneficial effect of aggregation whether the LiDAR-derived maps or
the Landsat/USGS-DTM-derived maps were used. At the subplot
level of validation, there was no aggregation of imputed pixels, so the
relationships maintained their disproportionality below the slope
region of similarity. Predictions below the slope region of similarity
equate to underprediction of stands at the high end of the response
variable gradient and overprediction at the low end, which is anal-
ogous to regression to the mean (Robinson et al. 2005). Only TPH
predicted from LiDAR and Landsat/USGS-DTM and aggregated at
the stand level exhibited the opposite condition, for which a major-
ity of predictions fall above the slope region of similarity; i.e., over-
prediction of stands at the high end and underprediction at the
low end.

Discussion
The RF method of neighbor selection proved more accurate than

the GNN or MSN methods, corroborating the findings of Hudak et
al. (2008, 2009). The bootstrapping nature of RF may be the best
explanation for its flexibility and utility. The MSN method was
developed to impute stand structure attributes (Moeur and Stage
1995), yet RMSD errors of MSN were not significantly lower than
those from GNN (Figure 5), which was designed to impute species-
level or plant community-type responses along environmental gra-
dients (Ohmann and Gregory 2002, Ohmann et al. 2011). More
generally, the accuracy differences between these methods are prob-

ably less than the accuracy to be gained by setting k �1 (Muinonen
et al. 2001, McRoberts et al. 2002). A consequence of using k �1
nearest neighbors is that it reduces the variance in imputations rel-
ative to that in observations (Franco-Lopez et al. 2001), although
from a practical standpoint, aggregating imputed pixels to the stand
level had a similar smoothing effect (i.e., compare mapped stands to
modeled stands) (Figures 7 and 8). Had any estimated biases been
significant in this study (Tables 5 and 6), the yaImpute package does
offer a bias correction option to select other nearest neighbors that
minimize the estimated bias from among k alternative nearest neigh-
bors. A similar strategy might one day be developed to reduce dis-
proportionality. The default settings in the equivalence package
served our purposes to test for significant bias and disproportional-
ity, but we advise the user to consider changing these significance
thresholds if a stricter or looser interpretation would fit their partic-
ular application more practically.

The RMSD and RSE statistics (Table 4) used to assess modeled
and mapped imputation accuracies, respectively, are reported in the
unscaled units of the response variables. The two statistics are not
exactly comparable, because the RSE from a regression model will
tend to be less than the RMSD from an imputation model even if
based on the same data, because the variance of regression predic-
tions is lower than that of imputations based on a single nearest
neighbor (McRoberts et al. 2002, Tuominen et al. 2003, Stage and
Crookston 2007, Eskelson et al. 2009). Aggregating the map pixels
within stands averaged out much of the variability, thus decreasing

Figure 8. Imputed versus observed scatterplots of three forest structure attributes predicted from nine selected Landsat/USGS-DTM
predictors using RF to impute stands with all Landsat/USGS-DTM pixels (A), stands with a sample of Landsat/USGS-DTM pixels (B), all
response pixels aggregated to the stand level (C), and a sample of response pixels aggregated to the stand level (D). The 1:1 lines are
also plotted.
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Table 5. Regression-based equivalence tests of estimated bias (intercept) and disproportionality (slope), generated from 100 bootstraps
of observations regressed on imputations at the stand, stand sample, and subplot levels, as predicted from LiDAR metrics.

Response variable

Proportion of simulation in
intercept region of similarity

Decision

Proportion of simulation in
slope region of similarity

DecisionBelow Within Above Below Within Above

LiDAR model imputations
Stands (n � 856)

TPH (trees/ha) 0 1 0 Similar 0.54 0.46 0 Weakly dissimilar
BA (m2/ha) 0 1 0 Similar 0.03 0.97 0 Similar
SDI 0 1 0 Similar 0.81 0.19 0 Weakly dissimilar
CCF 0 1 0 Similar 0.86 0.14 0 Weakly dissimilar
Ht (m) 0 1 0 Similar 0 1 0 Similar
QMD (cm) 0 1 0 Similar 0.66 0.34 0 Weakly dissimilar
TVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
MVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
TCarb (tonnes/ha) 0 1 0 Similar 0.06 0.94 0 Weakly similar

Stand samples (n � 847)
TPH (trees/ha) 0 1 0 Similar 0.71 0.29 0 Weakly dissimilar
BA (m2/ha) 0 1 0 Similar 0.02 0.98 0 Similar
SDI 0 1 0 Similar 0.88 0.12 0 Weakly dissimilar
CCF 0 1 0 Similar 0.95 0.05 0 Weakly dissimilar
Ht (m) 0 1 0 Similar 0 1 0 Similar
QMD (cm) 0 1 0 Similar 0.98 0.02 0 Dissimilar
TVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
MVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
TCarb (tonnes/ha) 0 1 0 Similar 0.09 0.91 0 Weakly similar

Subplots (n � 14,055)
TPH (trees/ha) 0 1 0 Similar 1 0 0 Dissimilar
BA (m2/ha) 0 1 0 Similar 1 0 0 Dissimilar
SDI 0 1 0 Similar 1 0 0 Dissimilar
CCF 0 1 0 Similar 1 0 0 Dissimilar
Ht (m) 0 1 0 Similar 1 0 0 Dissimilar
QMD (cm) 0 1 0 Similar 1 0 0 Dissimilar
TVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
MVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
TCarb (tonnes/ha) 0 1 0 Similar 1 0 0 Dissimilar

LiDAR map imputations
Stands (n � 856)

TPH (trees/ha) 0 1 0 Similar 0 0.34 0.66 Weakly dissimilar
BA (m2/ha) 0 1 0 Similar 0 0.97 0.03 Weakly similar
SDI 0 1 0 Similar 0 1 0 Similar
CCF 0 1 0 Similar 0 1 0 Similar
Ht (m) 0 1 0 Similar 0 1 0 Similar
QMD (cm) 0 1 0 Similar 0 0.67 0.33 Weakly similar
TVol (m3/ha) 0 1 0 Similar 0 0.94 0.06 Weakly similar
MVol (m3/ha) 0 1 0 Similar 0 0.98 0.02 Similar
TCarb (tonnes/ha) 0 1 0 Similar 0 0.65 0.35 Weakly similar

Stand samples (n � 847)
TPH (trees/ha) 0 1 0 Similar 0 0.93 0.07 Weakly similar
BA (m2/ha) 0 1 0 Similar 0 1 0 Similar
SDI 0 1 0 Similar 0 1 0 Similar
CCF 0 1 0 Similar 0 1 0 Similar
Ht (m) 0 1 0 Similar 0 1 0 Similar
QMD (cm) 0 1 0 Similar 0 1 0 Similar
TVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
MVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
TCarb (tonnes/ha) 0 1 0 Similar 0 1 0 Similar

Subplots (n � 14,312)
TPH (trees/ha) 0 1 0 Similar 1 0 0 Dissimilar
BA (m2/ha) 0 1 0 Similar 1 0 0 Dissimilar
SDI 0 1 0 Similar 1 0 0 Dissimilar
CCF 0 1 0 Similar 1 0 0 Dissimilar
Ht (m) 0 1 0 Similar 0.44 0.56 0 Weakly similar
QMD (cm) 0 1 0 Similar 0.07 0.93 0 Weakly similar
TVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
MVol (m3/ha) 0 1 0 Similar 0.99 0.01 0 Dissimilar
TCarb (tonnes/ha) 0 1 0 Similar 1 0 0 Dissimilar

TPH, trees per hectare; BA, basal area; SDI, stand density index; CCF, crown competition factor; Ht, height; QMD, quadratic mean diameter; TVol, total volume; MVol,
merchantable volume; TCarb, total carbon.
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Table 6. Regression-based equivalence tests of estimated bias (intercept) and disproportionality (slope), generated from 100 bootstraps
of observations regressed on imputations at the stand, stand sample, and subplot levels, as predicted from Landsat/USGS-DTM variables.

Response variable

Proportion of simulation in
intercept region of similarity

Decision

Proportion of simulation in
slope region of similarity

DecisionBelow Within Above Below Within Above

Landsat/USGS-DTM model imputations
Stands (n � 1,122)

TPH (trees/ha) 0 1 0 Similar 1 0 0 Dissimilar
BA (m2/ha) 0 1 0 Similar 1 0 0 Dissimilar
SDI 0 1 0 Similar 1 0 0 Dissimilar
CCF 0 1 0 Similar 1 0 0 Dissimilar
Ht (m) 0 1 0 Similar 0.86 0.14 0 Weakly dissimilar
QMD (cm) 0 1 0 Similar 1 0 0 Dissimilar
TVol (m3/ha) 0 1 0 Similar 0.5 0.5 0 Weakly similar
MVol (m3/ha) 0 1 0 Similar 0.26 0.74 0 Weakly similar
TCarb (tonnes/ha) 0 1 0 Similar 0.99 0.01 0 Weakly dissimilar

Stand samples (n � 1,122)
TPH (trees/ha) 0 1 0 Similar 1 0 0 Dissimilar
BA (m2/ha) 0 1 0 Similar 1 0 0 Dissimilar
SDI 0 1 0 Similar 1 0 0 Dissimilar
CCF 0 1 0 Similar 1 0 0 Dissimilar
Ht (m) 0 1 0 Similar 1 0 0 Dissimilar
QMD (cm) 0 1 0 Similar 1 0 0 Dissimilar
TVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
MVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
TCarb (tonnes/ha) 0 1 0 Similar 1 0 0 Dissimilar

Subplots (n � 19,100)
TPH (trees/ha) 0 1 0 Similar 1 0 0 Dissimilar
BA (m2/ha) 0 1 0 Similar 1 0 0 Dissimilar
SDI 0 1 0 Similar 1 0 0 Dissimilar
CCF 0 1 0 Similar 1 0 0 Dissimilar
Ht (m) 0 1 0 Similar 1 0 0 Dissimilar
QMD (cm) 0 1 0 Similar 1 0 0 Dissimilar
TVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
MVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
TCarb (tonnes/ha) 0 1 0 Similar 1 0 0 Dissimilar

Landsat/USGS-DTM map imputations
Stands (n � 1,122)

TPH (trees/ha) 0 1 0 Similar 0 0.18 0.82 Weakly dissimilar
BA (m2/ha) 0 1 0 Similar 0 0.99 0.01 Similar
SDI 0 1 0 Similar 0 0.98 0.02 Similar
CCF 0 1 0 Similar 0 0.89 0.11 Weakly similar
Ht (m) 0 1 0 Similar 0 0.97 0.03 Similar
QMD (cm) 0 1 0 Similar 0 0.49 0.51 Weakly dissimilar
TVol (m3/ha) 0 1 0 Similar 0 1 0 Similar
MVol (m3/ha) 0 1 0 Similar 0 0.99 0.01 Similar
TCarb (tonnes/ha) 0 1 0 Similar 0 0.99 0.01 Similar

Stand samples (n � 1,122)
TPH (trees/ha) 0 1 0 Similar 0 0.99 0.01 Similar
BA (m2/ha) 0 1 0 Similar 0.05 0.95 0 Weakly similar
SDI 0 1 0 Similar 0.19 0.81 0 Weakly similar
CCF 0 1 0 Similar 0.14 0.86 0 Weakly similar
Ht (m) 0 1 0 Similar 0.01 0.99 0 Similar
QMD (cm) 0 1 0 Similar 0 1 0 Similar
TVol (m3/ha) 0 1 0 Similar 0.07 0.93 0 Weakly similar
MVol (m3/ha) 0 1 0 Similar 0.05 0.95 0 Weakly similar
TCarb (tonnes/ha) 0 1 0 Similar 0 1 0 Similar

Subplots (n � 19,364)
TPH (trees/ha) 0 1 0 Similar 1 0 0 Dissimilar
BA (m2/ha) 0 1 0 Similar 1 0 0 Dissimilar
SDI 0 1 0 Similar 1 0 0 Dissimilar
CCF 0 1 0 Similar 1 0 0 Dissimilar
Ht (m) 0 1 0 Similar 1 0 0 Dissimilar
QMD (cm) 0 1 0 Similar 1 0 0 Dissimilar
TVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
MVol (m3/ha) 0 1 0 Similar 1 0 0 Dissimilar
TCarb (tonnes/ha) 0 1 0 Similar 1 0 0 Dissimilar

TPH, trees per hectare; BA, basal area; SDI, stand density index; CCF, crown competition factor; Ht, height; QMD, quadratic mean diameter; TVol, total volume; MVol,
merchantable volume; TCarb, total carbon.
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the map RSE relative to the model RMSD and making the accuracy
of the imputed maps almost always higher than that of the imputed
models, the only exceptions being stand-level total volume and
merchantable volume predicted from Landsat/USGS variables
(Table 4).

The test for dissimilarity in the slope term should not be con-
fused with poor sensitivity of the predictors to the desired response.
This behavior is apparent whether one uses LiDAR predictors or
Landsat/USGS-DTM predictors (Figures 7 and 8), with the latter
predictors exhibiting more scatter in the relationships. Another
beneficial effect of aggregating the imputed map pixels was better
distribution of the aggregated map imputations within the slope
region of similarity, resulting in generally improved proportionality
compared with the model imputations (Tables 5 and 6). This im-
proved proportionality is most noticeable at the stand sample level
of aggregation, less so at the stand level, and, of course, not at all at
the unaggregated subplot level.

As expected, the stand-level models that made full use of the
available remotely sensed data proved to be most accurate. We as-
cribe the very poor performance of the subplot-level models to the
poor geolocation accuracy of the estimated subplot locations. How-
ever, the stand sample models produced imputation results nearly as
accurate as those for the stand models (Table 4). That the stand
sample models used only a small sample of pixels in proportion to
the number of subplots, rather than all pixels within stand polygons,
provides a strong argument for satellite-borne LiDAR systems that
sample rather than survey the landscape (Hudak et al. 2002, Lefsky
et al. 2011). LiDAR samples of canopy height systematically ar-
ranged across a landscape would be much less expensive to process
than a comparable number and distribution of field plots; this
would reduce reliance on relatively expensive ground data
collection.

We found that subplot positions within stands may not need to
be accurately geolocated to generate reasonable relationships to re-
motely sensed data, if aggregated at the stand level. If the subplots
together well represent the structural variability within the stand, as
intended in a stand inventory, then it follows that an equal number
of sample pixels should also well represent the conditions through-
out the stand. A random selection of pixels with no regard to subplot
locations should result in poorer relationships at the stand level.
Conversely, accurate colocation of these stand subplots and sample
pixels should serve to strengthen the relationship and, if sufficiently
accurate, enable useful subplot-level models, as we were unable to
develop with this data set.

Our results demonstrate that stand-level data can be used to
impute 30-m-resolution maps across spatial extents of high rele-
vance to forest managers. Withholding 50% of the reference stands
(Figure 6) for independent validation provided a more realistic es-
timate of the reduced accuracy (�15%) ODF managers can expect
imputing to target stands, which at Tillamook District represents
the majority of stands (n � 4,750), as in most managed forests. One
could argue for using Forest Inventory and Analysis plot data col-
lected on a systematic national grid (Riemann et al. 2010). How-
ever, problems with using Forest Inventory and Analysis data in-
clude the plot spatial sampling frequency being too sparse to provide
adequate reference data for a typical project area extent and the need
for accurate plot locations.

The Landsat/USGS-DTM-based models and maps were gener-
ally inferior to those based on LiDAR, corroborating previous stud-
ies that compared Landsat to LiDAR for predicting forest structure

attributes (e.g., Lefsky et al. 2001, Hudak et al. 2006). The reason is
that LiDAR is less sensitive to structure attributes such as stem
diameter (QMD) and density (TPH) that vary in the horizontal
domain than to more height-driven structure attributes (height, BA,
total volume, and merchantable volume) that vary in the vertical
domain. It is worth mentioning that we resampled the 30-m
LandTrendr tasseled cap bands to 10 m and calculated 10-m metrics
from the LiDAR and the 10-m USGS-DTM, which allowed us to
generate response variable maps at 10-m resolution and validate
these using the same three aggregation strategies (Figure 3). Al-
though we omitted these results for brevity, we can say that the
relationships to the reference data showed the same trends as aggre-
gating the 30-m maps, but errors were slightly higher (increase in
RMSD of 1–2% per response variable), which we attribute to the
higher initial variability in the 10-m maps than in the 30-m maps,
before aggregation. Our finding that traditional stand inventory
data may be imputed from LiDAR or other remotely sensed data at
higher resolution than the reference data still holds, but a conserva-
tive approach argues for mapping at the lowest resolution of the
predictor variables, which in this case were the 30-m LandTrendr
tasseled cap bands. Furthermore, given the geolocation uncertain-
ties of the estimated subplot locations in this analysis, relating 10-m
pixel data to the subplot-level attributes following our stand sample
strategy could be more problematic.

Conclusion
As hypothesized, we found RF to be a more accurate neighbor

selection method than either GNN or MSN. We also supported our
hypotheses that stand-level model and map validation strategies that
made use of all available remotely sensed data would be most accu-
rate. A subplot-level strategy suffered from subplot geolocation un-
certainties and did not benefit from aggregation to average out vari-
ability within stands. On the other hand, a stand sample strategy of
using only a sample of pixels from estimated subplot locations
within stands produced accuracies comparable to those with the
stand strategy. Moreover, the stand sample strategy of data aggrega-
tion may improve the proportionality of predictions relative to ob-
servations, by basing each aggregation on similar sampling intensi-
ties. We conclude that a sample of pixels with size similar to that of
inventory stand subplots may be sufficient to characterize structure
variability within a stand remotely, just as subplots are considered
sufficient to characterize structure variability on the ground. We
recommend that forest researchers and managers not forego using
traditional stand inventory data to model and map structural attri-
butes of interest from LiDAR, Landsat, and probably other remotely
sensed data.
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