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Abstract 
The temperature difference of fruit itself will affect its near infrared spectrum and the accuracy of its soluble solids content (SSC) prediction 
model. To eliminate the influence of apple temperature difference on the SSC model, a diffuse transmission dynamic online detection device 
was used to collect the spectral data of apples at different temperatures, and four methods were used to establish partial least squares cor-
rection models: global correction, orthogonal signal processing, generalized least squares weighting and external parameter orthogonal (EPO). 
The results show that the temperature has a strong influence on the diffuse transmission spectrum of apples. The 20 ºC model can get a sat-
isfactory prediction result when the temperature is constant, and there will be great errors when detecting samples at other temperatures. 
The effect of temperature must be corrected to establish a more general model. These methods all improve the accuracy of the model, with 
the EPO method giving the best results; the prediction set correlation coefficient is 0.947, the root mean square error of prediction is 0.489%, 
and the prediction bias is 0.009%. The research results are of great significance to the practical application of SSC prediction of fruits in sorting 
workshops or orchards.
Keywords: Apple; near-infrared spectroscopy; soluble solids content; temperature correction.

Introduction
Apples are rich in nutrients, replenishing a wide range of vita-
mins and minerals required by the human body, and their 
fruit trees are the first fruit tree species in China in terms of 
planted area and production (Bai et al., 2011). Soluble solids 
content (SSC) in apples is one of the most important indica-
tors of fruit nutrition and affects the taste and flavor of ap-
ples (Li et al., 2016; Zhang et al., 2019). However, for SSC in 
apples, traditional physical and chemical testing methods are 
often based on destructive sampling, which is time-consuming 
and laborious, and cannot quickly sort large quantities of 
fruit and meet the needs of quality inspection departments 
for on-site sampling and quality tracking during the growing 
season.

Visual–near infrared spectroscopy (Vis-NIRS) is a fast, 
simple, and non-destructive method that has been widely used 
for rapid internal quality inspection of fruits and vegetables 
(Gongal et al., 2015; Sun et al., 2020). NIR spectroscopy con-
tains not only the structural and functional characteristics of 
the sample molecules, but also information on the hydrogen 
bonding between and within molecules, and the molecular 
bonding and vibrational modes can be affected by external 
factors such as temperature (Wülfert et al., 1998; Shan et 
al., 2015). On the one hand, temperature changes will cause 
changes in the internal molecular forces of the sample, which 
will be reflected in changes in spectral vibrations (Liu et al., 

2015); on the other hand, temperature changes will also cause 
changes in the bending and stretching vibrations of the water 
molecules of the sample, and the absorption bands and in-
tensities of the O–H groups of the water molecules will be 
changed (Xu et al., 2017). With the development of instru-
mentation science and technology, testing instruments have 
moved into production sites (Yao et al., 2013; Wang et al., 
2018), such as online fruit quality grading and monitoring of 
fruit growth characteristics in orchards. When the instrumen-
tation is moved from the laboratory, where the temperature is 
precisely controlled, to the production site, the fruit tempera-
ture varies considerably and if the internal quality of the fruit 
is tested using a model developed under specific temperature 
conditions, the results will be less than satisfactory, a problem 
that can limit the application of the model to a large extent. 
Therefore, it is necessary to research the temperature effects 
and correction methods of NIR spectroscopy models for the 
detection of internal quality indicators of apples, to establish 
detection models with high accuracy, good stability, and tem-
perature adaptability.

The main temperature correction methods include the 
global temperature correction modeling method (Wülfert 
et al., 2000), the exclusion of temperature sensitive 
bands method (Centner et al., 1996), the spectral correc-
tion method (Sun and Fan, 2020), the formula correction 
method (Kang et al., 2011), and the multi-step modeling 
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method using temperature information (Peirs et al., 2003). 
The global temperature correction modeling method uses 
sample spectra containing temperature variations to build a 
quantitative analysis model (Sun et al., 2018). This method 
is simple and widely used, but the accuracy of the model 
relies heavily on the number and representativeness of the 
calibration set data and needs to cover as many samples as 
possible with a wide range of temperature variation. The 
method of removing temperature-sensitive bands uses wave-
length selection methods, such as Simulated Annealing (SA; 
Bao et al., 2012), Successive Projections Algorithm (SPA; 
Peng et al., 2014) and Genetic Algorithm (GA; Bouveresse 
and Massart, 1996) to remove bands that are sensitive to 
temperature changes, but the removed bands may contain 
both temperature and concentration information, thus re-
ducing the precision of the model. The formula correction 
method and the multi-step modeling method using tempera-
ture information introduce secondary errors due to tempera-
ture intermediate variables, indirect modeling, etc. Spectral 
correction methods that correct the temperature-varying 
spectra to those at standard temperatures, such as Piecewise 
Direct Standardization (PDS; Barboza and Poppi, 2003), 
generalized least squares weighting (GLSW; Chen et al., 
2004), orthogonal signal processing (OSC; Fu et al., 2012), 
Individual Contribution Standardization (ICS; Roger et al., 
2003) and external parameter orthogonal (EPO; Martens et 
al., 2003), can effectively reduce the effect of temperature on 
model accuracy.

There are no general rules to determine which method to 
use in which situation, but rather the choice is based on the 
specific problem. This study aims to develop a more general 
model for NIR apple SSC detection under temperature vari-
ation. Due to the large temperature differences between the 
fruit in the sorting plant and the orchard, it is necessary to 
research the temperature effects and calibration methods of 
NIR spectroscopy detection models for internal apple quality 
indicators to establish detection models with high accuracy, 
good stability, and temperature adaptability. In this study, 
single temperature models, global calibration, and OSC, EPO, 
and GLSW methods were used to build calibration models 
and to compare the predicted outcomes.

Materials and Methods
Materials
In this study, 500 apples were purchased from an orchard 
in Yantai City (China) in October 2022 and stored in a cool 

and ventilated room using red Fuji apples as the subject. All 
samples were cleaned and numbered. The samples were div-
ided into eight groups by number and collection tempera-
ture and the overall statistics are shown in Table 1. Group 
1 of 360 samples, with spectra taken at 20 °C, was used to 
build the 20 °C model. The spectra of samples from groups 
2–7 were collected at 5, 10, 15, 20, 25, and 30 °C as the 
validation set. The spectra of 20 samples in group 8 were 
collected at six temperatures, which were used to design the 
temperature difference matrix. The sample temperature was 
controlled using a cryostat DM-0040 (Heng Min Instrument, 
Yancheng, China).

VIS/NIR spectral acquisition
The experiments were conducted using a self-developed dif-
fuse transmission dynamic online inspection device to collect 
apple spectral data (Liu et al., 2021), as shown in Figure 1. 
The device mainly has a light source, spectrometer, and tray. 
The light source is six 12-V, 100-W tungsten halogen lamps 
distributed around both sides of the sample; the QE65000 
spectrometer from OceanOptics (Dunedin, FL, USA) is a 
short-wave near-infrared spectrometer with a wavelength 
range of 350–1150  nm; the inner ring of the fruit cup is 
equipped with a soft plastic shading ring, which can effect-
ively suppress stray light through indicators such as the shape 
and weight of the fruit; when collecting the spectra dynamic-
ally online, the fruit cup moves forward with the drive chain 
and is irradiated by the light source, while the spectrometer 
collects the spectral information.

The sample temperature was controlled using the cryo-
stat DM-0040, which has a temperature range of 0–90 °C  
and an accuracy of ±0.1°C. The refrigeration uses a fully 
enclosed compressor and condenser. The sample was 
placed in a plastic bag to prevent water from being ab-
sorbed into the sample. Set the temperature and place the 
sample in. Groups 1–7 samples were placed in a water bath 
at 20, 5, 10, 15, 20, 25, and 30 °C to maintain a constant 
temperature. Group 8 sample spectra were measured at six 
different temperatures: t={5, 10, 15, 20, 25, 30} °C. The 
samples were subjected to a water bath at t=5°C and im-
mersed for 30 min. The apples were then measured one by 
one with the detection device as soon as possible to avoid 
temperature changes. They were then placed back into the 
water bath, whose temperature was raised by 5 °C; this 
was repeated for each temperature step. Only one spectrum 
was taken for each sample to avoid changes in sample tem-
perature during the measurements.

Table 1. Overall statistics for apple SSC (%)

Group Number Temperature (°C) Mean (%) SD (%) 

1 360 20 11.9 1.6

2 20 5 12.3 1.3

3 20 10 11.8 1.3

4 20 15 11.8 1.5

5 20 20 11.5 1.2

6 20 25 12.3 1.2

7 20 30 11.7 1.8

8 20 5, 10, 15, 20, 25, 30 12.3 1.6
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Measurement of the soluble solids content of the 
samples
The SSC of apple samples was measured by a PAL-1 refrac-
tion digital sugar meter (ATAGO, Tokyo, Japan) with auto-
matic temperature compensation. After collecting the NIR 
spectra of the samples, the SSC of the apples was collected 
at 20 °C. Cut 1-cm thick slices along the equator scanned by 
Vis-NIR of apples, then divided them into four equal parts 
squeezed for juice, and took the average value as SSC.

Data processing and analysis
The collected apple spectra and SSC data were imported into 
MATLAB and Unscrambler software to build a partial least 
squares (PLS) model of apple SSC. The precision of the model 
was estimated using the prediction set correlation coefficient 
(Rp), root mean square error of prediction (RMSEP), and pre-
diction bias (Pred Bias). To remove the effect of temperature 
on SSC model of apple, global model, OSC, EPO, and GLSW 
were used to establish PLS model.

The PLS method is currently the most widely used quanti-
tative algorithm (Mateos-Aparicio, 2011). The PLS analysis 
process analyses the information in the sample component 
concentration data and the NIR spectral data simultan-
eously to maximize the extraction of the information with 
the greatest correlation between the two and performs re-
gression analysis. The global calibration means that a repre-
sentative number of samples are selected from each sample 
set at each temperature to build a global calibration model 
that takes into account all external variations and then uses 
this model to make predictions (Kuda-Malwathumullage 
and Small, 2014). The OSC algorithm allows the standard-
ization of spectral data under different external conditions 
and is used to eliminate incoherent information in the spectral 
matrix and the concentration matrix, thus building a more 
general multivariate calibration model (Acharya et al., 2014). 
The EPO algorithm is a method to reduce the dimension of 
external interference parameters. This method projects the 
sample spectrum into the orthogonal space of the interfering 
variables, thus filtering out the interfering information (Ge et 
al., 2020). The GLSW algorithm creates a matrix for filtering 
by analyzing the differences in the X variables corresponding 
to similar y variables, thus eliminating the information on the 
changes in the X matrix caused by external variables (Haroon 
et al., 2020).

Results and Discussion
Apple spectra at different temperatures
Figure 2 shows the spectra of a particular apple at 5, 10, 15, 
20, 25, and 30 °C. The peaks at 710 nm are mainly related 
to the doubling frequency stretching vibrations of the C–H 
and O–H bonds (McDevitt et al., 2005), and the peaks at 
805  nm are mainly related to the secondary doubling fre-
quency absorption of the C–H and N–H bonds (Zhou et 
al., 2012). It can be clearly seen that the spectral intensity of 
apples decreases with increasing temperature near 710 nm. 
There is little difference in spectral shape and trend of the 
same apple at different temperatures, but the spectral inten-
sity will change. This indicates that the NIR spectra of the 
experimentally collected apple samples contain not only in-
formation related to the components of the samples them-
selves, but also information related to the temperature of the 
samples, resulting in a corresponding change in the spectra of 
the same samples when the temperature changes.

Effect of temperature on the prediction model
A partial least squares calibration model at 20 °C was devel-
oped using data from Group 1 samples. For the experimental 
samples of 360 apples, the Kennard–Stone (K-S) algorithm 
was used to classify the calibration and validation sets, with 

Figure 1. Fruit dynamic online sorting equipment.

Figure 2. Spectra of apples at different temperatures.
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240 calibration sets and 120 validation sets. To prevent over- 
or under-fitting of the model, the number of latent variables 
(LVs) was set from 1 to 20. Figure 3 shows that the results 
of the 20 ºC model have good correlation, with correlation 
coefficient of correction set (Rc) and Rp of 0.968 and 0.948, 
respectively, root mean square error of calibration (RMSEC) 
of 0.415%, and RMSEP of 0.494%. The difference between 
RMSEC and RMSEP is small, and the 20 °C model can ob-
tain satisfactory prediction results at a constant temperature.

The 20 ºC model predicts the soluble solids content of sam-
ples at mixed temperature (samples from Group 2 to Group 
7), and the results are shown in Figure 4. The Rp of the SSC 
prediction for the validation samples was 0.588 and the 
RMSEP was 1.181% and the Pred Bias was 0.123%, which 
shows that the prediction error of the model at 20 °C in-
creased and the accuracy of the validation samples decreased. 
This is mainly because the temperature has a significant effect 
on the NIR spectra of apples resulting in a decrease in the pre-
diction effectiveness of the single temperature model at 20 °C 
for the mixed temperature samples.

Global calibration
The global calibration method uses sample spectra containing 
temperature changes to establish a quantitative analysis 
model. The K-S algorithm was used to select 10 samples from 
the validation set at each temperature to be added to the cali-
bration set to build the global calibration model. The results 
are shown in Figure 5, with Rp increasing to 0.886, RMSEP 
decreasing to 0.673% and the Pred Bias was –0.036%. The 
global calibration model reduced the prediction error of the 
validation sample SSC to some extent. The global correc-
tion removes the effect of temperature on prediction to some 
extent. The global correction model is still less effective in 
predicting mixed temperature samples and further research is 
needed into other methods to remove the effect of tempera-
ture on the apple SSC model.

Orthogonal signal processing
The OSC algorithm can be used to eliminate irrelevant in-
formation in concentration matrix and spectral matrix. The 
results of the prediction of the SSC of the validation set sam-
ples using the developed OSC correction model are shown in 
Figure 6. The use of the OSC algorithm improved the correl-
ation coefficient of the model to some extent and improved 
the precision of the correction model, with an Rp of 0.909, an 
RMSEP of 0.600%, and a Pred Bias of 0.005% for the SSC 
of the validation set samples. it can be seen that the OSC cor-
rection model has improved model performance compared to 
the original spectral model and the global calibration model.

Generalized least squares weighting
The GLSW algorithm requires adjustment of the weighting 
parameter α. It determines the strength of the weighted 
processing, with a general value of 0. 0001–1. A smaller value 
of the weight α corresponds to a stronger filtering effect. In 
this study, three kinds of temperature difference matrices D1, 
D2, and D3 (based on Group 8 data) were designed by sub-
tracting the spectra obtained at the lowest temperature (5 ºC), 
the middle temperature (15 ºC) and the highest temperature 
(30 ºC) from the spectral data of Group 8. Using the tempera-
ture difference matrix D1 to correct the spectra of the samples, 
the model obtained the lowest RMSEP. As shown in Figure 7A, 
the best combination of parameters was α of 0.0001 and LV 
of 6. The prediction results are shown in Figure 7B, where the 
model correlation improved to 0.920, the RMSEP was reduced 
to 0.607%, and the Pred Bias was 0.156%.

External parameter orthogonalization
The goal of the EPO algorithm is to obtain a temperature-
independent spectral matrix using the difference matrix (D). 
The parameter optimization process is similar to that of the 
GLSW algorithm. The lowest RMSEP was obtained using the 
D1 difference matrix, and from Figure 8A, the best combin-
ation of parameters was g of 20 and LV of 5. The prediction 
results are shown in Figure 8B, where the Rp as improved to 
0.947, the RMSEP was reduced to 0.489%, and the Pred Bias 
was 0.009%.

Model comparison
The prediction results for the single temperature model, 
global correction model, OSC correction model, GLSW 

Figure 3. Scatter plot of single temperature model prediction results at 
20 °C.

Figure 4. Scatter plot of SSC predictions for mixed temperature samples 
from a single temperature model at 20 °C.
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correction model and EPO correction model are shown 
in Table 2. The results show that global correction, OSC 
method, GLSW method, and EPO method all improve the 

prediction ability of the model, and the prediction error of 
the model with temperature correction is smaller than that of 
the model without correction. These temperature correction 

Figure 5. Scatter plot of global calibration prediction results. Figure 6. Scatter plot of predicted results from the OSC correction model.

Table 2. Prediction results of the PLSR model for soluble solids content using different temperature correction methods

Method D Rp RMSEP (%) Pred Bias (%) 

Single temperature — 0.588 1.181 0.123

Global correction — 0.886 0.673 -0.036

OSC — 0.909 0.600 0.005

EPO D1 0.947 0.489 0.009

EPO D2 0.899 0.651 0.020

EPO D3 0.921 0.570 0.026

GLSW D1 0.920 0.606 0.156

GLSW D2 0.919 0.607 0.157

GLSW D3 0.919 0.607 0.156

The model with bold font showed the best result.

Figure 7. Prediction results of GLSW correction model. (A) Variation in RMSEP based on D1 difference matrix. (B) Scatter plot of GLSW correction model 
prediction results.
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methods improve the adaptability of the model to tempera-
ture. Compared with other methods, EPO method obtains the 
best prediction results, Rp is 0.947, RMSEP is 0.489%, and 
Pred Bias is 0.009%, which indicates that its temperature cor-
rection ability is superior to global correction, OSC method 
and GLSW method.

Conclusions
In this study, the SSC prediction model of apple was estab-
lished, and the effect of temperature on apple spectrum and 
model was analyzed. The results show that the temperature 
has a significant effect on apple spectra, which leads to a 
reduction in the accuracy of the model prediction and poor 
applicability of the model to temperature. To improve the 
robustness of the PLSR model to sample temperature, the 
performance of the model was improved by correcting for 
temperature effects using temperature correction methods 
such as EPO, GLSW, OSC, and global correction. The best 
results were obtained by using EPO method. The RMSEP 
of the model was 0.489%, Rp was 0.947, and the predic-
tion deviation was 0.009%. The EPO method can correct 
the temperature well. The results have practical implica-
tions for the application of NIR spectroscopy in the pre-
diction of fruit quality in environments such as production 
plants.
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