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Abstract 
Bovine mastitis is the most complex and costly disease in the dairy industry worldwide. Somatic cell count (SCC) is accepted as an international 
standard for diagnosing mastitis in cows, but most instruments used to detect SCC are expensive, or the detection speed is very low. To develop 
a rapid method for identifying mastitis degree, the dielectric spectra of 301 raw milk samples at three mastitis grades, i.e., negative, weakly 
positive, and positive grades based on SCC, were obtained in the frequency range of 20–4500 MHz using coaxial probe technology. Variable im-
portance in the projection method was used to select characteristic variables, and principal component analysis (PCA) and partial least squares 
(PLS) were used to reduce data dimension. Linear discriminant analysis, support vector classification (SVC), and feed-forward neural network 
models were established to predict the mastitis degrees of cows based on 22 principal components and 24 latent variables obtained by PCA and 
PLS, respectively. The results showed that the SVC model with PCA had the best classification performance with an accuracy rate of 95.8% for 
the prediction set. The research indicates that dielectric spectroscopy technology has great potential in developing a rapid detector to diagnose 
mastitis in cows in situ or online.
Keywords: Mastitis; somatic cell count; dielectric spectra; qualitative analysis.

Introduction
Mastitis, or inflammation of the mammary gland, is a 
complex and costly disease to the dairy industry (Mariani et 
al., 2022). It results in udder pain and reduces milk quality, 
yield, and dairy production efficiency. For example, mas-
titis causes decreases in casein and lactose contents and in-
creases in somatic cell count (SCC), fatty acid, sodium, and 
chloride values (Ogola et al., 2007; Wickström et al., 2009). 
A practical solution to control mastitis is treating cows with 
antibiotics (Jafari et al., 2019). However, antibiotic residual, 
which can be transferred from milk or dairy products to hu-
mans, may be harmful to human health. The sooner mastitis 
is diagnosed, the less antibiotics need to be used. Therefore, 
diagnosing mastitis is very important for cows, farms, and 
consumers.

At present, SCC is accepted as an international standard 
for diagnosing mastitis in cows (IDF, 2013). In China, 
a cow is regarded as healthy if the SCC of its produced 
milk is lower than 500×103 cells/mL. Otherwise, the cow 
is suffering from mastitis. Four grades are used to describe 
the mastitis degrees of the cow suffering from mastitis, 
including negative, weakly positive, positive, and strongly 

positive if the SCC is lower than 500×103 cells/mL,  
between 500×103 cells/mL and 1500×103 cells/mL, between 
1500×103 cells/mL and 5000×103 cells/mL, and higher 
than 5000×103 cells/mL, respectively (MARA, 2015). 
The industry-standard methods applied to detect milk 
SCC and diagnose cows’ subclinical mastitis include 
microscope counting, electronic and particle somatic 
cell counting, and fluorescent photoelectric somatic cell 
counting (MARA, 2004). Another rapid detection tech-
nique widely used in diagnosing subclinical mastitis for 
cows is observing formed gels after adding special diag-
nostic liquids into milk to lyze somatic cells (Schalm and 
Noorlander, 1957). However, most of these methods have 
shortcomings of complex operations, long detection time, 
rough judgment, or are unsuitable for in-line use.

Currently, automated SCC counters are commonly used 
for rapidly obtaining milk SCC, such as Fossomatic 7 DC 
(Foss Electric) and Somacount FC (Bentley Instruments 
Inc., Chaska, MN, USA). High instrument prices and oper-
ation costs limit the application range of these SCC coun-
ters. Several methods have been studied or developed to 
quickly detect SCC or mastitis degrees. Bioluminescence 
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(Frundzhyan et al., 2008), viscosity (Atasever et al., 2012), 
immunofluorescence (Becheva et al., 2018), and colorimetric 
assay (Thiruvengadam et al., 2020) are very effective has 
also been studied detection only under severe pretreatment 
conditions, making them too difficult to use in online de-
tection. Good relationships between SCC and near-infrared 
spectra of milk have been reported, but the accuracy was in-
fluenced by the main constituents of milk (Tsenkova et al., 
2001; Melfsen et al., 2012; Iweka et al., 2020). Terahertz 
spectroscopy has also been studied for SCC detection, and 
monochromatic terahertz waves have been is found to be 
highly related to SCC (Naito et al., 2013, 2015). However, 
low measurement accuracy and high cost of equipment 
hinder the practical application of terahertz technology.

Electrical conductivity has been used to monitor cow 
mastitis degrees, but its classification accuracy is low 
(Norberg et al., 2004; Lien et al., 2016). Grillo et al. 
(2002) found that intact somatic cells in milk influence the 
dielectric constant of raw cow milk at 300  kHz, but the 
predicted deviations reached 35% below 22 °C and 20% 
above 30  °C. Dielectric spectroscopy, a fast, easy tech-
nique, potentially capable of in-line detection, has great 
potential in determining the qualitative characteristics of 
some agricultural products and foods, such as classifying 
olive oils during the storage period (Sanaeifar et al., 2018) 
and predicting total bacteria count of raw goat milk (Zhu 
et al., 2019). However, no studies have been carried out to 
qualitatively identify mastitis degrees of cows using dielec-
tric spectroscopy over a wide frequency range. Therefore, 
the objectives of this study were: (1) to obtain the dielectric 
spectra of raw cow milk samples with different SCC values 
over the frequency range of 20–4500 MHz, (2) to build 
qualitative models for identifying mastitis degrees based 
on the obtained spectra of milk, and (3) to provide a fast 
detection method for mastitis degrees of cows.

Materials and methods
Milk samples
When suspected clinical mastitis cases of cows, breed 
‘Holstein’, in three farms located in Yangling, Shannxi, 
China, were reported by feeders, the milk samples (original 
mastitis samples) were collected from one or two cows with 
suspected clinical mastitis at 4 p.m. on the reported days. 
Meanwhile, nine milk samples (normal samples) were col-
lected from observed healthy cows at the same sampling 
time. Composite milk sample were collected after removal 
of the fore-stripping of the first three strips per quarter. The 
milk samples were transported from the farms to the labora-
tory in 20 min.

When two mastitis samples were collected in a single sam-
pling, the two original mastitis samples were mixed at ratios 
of 4:1 and 1:4 to obtain two new mastitis samples. Then each 
mastitis sample was mixed with a randomly selected milk 
sample among nine normal samples at ratios of 2:1, 1:2, 1:6, 
and 1:12. In total, 301 milk samples were obtained in this 
study, including 35 mastitis samples, 126 normal milk sam-
ples, and 140 mixed samples.

Each prepared sample was separated into two aliquots. 
One aliquot was kept at room temperature (24±1 °C) and 

used to measure milk dielectric spectra, pH, and electrical 
conductivity within 6 h after milking. Another aliquot was 
kept in a refrigerator at 4 °C and applied to measure milk 
components and SCC within 48 h of milking. To delay the 
deterioration of milk, 0.03 g potassium dichromate (analyt-
ical grade, 99.8%; Tianjin Bodi Chemical Co. Ltd., Tianjin, 
China) was added to each 50 mL milk sample. To distribute 
the components evenly, each milk sample was stirred by 
an electric blender (OA2000, Shanghai Ouhor Equipment 
Co., Shanghai, China) for approximately 1  min before 
measurement.

Measurement on milk components and SCC
The components and SCC of all milk samples were de-
termined using a Milk Component Analyzer (Combi 500, 
Bentley Instruments Inc., Chaska, MN, USA). The analyzer 
had two probes. One was used to measure milk components, 
including fat, protein, lactose, and total solids contents, and 
another was used for SCC measurement based on the flow 
cytometry technique. Measurements were carried out in trip-
licate for each sample, and the mean was calculated and used 
in this study.

Measurement on dielectric spectra
Dielectric constant εʹ and dielectric loss factor εʹʹ are 
usually used to describe the dielectric properties of food 
and agricultural products. The former represents energy 
storage capacity, and the latter reflects energy consump-
tion (Altemimi et al., 2019). These two parameters were 
obtained by a dielectric properties measurement system 
that consisted of an Agilent E5071C network analyzer 
(Agilent Technologies, Penang, Malaysia), an Agilent 
85070E open-ended coaxial probe, Agilent N6314A co-
axial cable, an Agilent 85070 dielectric probe kit software, 
a constant temperature water bath (DK-98-1, Tianjin 
Taisite Instrument Ltd., Tianjin, China), and a computer. 
Before measurement, the system was preheated for one 
hour to make the system stable. Then, calibration oper-
ations on the network analyzer and coaxial probe were 
conducted. Detailed information on the measurement 
system and calibration procedures can be found elsewhere 
(Guo et al., 2015; Zhang et al., 2016).

Each milk sample was filled in a 50 mL centrifuge tube 
and placed in a water bath at 25  °C, and a thermometer 
with 0.1 °C precision was used to check the milk tempera-
ture. A laboratory hydraulic elevator was used to elevate 
the water bath and immerse the probe in the milk. When 
the milk temperature reached 25 °C, the dielectric proper-
ties at 201 discrete frequencies over the frequency range of 
20–4500 MHz were obtained. Each sample was measured in 
triplicate, and the mean was used as the result. Finally, two 
dielectric spectra, including 201 values of εʹ and 201 values 
of εʹʹ, were obtained for each milk sample.

Each sample’s pH and electrical conductivity were meas-
ured using a pH meter (PHSJ-3F, Shanghai Precision & 
Scientific Instrument Co., Ltd., Shanghai, China) and a con-
ductivity meter (DDSJ-308A, Shanghai Precision & Scientific 
Instrument Co., Ltd., Shanghai, China) at room temperature, 
respectively. The means of triplicates for pH and electrical 
conductivity are reported in this study.
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Spectra preprocessing and analysis methods
Spectra preprocessing
Appropriate spectra preprocessing is necessary for improving 
the stability and prediction performance of established 
models. Savitzky–Golay (SG) smoothing and standard normal 
variate (SNV) are widely used methods to reduce high-
frequency noises and to separate physical and chemical vari-
ances in spectral data, respectively (Afseth et al., 2006; Guo 
et al., 2020), as well as SNV after SG smoothing (SG+SNV), 
and were applied to preprocess dielectric spectra in this study. 
Detailed information about SG smoothing and SNV has been 
previously reported (Savitzky and Golay, 1964; Rinnan et al., 
2009).

Outlier detection
Outliers that might dramatically influence the analysis re-
sults should be removed before building prediction models 
(Thennadil et al., 2018). In this study, one-class support 
vector machine (1SVM) and local outlier factor (LOF) were 
used as outlier detection methods.

LOF is the first local outlier detection method, and is ef-
ficient for high-dimensional datasets (Breunig et al., 2000). 
The local reachability density of the k-nearest neighbors set 
of the test sample is compared with that of each number in 
the k-nearest neighbors set. The sample with a small local 
reachability density relative to its nearest neighbors could be 
an outlier.

1SVM, proposed by Schölkopf et al. (2001), is also a popu-
larly used outlier detection method. In this method, the image 
vectors in the feature space are separated from the origin by 
a hyperplane with the largest possible margin. The vectors in 
the half-space containing the origin are marked as outliers.

Sample division
A proper sample division method could choose sufficient 
representative samples for training and verifying models 
and promote the efficiency and accuracy of modeling. The 
Kennard–Stone (KS) algorithm, which describes the differ-
ences among samples with Euclidean distance, is suitable for 
complex and multidimensional data in qualitative analysis 
(Galvão et al., 2005). In this study, the samples were divided 
into calibration set and prediction set according to a ratio 
of 3:1 using the KS algorithm. To ensure that the samples 
at different mastitis degrees were distributed evenly, the div-
ision was separately conducted on the samples at each mas-
titis degree.

Variable selection
Variable selection is usually used to remove redundant vari-
ables and keep useful information as much as possible. In this 
study, the variable importance in the projection (VIP) method 
based on partial least squares (PLS) regression was used to 
evaluate the contribution of each x variable (i.e., spectral data 
here) to the y variance (i.e., mastitis degree here). The x vari-
able with a small VIP value has little ability to interpret the 
variance of y. The redundant variables at different levels in 
spectra can be effectively identified with different thresholds.

Data reduction
Principal component analysis (PCA) and PLS are widely 
used dimension reduction methods that can effectively 

process the data with a large amount of correlation or 
co-linearity (Han et al., 2022). In these methods, the feature 
space is substituted with the relatively low dimension pro-
jected space, called principal components (PCs) and latent 
variables (LVs), respectively. This process can reduce noises 
and redundant information with minimal loss of useful in-
formation and improve model generalization ability (Liu 
and Guo, 2014). The PCs obtained using PCA are ordered 
according to the decreased explained variance in a spectral 
matrix. However, LVs in PLS are ordered according to their 
relevance in predicting the y variables. Compared with the 
first several PCs, the first several LVs may be more inform-
ative concerning the response variable (Nicolaï et al., 2007). 
In this study, the PCs and LVs obtained using PCA and PLS, 
respectively, were used as the input of models to simplify 
models and improve the prediction accuracy of models.

Modeling methods
In this study, linear discriminant analysis (LDA), support 
vector classification (SVC), and feed-forward neural network 
(FFNN) were used to establish qualitative analysis models for 
identifying mastitis degrees.

LDA
LDA is a linear classification model that supports multiclass 
in principle. It aims to build linear combinations of a fea-
ture set to characterize the interests of different classes. The 
classification is achieved with a linear classifier based on the 
feature combinations. Compared with complex classification 
methods, LDA is simpler, more robust, and might provide 
similar model accuracy (Naderi-Boldaji et al., 2018).

SVC
SVC is a highly robust and efficient algorithm for two-class 
classification, which establishes a decision boundary in the 
feature space for separating data points into different classes. 
For non-separable problems, various kernel functions are de-
signed to map the original feature space into high-dimensional 
feature space for obtaining a clear separation between dif-
ferent classes. Then, SVC could search a hyperplane in the 
high-dimensional feature space, maximizing the margin and 
minimizing the number of misclassified samples (Raghavendra 
and Deka, 2014). The radial basis function, which can sim-
plify the training procedure and provide better performance 
than other functions (Pang et al., 2022), was selected as the 
kernel function in this study. For an n-class classification, 
n×(n-1) SVC models are built, and each built model is only 
used to distinguish two classes. When making a prediction, 
the class with the most votes is the predicted results of the 
sample.

FFNN
As a commonly used artificial neural network, FFNN is built 
with neurons organized in several layers, where the neurons 
in each layer are fully connected to the next layer. The num-
bers of neurons in the input and output layers are determined 
by the dimensions of input and output variables, respectively. 
A non-linear system might be accurately approximated with 
an FFNN containing one hidden layer with a non-linear ac-
tivation function (González-Viveros et al., 2021). Therefore, 
an FFNN with one hidden layer was built in this study. The 
number of neurons in the hidden layer was determined by 
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the highest accuracy rate of the built FFNN models for the 
prediction set. Softmax activation function and cross-entropy 
loss function were used in the output layer, whereas a rectifier 
linear unit activation function was applied in all other layers.

Model performance assessment
The recall and precision rates of each mastitis degree, calcu-
lated using Eq. 1 and Eq. 2, respectively, were used to evaluate 
the prediction performance of established models for each de-
gree. When calculating the recall and precision rates of each 
degree in multiclass classification models, the category of 
each sample was converted into the target category or other 
categories.

Recall rate = TP/ (TP+ FN) (1)

Precision rate = TP/ (TP+ FP) (2)

where TP, true positives, and FN, false negatives, represent that 
a sample in the target category was identified as a target cat-
egory and other categories, respectively. TN, true negative, and 
FP, false positives, indicate that a sample in other categories 
was classified as other categories and target category, respect-
ively. The accuracy rate, the ratio of correctly predicted samples 
to total samples, was used to evaluate the performance of clas-
sification models for calibration and prediction sets.

Software
Besides the dielectric spectra collection software 85070D 
mentioned above, SPSS 17.0 (SPSS Inc., Chicago, IL, USA) 
was used for one-way analysis of variance (ANOVA) on the 
SCC, main compositions, pH, electrical conductivity, and 
permittivities (εʹ and εʹʹ) of milk samples using Tamhane T2 
test at p<0.05 to investigate the significant difference among 
different mastitis degrees. Except for that noted specially, the 
significance level in this research refers to 0.05. Spyder 3.2.6 
matched with Python 3.8 and Scikit-Learn (Pedregosa et al., 
2011) was applied for spectra preprocessing and analysis, 
variable selection, data reduction, and establishment of LDA 
and SVC models. Keras (Chollet, 2015), a deep learning li-
brary, was used to construct and optimize FFNN networks.

Results and discussion
Statistical results of used milk samples
According to the obtained SCC of each milk sample and the 
Chinese industry standard on subclinical mastitis in dairy 
cow (MARA, 2015), there were 113, 92, and 96 samples at 

negative, weakly positive, and positive mastitis degrees, re-
spectively. Table 1 shows the statistical results on SCC, main 
compositions, pH, and electrical conductivity of the 301 milk 
samples used. The SCC of all milk samples was between 
5×103 cells/mL and 4971×103 cells/mL. The geometric mean 
SCCs of negative, weakly positive, and positive samples were 
141×103, 807×103, and 2553×103 cells/mL, respectively. The 
SCC of the milk at three mastitis degrees showed a significant 
difference.

The fat, total solids, and pH showed no significant differ-
ence among the three mastitis degrees. Sunds et al. (2021) re-
ported that mastitis causes a decrease in fat and total solids as 
a result of reduced secretory capacity. However, mastitis also 
reduces milk production, which could increase the concentra-
tion of each component (Goncalves et al., 2020). Therefore, 
there were no differences in fat and total solids among the 
three mastitis degrees in this study. A similar result of pH was 
found in another study (Ogola et al., 2007). The protein con-
tent of weakly positive samples (3.06%±0.30%) was signifi-
cantly lower than that of the negative (3.16%±0.46%) and 
positive (3.18%±0.37%) samples. The negative samples had 
the highest lactose content (5.06%±0.16%) and the posi-
tive samples had the lowest lactose content (4.74%±0.24%). 
Moreover, a significant difference was noted for the lactose 
content of three mastitis degrees. The electrical conductivity 
of the positive samples (4.65±0.55 mS/cm) was significantly 
higher than that of the weakly positive (4.11±0.58 mS/cm) 
and negative (3.83±0.74 mS/cm) samples. The results showed 
that the electrical conductivity of milk is an effective index 
in distinguishing positive mastitis from negative and weakly 
positive mastitis and indicated that lactose content has the 
potential in classifying mastitis degrees. Norberg et al. (2004) 
used the electrical conductivity to predict mastitis degrees. 
The result indicated that the accuracy of clinical mastitis 
(80.6%) was obviously higher than that of subclinical mas-
titis (45.0%) and agreed with the result of this study.

Effect of SCC on dielectric properties
The mean εʹ and εʹʹ spectra of milk samples at three mas-
titis degrees over the frequency range of 20–4500 MHz are 
shown in Figure 1. The εʹ of all samples at different mastitis 
degrees decreased with increasing frequency over the whole 
frequency range, and the decrease was quick at frequencies 
below approximately 40 MHz (Figure 1A). The εʹ decreased 
first below about 1800 MHz and then increased slightly 
above 1800 MHz with increasing frequency (Figure 1B). 
The decreased εʹ resulted from the dipole motion, which 

Table 1. Statistical results on SCC, main components, pH, and electrical conductivity (mean±SD) of used raw milk samples in this study

Mastitis 
grade 

No. of 
samples 

SCC1 (×103 cells/mL) Fat (%) Protein (%) Lactose (%) TS (%) pH EC (mS/cm) 

Min. Max. Mean±SD 

Nega-
tive

113 5 494 141±145.05c 3.43±1.06a 3.16±0.46a 5.06±0.16a 11.97±1.5a 6.61±0.75a 3.83±0.74b

Weakly 
positive

92 509 1435 807±227.66b 3.23±0.74a 3.06±0.30b 4.88±0.14b 11.56±0.99a 6.61±0.80a 4.11±0.58b

Positive 96 1514 4971 2553±865.19a 3.31±0.53a 3.18±0.37a 4.74±0.24c 11.72±0.69a 6.69±0.11a 4.65±0.55a

The different character in the same column means a significant difference at the significance level of 0.05.
1 The mean is geometric mean.
SD: standard deviation; TS: total solids; EC: electrical conductivity.
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could not follow the changed direction of the electric field 
when the frequency increased (El Khaled et al., 2016). Ionic 
conduction and dipole relaxation are the main dielectric 
losses in the low- and high-frequency ranges, respectively 
(Ohlsson, 1989). The former caused εʹʹ to decrease rapidly 
with the increase of frequency in the low-frequency range, 
while the latter led to an increase in εʹʹ with increasing 
frequency above 1800 MHz. Similar phenomena were 

reported for milk in other studies (Guo et al., 2017; Zhu 
et al., 2018).

Although the mastitis degrees or SCC of milk samples did 
not affect the changing trend of permittivity with frequency, 
the negative samples had the lowest and the positive samples 
had the highest εʹ and εʹʹ below approximately 50 MHz. Over 
the whole frequency range, the positive samples had the largest 
decrease, while the negative samples had the smallest decrease 
in εʹ. For example, εʹ and εʹʹ at 27.12 MHz were 78.07±1.79 
and 310.81±24.90 for negative samples, 78.49±1.06 and 
327.41±14.25 for weakly positive samples, and 79.63±1.46 
and 351.94±27.04 for positive samples. When the frequency 
increased from 20 MHz to 4500 MHz, the εʹ of negative sam-
ples decreased from 81.02±2.12 to 63.38±1.87, while the εʹ of 
positive samples decreased from 83.88±2.28 to 63.38±1.29.

Table 2 lists the mean values and standard deviations of εʹ 
and εʹʹ of milk samples at three mastitis degrees and six selected 
frequencies, including 27.12, 40.68, 100, 500, 915, and 
2450 MHz. The ANOVA results showed that at 27.12 MHz, 
the εʹ values of the positive samples were significantly dif-
ferent from those of the weakly positive and negative sam-
ples, while at 40.68 MHz, the εʹ value of the positive samples 
was significantly different from that of the negative samples. 
At 100 MHz, the εʹ of the milk samples at the three mastitis 
degrees had no significant difference, but the εʹ of positive 
samples had a significant difference with that of the weakly 
positive samples at 500, 915, and 2450 MHz. Except for 
2450 MHz, the εʹ of the milk samples at three mastitis de-
grees had significant differences. At 2450 MHz, the εʹʹ value 
of the weakly positive samples was significantly different 
from those of the negative and positive samples.

Milk can be considered an aqueous solution with somatic 
cells in suspension. With the increase of SCC, ionic concen-
tration induced by inflammation increased, which increased 
εʹ in the low-frequency range (Grillo et al., 2002). Meanwhile, 
mastitis results in increasing polar molecules, such as whey 
protein, free fatty acid, sodium, and chloride, due to mixing 
with blood components (Ogola et al., 2007), which play a de-
cisive role in dielectric loss. Therefore, compared with nega-
tive mastitis samples, the positive or weakly positive mastitis 
samples have larger εʹʹ.

Spectra preprocessing and analysis
The original dielectric spectra, including 402 dielectric vari-
ables (201 variables of εʹ and 201 variables of εʹʹ), were pre-
processed using SG smoothing, SNV, and SG+SNV. After 

Figure 1. The mean dielectric spectra of εʹ (A) and εʹʹ (B) of the milk 
samples at three mastitis degrees.

Table 2. Dielectric constants and loss factors (mean±SD) of raw milk samples at six selected frequencies and three mastitis degrees

Frequency (MHz) εʹ εʹʹ

Negative Weakly positive Positive Negative Weakly positive Positive 

27.12 78.07±1.79b 78.49±1.06b 79.63±1.46a 310.81±24.90c 327.41±14.25b 351.94±27.04a

40.68 75.93±1.90b 76.29±1.35ab 76.70±0.97a 209.78±16.85c 220.89±9.66b 237.31±18.17a

100 73.25±2.11a 73.48±1.69a 73.16±1.19a 85.73±6.83c 90.23±3.91b 96.75±7.24a

500 70.33±2.25ab 70.68±1.86a 70.03±1.29b 20.68±1.43c 21.58±0.80b 22.80±1.54a

915 69.28±2.23ab 69.62±1.85a 69.02±1.28b 14.48±0.82c 14.99±0.45b 15.54±0.88a

2450 66.83±2.24ab 67.28±1.80a 66.74±1.15b 13.83±0.72b 14.15±0.58a 13.97±0.38b

The different character in the same row for dielectric constant and loss factor mean a significant difference at the significance level of 0.05.
SD: standard deviation.
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preprocessing, the outlier detections were conducted based on 
LOF and 1SVM. The probability of finding a new observation 
outside the frontier for both outlier detection methods was set 
as 5%. The neighbor number in LOF was determined to be 
20, and the linear kernel was chosen as the kernel function of 
1SVM. Finally, 16 different outliers were identified by using 
LOF and 1SVM, respectively.

The remaining 286 samples were divided into calibration 
and prediction sets according to a ratio of 3:1 using the KS 
algorithm at each mastitis degree. LDA models with PLS as a 
data reduction method were built with different preprocessing 
and outlier detection methods. The inputs of LDA models 
were preprocessed dielectric spectra, and their outputs were 
dummy variables, i.e., 0, 1, and 2, which were assigned artifi-
cially to represent negative, weakly positive, and positive sam-
ples, respectively. The number of LVs used for the LDA model 
obtained using PLS was determined by cross-validation based 
on the lowest value of the root-mean-squares error of cross-
validation (RMSECV).

Table 3 lists the identification accuracy rates of the estab-
lished LDA models for samples in the calibration and predic-
tion sets. This indicates that the LDA model built with the 
preprocessed spectra using SG+SNV and LOF as an outlier 
detection method had the best accuracy rate of 93.1% for 
the prediction set. Therefore, SG+SNV and LOF were used 
as the dielectric spectra preprocessing and outlier detection 
methods, respectively, in further analysis. Finally, the calibra-
tion set had 214 samples (77 negative samples, 68 weakly 
positive samples, and 69 positive samples), and the prediction 
set had 72 samples (26 negative samples, 23 weakly positive 
samples, and 23 positive samples).

Variable selection
The PLS regression models at different numbers of LVs 
from 1 to 35 with an interval of 1 were established based 
on 214 milk samples in the calibration set by applying the 
cross-validation method. The PLS regression model with 25 
LVs, which had the lowest RMSECV, was chosen to calcu-
late the VIP scores. The results showed that the VIP scores 
of 402 dielectric variables were between 0.76 and 2.40. 
When the thresholds were set as 0.7, 0.8, 0.9, and 1.0, the 
determined numbers of variables were 402 (all variables), 
372, 241, and 131, respectively. The accuracy rates of the 
built LDA models based on these selected variables were 
93.1%, 93.1%, 91.7%, and 91.7%, respectively, for the 
prediction set. Although the accuracy rates were the same 
(93.1%) when the threshold was 0.7 and 0.8, the number of 

variables was less when the threshold was 0.8. Finally, 0.8 
was set as the threshold of VIP, and the dielectric spectra 
with 372 effective variables, including 182 variables of εʹ 
and 190 variables of εʹʹ, were applied for subsequent data 
reduction.

Data reduction
Figures 2A and 2B show the first two PCA scores (PC1 and 
PC2) with an accumulative contribution rate of 99.74% and 
the values of the first two LVs (LV1 and LV2) in PLS for the 
milk samples in the calibration set, respectively. The results 
showed that the milk samples at three mastitis degrees mixed 
considerably. It is not easy to separate the three degree sam-
ples based on the first two PCs or LVs. Figure 3 shows the 
accuracy rates of established LDA models for the samples in 
the calibration set using different numbers of PCs and LVs. 
It shows that when the numbers of PCs and LVs reached 22 
and 24, the accuracy rates were highest, with 79.4% and 
86.9%, respectively. Therefore, 22 PCs obtained by PCA and 
24 LVs obtained by PLS were used to build different qualita-
tive models.

Modeling results
The LDA, SVC, and FFNN models were built for identifying 
the samples at three mastitis degrees when the 22 PCs calcu-
lated by PCA and 24 LVs obtained by PLS were used as inputs 
of these models. The dummy variables, 0, 1, and 2, standing 
for negative, weakly positive, and positive samples, respect-
ively, were used as the output of the LDA and SVC models. 
For the FFNN model, the dummy variables were converted 
to a Boolean matrix with three columns in which only the 
column of the corresponding label appeared was 1, and the 
rest was 0.

LDA modeling results
Table 4 shows the classification results of the built LDA 
models when PCA and PLS were used as data reduction 
methods. The results showed that the recall rates of the es-
tablished LDA model based on PLS (PLS-LDA) were 96.2%, 
87.0%, and 100%, and the precision rates were 92.6%, 
95.2%, and 95.8% for negative, weakly positive, and posi-
tive samples in the prediction set, respectively. The PLS-LDA’s 
recall and precision rates were higher than or equal to those 
of the LDA model based on PCA (PCA-LDA). Finally, the ac-
curacy rates of PLS-LDA for the calibration and prediction 

Table 3. The determined number of latent variables and obtained accuracy rates of built LDA models with PLS as data reduction method at different 
spectra preprocessing and outlier detection methods

Preprocessing method Outlier detection method Number of latent variables Accuracy rate (%)

Calibration set Prediction set 

SG LOF 20 82.8 87.3

1SVM 20 82.8 85.9

SNV LOF 20 83.6 90.3

1SVM 23 86.0 88.7

SG+SNV LOF 25 87.4 93.1

1SVM 27 90.2 88.7 D
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sets (86.9% and 94.4%, respectively) were higher than those 
of the PCA-LDA model (79.4% and 93.1%, respectively). It 
was noted that the recall of the built LDA models for positive 
samples was 100%, and the identification performance for 
weakly positive samples was poorer than the for negative and 
positive samples.

SVC modeling results
The penalty factor c and slack variable g are essential param-
eters of the SVC model with the radial basis kernel function. 
The optimal c and g were selected from 2−10 to 210 with an 
interval of 20.2 using grid search and cross-validation methods. 
The best c and g were determined by the highest accuracy rate 
of built SVC models. In this study, the optimal c and g were 
84.45 and 0.0039 for the SVC model based on PCA (PCA-
SVC) and 388.02 and 0.0034 for the SVC model based on 
PLS (PLS-SVC), respectively.

The classification results of the established SVC models for 
the samples at different mastitis degrees are listed in Table 4. 
For the samples in the prediction set, the recall rates of PCA-
SVC were 92.3%, 95.7%, and 100%, and the precision rates 
were 96.0%, 91.7%, and 100%, for the negative, weakly 
positive, and positive samples, respectively. The accuracy 

rates of PCA-SVC for calibration (91.6%) and prediction sets 
(95.8%) were higher than 88.3% and 94.4% of PLS-SVC, 
respectively.

FFNN modeling results
Table 4 shows the classification results of built FFNN models 
with 80 and 40 neurons in the hidden layers of the built 
FFNN models based on PCA (PCA-FFNN) and PLS (PLS-
FFNN), respectively. The results showed that the recall rates 
of PCA-FFNN for the prediction set were 96.2%, 91.3%, 
and 95.7%, and the precision rates were 92.6%, 91.3%, and 
100% for the negative, weakly positive, and positive samples, 
respectively. The accuracy rate of PCA-FFNN (94.4%) for the 
prediction set was higher than that of PLS-FFNN (91.7%).

Comparison
When the two data reduction methods were compared, it 
was noted that PLS performed better than PCA for the LDA 
models. However, PCA performed better than PLS for the 
SVC and FFNN models. This indicated that the PLS based 
on correlation ranking was more suitable for simple linear 
classification models and can provide the same predictive 
performance as complex non-linear models. Among the six 
established models, PCA-SVC had the best prediction per-
formance with an accuracy rate of 95.8%, followed by PLS-
LDA, PLS-SVC, and PC-FFNN with 94.4%.

In contrast to the reported sensitivities of 80.6% for clin-
ical mastitis cases and 45.0% for subclinical mastitis cases, 
and also with the precision rate of 74.8% for healthy cases 
using an electrical conductivity index (Norberg et al., 2004), 
the reported sensitivities (recall) here for positive (100%) 
and weakly positive (95.7%) samples and the precision 
(96.0%) for negative samples obtained by the PCA-SVC 
model were higher. The obtained sensitivity, specificity, and 
accuracy rates in this study were also higher than the re-
ported data ranging in 68%–84%, 60%–85%, and 56%–
81%, respectively, when the six best electrical conductivity 
indexes were used to identify clinical mastitis (Khatun et 
al., 2017). In contrasted to the obtained 77.78% sensitivity 

Figure 2. The principal components (PCs) (A) and latent variables (LVs) 
(B) plots of the milk samples at three mastitis degrees in the calibration 
set.

Figure 3. The accuracy rates of established linear discriminant analysis 
(LDA) models for the samples in the calibration set at different numbers 
of latent variables (LVs) and principal components (PCs).
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and 80.56% specificity reported by Meilina et al. (2009) for 
distinguishing normal milk and mastitis milk using near-
infrared spectroscopy, the reported sensitivity and specificity 
here were also higher. In general, the milk SCC measured by 
SCC counters dependent on flow cytometry, in which there 
is no qualitative analysis model. Based on these SCC results, 
early warning of clinical and subclinical mastitis could be 
provided after complicated analysis. However, the PCA-SVC 
model with dielectric spectra could directly output degree of 
mastitis in this study. Therefore, this indicated that the di-
electric spectra of raw milk have great potential in the rapid 
detection of mastitis degrees of dairy cows.

Conclusions
For rapid identification of the mastitis degrees of cows by 
raw milk, dielectric spectra and SCC of 301 raw milk samples 
were measured using a dielectric measurement system based 
on coaxial probe technology and a milk component analyzer. 
SG+SNV was used for preprocessing dielectric spectra, and 
outlier detection was conducted using LOF. The remaining 286 
samples were divided into calibration and prediction sets using 
the KS algorithm at a ratio of 3:1. A total of 372 variables in di-
electric spectra, including 182 variables of εʹ and 190 variables 
of εʹʹ, were selected by VIP values for data dimension reduc-
tion. After dimension reduction with PCA and PLS, the LDA, 
SVC, and FFNN models were built to identify the milk samples 
at three mastitis degrees, including negative, weakly positive, 
and positive. The results indicated that the PCA+SVC model 
had the best prediction ability, with an accuracy rate of 95.8% 
for the prediction set. The models of PLS-LDA, PLS-SVC, and 
PCA-FFNN also had excellent prediction ability, with an ac-
curacy rate of 94.4% for the prediction set. The study shows 
that the dielectric spectra of raw milk have great potential in 
identifying negative, weakly positive, and positive mastitis of 
cows, and it provides a feasible, quick, and in situ mastitis de-
tection method for farms to monitor the health status of cows. 
Dielectric spectra are greatly affected by sample temperature. 
The dielectric spectra of raw milk in this study were obtained 
at 25 °C, which is much lower than that of raw milk in-line. 
The effect of temperature should be considered in practical 
mastitis identification using dielectric spectra. It should also 
be noted that dielectric spectra could only identify cows with 
mastitis when the milk SCC is higher than 500×103 cells/mL.  
However, glandular infection may have occurred at 
around 200 000 cells/mL.

Author Contributions
Zhuozhuo Zhu: Methodology, formal analysis, valid-
ation, writing original draft, review and editing. Biying Lin: 
Methodology, formal analysis, validation, writing original 
draft, review and editing. Xinhua Zhu: Resources, project ad-
ministration, funding acquisition, writing, review and editing. 
Wenchuan Guo: Resources, data curation, validation, super-
vision, writing, review and editing.

Funding
The study was financially supported by the National Natural 
Science Foundation of China (No. 32172308 and No. 
31671935).

Conflict of Interest
Zhuozhuo Zhu, Biying Lin, Xinhua Zhu, and Wenchuan Guo 
declare that they have no conflict of interest.

References
Afseth, N. K., Segtnan, V. H., Wold, J. P. (2006). Raman spectra of bio-

logical samples: a study of preprocessing methods. Applied Spec-
troscopy, 60(12): 1358–1367.

Altemimi, A., Aziz, S. N., Al-HiIphy, A. R. S., et al. (2019). Critical 
review of radio-frequency (RF) heating applications in food 
processing. Food Quality and Safety, 3(2): 81–91.

Atasever, S., Erdem, H., Kul, E. (2012). Using viscosity values for 
determining somatic cell count in cow milk. Asian Journal of Ani-
mal and Veterinary Advances, 7(5): 441–445.

Becheva, Z. R., Gabrovska, K. I., Godjevargova, T. I. (2018). Comparison 
between direct and indirect immunofluorescence method for deter-
mination of somatic cell count. Chemical Papers, 72(8): 1861–1867.

Breunig, M., Kriegel, H. P., Ng, R., et al. (2000). LOF: identifying 
density-based local outliers. The 2000 ACM SIGMOD Inter-
national Conference on Management of Data, 15–18 May 2000, 
Dallas, TX, USA, pp. 93–104.

Chollet, F. (2015), Keras, GitHub repository [Online]. https://github.
com/fchollet/keras. Accessed on 12 November 2022.

El Khaled, D., Castellano, N. N., Gazquez, J. A., et al. (2016). Dielec-
tric spectroscopy in biomaterials: agrophysics. Materials, 9(5): 310.

Frundzhyan, V. G., Parkhomenko, I. M., Brovko, L. Y., et al. (2008). 
Improved bioluminescent assay of somatic cell counts in raw milk. 
Journal of Dairy Research, 75(3): 279–283.

Galvão, R. K. H., Araujo, M. C. U., José, G. E., et al. (2005). A method 
for calibration and validation subset partitioning. Talanta, 67(4): 
736–740.

Table 4. Classification results of the established LDA, SVC, and FFNN models using PCA and PLS as data reduction methods

Model Data reduction method Calibration set Prediction set

N WP P AC N WP P AC 

RE PR RE PR RE PR RE PR RE PR RE PR 

LDA PCA 67.5 85.2 77.9 74.6 94.2 79.3 79.4 92.3 92.3 87.0 90.9 100 95.8 93.1

PLS 81.8 91.3 80.9 82.1 98.6 87.2 86.9 96.2 92.6 87.0 95.2 100 95.8 94.4

SVC PCA 88.3 94.4 88.2 89.6 98.6 90.7 91.6 92.3 96.0 95.7 91.7 100 100 95.8

PLS 85.7 88.0 80.9 85.9 98.6 90.7 88.3 96.2 96.2 91.3 91.3 95.7 95.7 94.4

FFNN PCA 93.5 93.5 92.6 94.0 98.6 97.1 94.9 96.2 92.6 91.3 91.3 95.7 100 94.4

PLS 92.2 94.7 89.7 93.8 100 93.2 93.9 96.2 89.3 82.6 90.4 95.7 95.7 91.7

AC: accuracy rate; N: negative; P: positive; PR: precision rate; RE: recall rate; WP: weakly positive. 

D
ow

nloaded from
 https://academ

ic.oup.com
/fqs/article/doi/10.1093/fqsafe/fyad014/7030886 by guest on 23 April 2024

https://github.com/fchollet/keras
https://github.com/fchollet/keras


Identifying bovine mastitis using dielectric spectra of milk 9

Goncalves, J. L., Kamphuis, C., Vernooij, H., et al. (2020). Pathogen ef-
fects on milk yield and composition in chronic subclinical mastitis 
in dairy cows. Veterinary Journal, 262: 105473.

González-Viveros, N., Gómez-Gil, P., Castro-Ramos, J., et al. (2021). 
On the estimation of sugars concentrations using Raman spectros-
copy and artificial neural networks. Food Chemistry, 352: 129375.

Grillo, G. J., Perez, M. A., Anton, J. C., et al. (2002). Direct-evaluation of the 
fresh-milk somatic cell concentration (SCC) through electrical permittiv-
ity measurements. 19th IEEE Instrumentation and Measurement Technol-
ogy Conference. 21–23 May 2002, Anchorage, AK, USA, pp. 975–979.

Guo, W., Fang, L., Liu, D., et al. (2015). Determination of soluble solids 
content and firmness of pears during ripening by using dielectric spec-
troscopy. Computers and Electronics in Agriculture, 117: 226–233.

Guo, W., Lin, B., Liu, D., et al. (2017). A novel technique on determining 
water content in milk using radio-frequency/microwave dielectric spec-
troscopy and chemometrics. Food Analytical Methods, 10: 3781–3789.

Guo, Z., Wang, M., Agyekum, A. A., et al. (2020). Quantitative detection 
of apple watercore and soluble solids content by near infrared trans-
mittance spectroscopy. Journal of Food Engineering, 279: 109955.

Han, Z., Li, B., Wang, Q., et al. (2022). Detection of skin defects on 
loquat using the hyperspectral imaging combining both band radio 
and improved three-phase level set segmentation method. Food 
Quality and Safety, 7: fyac065.

IDF (International Diabetes Federation). (2013). Guidelines for the use and in-
terpretation of bovine milk somatic cell counts (SCC) in the dairy industry. 
Bulletin of the International Dairy Federation, 2013(466): 1–15.

Iweka, P., Kawamura, S., Mitani, T., et al. (2020). Online milk quality 
assessment during milking using near-infrared spectroscopic sens-
ing system. Environmental Control in Biology, 58(1): 1–6.

Jafari, S., Dehghani, M., Nasirizadeh, N., et al. (2019). Synthesis and 
characterisation of a selective adsorbent based on the molecularly im-
printed polymer for the removal of cloxacillin antibiotic residue from 
milk. International Journal of Dairy Technology, 72(4): 505–514.

Khatun, M., Clark, C. E. F., Lyons, N. A., et al. (2017). Early detection 
of clinical mastitis from electrical conductivity data in an automatic 
milking system. Animal Production Science, 57(7): 1226–1232.

Lien, C. C., Wan, Y. N., Ting, C. H. (2016). Online detection of dairy 
cow subclinical mastitis using electrical conductivity indices of milk. 
Engineering in Agriculture, Environment and Food, 9(3): 201–207.

Liu, D., Guo, W. (2014). Identification of kiwifruits treated with ex-
ogenous plant growth regulator using near-infrared hyperspectral 
reflectance imaging. Food Analytical Methods, 8(1): 164–172.

MARA (Ministry of Agriculture and Rural Affairs of the People’s Re-
public of China). (2004). Enumeration of somatic cells in raw milk, 
NY/T800-2004. MARA, Beijing, China.

MARA (Ministry of Agriculture and Rural Affairs of the People’s Re-
public of China). (2015). Rapid diagnostic techniques for subclin-
ical mastitis in dairy cow, NY/T2692-2015. MARA, Beijing, China.

Mariani, E., Cipolat-Gotet, C., Stefanon, B., et al. (2022). Effect of total 
and differential somatic cell count on yield, composition and pre-
dicted coagulation properties from individual dairy cows. Inter-
national Journal of Dairy Technology, 75(2): 298–307.

Meilina, H., Kuroki, S., Jinendra, B. M., et al. (2009). Double thresh-
old method for mastitis diagnosis based on NIR spectra of raw 
milk and chemometrics. Biosystems Engineering, 104(2): 243–
249.

Melfsen, A., Hartung, E., Haeussermann, A. (2012). Accuracy of in-line 
milk composition analysis with diffuse reflectance near-infrared 
spectroscopy. Journal of Dairy Science, 95(11): 6465–6476.

Naderi-Boldaji, M., Mishra, P., Ahmadpour-Samani, M., et al. 
(2018). Potential of two dielectric spectroscopy techniques and 
chemometric analyses for detection of adulteration in grape syrup. 
Measurement, 127: 518–524.

Naito, H., Ogawa, Y., Kubota, A., et al. (2013). Measurement of som-
atic cell count in cow’s raw milk for detecting mastitis by using at-
tenuated total reflection terahertz spectroscopy. IFAC Proceedings 
Volumes, 46(18): 331–335.

Naito, H., Ogawa, Y., Kubota, A., et al. (2015). Attenuated total 
reflectance terahertz spectroscopy for quantitative measurement 

of somatic cell count in bovine milk. Engineering in Agriculture, 
Environment and Food, 8(2): 79–82.

Nicolaï, B. M., Beullens, K., Bobelyn, E., et al. (2007). Nondestructive 
measurement of fruit and vegetable quality by means of NIR spectros-
copy: a review. Postharvest Biology and Technology, 46(2): 99–118.

Norberg, E., Hogeveen, H., Korsgaard, I. R., et al. (2004). Electrical 
conductivity of milk: ability to predict mastitis status. Journal of 
Dairy Science, 87(4): 1099–1107.

Ogola, H., Shitandi, A., Nanua, J. (2007). Effect of mastitis on raw milk 
compositional quality. Journal of Veterinary Science, 8(3): 237–242.

Ohlsson, T. (1989). Dielectric properties and microwave processing. 
In: Singh R. P, Medina A. G. (Eds.). Food Properties and 
Computer-Aided Engineering of Food Processing Systems. Springer, 
Dordrecht, The Nethelands, pp. 73–92.

Pang, L., Chen, H., Yin, L., et al. (2022). Rapid fatty acids detection of 
vegetable oils by Raman spectroscopy based on competitive adap-
tive reweighted sampling coupled with support vector regression. 
Food Quality and Safety, 6: fyac053.

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). Scikit-learn: 
machine learning in Python. Journal of Machine Learning Re-
search, 12: 2825–2830.

Raghavendra, N. S., Deka, P. C. (2014). Support vector machine appli-
cations in the field of hydrology: a review. Applied Soft Computing, 
19: 372–386.

Rinnan, A., Berg, F., Engelsen, S. B. (2009). Review of the most com-
mon pre-processing techniques for near-infrared spectra. TrAC 
Trends in Analytical Chemistry, 28(10): 1201–1222.

Sanaeifar, A., Jafari, A., Golmakani, M. T. (2018). Fusion of dielectric 
spectroscopy and computer vision for quality characterization of 
olive oil during storage. Computers and Electronics in Agriculture, 
145: 142–152.

Savitzky, A., Golay, M. J. E. (1964). Smoothing and differentiation of 
data by simplified least squares procedures. Analytical Chemistry, 
36(8): 1627–1639.

Schalm, O. W., Noorlander, D. O. (1957). Experiments and obser-
vations leading to development of the California mastitis test. 
Journal of the American Veterinary Medical Association, 130(5): 
199–204.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., et al. (2001). Estimating 
the support of a high-dimensional distribution. Neural Computa-
tion, 13(7): 1443–1471.

Sunds, A. V., Sundekilde, U. K., Poulsen, N. A., et al. (2021). Association 
between udder inflammation and glycosidase activities and free sugar 
levels in bovine milk. International Dairy Journal, 120: 105093.

Thennadil, S. N., Dewar, M., Herdsman, C., et al. (2018). Automated 
weighted outlier detection technique for multivariate data. Control 
Engineering Practice, 70: 40–49.

Thiruvengadam, M., Venkidasamy, B., Selvaraj, D., et al. (2020). Sensitive 
screen-printed electrodes with the colorimetric zone for simultaneous 
determination of mastitis and ketosis in bovine milk samples. Journal 
of Photochemistry and Photobiology B: Biology, 203: 111746.

Tsenkova, R., Atanassova, S., Kawano, S., et al. (2001). Somatic cell 
count determination in cow’s milk by near-infrared spectroscopy: 
a new diagnostic tool. Journal of Animal Science, 79(10): 2550–
2557.

Wickström, E., Persson-Waller, K., Lindmark-Månsson, H., et al. 
(2009). Relationship between somatic cell count, polymorpho-
nuclear leucocyte count and quality parameters in bovine bulk tank 
milk. Journal of Dairy Research, 76(2): 195–201.

Zhang, S., Zhou, L., Ling, B., et al. (2016). Dielectric properties of pea-
nut kernels associated with microwave and radio frequency drying. 
Biosystems Engineering, 145: 108–117.

Zhu, X., Guo, W., Liu, D., et al. (2018). Determining the fat con-
centration of fresh raw cow milk using dielectric spectroscopy 
combined with chemometrics. Food Analytical Methods, 11(5): 
1528–1537.

Zhu, Z., Zhu, X., Kong, F., et al. (2019). Quantitatively determining 
the total bacterial count of raw goat milk using dielectric spectra. 
Journal of Dairy Science, 102(9): 7895–7903.

D
ow

nloaded from
 https://academ

ic.oup.com
/fqs/article/doi/10.1093/fqsafe/fyad014/7030886 by guest on 23 April 2024


