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Abstract  
 

In the past few years, forensic DNA phenotyping has attracted a strong interest in the forensic research. 

Among the increasing publications, many have focused on testing the available panels to infer 

biogeographical ancestry on less represented populations and understanding the genetic mechanisms 

underlying externally visible characteristics. However, there are currently no publications that gather 

all the existing panels limited to forensic DNA phenotyping and discuss the main technical limitations 

of the technique. In this review, we performed a bibliographic search in Scopus database of 

phenotyping-related literature, which resulted in a total of 48, 43 and 15 panels for biogeographical 

ancestry, externally visible characteristics and both traits inference, respectively. Here we provide a list 

of commercial and non-commercial panels and the limitations regarding the lack of harmonization in 

terms of terminology (i.e., categorization and measurement of traits) and reporting, the lack of genetic 

knowledge and environment influence to select markers and develop panels, and the debate surrounding 

the selection of genotyping technologies and prediction models and algorithms. In conclusion, this 

review aims to be an updated guide and to present an overview of the current related literature. 
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Abbreviations 

AIM/AISNP Ancestry-informative marker/SNP 

aSNP Autosomal SNP 

AUC Area under the curve 

B/MLR Bi- or multinomial linear regression 

BGA Biogeographical ancestry 

BMI Body mass index 

BRIM Bootstrapped response-based imputation modelling 

CE Capillary electrophoresis 

CRT Classification and regression tree 

DAPC Discriminant PCA 

EVC Externally visible characteristic 

FDP Forensic DNA phenotyping 

GDA Genetic distance algorithm 

GWAS Genome-wide association study 

HSR Relative hand skill 

HWE Hardy-Weinberg equilibrium 

InDel Insertion and deletion 

LDA Linear discriminant analysis 

LR Likelihood ratio 

MALDI-TOF-MS Matrix-assisted laser desorption/ionization - time-of-flight - mass spectrometry 

MARS Multi-variate adaptive regression splines 

MDR Multifactor dimensionality reduction 

MDS Multidimensional scaling 

MH Microhaplotypes 

ML Machine learning 

MPB Male-pattern baldness 

MSE Mean squared error 

mtSNP Mitochondrial DNA SNP 

NB Naïve Bayes 

NGS Next generation sequencing 

NJ Neighbour joining tree 

NN Neural networks 

OR Ordinal regression 

PCA Principal component analysis 

PCR Polymerase chain reaction 

PCR-REBA PCR-reverse blot hybridization assay 

PCR-RFLP PCR-restriction fragment polymorphism 

PISNP Phenotype-informative SNP 

PLRS Partial least square regression 
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PO Posterior odds 

POI Person of interest 

RF Random forest 

SBE Single base extension 

SNP Single nucleotide polymorphism 

SR Stepwise regression 

STR Short tandem repeat 

SVM Support vector machine 

UVR Ultraviolet radiation 

Y-SNP Chromosome Y SNP 

XGB Extreme gradient boosting 

 

 

 

1. Introduction 

In the forensic field, the use of human DNA has been mostly centred around individual identification 

using short tandem repeats (STR) [1–4]. This is achieved by “traditional matching”, also called forensic 

DNA identification, which is based on the comparison of an unknown DNA profile, obtained from a 

biological sample found in the crime scene, with a known DNA profile [5–8]. However, in some cases 

there are no matches, or no known profiles from a person of interest (POI) to compare it with [6,9]. 

Thus, if other options are not feasible, such as using eyewitness statements, dragnets, or familial 

searching, these cases remain unsolved [7–12]. 

To overcome this, a new intelligence method emerged in the early 2000s, following the increase 

of genome-wide association studies (GWAS) that link common genomic variations, in particular single 

nucleotide polymorphisms (SNPs), with diseases and other phenotypic traits [9,12–17]. SNPs are base 

substitutions, insertions, or deletions, that are normally bi-allelic with low mutation rates and high 

heritability [18–21]. Moreover, the small size of their PCR amplicons makes them useful to analyse 

typically forensic degraded and low amount DNA samples [1,11,13,19,21–23]. These findings have a 

big forensic potential since the prediction of externally visible characteristics (EVC) and bio-

geographical ancestry (BGA), together with sex and age estimation, can provide a somehow physical 

description of a sample’s donor [7,8,13,17,18,24]. Hence, the so-called forensic DNA phenotyping 

(FDP) (or molecular photo-fitting) aims to act as a “biological witness” [2,25], providing new leads and 

reducing the pool of potential suspects [9,11,17]. FDP is also useful in missing persons’ investigations 

and for the identification of human remains [16,22,26–32]. Even though it has already been applied in 

some forensic cases [33–35], it raises several ethical, legal, and social issues about the limits of its 

application, dividing the forensic community [7,8,10,11,36,37]. 

D
ow

nloaded from
 https://academ

ic.oup.com
/fsr/advance-article/doi/10.1093/fsr/ow

ae013/7625515 by guest on 23 April 2024



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 
 

5 

As mentioned before, STR profiling is a well-established and regulated technique owing to the 

great efforts from scientists and law enforcement to establish validated protocols in all forensic 

laboratories and to create police databases that contain profiles from criminals and missing persons 

[1,4,8] (more information available on the STRBase website [38]). On the contrary, due to the relatively 

new appearance of FDP, there is no standardization of methodologies [11,39,40]. For instance, several 

SNP typing techniques have been adapted to analyse a growing number of SNPs in a single run and to 

input forensic-type samples [40,41]. Although TaqMan® polymerase chain reactions (PCR) and single 

base extension (SBE) coupled with capillary electrophoresis (CE) (in particular, SNaPshot™ 

minisequencing) is extensively used, many efforts are now focused on implementing next generation 

sequencing (NGS) protocols [8,11,13,17,41]. 

In the last years, the available literature regarding FDP has grown exponentially: several 

reviews on new forensic developments started to include a small presentation of FDP [1–

4,17,21,22,25,27,42–46]. Nonetheless, the number of articles exclusively dedicated to FDP is limited 

and not many evaluate in depth BGA [7,47–49] or EVC (e.g., pigmentation traits [7,24,36,50–52] and 

other characteristics such as weight, height, or facial morphology [8–12,14,53,54]). Phillip’s review 

[49] is one of the few to include a comparison of BGA-informative markers and panels worth of 

consideration for forensic application, while Mehta’s [13] and Schneider’s [7] reviews describe the 

most informative panels for both BGA and EVC inference. The latest reviews on the current state of 

EVC prediction have been published by Tozzo et al. [8], Pośpiech et al. [12] and Dabas et al. [54]. All 

these include an extensive summary on newly found genetic markers and most common panels to 

predict continental, sub-continental and admixed ancestries, pigmentation traits (eye, hair and skin 

colour, hair greying), hair morphology (shape and thickness), eyebrow morphology (colour, thickness, 

monobrow), height, weight (BMI), facial morphology, presence of freckles, male-pattern baldness, and 

myopia. They also give a few comments on different prediction algorithms, genotyping technologies, 

and some limitations in FDP.  

Despite this, there are currently no publications that gather all the existing research limited to FDP. 

Thus, this review will include only those articles that have specifically developed and/or applied panels 

with the aim to use it as an intelligence tool to reduce the set of suspects or to identify human remains, 

excluding those regarding the discovery of markers in a non-forensic/clinical setting. This will allow us 

to have a general view of all the commercial, commonly used, and other customized sets of markers 

and to provide an evaluation of the FDP field. In particular, the focus will be on the lack of 

harmonisation concerning classification algorithms and methodologies, and limitations in terms of 

reference datasets, informative SNPs, environmental influences, and lack of a common lexicon, among 

others. To do so, we will take as reference the following reviews [7,8,12,13,52,54] and present a more 

detailed summary that will include the panels’ markers (type and number), genotyping technology, 
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statistical methods, traits, and related literature. Hence, the aim of this scoping review is to present an 

overview of the current FDP-related literature, so it serves as an updated guide of the global aspects of 

FDP which can redirect readers to further specific reading.   

 

 

2. Materials and methods 

This review followed the Preferred Reported Items for Systematic Reviews and Meta-Analyses 

extension for Scoping Reviews (PRISMA-ScR) guidelines [55]. 

Any published paper, written in English, between 2000 and 2022, and whose focal point was 

FDP (in particular, EVCs and BGA) were eligible for inclusion. It is important to notice that only those 

papers that researched genetic human variation for FDP applications using SNPs were considered, 

whilst those that referred to the ethical, legal, and social implications, were not because they are beyond 

the scope of this review.  

Four separate searches were performed on Scopus database (last search in January 2023). First, 

a generalized search was carried out as follows: "forensic DNA phenotyping" OR "forensic DNA 

intelligence" OR "molecular photo-fitting". To obtain a more specialized search on the topic, the other 

four searches were conducted with the following combination of keywords: 1) "external visible 

characteristics" OR "physical appearance" OR "physical trait" OR "physical characteristic" AND 

"forensic"; 2) "biogeographical ancestry" AND "forensic"; and 3) "SNP typing" OR "prediction model" 

AND "forensic". A total of 1016 records were obtained from Scopus (FDP=376, EVC=241, BGA=97 

and methods=302). After removal of duplicates (n=77), a manual selection of documents was first 

performed based on title and abstract and after on a full text evaluation. The following criteria was used 

to select the articles: if they inferred BGA or/and EVC, if they specified their aim was for forensic 

phenotyping and not identification purposes, if the analysis was performed with human DNA 

samples/data, if the main marker type was SNPs and if the manuscript was available and not retracted. 

It concluded with the inclusion of 201 articles. Finally, 101 records were identified from the chosen 

papers' references. For each article, author(s), title, year of publication, publication journal and details 

on their studied FDP trait can be found in the supplemental material. 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/fsr/advance-article/doi/10.1093/fsr/ow

ae013/7625515 by guest on 23 April 2024



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 
 

7 

3. Discussion 

3.1. BGA 

Bio-geographical ancestry (BGA) describes the most likely continental and/or sub-continental regions 

of origin of an individual’s ancestors. Despite it being based on the genomic differences and similarities 

among populations [1,56], it should not be confused with the notion of ethnicity, nationality, or religious 

affiliations since it does not represent the place of birth or where one lives [7,57,58]. 

Although STRs were the first markers proposed to infer someone's origins [59,60], SNPs show 

greater inter-population differences and a positive association with ancestral populations [3,18]. Current 

research is focused on combining different types of markers, such as InDels (i.e., insertions and 

deletions) [61] and microhaplotypes (MH) [62] with SNPs, especially for the analysis of DNA mixtures 

and admixed individuals, respectively [48]. However, in this review, only those panels including SNPs 

will be considered.  

There are three types of SNPs considered as ancestry-informative markers (AIMs or AISNPs): 

Y-chromosome SNPs (Y-SNPs), mitochondrial SNPs (mt-SNPs) and autosomal SNPs (aSNPs). The 

first two define paternal and maternal haplogroups and they have been historically used for evolution 

studies because of their low recombination rates, their non-random geographical distribution, and their 

well-known global frequency distribution [63,64]. Interestingly, Y-SNPs show a better genetic 

differentiation with geographical distance than mtDNA or autosomal SNPs due to patrilocality [5]. The 

main issue when inferring ancestry using non-autosomal markers is that although being highly accurate 

when recent ancestors were from the same region [65], they only represent half of the lineage [48] and 

they can lead to misinterpretation of complex origins [49]. Therefore, autosomal SNPs are proposed in 

combination with parental SNPs to infer admixed ancestries [7,21,35,48,66,67]. 

 

3.1.1. BGA-related literature 

In 2001, Jobling published the first review that considered Y-SNP haplogroup inferring as an exclusion 

tool to target an initial suspect [5]. Many reviews that discuss the aspects of BGA inference such as the 

development of panels and selecting classification algorithms are available [47,48,67–70]. However, 

only few discuss the different panels for FDP application [7,13,49], and they are usually centred around 

the most used ones. In this review, a total of 48 sets of markers that have been developed and/or applied 

in forensic genetics can be found in the Tables 1 and 2. 

The first commercially available tools for forensic inference of BGA were launched in 2003 by 

DNAPrint Genomics: DNAWitness-Y™ and DNAWitness-Mito™ for parental lineages, and 

DNAWitness™ to infer sub-Saharan African, Native American, East Asian, and European ancestries 
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(the latest also can be sub-divided into North-western European, South-eastern European, Middle 

Eastern and South Asian using the EUROWitness™ panel). These panel had already been applied to 

solve real forensic cases, such as the Louisiana rapist or the Night Stalker [33]. After they were 

discontinued, a well-known NGS-based commercial solution was presented by ThermoFisher 

Scientific: The Precision ID Ancestry Panel (before known as HID-Ion AmpliSeq™ Ancestry Panel) 

[146], which includes 165 aAISNPs, allowing the differentiation of African, European, American, East 

Asian, South Asian, Southwest Asian, and Oceanian populations.  

Concerning the non-commercial panels, one of the first applied panels in forensic research was 

proposed by the SNPforID Consortium. The SNPforID 34-plex panel [89] allows differentiation among 

sub-Saharan Africans, Europeans and East Asians and is suitable to use with SNaPshot™ technology. 

This panel is included in the online webtool Snipper App, developed by the University of Santiago de 

Compostela (USC) [147] and it allows to use the panel to infer three to five populations and to choose 

a classifier among naïve Bayes (NB; applying or not Hardy-Weinberg equilibrium (HWE)), 

multinomial logistic regression (MLR) or genetic distance algorithm (GDA) (according to allele and 

genotype frequency). 

The following years, three population-specific panels were developed to be used in combination 

with the 34-plex: a 23-plex called Eurasiaplex [105], which enhances differentiation between Europeans 

and South Asians; the Pacifiplex [125], a panel of 29 AIMs for differentiating Oceanian populations; 

and the 26-plex Population Informative Multiplex for the Americas (PIMA) dedicated to Indigenous 

American populations [122]. Other most used sets in this field are the Kidd’s lab panel, containing 55 

SNPs that can distinguish seven to eight continental regions [108], and the EUROFORGEN Global 

AIM-SNP set which is composed of 128 autosomal SNPs to differentiate the main five global groups 

(Africa, Europe, East Asia, Native America, and Oceania) [95]. This last panel was reduced to a 31-

plex, the Global AIMs Nano, and can be combined with the EUROFORGEN NAME [119], which uses 

111 aAISNPs to enhance differentiation of Middle Eastern and North Africans. 

 

 

3.2. EVC 

Externally visible characteristics (EVC) are described as physical traits that are apparent at view (i.e., 

pigmentation, height, weight, and facial morphology). Genetically, they are considered complex traits 

due to their multigenic and multifactional nature [11,14,148], since they are influenced by 

environmental factors [11,17], such as climate, altitude, and nutrition [1,6,14,36]. The markers used to 

infer EVC are commonly referred to as phenotypic-informative SNPs (PISNPs) and can be both present 

in the coding and non-coding regions of the DNA [21]. 
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The pigmentation variation depends on the amount, type, and distribution of melanin and 

eumelanin and it varies depending on the sex, age, ultra-violet ray (UVR) exposure and body site 

[24,50,148–150]. It is said that their genetics follow a semi-Mendelian inheritance [11,24], and their 

heritability is between 60 and 90% [7,12,14]. For this very reason, they have been the focus of FDP - 

since their genetics is extensively studied in clinical research - and they were the first ones to be 

predicted. The eye colour is the most successfully predicted EVC and is highly variable in European 

ancestries [43,151]. It is normally categorized in two or three groups: blue (non-brown) vs brown (non-

blue), or blue vs intermediate (green/hazel) vs brown/black. Additionally, they are divided into light 

(blue, green) and dark categories (brown, black). Instead, hair colour is usually divided into blond, 

brown, red, and black groups. This trait is highly influenced by age, since individuals with red and 

blond hair in their childhood usually transition to blond and brown – respectively –, and hair 

whitens/greys when older  [6,9,11,24,43]. In addition, the categorization of skin colour in humans is the 

most complex and the most varying among studies. Usually, they are divided according to the 

Fitzpatrick Scale [152] as very pale vs pale/light vs intermediate/olive/light-brown vs brown vs 

dark/black. For this reason, skin colour is the most complicated trait to predict among the pigmentation 

phenotypes [21,43]. Another unique pigmentation feature is the presence of ephelides - or freckles – 

which is also affected by URV exposure and age [153,154]. Their prediction can be based on a two- 

and four-categorical model: non-freckled vs freckled, or light-freckled vs mild-freckled vs severe-

freckled vs non-freckled. 

Two of the most interesting quantitative traits are height and weight. On one hand, stature is an 

easy to measure trait, leading to homogeneous, reliable, and accurate data [12,14]. It is highly polygenic 

and greatly influenced by environmental factors (e.g., social class, income, education, family size, 

housing, urban locations, etc.) [9,14]. Although it has been immensely studied in clinical research, few 

studies are directed to its incorporation to FDP. On the other hand, an individual’s weight is usually 

measured using the body mass index (BMI), and it is said to have a heritability around 60 to 70%, 

despite knowing that epigenetic factors have more influence that genetic ones [155]. 

The most ambitious and challenging phenotype to incorporate is facial morphology. Even 

though environment has a small effect, and the genetic component is strong, it is highly polygenic, and 

the knowledge of their underlying genetic mechanisms is scarce [8,9,11,12,156]. The FaceBase 

Consortium (see [157]) and the International Visible Trait Genetics (VisiGen) Consortium (see [158]) 

have discovered many markers associated with the actual human morphology and researchers tend to 

first focus on single facial features to later apply it to whole-face predictions [11,16,156,159]. Some of 

the individual traits that have been investigated are related to eye morphology, such as eyelid fold, 

epicanthal index and palpebral fissure distance and inclination. 

Another trait that could be incorporated in FDP is hair morphology, including hair shape, which 

can be grouped into three categories: straight, wavy, and curly; hair thickness from the scalp hair; 
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eyebrows (e.g., monobrows) and beard; and hair loss, in particular male-patterned baldness (MPB). 

Moreover, an interesting phenotype that has only been suggested once [160] is the relative hand skill 

(HSR) or handedness, which is based on the preference of using the right or left hand to perform 

complex tasks. 

 

3.2.1. EVC-related literature 

The prediction of physical characteristics is being extensively researched, in comparison with BGA. 

There are many reviews solely focused on the current knowledge on genetic mechanisms of 

pigmentation traits and facial morphology, as well as discovering new and more informative markers 

[161–174], and few include other traits that have potential to be included as part of FDP (freckles 

[164,171,175,176], facial morphology [177–181], high myopia [182], handedness [160], hair greying 

[183,184] or hair morphology [26,184–186]). In terms of prediction panels, there are seven reviews that 

include detailed descriptions on traits and their associated SNPs [7,8,12,13,15,52,54]. This review 

includes a total of 43 sets of markers to infer EVC (Table 3). 

The only commercial test purely focused on EVC inference was RETINOME™, also 

developed by DNAPrint™ Genomics who guaranteed a 97% of correct eye colour predictions [264]. 

Nonetheless, the most currently used free online tools to predict pigmentation traits are the IrisPlex 

system and its updated versions (HIrisPlex and HIrisPlex-S), created by the Erasmus University 

Medical Centre Rotterdam [151,219,234,265]. IrisPlex uses six SNPs to predict blue, intermediate, and 

brown colours with an average accuracy of 0.94 AUC, 0.74 AUC and 0.95 AUC, respectively. The 

HIrisPlex system allows the inference of eye and hair colour by simultaneously targeting 23 SNPs and 

1 InDel. It is possible to obtain accuracies of 0.92 AUC for red, 0.83 AUC for black, 0.80 AUC for 

blond and 0.72 AUC for brown. Moreover, the final HIrisPlex-S system can predict 5 skin pigmentation 

categories together with eye and hair colour using 41 SNPs with an accuracy of 0.74 AUC for very 

light, 0.72 AUC for light, 0.73 AUC for intermediate, 0.88 AUC for dark and 0.96 AUC for dark to 

black categories. 

Other panels, more precisely the SHEP panels [212,233,253] to infer pigmentation traits, have 

been included in the Snipper App [147]. Regarding eye colour, this webtool allows to select between 

7, 13 or 23 SNPs to infer blue, green/hazel, or brown eyes. Hair colour can be classified in two or four 

categories (light vs dark, or red vs blond vs brown vs black) when genotyping 12 markers, whereas skin 

colour is categorized as light, intermediate, or black typing 10 SNPs. These traits can be predicted using 

NB, MLR, or GDA. 
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3.3. BGA and EVC 

As observed, some physical characteristics, in particular pigmentation traits, vary according to 

continental populations [8,11,66,148]. Thus, it is important to always consider both when interpretating 

the results. A total number of 15 panels that infer simultaneously BGA and EVC have been included in 

this review (Table 4). 

The VISAGE Consortium presented their first appearance and ancestry single assay, referred 

as VISAGE Basic Tool (BT) [292]. It consists of a total of 153 AISNPs for continental origin inference, 

most of them part of the EUROFORGEN Global AIM-MPs ancestry panel [95], two SNPs from Kidd’s 

panel [108,146] and 11 from the Precision ID ancestry panel [146], and the 41 SNPs from the HIrisPlex-

S panel [265] for pigmentation inference.  

In terms of commercial solutions, the MiSeq FGx™ Forensic Genomics System (which 

includes the ForenSeq™ DNA Signature Prep Kit and ForenSeq™ Universal Analysis Software) 

(Illumina S.A., USA) [301] is one of the most complete forensic tools since it contains two panels: the 

first one including 27 autosomal, 7 X- and 24 Y-chromosomal STRs and 94 identity-SNPs for 

identification purposes, while the second panel contains 56 ancestry- (to classify four populations 

(European, American, African, and East Asian)) and 22 phenotype-informative SNPs (for eye and hair 

colour). Moreover, the VisiGen Consortium developed another commercial solution, which included 

Identitas v1 Forensic Chip and Identify software [287,302], which allows inference of bi-parental 

BGA, eye and hair colour, relatedness, and sex by interrogating 201,173 genome-wide autosomal 

(192,658), Y- (3,012), X- (5,075) and mt-SNPs (428). Finally, Parabon Nanolabs offers the Snapshot™ 

DNA Phenotyping Service [303], which they deem capable of creating a complete profile, including 

genetic ancestry, eye, hair, and skin colour, freckling and face shape.  

 

4. Findings 

The relatively new appearance of FDP and its debated implementation [304–308] translates 

into a complicated harmonization of its methodology, which is clear after inspecting all the SNP panels 

included in this review. It can be concluded that the factors that will influence the accuracy of the 

prediction are the genetic heritability of the trait, the method of SNP selection and genotyping, the 

informativeness of the SNP, the reference dataset, and the mathematical approach [7,9,12,103]. Thus, 

before FDP methods can be used in forensic investigations, they need to be standardized and 

forensically validated, according to the Scientific Working Group on DNA Analysis Methods 

(SWGDAM) guidelines [309], to finally provide reliable and reproducible results. To do so, all the 

technical advantages and limitations of FDP must be considered. In addition, a consensus between 
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researchers and field experts is needed to prepare protocols and directives to meet all ethical, social, 

and legal requirements (reviewed in [310]).  

 

4.1. Terminology and reporting 

The first most important issue is the terminology employed to identify FDP research. Although 

the word ‘FDP’ was already introduced in 2008 [10,47], not all articles on BGA or EVC inference 

identify it as such and simply refer it as an intelligence tool. For instance, only 78 articles included in 

this review identify FDP (two of them as molecular photofitting). Thus, the correct identification of the 

term as keyword and in the text would allow a more congruent literature search.  

Similarly, the second issue is the definition, categorization, and measurement of traits. On one 

hand, considering the nature of the traits (i.e., quantitative, like height and BMI; or qualitative, such as 

pigmentation traits and BGA), encasing the latter into categories, may lead to oversimplification [24], 

irreproducible results, and incomparable studies [287]. This especially becomes challenging when 

analysing data from multiple sources. Moreover, these categories are usually mistaken with stereotypes 

or sense of nationality [33,287]. Although categorization in forensics is preferred [39,205,214,311] – 

since the application in casework implies human interpretation (i.e., investigators) -, some researchers 

recommend using a continuous and quantitative spectrum instead [9,188,195]. On the other hand, 

measurements tend to be quite subjective, with most studies based on self-reported EVCs data via 

questionnaires or reported by simple observation of a non- or medical expert. For example, even when 

pigmentation traits are usually recorded via digital photographs they are later interpreted and put into 

categories by researchers. To avoid errors due to different perceptions of a trait [24,197], several studies 

suggested applying specialized equipment and reflectance, bioimaging and biochemical technologies 

[194,210] to find stronger genotype-phenotype associations [214]. In the case of BGA, information on 

up until a third-degree familial ancestry is usually reported and accompanied with a family pedigree.  

The same issue arises when FDP results are being reported. For instance, Atwood et al. [34] 

compared different service providers in terms of prediction accuracy, clarity of reporting and consistent 

terminology, limitations, cost, and time. The authors concluded that it is imperative that guidelines are 

created for a shared methodology, and clear reporting and easy interpretation of the analysis for non-

experts. Interestingly, results were shown in many ways, from simple verbal “not-/likely” to 

highlighting -or not- the highest probability for each trait variation or ancestry, or finally with a visual 

map representing where the individual falls on the represented population clusters.  
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4.2. Development of panels 

Before developing a panel for a certain trait or combinations of traits, researchers concentrate on finding 

the most informative set of markers for each trait. Usually, the discovery is performed via GWAS and 

later, confirmed by association studies [9,13,287]. This allows to avoid false positives and to find genes 

with weaker effects that may have been ignored [10,14]. Even so, these studies are usually carried out 

with small sample size and are not extensively replicated, creating some scepticism on the validity of 

the found associations [14]. Ideally, a worldwide population scan would be key to find candidate genes 

[312], considering that normally sub-populations are less represented in exploratory panels [266]. Other 

studies find SNPs by comparing allele frequencies found in genetic population databases (e.g., HapMap, 

1000 Genomes, CEPH Human Genome Diversity Panel, Complete Genomics) with specialized tools 

(e.g., SPSmart, FROG-kb [313,314]). 

In the case of BGA inference, it is important to select those variants with extreme allele 

frequency differences between populations [65,69,89,102,315] and obtain marker combinations to have 

equivalent levels of differentiation among those [95]. On the contrary, the genetic complexity of EVCs, 

due to pleiotropies (i.e., a single SNP influencing multiple traits) [11,14], epistasis (i.e., several SNPs 

influencing a single trait) [11,197,245], allelic heterogeneity [151,232,257], phenotypic variability, and 

gene-environment interactions, need to be assessed before selecting the candidate markers. However, 

these genetic mechanisms are still not fully understood [9], and it is possible that many other implicated 

and more informative genes are being ignored [15]. 

One of the first debates is centred around the number of SNPs needed in a panel to obtain 

reliable predictions. On one hand, small SNP panels must contain the most informative and 

differentiating markers and are ideal for the current available SNaPshot™ technologies and to obtain 

lesser partial profiles when typing low DNA samples [90,112,291]. On the other side, increasing the 

number of SNPs improves the accuracy, especially with missing data [80,136,287,315]. However, the 

number of SNPs will also depend on the analysis’ purpose and the genetic complexity of the trait. For 

instance, the four or five main continental populations can be distinguished with ease using less than 

40 markers [39,291], and eye colour can be distinguished with only six SNPs [151]. Conversely, even 

though the heritability of height and eye pigmentation is similar, the number of SNPs needed to infer 

stature is increasing by hundreds as its molecular mechanisms are discovered [262,263]. In this sense, 

several authors believe that it is better to have markers with a strong influence [110,312], due to the 

scare amount of DNA in the samples, while others suggest finding genes with weak effects to 

complement the inference [254,258,316]. Also, in the case of BGA, researchers recommend using a 

two-tier approach: first, a panel with maximum 100 markers to infer at least 12 global populations, and 

later other panels to refine sub-population inference [39,58,121,131]. That is the case of the SNPfor ID 

34-plex [90] and its EurasiaPlex [105], Pacifiplex [125] and PIMA’s [122] sub-panels. 
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Even though some researchers evaluated the capacity of EVC-associated variants to be used as 

AISNPs [100,104,110,165–167,315,317,318], making indirect inferences based on either BGA or EVC 

is a highly debated practice. Indeed, some authors made assumptions about individuals’ appearance 

using only BGA data [34,129], or vice-versa [16,36,67,148,319]. Nonetheless, most researchers 

discourage this practice, especially with the increasing population admixture [9,33,43,312] and the fact 

that some shared alleles may not be related to ancestry but to environmental exposures that are the same 

in different populations [33]. Despite this, it is still important to infer BGA, as well as biological age 

and sex, together with EVCs, especially if a trait is restricted to a population, sex, or age group 

[10,165,320], to avoid any misleading interpretations. 

Extensive lists of markers associated with EVCs are available [8,15,54] and they have been 

combined in multiple ways, yet the number of overlapping of unique markers is minimal. Soundararajan 

et al. [39] reported this same fact on BGA panels and emphasised the need for a collaboration among 

researchers to find the “best” markers and test them on a large data set representative of all global 

populations. Therefore, validation and inter-laboratory testing of panels is important to meet the specific 

quality requirements typical of forensic DNA analysis. Only few systems have been validated for 

forensic use [6,7,9,11,27]. Furthermore, panels are commonly developed using homogeneous and 

European reference data, and then validated in other populations; and they are replicated and validated 

adopting different methodologies, generating a more complicated comparison exercise [39]. The best 

outcomes would be to adapt the panel to each individual population [321] or obtain a complete allele 

frequency data for all existing populations and subpopulations [131]. 

Another factor that influences this choice is if SNPs are found in ‘coding’ or ‘non-coding’ 

genes, and their informativeness of other health-related phenotypes. This first differentiation follows 

the legal regulations that have been used for STR identification and although scientist have discussed 

that these categories do not reflect the reality, it is still used as a reason to include or discard markers. 

However, FDP implies the use of ‘associative’ markers that can be found in both non- and coding 

regions. The fear of including coding markers is based on their higher potential to provide health 

information [9,148,197], although non-coding genes can provide similar information if they are in 

linkage disequilibrium with the implicated coding genes [10] or regulatory regions [322]. Moreover, 

many disease- or trait-related candidate genes are first discovered when researching pathological or 

extreme variations, and other mutation within are found to be associated with normal variation instead 

[15,188]. For example, OCA2 gene mutations are associated with eye colour and oculocutaneous 

albinism [15,24,164]. Regarding these off-target phenotypes, Bradbury et al. [323] studied the 

possibility to reveal health information while predicting EVC, and only 27 out of 1766 FDP-related 

markers were associated with risk of having cancer, induced asthma or risk of alcoholism. However, 
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these associations do not mean that an individual is suffering from these diseases and a single marker 

cannot be used to predict or confirm these risks. 

Finally, there is a continuous debate on using commercial or non-commercial panels. While 

commercial houses’ strongest point is their constant supply of ready to use kits, they claim the kit’s 

technical information (e.g., markers, accuracy, statistical model, etc.) as their intellectual property. 

Hence, researchers cannot ensure a truthful validation and reproducibility of the kit. Consequently, 

some companies have been discontinued, like DNAPrint [33]; while others, such as Parabon Nanolabs 

have been criticised by many FDP-experts [53].  

 

4.3. Genotyping technology 

All available SNP typing methodologies have already been evaluated for forensic application ([18–

20,22,27]). These techniques are known to be very versatile, allowing the combination of different 

chemical reactions, assay formats and detection methods [19,20]. Then again, not all techniques are 

suitable as FDP faces similar problems to STR identification when analysing forensic samples (i.e., low 

quantity and degraded DNA and often mixtures). The selection of methodology will be based on its 

accuracy, multiplexing and automation capacity, high-throughput, cost, and time; as well as the purpose 

of the analysis (e.g., the number of traits and markers to be included). 

A great number of genetic techniques have been used to infer BGA or EVCs 

[13,40,196,242,324]: PCR assays (e.g., PCR-RFLP [171], PCR-REBA [82], and most commonly 

TaqMan® SNP genotyping assay), microarrays (e.g., GeneChip™ [102,287]), minisequencing (e.g., 

SNPlex™), MALDI-TOF (matrix-assisted laser desorption/ionization – time-of-flight) together with 

mass spectrometry (MS) detection (e.g., Sequenom® MassARRAY®) [107,116,120] and high-

resolution melting (HRM) [65,196,324]. While some techniques like Sequenom® MassARRAY® or 

HRM do not reach the sensitivity requirements for forensic samples [107,115,325], others have been 

developed but discontinued, such as Genomelab™ SNPstream® [66,156,159,214] and Genplex®. 

Nonetheless, the golden standard is still SNaPshot™ (SBE-CE assay) due to its robustness, simplicity, 

and efficiency, but more precisely because the instrument is already present in forensic laboratories and 

great efforts were invested in their standardization [2,13,40,196,325].  

Despite this, SNaPshot™-CE has a higher risk of contamination and error, and more 

importantly is limited to analyse one single trait inferred with 30 to 40 markers at a time and hence, it 

cannot keep up with the increasing number of markers needed for FDP [98,99,238,287]. For this reason, 

researchers are shifting to NGS techniques, in particular Ion Torrent™ (Thermofisher Scientific) and 

Illumina® [41,98,326]. They allow higher throughput, multiplexing capacity and sequencing accuracy 
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[15], as well as the possibility to automate and sequence different markers in the same run (e.g., STR, 

SNPs, InDels, microhaplotypes) [23,143]. However, this implies a longer preparation, sequencing, and 

analysis time [271]. As a result, the current focus is on testing SNaPshot™ panels using NGS 

instruments [98,99,237,238,243,320], applying single cell sequencing and NGS to analyse mixtures and 

touch DNA samples [136,142,241,297], and automating analysis and result interpretation to reduce 

analysis time [23]. This last one would allow a better handling of the samples, increase simple size, and 

reduce costs and time. 

All these techniques have their advantages and limitations, making it harder to choose one to 

proceed with their standardization. Moreover, the methodology will be chosen depending on the 

investigation requirements and purpose [8,14,19,98] and any new one such as MPS needs to be 

extensively validated in larger datasets and optimized before being incorporated [35,112,271]. Other 

factors that restrain technological advancement in the field are the costs to renovate workspaces, to train 

the staff, and to increase bioinformatic support and storage capacity [13,44,45,291]. 

 

4.4. Prediction models and algorithms 

Prediction models are created to support and understand the relationship between genotype and 

phenotype [14,15]. There are two type of algorithms that can be used to predict BGA or EVC outcomes: 

statistical and machine-learning (ML). Statistical algorithms, such as MLR, work better when the 

predictors are dependent from each other, while ML algorithms usually assume independence among 

predictors [15] and detect in a linear or more complex way the dependency between variable and 

attributes [217]. Both methods may provide similar accuracy when the same SNP panel is used [15] 

although ML methods require a higher computational cost and expertise. Indeed, several articles 

compared and introduced different classifiers for FDP analysis 

[12,48,67,68,70,117,205,206,217,227,252,299,327]. 

Two of the most used programs, STRUCTURE and Snipper, are based on the NB algorithm. 

This algorithm calculates how likely a trait belongs to a class comparing it with the allele frequencies 

that are observed in each cluster and make assumptions on unknown profiles. [68,90]. It is also capable 

of incorporating missing data [68]. The gold standard for BGA inference is the STRUCTURE software 

(and its updated version, ADMIXTURE), because of its “efficient clustering based on similarities or 

dissimilarities with the other samples” [48,49,95] and thus, good inference of admixture proportions, 

but only if the populations are well differentiated in the reference data [90,117]. Its main disadvantages 

are assuming HWE, which is not compatible with BGA nor EVC inference [68], and its long and 

computationally intensive run times when classifying single profiles with large datasets - since the 

parental data and the unknown profile need to be analysed simultaneously and missing data needs to be 
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imputed. Otherwise, Snipper can solve some of the issues STRUCTURE presents, providing a faster 

analysis [89,90], allowing the incorporation of one’s own reference dataset [105] and being able to 

classify single profiles in real time [105]. The later has been both used for BGA and EVC inference.  

Other alternative methods have also been tested. For example, GDA provides a continuous 

clustering by evaluating the informative proportions of each component, it doesn’t assume HWE, and 

it can be used as input for hierarchical clustering, like neighbour joining trees. Although it is highly 

sensitive to noise [48], it has been proven better for admixture classification [67,117]. On another note, 

visual representations of individual and population structure like principal component analysis (PCA), 

discriminant analysis of principal components (DAPC) [290] or multidimensional scaling (MDS) are 

helpful to interpretate the outcome [68]. However, since they are reduced to the two or three most 

important components, it may lead to misclassification [48]. In addition, logistic regression (bi- or 

multinomial LR) is perfect for assessing categorical outcomes, even though it tends to misclassify 

partial profiles [68]. It has been traditionally applied to infer pigmentation colours [151,219]. Also, 

multifactor dimensionality reduction (MDR) is used in small sample size studies to better detect 

epistatic effects [233,245,328]. Other available and tested ML methods are linear discriminant analysis 

(LDA), support vector machine (SVM) [110,217,316], partial least square regression (PLRS) [156], 

extreme gradient boosting (XGB) [217,246], classification and regression trees (CRT) 

[204,217,218,254], multi-variate adaptive regression splines (MARS) [217], bootstrapped response-

based imputation modelling (BRIM), ordinal and stepwise regressions (OR and SR) [209,246], and 

deep learning approaches such as neural networks (NN) and random forest (RF) 

[67,117,155,183,217,246,252,316]. NN are proposed as an alternative to LR as it recognises the patterns 

of complex data typical from EVC inference [156,254]. 

Hence, not all algorithms are appropriate, and will need to be selected depending on several 

aspects. First, the amount and type of data [217], as well as the impact of missing/partial profiles in the 

classification performance [68,89]. Second, the reference population, which not only affects the 

selection of SNPs but also the training of the classifiers. These must be representative of all variations 

and ancestries, especially when estimating admixed individuals [35,67,68,117,329]. Third, with the 

inability to incorporate environmental factors to the prediction, only sex and age can be incorporated as 

covariates. In the same way, the accuracy of the model will increase when considering both BGA and 

EVC if there is population dependency [188,189]. Some researchers defend that “when all the causing 

factors of a trait will be accounted for in the model, then the accuracy will be the same in all populations” 

[330]. 

Lastly, there are many options to interpretate the results obtained from the prediction model. It is 

key that field and legal experts easily understand and apply the findings. Logically, one may recommend 

continuing using likelihood rations (LR), since it already used in STR identification [133,188,195,272]. 
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Nonetheless, as Caliebe et al. observed [321], since FDP does not apply the same principle of comparing 

two hypotheses (i.e., sample belonging to a random individual vs the suspect), and the highest value 

may not represent the correct category [35]. Hence, it will be more appropriate to use statistical 

probability, represented as posterior odds (PO), but unfortunately, statistics are often harder to 

understand by the plain audience. Other ways to represent accuracy have been incorporated: area under 

the curve (AUC) for categorical predictions – that vary from 0.5 (random phenotype) to 1 (exact 

phenotype) [7,11,12,15,17]; and correlation (R or R2) or mean squared error (MSE) for quantitative 

measurements [15]. 

 

5. Conclusions, Limitations and Recommendations 

The expectations that the forensic experts have on FDP reveals the need to provide accurate and tangible 

results to solve more complicated investigations. In this review, we investigated those panels that had 

been developed precisely for FDP and analysed the limitations to have in mind before an agreed 

application of the technique in the forensic workload. Among the available bibliography, 304 

publications were strictly related to FDP inference and only 80 of them clearly identified that the 

research was for FDP inference. A total of 48 panels have been developed for BGA inference, six being 

commercial tests; while only one of the 43 panels available to infer several EVCs is from a commercial 

vendor. In addition, BGA and EVC can be simultaneously inferred with 15 panels, two of which are 

wildly used commercial solutions. 

Throughout the literature, there is a recurrent stance from researchers: FDP is not to use in trial, 

but during the investigation step. This reasoning is because FDP cannot reach the level of “scientific 

certainty” that has been attributed to STR identification. Hence, although the justice seeks for an 

“absolute truth”, there needs to be a shift regarding the expectations on the results’ conclusiveness [2]. 

Realistically, in the near future of FDP, accuracy will not improve drastically. This is because even if 

more genetic and environmental interactions are found, the fully understanding of the effects on 

phenotypes complicates at the same time. There are a few things that can be done to increase the results 

accuracy, such as using quantitative and continuous predictions, promoting validation on all possible 

human populations and sub-populations, and investigating the incorporation of prior knowledge in the 

models [206]. The same can be said about incorporating other traits into the FDP profile, since the 

current extensive research (on height, weight, and facial morphology, among others) does not provide 

enough weight to obtain acceptable prediction accuracies. Moreover, there is an increasing interest in 

combining FDP with epigenetic information, not only to infer age, but to infer traits that are age-

dependent like hair greying, and with other types of analysis, such as investigative genetic genealogy 

(IGG) or behavioural tendencies. These last two come with many ethical implications, such as the 
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violation of genetic information of family members or whether a tendency such as aggression or 

depression is more influenced by physiological, rather than genetic factors and thus, considered medical 

information.  

Finally, a decision concerning methodology advancement must be made by forensic services,  

either MPS is incorporated to laboratories to keep up with the increasing demand of high number of 

markers and traits - that current SNaPshot™ methods cannot, or either, if FDP is considered as a tool 

that will not be used regularly and only in “desperate times”, this task is to be entrusted to specialized 

external centres. Nonetheless, the advancement of FDP application will rest on the efforts of the forensic 

community on creating guidelines and standards for EVC and BGA inference, from their measurement 

and categorization to their genotyping and prediction models.  
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Table 1. Non-commercial BGA panels proposed in the literature, including their reference article, 

number and AISNPs type, first used genotyping technology and prediction model, inferred populations 

and related articles. EUR: European (NEU: north), AFR: African (WAF: west, NAF: north, NEAF: 

north-east), ASN: Asian (EAS: east, WAS: west, WEAS: west-east, SAS: south, SWAS: south-west, 

SEAS: south-east, central-south, NAS: north), EURAS: Eurasian, NAM: Native American, AUS: 

Australian, OCE: Oceanian (NOCE: near), PAC: Pacific, NES: near east, MES: Middle East, MED: 

Mediterranean. 

 

 AISNPs 
Genotyping 

technology 

Statistical 

model 
Inferred BGA 

Related 

articles 

Y-AISNPs Panel 

Major Y-

chromosome 

haplogroup typing 

kit. 

[71,72] 

29 Y-SNPs 
SNaPshot™ + 

CE 
MDS 

31 major global 

Y-haplogroups 
[73] 

[74] 30 Y-SNPs 
SNaPshot™ + 

CE 
MDS 

32 major EUR Y-

haplogroups 
NA 

[75] 37 Y-SNPs 
SNaPshot™ + 

CE 
CRT 

Major EUR Y-

haplogroups 
NA 

[76] 13 Y-SNPs 
SNaPshot™ + 

CE 

GDA 

CRT 

NB (Snipper) 

Major ASN Y-

haplogroups 
NA 

[77] 12 Y-SNPs 
SNaPshot™ + 

CE 
CRT 

Venezuelan Y-

haplogroups 
NA 

[78] 28 Y-SNPs 
SNaPshot™ + 

CE 
CRT 

Macedonian Y-

haplogroups 
NA 

[79] 28 Y-SNPs 
SNaPshot™ + 

CE 
CRT 

Major global Y-

haplogroups 
NA 

[80] 7 Y-SNPs 
SNaPshot™ + 

CE 
CRT 

EUR, EAS, AFR 

Y-haplogroups 
NA 

[81] 
859 Y-

SNPs 
NGS CRT 

640 Y-

haplogroups 
NA 

[82] 9 Y-SNPs 
PCR-REBA + 

Sequencing 
CRT 

Major global Y-

haplogroups 
NA 

mt-AISNPs Panel 

[83] 

11 mt-

SNPs 

1 mt-InDel 

SNaPshot™ + 

CE 
CRT 

15 mt-

haplogroups 
NA 

[84] 
36 mt-

SNPs 

SNaPshot™ + 

CE 
CRT 

43 mt-

haplogroups 
NA 
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(AFR, west and 

east EURAS, 

NAM) 

[85] 
26 mt-

SNPs 

SNaPshot™ + 

CE 
CRT 

20 OCE and 10 

AFR, EUR and 

ASN mt-

haplogroups 

 

NA 

[86] 
62 mt-

SNPs 

SNaPshot™ + 

CE 
CRT 

70 global mt-

haplogroups 

(AFR, NAM, 

WEAS, EAS, 

AUS, OCE) 

NA 

[87] 
52 mt-

SNPs 

SNaPshot™ + 

CE 
CRT 

Major global mt-

haplogroups 
[87] 

aAISNPs Panel 

[88] 6 aSNPs 
SNaPshot™ + 

CE 
NJ 

Major AUS sub-

populations 
NA 

SNPforID 34-plex 

[89–91] 
34 aSNPs 

SNaPshot™ + 

CE 

NB (Snipper and 

STRUCTURE) 

3 populations 

(AFR, EUR, 

EAS) 

[91–99] 

[66] 
176 aSNPs 

 
SNPstream + CE 

NB 

(STRUCTURE) 

ML 

(unspecified) 

4 populations 

(EUR, WAF, 

NAM, EAS) 

NA 

[100,101] 16 aSNPs 
SNaPshot™ + 

CE 
NB (Snipper) 

6 AUS sub-

populations 

NA 

 

[102] 47 aSNPs 

GeneChip® 

array  

TaqMan® SNP 

genotyping  

NB 

(STRUCTURE) 

4 populations 

(AFR, EURAS, 

EAS, NAM) 

NA 

Seldin set. 

[103] 
128 aSNPs 

TaqMan® SNP 

genotyping  

NB 

(STRUCTURE) 

4 populations 

(AFR, EUR, EAS, 

NAM) 

NA 

[104] 16 aSNPs 
SNaPshot™ + 

CE 
MLR 

7 populations 

(WAF, NAF, 

Turkey, NES, 

Balkan states, 

NEU, Japan) 

NA 

EurasiaPlex 

[105] 
23 aSNPs 

SNaPshot™ + 

CE 

NB (Snipper and 

STRUCTURE) 

2 sub-populations 

(EUR and EAS, 

MES, and SAS) 

[91,98,99] 

EUROFORGEN 

Global AIM-SNP  

[95] 

128 aSNPs 

Sequenom® 

MassARRAY®   

Sanger 

sequencing 

MDS 

NB (Snipper and 

STRUCTURE) 

5 populations 

(AFR, EUR, EAS, 

NAM, OCE) 

[106,107] 

Kidd Lab 

[108] 
55 aSNPs 

TaqMan® SNP 

genotyping  

MDS 

NB 

(STRUCTURE) 

7 to 8 populations 

(sub-Saharan 

AFR, admixed 

and NEAF, 

SWAS, EUR, 

Siberian, SAS, 

EAS, SEAS, 

PAC, NAM) 

[109] 

[110] 14 aSNPs 
SNaPshot™ + 

CE 

NB (Snipper) 

SVM 

3 populations 

(EUR, AFR, 

EAS) 

NA 
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EurEAs_Gplex 

[111] 
14 aSNPs 

SNaPshot™ + 

CE 

 

MDS 

NB (Snipper and 

STRUCTURE) 

3 populations 

(EUR, AFR and 

EAS) 

NA 

Global AIMs 

Nano 

[112] 

31 aSNPs 

SNaPshot™ + 

CE 

 

 

NB (Snipper and 

STRUCTURE) 

5 populations 

(AFR, EUR, EAS, 

OCE, NAM) 

NA 

[113] 32 aSNPs 
TaqMan® SNP 

genotyping  

NB 

(STRUCTURE) 
MED and SWAS NA 

[114] 74 aSNPs 

TaqMan® SNP 

genotyping 

Sequenom® 

MassARRAY®   

NB 

(STRUCTURE) 

10 populations 

(sub-Saharan 

AFR and NAF, 

EUR, SWAS, 

NAS, SAS, EAS, 

SEAS, OCE, 

NAM) 

[115] 

[116] 130 aSNPs 
Sequenom® 

MassARRAY®   
MLR 

EUR and 5 ASN 

sub-populations 
NA 

[68] 142 aSNPs Not used 

NB (Snipper and 

STRUCTURE) 

MLR 

GDA 

4 populations 

(AFR, EUR, EAS, 

NAM) 

[117] 

[67] 93 aSNPs Not used NN 

7 populations 

(AFR, EUR, 

CSAS, MEA, 

EAS, NAM, 

OCE) 

NA 

JapanesePlex 

[118] 
60 aSNPs 

SNaPshot™ + 

CE 
NB (Snipper) 

EAS sub-

populations 
NA 

SWA AISNP 

panel 

[58] 

86 aSNPs 
TaqMan® SNP 

genotyping  

NB 

(STRUCTURE) 

SWAS and MED 

sub-populations 
[109] 

EUROFORGEN 

NAME 

[119] 

111 aSNPs 
Sequenom® 

MassARRAY®   

NB (Snipper and 

STRUCTURE) 
NAF and MES [120] 

[121] 48 aSNPs Not used 

NB 

(ADMIXTURE) 

MLR 

Chinese sub-

populations 

(Uygur, Han, 

Mongolian) 

NA 

Population 

Informative 

multiplex for the 

Americas (PIMA) 

[122] 

26 aSNPs 
SNaPshot™ + 

CE 

PCA, NB 

(Snipper) 

NAM sub-

populations 
[123] 

Multiple AISNPs Panel 

[65] 

7 Y-SNPs  

12 mt-

SNPs 

6 aSNPs 

SNaPshot™ + 

CE 

HRM 

NB 

(STRUCTURE) 

2 populations 

(ASN and EUR) 
NA 

[124] 
31 aSNPs  

21 InDels 

SNaPshot™ + 

CE 

NB (Snipper and 

STRUCTURE) 

5 populations 

(AFR, EAS, 

MES, EUR, 

CSAS) 

NA 

Pacifiplex 

[125] 

27 aSNPs 

2 X-SNPs 

SNaPshot™ + 

CE 

NB (Snipper and 

STRUCTURE) 

OCE sub-

populations 
[96,98,99] 
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MAPlex  

[126,127] 

144 aSNPs 

20 MH 
NGS 

NB (Snipper and 

STRUCTURE) 

3 populations 

(EAS, SAS, 

NOCE) 

[128] 

 

 

 

 

Table 2. Commercial BGA panels proposed in the literature, including their reference article, number 

and AISNPs type, first used genotyping technology and prediction model, inferred populations and 

related articles. EUR: European (NWEU: north-west, SWEU: south-west), AFR: African, ASN: Asian 

(EAS: east, SAS: south, SWAS: south-west), NAM: Native American, OCE: Oceanian, MES: Middle 

East. 

 SNPs 
Genotyping 

technology 

Statistical 

model 
Inferred BGA 

Related 

articles 

Signet™ Y-SNP kit 

(Marligen 

Bioscience Inc.) 

42 Y-SNPs 

Amelogenin 

Multiplex 

PCR + flow 

cytometry 

CRT 
6 major global Y-

haplogroups 
[129] 

Precision ID 

Ancestry panel 

(Thermofisher 

Scientific) 

165 aSNPs NGS 

HID-SNP 

Genotyper 

PlugIn 

(undisclosed) 

7 populations (EUR, AFR, 

NAM, EAS, OCE, SAS, 

SWAS) 

[35,57,130

–145] 

DNAWitness™ 

(DNAPrint 

Genomics) 

178 aSNPs 
SNPstream® 

 
NA 

4 populations (sub-Saharan 

AFR, NAM, EAS, EUR) 
NA 

DNAWitness-Y™ 

(DNAPrint 

Genomics) 

NA SNPstream® NA Y-haplogroups NA 

DNAWitness-

Mito™ (DNAPrint 

Genomics) 

NA SNPstream® NA mt-haplogroups NA 

EUROWitness™ 

(DNAPrint 

Genomics) 

NA 
SNPstream® 

 
NA 

4 EUR sub-populations 

(NWEU, SWEU, MES and 

SAS) 

NA 

 

Table 3. Commercial and non-commercial EVC panels proposed in the literature, including their 

reference article, number of PISNPs, first used genotyping technology and prediction model, inferred 

traits and related articles. 

 

 SNPs 
Genotyping 

technology 
Statistical model Inferred traits Related articles 

Pigmentation traits 

RETINOM

E™ 

(DNAPrint 

Genomics) 

NA NA NA Eye colour NA 

IrisPlex 

[151,187] 
6 PISNPs SNaPshot™ + CE MLR Eye colour 

[35,98,99,123,14

9,150,172,188–

211] 
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SHEP 1 

[212] 
13 PISNPs SNaPshot™ + CE NB (Snipper) Eye colour 

[97,123,194,201,

202,204] 

[213] 19 PISNPs 
TaqMan® SNP 

genotyping  
CRT Eye colour [204] 

[214] 
23 PISNPs 

2 InDels 

TaqMan® SNP 

genotyping  

SNaPshot™ + CE 

LR Eye colour NA 

[215] 2 PISNPs 
TaqMan® SNP 

genotyping  
LR Eye colour NA 

[216] 5 PISNPs Sanger sequencing MLR Eye colour NA 

[217] 137 PISNPs NGS 

LR, CRT, RF, XGB, 

MARS, NN, SVM 

and NB 

Eye colour NA 

EC11 

[218] 
11 PISNPs 

Sequenom® 

MassARRAY®  
LR, CRT Eye colour NA 

HIrisPlex 

[219,220] 

23 PISNPs 

1 InDel 

SNaPshot™ + CE 

TaqMan® SNP 

genotyping 

MLR 
Eye colour 

Hair colour 

[31,136,142,205,

206,221–226] 

[227] 12 PISNPs SNaPshot™ + CE MLR, BLR, NB 
Eye colour 

Hair colour 
[208] 

[228] 
10 PISNPs 

2 InDels 

Solid-phase 

fluorescent 

minisequencing 

GDA Hair colour NA 

[229,230] 5 PISNPs SNaPshot™ + CE GDA Hair colour NA 

[231] 
11 PISNPs 

Amelogenin 
SNaPshot™ + CE BN Hair colour NA 

[232] 13 SNPs 

Sequenom® 

MassARRAY®  

SNaPshot™ + CE 

MLR, LASSO 

regression 
Hair colour [209] 

SHEP 4 

[233] 
12 PISNPs SNaPshot™ + CE 

LR 

NB (Snipper, 

iterative NB) 

Hair colour [97] 

[183] 

12-14 

PISNPs 

Amelogenin 

NGS NN Hair greying NA 

HIrisPlex-

S 

[234] 

41 SNPs SNaPshot™ + CE MLR 

Eye colour 

Hair colour 

Skin colour 

[109,141,166,205

,206,235–244] 

[245] 13 PISNPs SNaPshot™ + CE 
MDR 

MLR 

Eye colour 

Hair colour 

Skin colour 

NA 

[209] 12 PINSPs SNaPshot™ + CE LR, OR 

Eye colour 

Hair colour 

Skin colour 

NA 

CAN-E, 

CAN-S 

and CAN-

H 

[246] 

277 PISNPs Not used 

LR, MLR, RF, 

XGB, ANN, OR and 

SR 

Eye colour 

Hair colour 

Skin colour 

NA 

[247] 12 PISNPs 
TaqMan® SNP 

genotyping  
MLR 

Eye colour 

Hair colour 

Skin colour 

NA 

[248] 7 PISNPs 
TaqMan® SNP 

genotyping  
GDA 

Eye colour 

Skin colour 
[193,249] 
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[249] 8 PISNPs 
TaqMan® SNP 

genotyping  
GDA 

Eye colour 

Skin colour 
[204,250] 

[251] 5 PISNPs NGS GDA 
Eye colour 

Skin colour 
NA 

[252] 14 PISNPs SNaPshot™ + CE LR, RF and NN 

Skin colour 

Tanning 

Freckles 

NA 

[154] 5 PISNPs 

KASP Genotyping 

Chemistry 

TaqMan® SNP 

genotyping 

MLR Freckles NA 

[153] 
12-14 

PISNPs 
NGS LR Freckles [206] 

SHEP 1 

[253] 
110 PISNPs SNaPshot™ + CE NB (Snipper) Skin colour [97] 

Other hair-related traits 

[254] 6 PISNPs 
SNaPshot™ + CE 

NGS 
LR, CRT and NN 

Hair 

morphology 
NA 

[185] 
32-33 

PISNPs 

NGS 

Sequenom® 

MassARRAY®  

LR 
Hair 

morphology 
[206] 

[255] 14 PISNPs Microarray MLR 
Hair 

morphology 
NA 

[256] 4-21 PISNPs NGS LR 
Hair 

morphology 
NA 

[257] 5-20 PISNPs 
SNaPshot™ + CE 

NGS 
LR 

Male-pattern 

baldness 
NA 

[258] 25 PISNPs 
SNaPshot™ + CE 

PCR-RFLP 
LR 

Male-pattern 

baldness 
NA 

Facial traits 

[156,159] 

24 PISNPs 

68 AISNPs 

Amelogenin 

SNPStream™ PLSR, BRIM 
Facial 

morphology 
NA 

[259] 
~ 90.000 

PISNPs 
Microarray PCA, LR 

Facial 

morphology 
NA 

[181] 1 PISNPs NGS LR Eyelid NA 

[260] 4 PISNPs Microarray PCA 
Facial 

morphology 
NA 

[261] 21 PISNPs SNaPshot™ + CE 
OR 

MLR 
Ear morphology NA 

Other traits 

[155] 
8 PISNPs 

4 CpG sites 

SNaPshot™ + CE 

Pyrosequencing 
RF BMI NA 

[262] 180 PISNPs Microarray LR Height NA 

[263] 
412-689 

PISNPs 
Microarray LR Height NA 
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Table 4. Commercial and non-commercial BGA and EVC panels proposed in the literature, including 

their reference article, number, and SNPs type, first used genotyping technology, prediction model and 

inferred populations and traits. EUR: European, AFR: African (NAF: north, AFR-AME: American), 

ASN: Asian (EAS: east, CAS: central, SAS: south, SWAS: southwest), NAM: Native American, OCE: 

Oceanian, MED: Mediterranean, HIS: Hispanic. 

 

 SNPs 
Genotyping 

technology 

Statistical 

model 

Inferred BGA 

and traits 
Related articles 

MiSeq FGx™ 

Forensic 

Genomic 

System 

(includes 

ForenSeq™ 

Signature kit 

B) 

22 PISNPs 

56 aAISNPs 
NGS 

Illumina 

ForenSeq 

Universal 

analysis 

Software™ 

(Undisclosed) 

BGA 

(Undisclosed) 

Eye, hair, and 

skin colour 

[28,143,242,266–

283] 

Parabon™ 

Snapshot® 
Undisclosed NGS Undisclosed 

BGA (EUR, 

MED, EAS, 

CAS, AFR) 

Eye, hair, and 

skin colour 

Freckling 

Face shape 

NA 

[284] 
6 PISNPs 

4 AISNPs 

SNaPshot™ + 

CE 

NB 

(STRUCTURE) 

BGA (EUR, 

AFR, ASN) 

Eye, hair, and 

skin colour 

NA 

[285] 
60 PISNPs 

43 AISNPs 

SNaPshot™ + 

CE 

NB 

(STRUCTURE) 

BGA (AFR, 

AFR-AME, 

EUR, SAS, 

ASN, NAM, 

HIS) 

Eye, hair, and 

skin colour 

Hair 

morphology 

Male-pattern 

baldness 

NA 

[286] 

21 mt-

AISNPs 

28 Y-

AISNPs 

14 AI-

/PISNPs 

SNaPshot™ + 

CE 
GDA 

BGA (AFR, 

EUR, 

NAF/MED, 

ASN, EAS) 

Eye, hair, and 

skin colour 

NA 

Identitas v1 

Forensic Chip 

[287] 

192,658 

aSNPs 

3,012 Y-

SNPs 

5,075 X-

SNPs 

428 mt-

SNPs 

Microchip MLR 

BGA (EUR, 

AFR, EAS, 

SAS, NAM) 

Eye and hair 

colour 

Kinship 

Sex 

NA 

[288] 
31 PISNPs 

19 AISNPs 

SNaPshot™ + 

CE 

MLR 

NB (Snipper) 

BGA (EUR, 

AFR-AME, 

NAM/HIS, 

ASN) 

Eye colour 

NA 
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32-plex 

[289,290] 

10 PISNPs 

22 AISNPs 

SNaPshot™ + 

CE 

NB 

(STRUCTURE 

and Snipper) 

DAPC 

BGA (AFR, 

EUR, SAS, 

EAS, NAM) 

Eye, hair, and 

skin colour 

[124] 

MiniPlex 

[291] 

5 mt-

AISNPs 

4 Y-AISNPs 

1 Y-AI 

InDel 

5 aAISNPs 

3 PISNPs 

SNaPshot™ + 

CE 

MLR, NB 

(Snipper) 

BGA (5 global 

mt- and Y-

haplogroups, 

AFR, EUR, 

EAS, OCE, 

NAM) 

Eye colour 

Lineage 

NA 

VISAGE Basic 

Tool for 

Ancestry and 

Appearance 

(BT A&A) 

[292] 

41 PISNPs 

153 AISNPs 

 

NGS NB (Snipper) 

BGA (AFR, 

EUR, EAS, 

NAM, OCE, 

SAS) 

Eye, hair, and 

skin colour 

[293–295] 

Ion 

AmpliSeq™ 

PhenoTrivium 

Panel [296] 

41 PISNPs 

163 AISNPs 

120 Y-

AISNPs 

NGS NB (Snipper) 

BGA (AFR, 

EAS, SAS, 

SWAS, EUR, 

NAM, OCE) 

Eye, hair, and 

skin colour 

[297] 

[298] 

67 AISNPs 

23 PISNPs 

35 Y-

AISNPs 

NGS 
NB (Snipper) 

CRT 

BGA (Pakistan 

pub-

populations) 

Eye, hair, and 

skin colour 

NA 

[299] 
2 AISNPs 

3 PISNPs 

TaqMan® 

SNP 

genotyping 

BN 

BGA (EUR, 

ASN) 

Eye colour 

NA 

[109] 
41 PISNPs 

141 AISNPs 
NGS 

LR 

MLR 

BGA (AFR, 

EUR, ASN, 

NAM, SWAS, 

MED) 

Eye, hair, and 

skin colour 

NA 

Phenotype 

Expert 

[300] 

41 PISNPs 

14 Y-

ASNPs 

Amelogenin 

4 ABO 

blood group 

SNPs 

Microchip 
MLR 

CRT 

BGA (Slavic 

Y-haplogroups) 

Eye, hair, and 

skin colour 

NA 
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