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Abstract

Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half

the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the

potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory

predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to

ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily,

result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex

chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning

dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict

longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review,

we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We

also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting

results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
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Introduction

From the book Sex Chromosomes and Sex-Linked Genes

(Ohno 1967).

“During the course of evolution, an ancestor to the pla-

cental mammals must have escaped a peril resulting from

the hemizygous existence of all the X-linked genes in the

male by doubling the rate of product output of each X-

linked gene. Once this step was accomplished, the fe-

male no longer needed two X’s in her somatic cells.

Hence, the dosage compensation mechanisms by ran-

dom inactivation of one or the other X evolved.

In the case of Drosophila, on the other hand, it appears

that a needed increase of the rate of product output by

the individual X-linked genes did not take place in their

evolutional past. Thus, two alleles at each X-linked gene

locus are still needed by the female. The presence of

modifier genes is required primarily to raise the efficiency

of individual X-linked genes in the hemizygous state as a

means of minimizing a peril encountered by the male.”

(p. 99)

“Although the two are rather similar in absolute size, the

avian Z-chromosome makes up nearly 10% of the ge-

nome, while the original X of placental mammals com-

prises only 5%. It would appear that birds have an even

greater need than mammals for developing an effective

dosage compensation mechanism for the Z-linked genes.

It is a great surprise to find that avian species apparently

failed in developing an effective means for achieving the

dosage compensation.” (p. 144)

Most discussions of sex chromosome dosage compensa-

tion (SCDC), including this one, start with Ohno’s “peril” of

hemizygosity. Susumu Ohno was the first to concisely
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articulate the notion that dosage compensating mechanisms

might be expected to evolve concomitantly with well-

differentiated sex chromosomes (also called allosomes) (for

a historical overview of the discovery and early research of

SCDC, see Gartler 2014). From an historical perspective, this

peril of hemizygosity was a formative concept that strongly

shaped research and theory concerning SCDC for several dec-

ades (Charlesworth 1978, 1996; Vicoso and Bachtrog 2009;

Mank et al. 2011). Yet even at the time, Ohno’s (1967) argu-

ments did not easily or coherently explain known patterns of

SCDC, as the above excerpts demonstrate. In recent years,

genomic analyses have revealed a striking degree of variation

in SCDC across taxa. These results have largely overturned

Ohno’s once predominant hypothesis while also raising nu-

merous further questions about the role of dosage compen-

sation in sex chromosome evolution.

In a narrow sense, “Ohno’s hypothesis” is associated spe-

cifically with his assessment of SCDC in mammals: that deg-

radation of the Y catalyzed up-regulation of the X, causing

over-expression in females, which subsequently was miti-

gated through X-chromosome inactivation (XCI) (Nguyen

and Disteche 2006; Xiong et al. 2010; Pessia et al. 2014;

Graves 2016). While this proposed chain of evolutionary

events form an intuitively appealing hypothesis that long

appeared correct, recent genomic analyses have caused it to

unravel (Julien et al. 2012; Lin et al. 2012; Chen and Zhang

2015). The broader hypothesis, that sex chromosome differ-

entiation presents a “peril” to be mitigated via dosage com-

pensation, has also long served as an important conceptual

framework in sex chromosome research (Charlesworth 1978,

1996; Bachtrog 2006; Vicoso and Bachtrog 2009; Mank

2013). Yet this broader hypothesis is also eroding as genomic

investigations of SCDC expand into increasingly diverse taxa.

It now appears that evolving SCDC via chromosome-wide

regulation is the exception, not the norm (Disteche 2016;

Chandler 2017).

As the classical Ohnian paradigm crumbles, research in

SCDC evolution faces major challenges in integrating a di-

verse and growing patchwork of observations into a coherent

theoretical framework. This research ultimately aims to under-

stand clearly why SCDC evolves or is absent, both for partic-

ular genes as well as for whole chromosomes. Recent

empirical results and novel modeling efforts offer some clues;

for instance it may depend on how dosage “sensitive” a gene

is, as well as whether the degenerate sex chromosome resides

in males or females (Pessia et al. 2012; Mullon et al. 2015).

Nonetheless, a comprehensive understanding of SCDC

evolution remains an elusive but alluring goal, with much

work still required to provide broader taxonomic sampling,

detailed dissection of mechanism, and creative application

of theory.

Here, were present on overview of contemporary research

on SCDC evolution. We begin by summarizing the relevant

theory and connecting it to the criteria, methodologies, and

specific vocabulary used in the context of studying SCDC.

Next, we address technical issues and complications that are

frequently encountered in genomic analysis of SCDC. We

then provide a summary of empirical results currently available

concerning SCDC across animals. Finally, we address several

outstanding questions and opportunities that exist for future

studies of dosage compensation. We focus our discussion on

animals, as SCDC in plants is thoroughly addressed in the

recent review from Muyle et al. (2017)

The Evolution of Sex Chromosomes and the
Peril of Hemizygosity

The prevailing theory of sex chromosome evolution is that

allosomes arise from a pair of homologous and recombining

autosomes, in which one homolog acquires a sex-determining

locus (Charlesworth 1991; Charlesworth et al. 2005).

Subsequently, selection will favor tight linkage between the

sex determining locus and sexually antagonistic alleles benefit-

ing the heterogametic sex. This results in a loss of recombina-

tion between the proto-allosomes, allowing for processes like

Muller’s ratchet or adaptive hitch-hiking to erode the gene

content of one allosome, yielding an intact X chromosome

and a degenerate Y chromosome in male-heterogametic taxa

(or a Z and degraded W chromosomes in female-

heterogametic species like birds and butterflies)

(Charlesworth 1978; Rice 1996; Bachtrog 2013).

One important consequence of this process is that the X

chromosome becomes increasingly monoallelic in the males,

causing a difference in gene dose between sexes: females

retain two copies of X-linked genes while males are left

with only a single copy. (For the sake of simplicity we will

assume male-heterogamety in our discussion, unless other-

wise specified, though all arguments apply equally to

female-heterogamety and ZW chromosomes.) This imbal-

ance, if reflected in the abundance of transcripts or proteins,

has the potential to deleteriously disrupt interactions between

X-linked and autosomal loci in males (Birchler et al. 2001,

2005; Mank 2009). Proper function for much of develop-

ment, cellular physiology, and metabolism requires tightly

controlled stoichiometric ratios of interacting proteins

(Birchler et al. 2005; Zhang and Oliver 2007). Grossly altering

these ratios is expected to substantially reduce fitness. During

allosome divergence, females presumably retain the ancestral

gene dosage (diploid X chromosome) and experience no dis-

ruptions to protein–protein interactions between X and auto-

somes. In contrast, large monoallelic regions on the X in males

will likely cause detrimental gene dosage effects. For this rea-

son, it is expected that dosage compensating mechanisms

should evolve that recapitulate the ancestral expression levels

for the monosomic male X (i.e., comparable to XX females)

(Ohno 1967; Rice 1987; Charlesworth 1996; Mank et al.

2011). In other words, dosage compensation mechanisms

arise due to stabilizing selection to maintain ancestral
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expression levels on the X chromosome. Primarily this selec-

tion acts on the heterogametic sex, though potentially also on

the homogametic sex as a secondary, sexually antagonistic

step in the process of SCDC evolution (Ohno 1967; Rice

1987; Mank et al. 2011). Yet because most genes have com-

parable expression in both sexes, the mechanisms that evolve

to achieve SCDC should also produce balanced expression on

the X chromosome between males and females.

We can thus specifically define SCDC as the maintenance

of ancestral expression levels of sex-linked genes relative to

autosomal expression in the heterogametic sex (Ohno 1967;

Mank et al. 2011). SCDC is often further qualified as

“complete” versus “incomplete” or “partial.” SCDC is

“complete” when sex-linked expression in the heteroga-

metic sex is indistinguishable from the ancestral state.

SCDC that is “partial” or “incomplete” refers to sex-

linked expression in the heterogametic sex that is reduced

relative to ancestral expression. Importantly, this specific

definition of complete SCDC can exclude some cases

where sex-linked expression is well-balanced between

males and females. For example, this appears to be the

case in placental mammals and in Lepidoptera (moths and

butterflies), where the average X or Z expression is re-

duced relative to ancestral states in both sexes (Walters

and Hardcastle 2011; Julien et al. 2012; Lin et al. 2012;

Kiuchi et al. 2014; Chen and Zhang 2015; Gu et al. 2017 ).

These patterns are notably inconsistent with theoretical

expectations and are not easily explained at present, other

than to suggest SCDC may not be universally required for

allosome divergence as has long been believed.

Nonetheless, gene-by-gene compensation of highly dos-

age sensitive genes seems to occur in several species

(Julien et al. 2012; Lin et al. 2012; Pessia et al. 2012;

Disteche 2016; Zimmer et al. 2016).

This definition of SCDC also includes cases where the X

chromosome is over-expressed in the homogametic sex such

that sexes are not balanced, even though the heterogametic

sex is dosage compensated (Prince et al. 2010; Mank et al.

2011; Allen et al. 2013). This scenario can result from the

spread of X-linked alleles that benefit males by up-

regulating the X chromosome to achieve dosage compensa-

tion. If these alleles act similarly in females, they will cause

over-expression of X-linked loci relative to the ancestral state,

potentially reducing female fitness (Ohno 1967; Charlesworth

1978, 1996; Rice 1984, 1987; ). This sexual antagonism sur-

rounding optimal X-linked expression levels should ultimately

cause a secondary mechanism to evolve that down-regulates

X-linked expression specifically in females, much as Ohno pro-

posed as the reason for XCI in placental mammals (Ohno

1967; Engelst€adter and Haig 2008; Mank et al. 2011).

However, if overexpression in the homogametic sex is not

deleterious, or if the process has not yet equilibrated, a pat-

tern of female over-expression will result on the X (Mullon

et al. 2015).

We emphasize that “SCDC” is a term that has long been

loosely and variably applied in the context of gene dose and

expression differences between sexes (Mank 2011; Disteche

2016). However, in light of evolutionary theory, we argue that

SCDC should be limited specifically to mean the pattern and/

or process in which heterogametic sex-linked expression reca-

pitulates ancestral levels prior to allosome divergence. In

adopting this definition of SCDC, additional terminology is

needed to clarify the discourse surrounding this topic. In par-

ticular, one scenario that has been increasingly observed is

equal sex-linked expression between sexes but without com-

plete SCDC. We henceforth use dosage balance to refer to

equal average expression between sexes on the sex chromo-

some regardless of ancestral expression levels. In other words,

if the X-linked genes (or the whole chromosome on average)

show no bias in male: female expression ratios, but expression

has diverged substantially from ancestral levels of the proto-X,

then there is dosage balance without dosage compensation.

Approaches, Challenges, and Caveats in
SCDC Analysis

Methods and Criteria for Assessing SCDC

Ultimately, the goal of SCDC analysis is to determine whether

sex chromosome gene expression has changed relative to the

ancestral state before allosome divergence. The hypothetically

ideal experiment would be to compare the focal species with

differentiated allosomes to a progenitor with undifferentiated

proto-sex chromosomes. Complete SCDC would be inferred

if no difference were found between the ancestral diploid

expression and contemporary monoallelic expression.

However, since directly measuring expression from ancestral

proto-sex chromosomes is generally not possible, the typical

approach to assessing SCDC compares expression of current

sex-linked genes to a reference gene set which serves as a

proxy for ancestral expression levels of these same genes.

There are three common approaches for this: (1) comparative

analysis contrasts X-linked genes with autosomal orthologs in

an outgroup species, (2) the X-to-autosome approach com-

pares X-linked genes to autosomal loci in one species, and (3)

male:female ratios contrasts X-linked expression between the

heterogametic versus homogametic sex in one species.

Comparative Analysis

Perhaps the most convincing and informative approach to

assessing SCDC is comparative analysis, in which orthologous

loci are compared between species with distinct and indepen-

dently evolved sex chromosomes, such that the loci are sex-

linked in a focal species, but autosomal in a reference species.

The diploid autosomal expression in the reference species

serves as a proxy for the ancestral diploid expression levels

in the focal species, against which the magnitude of dosage

compensation in the heterogametic sex may be assessed.
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Complete compensation is inferred if expression of monoal-

lelic X-linked loci in the heterogametic sex is comparable to

expression levels of autosomal diploid orthologs in the refer-

ence species. Comparison of orthologs that remained auto-

somal in both species can serve as a control for expression

divergence due to drift or selection (Julien et al. 2012; Lin et al.

2012; Nozawa et al. 2014; Vicoso and Bachtrog 2015; White

et al. 2015; Gu et al. 2017). This comparative approach has

the advantage of comparing dosage effects on the same

genes in the same sex, so it is a relatively controlled compar-

ison that is arguably the best way to assess dosage effects

relative to ancestral expression. However, this approach may

be limited when only a relatively small number of 1-to-1

orthologs can be identified, such that generalizing to the en-

tire sex chromosome may not be robust. Thus, it is preferable

to use closely-related species where possible in order to max-

imize available orthologs and minimize the effects of diver-

gence in this analysis.

X-to-Autosome Differences

When a comparative analysis is impossible or impractical, the

next best approach will often be to test for differences in

average expression of X-linked versus autosomal loci.

Complete SCDC is inferred when the heterogametic sex

exhibits no difference in average expression between the X

and autosomes (Mank 2009, 2013). Incomplete SCDC would

cause X<Autosomes for the heterogametic sex. Testing for

SCDC using X-to-autosome differences rests on the assump-

tion that the average autosomal expression is a reasonable

proxy for average expression of the ancestral diploid proto-X;

in other words, it assumes that average chromosomal expres-

sion is equal in the absence of dosage effects. However, this is

often not the case and average autosomal expression can vary

considerably (Julien et al. 2012; Wheeler et al. 2016).

Accordingly, it may be that the average X chromosome ex-

pression differs from the overall autosomal average, but is not

unusual compared with other individual chromosomes.

Examining X-to-autosome differences in the homogametic

sex is a necessary companion to analysis in the heterogametic

sex. If no differences are detected, this supports the assump-

tions that average expression is equal across chromosomes

and that autosomal expression is a reasonable proxy for the

proto-X. Alternatively, X>Autosomes potentially indicates

unresolved sexual antagonism in the evolution of SCDC

(Engelst€adter and Haig 2008; Prince et al. 2010; Mank et al.

2011; Allen et al. 2013). X<Autosomes in the homogametic

sex has, to date, never been observed without a (nearly) com-

parable reduction the heterogametic sex. A comparable re-

duction in X expression relative to autosomes in both sexes

may reflect two scenarios. In one scenario, it may be that

SCDC is (nearly) complete, but the ancestral expression of

the diploid proto-X was markedly lower than autosomes be-

fore allosome divergence (Vicoso et al. 2013). Alternatively, it

may be that the homogametic sex has evolved a reduction in

gene expression relative to the ancestral state, so as to achieve

balanced expression with the heterogametic sex that exhibits

incomplete SCDC. These two scenarios can be distinguished

through comparative analyses, as described above (Julien

et al. 2012; Lin et al. 2012; Gu et al. 2017), and also by

experimental manipulation of dosage compensation mecha-

nisms to expose the “unmodified” gene dosage (Kiuchi et al.

2014).

Male:Female Ratios

The distribution of male:female expression ratios on the sex

chromosome is best regarded as an assessment of gene dos-

age effects (i.e., whether a species is dosage balanced).

Although male:female ratios may be informative concerning

SCDC in some cases, they are potentially problematic as such.

In principle, if sex-linked expression has not changed in the

homogametic sex in the course of allosome divergence, then

diploid X expression in contemporary females is an accurate

representation of ancestral expression levels. In this case,

equal expression between sexes on the X is a good indicator

of SCDC. However, if sex-linked expression has changed sig-

nificantly in the homogametic sex, observing complete gene

balance (i.e., equal average male: female expression ratios)

does not convey information about SCDC. Rather, both the

male and female sex-linked expression have equally diverged

from the ancestral state, producing a scenario of dosage bal-

ance without compensation. Comparing male:female ratios

on the X relative to autosomes is an important internal control

in such analyses, where overall artifacts in the data can lead to

spurious results if only the sex chromosome is assayed (Zha

et al. 2009; Walters and Hardcastle 2011).

Analytical Challenges and Artifacts

There are numerous statistical and technical issues that must

be navigated in pursuing an assessment of SCDC. If genes are

not already mapped to chromosomes in the studied organ-

ism, then the effort will begin with the non-trivial task of

identifying sex-linked loci. The traditional solution to this

involves genetic crosses and linkage mapping, which is in-

creasingly a component of genome sequencing projects

(Werren et al. 2010; Heliconius Genome Consortium 2012;

Ahola et al. 2014). Linkage mapping has the advantage of

assigning genome scaffolds and genes to specific chromo-

somes, including the X or Z, but it is laborious and time-

consuming. Fundamentally, simply partitioning genes as

autosomal or sex-linked is sufficient for SCDC analysis. One

recent approach to this uses RNA-seq to track SNPs in parent-

offspring groups; this is particularly useful when allosomes are

recently diverged and retain substantial homology (Muyle

et al. 2016). For species with well-differentiated sex chromo-

somes, this can be readily accomplished by examining
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differences in DNA abundance between males and females,

either via Illumina sequencing or microarrays (Baker and

Wilkinson 2010; Martin et al. 2013; Mahajan and Bachtrog

2015; Vicoso and Bachtrog 2015). Autosomes will have equal

amounts of DNA between sexes, while X- or Z-linked sequen-

ces will yield a 2-fold difference. Alternatively, when synteny

and sex-chromosome identity is well-conserved between

taxa, it is possible to use orthology to predict sex-linkage

(Harrison et al. 2012; Gu et al. 2017).

After sex-linkage is established and measures of gene ex-

pression are obtained, typically as RNA-seq data normalized to

reads per kilobase per million mapped reads (RPKM) (Oshlack

et al. 2010; Conesa et al. 2016), the next step is to perform

appropriate statistical tests for expression differences between

chromosomes or sexes. There is a strong precedent in the

literature for using a Mann–Whitney U (MWU) test for such

inferences, either contrasting expression on the X versus auto-

somes within sex (requiring two tests) or contrasting expres-

sion ratios (male:female, or modern:ancestral in a

comparative analysis) between X and autosomes (Vicoso

and Bachtrog 2011; Walters and Hardcastle 2011; Harrison

et al. 2012; Lin et al. 2012; Vicoso et al. 2013; Smith et al.

2014). Another similar approach is to employ bootstrap anal-

ysis to gauge statistical differences in X: autosome or male:

female expression ratios (Uebbing et al. 2013; Gu et al. 2017).

While the use of MWU or bootstrap tests is intuitive and

sufficient in most cases, these approaches also have limita-

tions. First, when biological replicates are available, they are

typically averaged together within sex for a single RPKM value

per locus, which discards information on expression variance

between replicates. Second, dosage and balance are not ex-

amined simultaneously in a unified statistical framework,

since the former is in units of RPKM while the latter reflects

ratios. This makes it difficult to meaningfully compare the

magnitude of chromosome-specific effects on expression

with the magnitude of any dosage effect between sexes.

An alternative approach that circumvents these issues is to

employ linear modeling of expression levels (Walters et al.

2015). Using linear modeling, reduced X expression can be

captured as a primary effect of chromosome, while X-specific

dosage effects that unbalance expression between sexes are

modeled as an interaction between sex- and chromosome-

specific effects. This provides an appealingly unified and

flexible framework for SCDC analysis, which also happens

to accommodate biological replicates without prior averaging.

However, implementing this linear mixed-modeling frame-

work is not as straightforward as the non-parametric

approaches provided by MWU and bootstrapping.

Another noteworthy technical issue in SCDC analysis is

whether and how best to exclude unexpressed genes, which

are decisions that substantially influence results (Xiong et al.

2010; Castagné et al. 2011; Deng et al. 2011; He et al. 2011;

Kharchenko et al. 2011; Jue et al. 2013). Including unex-

pressed genes when they are not evenly distributed across

chromosomes can bias average expression levels between

chromosomes. Furthermore, applying too stringent a thresh-

old when discerning “active” transcription may dispropor-

tionately truncate the distribution of expression levels in one

portion of the data, artificially compressing the averages of X

and autosomal expression to mask true differences. Currently

there is very little consensus on the appropriate method or

criteria for discerning “unexpressed” loci. Some studies em-

ploy a uniform cutoff, for instance excluding genes with <1

RPKM. However, a uniform RPKM threshold is problematically

arbitrary because different types of between-sample normal-

izations will produce dramatically different library-size scaling

factors (e.g., TMM versus 75% quantile versus total reads

[Bullard et al. 2010; Robinson and Oshlack 2010]). These scal-

ing factors are in the denominator when calculating RPKM,

thus RPKM values have little real biological relevance and ap-

plying the same threshold (e.g., <1 RPKM) may produce

wildly different filtering stringencies across normalization

methods. We suggest that a probabilistic approach to filtering

is more sensible. This may simply reflect removing outlier loci

with expression levels at the extremes of the observed distri-

bution (Jue et al. 2013). Alternatively, employing likelihood or

other inference-based approaches to discern loci that are pro-

viding signal, rather than noise, may also be a good option

(Walters and Hardcastle 2011; Hart et al. 2013; George and

Chang 2014; Hardcastle 2016). In any case, it is certainly a

good practice to confirm that results do not qualitatively

change under different filtering criteria.

Despite these numerous statistical challenges commonly

encountered by researchers working on SCDC, currently there

is no established bioinformatic software package available for

performing SCDC analysis. Having a standard software tool

for implementing a variety of relevant statistical tests and fil-

tering would be a welcome advance toward improving con-

sistency and reproducibility in analyses of dosage

compensation.

Gonads Are Different, and Problematic

There is substantial evidence from diverse taxa that gonads

show extreme and idiosyncratic patterns of gene expression

relative to somatic tissues. For this reason, it is highly desirable

to separate gonads from soma in studies of SCDC, since fail-

ing to do so may produce results that are misleading or diffi-

cult to interpret. There are at least three major factors

underlying distinctive patterns of expression in gonads. The

first is that mechanisms mediating dosage compensation or

balance may often not operate in the gonads. This is appar-

ently the case in Drosophila and Lepidoptera (Meiklejohn et al.

2011; Walters and Hardcastle 2011; Vicoso and Bachtrog

2015; Gu et al. 2017). Other examples include the reactiva-

tion of the silenced X chromosome in germ cells of female

mammals, and the silencing of the X chromosome in germ

cells of both sexes of nematodes (Kelly et al. 2002; Sugimoto
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and Abe 2007). The second factor is the often unequal com-

plement of sex-biased genes on the sex chromosomes relative

to autosomes, reflecting the fact that sex chromosomes are a

“hotspot” for sexually antagonistic evolution (Rice 1984;

Connallon and Clark 2010; Meisel et al. 2012; Parsch and

Ellegren 2013). In particular, the X/Z chromosome is typically

enriched for genes with expression biased toward the homo-

gametic sex. As gonads normally have very extreme patterns

of sex-biased expression relative to soma, this potentially inter-

acts with the unequal distribution of sex-biased genes to pro-

duce a pattern that mimics a dosage effect. Another

idiosyncrasy of germline tissues is meiotic sex chromosome

inactivation, which silences the single male X expression in

mammals (Turner 2007), Drosophila (Vibranovski 2014), and

possibly chicken (Schoenmakers et al. 2009, but also see

Guioli et al. 2012). Each of these factors may substantially

skew sex-linked expression patterns in the same—or

opposite—direction as a dosage effect, potentially obscuring

or confounding accurate inferences about SCDC. For this rea-

son, dosage compensation studies that include gonadal tis-

sues should seek to isolate and analyze them separately from

somatic tissues, which arguably provide a more accurate as-

sessment of SCDC.

Separation of soma and gonad is of particular concern for

invertebrates, where whole-body analysis is tractable and

common, but where reproductive tissues constitute a sub-

stantial fraction of the adult body. Clear examples of this issue

are known from flies and nematodes. In a survey of multiple

species across dipteran lineages, Vicoso and Bachtrog (2015)

showed that X-linked loci were hypertranscribed in the ovaries

and hypotranscribed in the testis relative to ancestral expres-

sion levels, while the X expression in somatic tissues were both

compensated and balanced. Yet whole-body samples yielded

an intermediate pattern, with biases in the same direction as

gonads, but reduced in magnitude, presumably mitigated by

mixing with dosage compensated somatic tissues. The nem-

atode Caenorhabditis elegans has an increasing fraction of

germline cells relative to somatic cells as it develops. Since

the X chromosome is inactivated in germ line cells, the

stage-specific X:autosome ratio decreases over the course of

development as the ratio of germline: somatic cells increases

(Deng et al. 2011). These two examples highlight the poten-

tial pitfalls of analyzing a mixture of soma and gonadal tissues,

as has unfortunately been done in a few other studies report-

ing unusual patterns of dosage compensation (see Type IV

pattern, below) (Prince et al. 2010; Allen et al. 2013).

Observed Patterns of Sex Chromosome
Dosage Compensation in Animals

Having considered the theoretical and practical framework for

addressing SCDC, what do we actually observe? Dozens of

studies have examined SCDC across a wide range of animal

taxa and have revealed a striking array of patterns, many of

which do not fit well with theoretical predictions.

Nonetheless, these observations can be readily grouped into

four distinct types, based on a combination of “dosage

compensation” and “dosage balance.” For the sake of facil-

itating discussion we arbitrarily label these patterns as Type I–

IV. Hypothetical patterns of gene expression obtained from

these four types of SCDC are presented in figure 1. An over-

view of taxonomic occurrences is given in table 1, which

summarizes a detailed listing with references provided in sup-

plementary table S1, Supplementary Material online.

Type I: Complete Compensation with Balance
(X¼XX¼Ancestral)

In this case, SCDC is complete in the heterogametic sex and X-

linked expression is balanced with the homogametic sex. This

pattern was long considered to be widespread because initial

assays of SCDC in major model systems (i.e., flies, nematodes,

humans) yielded results consistent with this pattern (Meller

2000; Gupta et al. 2006; Nguyen and Disteche 2006;

Straub and Becker 2007; Zhang and Oliver 2007). However,

SCDC analyses in a broadening spectrum of species have

revealed that this pattern is far from common (Mank 2013).

In fact, so far it is primarily observed among insects.

The most prominent and well-studied example is

Drosophila melanogaster. D. melanogaster up-regulates the

single X chromosome in males by roughly two folds, resulting

in both “balance” and “compensation” without changes in

female X expression (recently reviewed by Lucchesi and

Kuroda 2015; Kuroda et al. 2016). Vicoso and Bachtrog

(2015) surveyed a diversity of dipteran species and showed

that this mode of dosage compensation is broadly conserved

across flies, despite substantial turnover of sex chromosomes

between lineages (including one conversion to ZW female-

heterogamety). Separate studies on the stalk-eyed fly

Teleopsis dalmanni (Wilkinson et al. 2013), Australian sheep

blowfly Lucilia cuprina (Linger et al. 2015) and two mosquito

species, Anopheles stephensi (Jiang et al. 2015), and

Anopheles gambiae (Rose et al. 2016), all support the consis-

tency of this pattern.

In D. melanogaster dosage compensation is mediated by

Male-Specific Lethal (MSL) complex, which binds to the X

chromosome in the male and is not assembled in females

(Lucchesi and Kuroda 2015). The same mechanism is co-

opted by the recently evolved neo-X chromosome in D. pseu-

doobscura and D. miranda (Mar�ın et al. 1996; Steinemann

and Steinemann 1998; Alekseyenko et al. 2013; Zhou et al.

2013) but does not operate on the retrogenes on the X chro-

mosome in the Australian sheep blowfly L. cuprina (Linger

et al. 2015). The MSL-dependent dosage compensation

mechanism seems to be unique to the Drosophila genus,

and even within Drosophila, alternative mechanisms of

SCDC may exist (Park and Kuroda 2001). Despite multiple

transitions in sex chromosome identity across Diptera the
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patterns of SCDC remain quite consistent, so it will be inter-

esting to learn the extent to which various lineages employ

molecular mechanisms similar to, or even homologous to,

that found in Drosophila (Baker and Wilkinson 2010; Toups

and Hahn 2010; Pease and Hahn 2012; Vicoso and Bachtrog

2015).

Outside Diptera, this pattern is also reported in two other

insect orders: Hemiptera and Coleoptera. Four hemipteran

species have been examined and all show patterns consistent

with male-specific up-regulation of the X chromosome (Pal

and Vicoso 2015). Three of them are completely compen-

sated, or nearly so, but the fourth exhibits a notable dosage

FIG. 1.—Hypothetical examples of gene expression levels/ratios encountered in Types I-IV of SCDC. The top row represents an assessment of complete

dosage compensation, which emphasizes whether X-linked expression levels have changed relative to the ancestral state. In the subtitles, “X” and “XX”

refer, respectively, to heterogametic and homogametic expression levels of sex-linked loci, and “A” may reflect diploid autosomal or ancestral expression

levels, depending on the empirical approach used (e.g., comparative method or X-to-autosome). The bottom row represents an assessment of dosage

balance, which emphasizes the presence of a dosage effect on gene expression resulting from heterogametic sex chromosomes.

Table 1

A Summary of SCDC Patterns Observed in Animals

Sex Determination SCDC Pattern Taxon (number of species surveyed)

Male heterogamety (XX/XY) Type I (X ¼ XX ¼ Ancestral) True bugs (Hemiptera) (4)

Strepsipteran (1)

Beetle (Coleoptera) (1)

Flies and mosquitoes (Diptera) (7)

Type II (X ¼ XX < Ancestral) Nematodes (2)

Therian mammals (9)

Type III (X < XX ¼ Ancestral) Three-spined stickleback (1)

Platypus (1)

Female heterogamety (WZ/ZZ) Type II (Z ¼ ZZ < Ancestral Moths and butterflies (Lepidoptera) (5)

Type III (Z < ZZ ¼ Ancestral) Blood-fluke (Schistosoma) (1)

Tonguefish (1)

Snakes (2)

Birds (5)

NOTE.—A complete listing of individual species, with references, is provided in supplementary table S1, Supplementary Material online.
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effect. While these results possibly reflect true variation

among species, this study sampled whole adult bodies so

results may be biased by inclusion of the gonads. Potential

complications from including gonads may also plague an early

study of SCDC using whole bodies of the beetle Tribolium

castaneum (see section on Type IV) (Prince et al. 2010). Yet

subsequent analyses of isolated somatic tissues indicated that

expression of genes from the X and the autosomes is similar

between males and females (Mahajan and Bachtrog 2015).

Thus, T. castaneum most likely follows the Type I pattern of

SCDC.

It is striking that, at least where described, the mechanisms

for achieving a Type I pattern of complete dosage compen-

sation with balance appear to operate by male-specific up-

regulation of the haploid X chromosome. As for eutherian

mammals and caenorhabditid nematodes that were long con-

sidered to have a Type I pattern of SCDC evolving via the

Ohnian model (Mar�ın et al. 2000; Nguyen and Disteche

2006; Straub and Becker 2007; Mank 2009), recent analyses

indicate this is not the case, as we address next under Type II

patterns.

Type II: Incomplete Compensation with Balance
(X¼XX<Ancestral)

The use of comparative genomics to infer ancestral expression

levels for dosage compensation analysis has catalyzed sub-

stantial rethinking of long-standing assumptions concerning

SCDC in several lineages, most prominently for eutherian

mammals (Julien et al. 2012; Lin et al. 2012; Mank 2013;

Pessia et al. 2014). This novel approach to analyzing dosage

compensation has also been applied to nematodes (Albritton

et al. 2014), with similar results: X chromosome expression is

effectively balanced between sexes, but apparently without

dosage compensation sufficient to recapitulate ancestral dip-

loid expression levels. This is also a pattern found repeatedly

among Lepidoptera (Walters and Hardcastle 2011; Kiuchi

et al. 2014; Smith et al. 2014; Walters et al. 2015; Gu et al.

2017).

In the case of eutherian mammals, until quite recently the

perspective on SCDC was consistent with “Ohno’s hypoth-

esis”: XCI was a dosage compensating mechanism arising in

response to the initial up-regulation of X-linked expression

required in males to maintain ancestral expression levels as

the Y degraded (Mar�ın et al. 2000; Nguyen and Disteche

2006; Straub and Becker 2007; Mank 2009). In the last 5

years, this Ohnian paradigm has become surprisingly conten-

tious. This body of work has been reviewed repeatedly and

extensively in recent years (c.f. Birchler 2012; Disteche 2012,

2016; Mank 2013; Pessia et al. 2014; Veitia et al. 2015;

Graves 2016), so here we provide only a brief overview.

While various X-to-autosome comparisons provided more or

less support for Ohno’s elusive “X-upregulation” (Xiong et al.

2010; Deng et al. 2011; He et al. 2011; Kharchenko et al.

2011), subsequent comparative analyses contrasting mam-

malian X-linked loci with autosomal loci in chickens yielded

compelling evidence for the general absence of SCDC in eu-

therian mammals (Julien et al. 2012; Lin et al. 2012; Ka et al.

2016). This finding was further supported by quantitative pro-

teomic analyses as well as expression in haploid versus diploid

human parthenogenetic stem cells (Lin et al. 2012; Chen and

Zhang 2015, 2016). Yet notable complexities persist in this

issue. For example, the subset of X-linked genes that encode

members of large protein complexes, thus likely to be highly

dose-sensitive, do show effectively complete dosage compen-

sation, indicating gene-by-gene up-regulation has occurred

for �5% of X-linked loci (Lin et al. 2012; Pessia et al.

2012). There is also some evidence for chromosome-wide

mechanisms that specifically enhance X transcription and

translation, consistent with the notion of male-driven up-reg-

ulation. Examinations of RNA half-life, RNA polymerase occu-

pancy, activating histone marks, and ribosome density point

to a range of distinct regulatory patterns on the placental X

chromosome that should increase transcription and transla-

tion (Yildirim et al. 2011; Deng et al. 2013; Faucillion and

Larsson 2015). So it seems that complete chromosome-

wide X dosage compensation is not the case for eutherian

mammals, but at least some dosage-sensitive genes are fully

compensated, and there are hints that some global mecha-

nisms for up-regulation have evolved.

The status of SCDC in marsupials is ambiguous at the mo-

ment. The two primary studies addressing this topic in therian

mammals both used the same data sets, and reported largely

consistent results across taxa, except for opossum

(Monodelphis domestica), the only marsupial represented in

the studies (Julien et al. 2012; Lin et al. 2012). Both studies

indicate equal average X-linked expression between sexes,

suggesting opossum is dosage balanced. However, in assess-

ing dosage compensation by comparison to autosomal

chicken orthologs, Julien et al. (2012) reported substantial

or complete dosage compensation while Lin et al. (2012)

showed very little X compensation relative to ancestral expres-

sion. It is worth noting that the numbers of X-linked genes

used differ considerably between the two studies. Julien et al.

(2012) restricted their analysis to only 91 conserved 1:1 ortho-

logs across 9 mammal species and chicken. Meanwhile, Lin

et al. (2012) considered 197 genes on the opossum X with

chicken autosomal orthologs. While this larger number of

genes may well reflect a more reliable assessment of X chro-

mosome dynamics, additional data and analyses are clearly

needed in marsupials. Also of note, the differences between

the gene sets and the observed degree of compensation

could indicate that widely conserved genes also may be prone

to better dosage compensation.

One corollary of recognizing that most X-linked genes in

therian mammals are likely not completely dosage compen-

sated is the need to explain XCI as something other than a

female “response” to male-driven dosage compensation. It is
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not obvious why halving X expression in females to match

males would be initially advantageous if X up-regulation has

not already globally occurred, though it does solve the prob-

lem of dosage for any genes arising on the X after allosome

divergence (Lin et al. 2012). An alternative explanation for XCI

is offered by theory invoking paternal imprinting of the X in

the context of sexual antagonism over fetal growth rates and

maternal resources (Haig 2006; Engelst€adter & Haig 2008;

Pessia et al. 2014). Thus, it may be that any balancing of X-

linked expression in mammals due to XCI is an outcome, not a

cause, of this phenomenon. Therian sex chromosome diver-

gence and the origins of XCI occurred quite close in time, if

not coincidentally, so teasing this apart may prove difficult

(Graves 2016; Whitworth and Pask 2016).

Relative to mammals, there has been less contention con-

cerning SCDC in nematodes, particularly for the C. elegans X

chromosome, where molecular mechanisms of balance, but

not compensation, have been carefully dissected (Pferdehirt

and Meyer 2013; Ferrari et al. 2014; Ercan 2015).

Nonetheless, longstanding assumptions are being overturned

for this group, much like with mammals. Nematodes, or at

least C. elegans, were long regarded as another classic exam-

ple Ohno‘s 2-step model of SCDC (Straub and Becker 2007;

Zhang and Oliver 2007; Mank 2009). There is a well-described

epigenetic mechanism operating in the homogametic sex

(hermaphrodites) that halves expression from each X chromo-

some. Like XCI in mammals, this so-called “dosage compen-

sation complex” (DCC) was considered the homogametic

response to male-driven up-regulation of the X chromosome.

Yet, again like in mammals, the argument for this up-

regulation is based on X:autosome ratios near 1, while the

mechanisms of the purported X up-regulation remain largely

unknown (Deng et al. 2011). However, the relevance of this

X:autosome comparison was called into question by the rec-

ognition that average expression varies between autosomes

as much as 2-fold (Wheeler et al. 2016). Also, comparative

analysis between C. elegans and Pristionchis pacificus indi-

cates SCDC is incomplete, based on �350 orthologs that

are reciprocally X-linked in one species and autosomal in

the other (Albritton et al. 2014). Further evidence for incom-

plete SCDC, as well as dosage balance, in C. elegans comes

from analysis of single-copy transgenes. Transgenes inserted

on the X had equal expression in males (XO) versus hermaph-

rodites (XX), but half the expression of autosomal copies

(Wheeler et al. 2016). So it now appears that allosome diver-

gence may have occurred in nematodes without much com-

pensation, leaving open the question of what underlies the

evolution of the DCC if it was not male-driven X up-

regulation.

While the uncertainties in both worms and mammals re-

volve around dosage compensation without any question of

dosage balance, the situation in Lepidoptera (moths and but-

terflies) is quite different. This group of insects was initially

considered to have incomplete dosage compensation without

balance (i.e., Type III, see below), much like other ZW species.

This early perspective was shaped by two reports both show-

ing strong Z-linked male bias, one in silkworm (Bombyx mori),

and the other from Indian meal moth (Plodia interpunctella)

(Zha et al. 2009; Harrison et al. 2012). However, a subsequent

reanalysis of the silkworm data demonstrated substantial an-

alytical artifacts in the initial study and, further, demonstrated

dosage balance with reduced Z:autosome ratios (Walters and

Hardcastle 2011). The meal moth study used whole-body

adults, including gonads, which (as explained above) is prob-

lematic, especially because Lepidopteran gonads tend to

show patterns of unbalanced dosage (Walters and

Hardcastle 2011; Gu et al. 2017). A later study in meal

moth analyzed gonads separately from soma, confirmed

this distinction, and yielded patterns in somatic tissues similar

to silkmoth (Huylmans et al. 2017). In addition, several studies

analyzing somatic tissues in other lepidopteran species con-

sistently showed that moths and butterflies actually have

equally reduced Z transcriptional output in both sexes com-

pared with autosomal expression (Smith et al. 2014; Fukui

et al. 2015; Sugimoto et al. 2015; Walters et al. 2015; Gu

et al. 2017). Two additional lines of evidence support this

pattern and further suggest dosage balance reflects male-

specific down-regulation of the Z chromosome. The first is

comparative analyses involving the codling moth, Cydia

pomonella, which is the most ancestrally diverging

Lepidopteran species yet investigated for dosage compensa-

tion. Codling moth harbors a neo-Z chromosome, arising

from a translocation event that fused an autosome to the

ancestral Z chromosome (Nguyen et al. 2013). Genes on

the neo-Z segment were expressed on average about 30%

less than their autosomal orthologs in other lepidopteran spe-

cies (Gu et al. 2017). Second, in silkworm, feminizing male

embryos via RNAi depletion of the male-determining protein,

Masc, causes substantial and wide-spread Z-specific up-

regulation (Kiuchi et al. 2014). Thus, it appears that

Lepidoptera employ a molecular mechanism specific to the

homogametic sex that reduces expression and mitigates Z

dosage effects between sexes. This pattern of dosage balance

without complete compensation is a striking parallel with

mammalian XCI as well as the nematode DCC and it will be

important to understand better the molecular details of this

phenomenon in Lepidoptera.

Type III: Incomplete Compensation Without Balance
(X<XX¼Ancestral)

When sex-linked expression is substantially reduced in the

heterogametic sex relative to the homogametic sex, the pat-

tern is often referred to as incomplete or partial SCDC. In such

cases, a substantial gene dosage effect is inferred to occur for

sex-linked gene expression (yielding a scenario with

Z< ZZ¼AA or X<XX¼AA) (Vicoso and Bachtrog 2011;

Wolf and Bryk 2011; Mank 2013). Strikingly, this pattern is

Animal Dosage Compensation GBE
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almost universally observed among female-heterogametic

taxa examined to date. This includes species with Z chromo-

somes that are very old (e.g., birds [Ellegren et al. 2007; Itoh

et al. 2007, 2010; Wolf and Bryk 2011; Uebbing et al. 2013])

and young (e.g., sole flatfish [Chen et al. 2014]), as well as

from snakes and a parasitic trematode (Vicoso and Bachtrog

2011; Vicoso et al. 2013). As mentioned above, the only ex-

ception to this trend among ZW taxa thus far surveyed is

Lepidoptera (Walters and Hardcastle 2011; Smith et al.

2014; Gu et al. 2017). In contrast, this Type III pattern is rarely

found in male heterogametic species and is so far only

reported in platypus (a monotreme), which shares homolo-

gous sex chromosomes with birds, and in the three-spined

stickleback fish (Julien et al. 2012; Lin et al. 2012; White et al.

2015).

Chicken is the best studied species exhibiting a Type III

pattern. Global expression analyses based on both microarray

and RNA-seq, as well as comparison to inferred ancestral ex-

pression (i.e., comparative analysis), showed that transcrip-

tional output of the Z chromosome is �30% lower in

females than in males and that male Z expression is compa-

rable to autosomal expression (Ellegren 2007; Itoh et al. 2007;

Julien et al. 2012). While most loci exhibit intermediate dos-

age effects, some are fully compensated. In particular, ohno-

logs appear better compensated than other genes on the Z, in

line with the idea that genes preserved after whole genome

duplication are particularly dosage sensitive (Zimmer et al.

2016). Further, a recent proteomic analysis revealed that

many Z-linked genes exhibit additional dosage compensation

during protein translation (Uebbing et al. 2015). Therefore, it

appears that in chicken, and likely all birds, SCDC operates

through localized gene-by-gene mechanisms involving a mix

of the transcriptional and translational modulation.

Among mammals and other male-heterogametic taxa, the

platypus is noteworthy for its peculiar complement of sex

chromosomes and that it exhibits a Type III pattern of

SCDC. Platypus (like echidnas, their sister monotremes) have

a complement of five distinct X chromosomes, each of which

has a degraded Y counterpart and is largely homologous to

the avian Z chromosome (Veyrunes et al. 2008; Graves 2016;

Whitworth and Pask 2016). Complications of genome assem-

bly have thus far allowed dosage analysis of only X1 and X5,

but there is a clear dosage effect (e.g., female-biased expres-

sion) among genes outside of pseudoautosomal regions

(Julien et al. 2012; Lin et al. 2012). Notably, comparative anal-

yses in both chicken and platypus did show some upregula-

tion of monosomic sex-linked expression in the heterogametic

sex relative to ancestral levels, though it is insufficient to

completely recover ancestral levels (Julien et al. 2012). Yet

the unchanged sex-linked expression in the homogametic

sex suggests either up-regulation being limited to the hetero-

gametic sex or a secondary evolution of down-regulation in

the homogametic sex (Whitworth and Pask 2016). Epigenetic

marks typically associated with chromosome-wide

transcriptional inactivation mechanisms (e.g., histone modifi-

cations) have not been detected on the platypus X chromo-

somes and the bird Z chromosomes (Itoh et al. 2010; Rens

et al. 2010). However, RNA–FISH analysis of a couple dozen

loci in both chicken and platypus fibroblast cells did reveal that

a substantial fraction of homogametic cells inactivate one

gene copy (Deakin et al. 2008; Livernois et al. 2013).

Furthermore, the fraction of cells with inactivated copies cor-

relates positively with the magnitude of expression in the het-

erogametic sex. These observations suggest homogametic

gene-by-gene down-regulation that provides some degree

of “balance.” Contradicting this, however, is an analysis of

allele-specific expression in chicken that suggests inactivation

is not widespread among Z-linked loci (Zimmer et al. 2016).

Further work on X/Z inactivation is clearly needed in these

species. If it does occur, it may have evolved to avoid allosome

overexpression in the homogametic sex, which is a hallmark

of the final (Type IV) category of SCDC we address.

Type IV: Complete Compensation Without Balance
(X¼Ancestral<XX)

A key component of theory concerning SCDC evolution is

that selection on (heterogametic) males for increased expres-

sion of sex-linked loci should cause a correlated increase in

(homogametic) female sex-linked expression (Ohno 1967;

Rice 1987; Engelst€adter and Haig 2008; Mullon et al.

2015). Without a mechanism secondarily reducing female ex-

pression, a pattern of dosage compensation without balance

would be expected, where females exhibit X hypertranscrip-

tion relative to males and autosomes (Mank et al. 2011). Such

a pattern has been reported in three different taxa so far, but

in each case there is also contradictory evidence, so whether

this Type IV pattern actually occurs remains uncertain.

The first empirical report of this pattern was from the flour

beetle, T. castaneum. Initial results from microarray analysis of

whole adult bodies strongly indicated female X hypertran-

scription (Prince et al. 2010). Later analyses limited to somatic

tissues using RNA-Seq contradicted this, indicating X-linked

expression is comparable to autosomes in both sexes

(Mahajan and Bachtrog 2015). This discrepancy could arise

from the technology used; the DNA–hybridization dynamics

of microarrays may be less accurate than RNA-Seq in provid-

ing a measure of absolute expression differences between loci

(Carey and Gentleman 2005; Marioni et al. 2008). More likely,

it reflects the inclusion of gonads in the initial whole-body

experiments, which may be obscuring or confounding pat-

terns in the soma, as we noted earlier.

Another report of female X hypertranscription was in

Drosophila serrata, again from microarray analysis of whole-

body adults including gonads (Allen et al. 2013). Although

this study collected data from separated soma and gonads,

these were analyzed only for sex-biased gene expression but

not SCDC. Notably, the somatic tissues showed minimal
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differences between sexes, which seemingly contradicts the

observation of X-hypertranscription in females observed in

whole-body analyses. Reproductive tissues yielded substantial

sex-biased expression, with the X chromosome showing both

an excess of female-biased genes and a dearth of male-biased

genes, relative to autosomes. Thus the apparent observation

of female X hypertranscription might primarily reflect idiosyn-

crasies of gonadal gene expression causing higher X than

autosomal expression in the ovary, calling into question the

generality of female X hypertranscription across tissues.

Finally, three-spined stickleback fish have recently evolved

heterogametic XY chromosomes that have three distinct

strata of differentiation. At one end of the X is a pseudo-

autosomal region (PAR) that is adjacent to a second, medial

pericentric stratum of intermediate X–Y divergence. The third,

distal stratum exhibits substantial Y degeneration. Two studies

have independently analyzed patterns of dosage compensa-

tion across these three stickleback X chromosome strata

(Schultheiß et al. 2015; White et al. 2015). Both reported

the absence of a gene dosage effect in the PAR and medial,

younger stratum, but also the presence of a notable dosage

effect in the distal, older stratum, which is therefore not dos-

age balanced. However, the reports differ in their assessment

of dosage compensation for the distal section. Using autoso-

mal expression levels as a reference, Schultheiß et al. (2015)

argued that substantial up-regulation of male expression

occurs and concomitantly causes female hypertranscription,

consistent with a Type IV scenario. In contrast, White et al.

(2015) analyzed expression levels in a comparative framework

to infer ancestral expression levels of the X chromosome and

concluded no dosage compensation or female hypertranscrip-

tion is occurring in the distal stratum, leading to a Type III

pattern.

Despite the current lack of any unambiguous evidence for

this Type IV pattern, such pattern of heterogametic compen-

sation accompanied by homogametic hypertranscription

remains an intriguing theoretical possibility (Mullon et al.

2015). It will be interesting to see whether any solid evidence

for this pattern will emerge from future research.

Dosage and Balance: Why or Why Not?

Recent advances in SCDC research present a very complex set

of observations to interpret and reconcile with theory.

Importantly, despite theoretical predictions and known costs

of large dosage imbalances (Mank 2009; Veitia and Potier

2015), it increasingly appears that complete dosage compen-

sation (regardless of balance) is not very common. Why might

this be? One simple answer may be that complete compen-

sation for all loci is unnecessary; for many genes, partial upre-

gulation may be sufficient to mitigate negative fitness effects,

even if expression still falls significantly short of ancestral ex-

pression levels. Achieving this “incomplete but sufficient”

level of expression may result from pre-existing buffering

mechanisms that generally mitigate the effects of aneuploidy

(Stenberg and Larsson 2011; Malone et al. 2012; Mank

2013); additional selection for compensatory up-regulation

may be unnecessary for such loci.

Furthermore, besides directly increasing expression of X-

linked loci, several other processes may contribute to reducing

the cost of dosage imbalances and reduced X-linked expres-

sion due to Y degeneration. Rice (1987) suggested that the

evolution of autosomal tolerance of X-linked dosage effects

may be an important outcome of Y degeneration. Indeed, the

Type III pattern of SCDC (X<XX¼ AA) may reflect some

combination of incomplete compensation and autosomal

dosage tolerance. When X-linked expression is balanced be-

tween sexes, and fitness costs still exist due to incomplete

compensation (as might occur for Type II; X¼XX<AA), the

evolution of reduced expression in autosomal loci interacting

with X-linked loci may occur. For example, Julien et al. (2012)

report that the evolution of reduced expression among many

autosomal loci with interacting X-linked loci was coincident

with sex chromosome differentiation in therian mammals.

This same scenario could also prompt increased rates of

gene duplication on the X chromosome as a means of increas-

ing expression of X-linked transcripts relative to autosomal

loci, a pattern recently noted in Humans (Hurst et al. 2015).

There is also the possibility that increased rates of protein

translation on the X helps to recapitulate ancestral levels of

protein abundance, even when transcription is not completely

compensated (Uebbing et al. 2015). Finally, X-to-autosome

translocations would allow dosage sensitive genes to avoid

negative fitness consequences of incomplete compensation

(Vicoso and Charlesworth 2009b; Mikhaylova and Nurminsky

2011; Albritton et al. 2014; Gu et al. 2017).

Whatever the reason, in many cases the evidence suggests

that complete dosage compensation may evolve only among

small subsets of genes which are most likely to be sensitive to

dosage effects, for instance among loci with many interacting

autosomal partners or among sex-linked ohnologs (Lin et al.

2012; Pessia et al. 2012; Zimmer et al. 2016). Many other loci

may be compensated to some extent, but whether this

reflects generalized buffering of aneuploidies or locus-

specific evolution of increased expression is difficult to discern.

Nonetheless, the fact that only some genes are completely

compensated stands in contrast to the chromosome-wide na-

ture of “balance” mechanisms operating in the homogametic

sex of various taxa, including therian mammals (XCI),

Caenorhabditis (DCC), and Lepidoptera. Why should the

gene-by-gene evolution of complete dosage compensation

for a minority of X-linked loci spur the evolution of a global

regulatory mechanism that halves homogametic expression

of most or all X-linked loci? Given the substantial evidence

for sex-specific control of gene expression levels at individual

loci (Grath and Parsch 2016), invoking XCI or DCC as the

resolution to sexual antagonism over optimal expression of

a minority of X-linked loci seemingly invites comparisons to
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driving nails with a sledgehammer. Of course, partial compen-

sation of other X-linked loci may also cause sexual antagonism

that, when integrated across loci, might be sufficient to pro-

mote a global balance mechanism.

The evolutionary dynamics of this situation have not been

thoroughly modeled and it remains substantially uncertain the

extent to which moderate sexual antagonism around expres-

sion levels, when occurring simultaneously at many X-linked

loci, could promote the spread of a global balance mechanism

(Engelst€adter and Haig 2008). Perhaps the equilibrium point

for a global balance mechanism to emerge is when most loci

are only partially compensated, causing a Type II pattern

(X¼XX<AA). Similarly, perhaps it is sufficient for strong sex-

ual antagonism at just a few dosage sensitive loci to drive a

global balance mechanism, so long as other affected loci are

not dosage sensitive or are otherwise accommodated via

mechanisms noted above. In other words, could it be that

Ohno’s 2-step hypothesis is essentially correct, but with a re-

laxed requirement for complete compensation of most loci

before XCI evolves (or comparable global balance mecha-

nisms in other taxa)? The dynamics of this process may also

depend substantially on how the Y chromosome degrades,

for instance via Muller’s ratchet or selective sweeps, which

may determine whether dosage compensation evolves

gene-by-gene or in a more block-wise fashion

(Charlesworth 1996; Vicoso and Charlesworth 2009a).

Clearly there is much opportunity for further theoretical

work in this area. However, we should not ignore the distinct

possibility that these balance mechanisms initially evolved for

reasons unrelated to SCDC, as has been suggested for mam-

malian XCI (Haig 2006; Engelst€adter and Haig 2008; Pessia

et al. 2014). Such alternative hypotheses have yet to be intro-

duced for other taxa that show global balance mechanisms

but generally incomplete dosage compensation.

Another important dynamic in understanding when dos-

age compensation or balance will evolve seems to be male-

versus female-heterogamety. As noted above, with the ex-

ception of Lepidoptera, ZW taxa exhibit Type III patterns

(Z< ZZ¼AA) of SCDC, raising questions about why this pat-

tern is so common among female-heterogametic species.

One suggested reason is that male mutation bias (due to in-

creased DNA replication in spermatogenesis versus oogenesis)

causes the Y to degenerate faster than the W, since the Y is

always found in males but the W never is (Vicoso and

Bachtrog 2009; Wilson Sayres and Makova 2011; Mank

2013). This slower-W phenomenon would allow more time

for dosage-sensitive genes on the Z to compensate individu-

ally (e.g., through cis-regulatory evolution), thus mitigating

selection for chromosome-wide mechanisms to evolve

(Naurin et al. 2012). Alternatively, a smaller-Z phenomenon

may explain the dichotomy with XY systems, suggesting that

a reduced effective population size (Ne) on the Z leaves it less

able to adapt to the eroding W as compared with XY systems

(Mank 2013). This smaller-Z effect rests on how sexual

selection influences Ne of the Z and X chromosomes relative

to autosomes. Sexual selection typically causes high variance

in male-mating success such that females genetically contrib-

ute more than males to each generation. This lowers NeZ but

raises NeX relative to NeA, reducing the adaptive potential of

the Z relative to X (Vicoso and Charlesworth 2009a; Mank

et al. 2010). A reduced ability to adapt to the eroding W may

explain the lack of completely dosage compensated Z chro-

mosomes. This explanation involving sexual selection and Ne

was modeled formally and was also supported by empirical

studies in chicken (Mullon et al. 2015).

Future Directions in Studying the Evolution
of SCDC

Much has been learned about SCDC in the last few years,

though in many ways it has been one step back for two

steps forward. While expanding genomic and compara-

tive analyses of SCDC have uncovered a surprising diver-

sity of patterns, this work has also demonstrated the

limitations of our current theory in explaining this diver-

sity. Continuing to broaden the scope of taxa in which

dosage compensation has been assayed is one clear path

forward; this would provide a broader comparative con-

text of SCDC patterns across animals (and plants).

Another important path forward is through further inte-

grating studies of molecular mechanisms with character-

izations of pattern. Deeper proximal knowledge of the

epigenetic and transcriptional machinery governing dos-

age compensation and balance will substantially ad-

vance our ultimate theoretical understanding of

evolutionary process by highlighting to what extent dif-

ferent organisms share, or have converged on, specific

mechanisms.

Studying young sex chromosomes in the early stages of

degeneration is one obvious area for future focus that has

already proved fruitful (Bachtrog 2013; Zhou et al. 2013;

Nozawa et al. 2014; White et al. 2015; Gu et al. 2017).

However, an important distinction should be made among

such systems, which may be broadly split into situations con-

cerning de novo versus a priori sex chromosome evolution. In

many ways, the most informative sex chromosome systems to

study would be those where sex chromosomes have recently

evolved de novo, for instance in the transition from environ-

mental to genetic sex determination (Bachtrog et al. 2014).

Presumably, in such cases, any dosage compensating system

would evolve independently “from scratch.” This should be

contrasted with an a priori scenario, such as a neo-sex chro-

mosome resulting from an autosomal fusion with an existing

allosome. In the case of a neo-sex chromosome, it seems most

likely that the evolution of SCDC would be strongly influenced

by pre-existing dosage compensation mechanisms that could

be readily co-opted from the ancestral sex chromosome to the

recently acquired neo-sex fragment (Vicoso and Bachtrog
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2009). Such neo-sex chromosomes are unquestionably infor-

mative concerning how sex chromosomes and dosage com-

pensation evolve, particularly for a given lineage already

possessing genetic sex determination, but they cannot neces-

sarily be considered as independent data points in our under-

standing of how dosage compensation evolved in the first

place (e.g., de novo). Nonetheless, such a priori scenarios

are going to be relatively more common than de novo origins

of sex chromosomes, so in terms of understanding common

events in sex chromosome biology, they are important to in-

vestigate. Between these two extremes (de novo versus a

priori) are scenarios such as found in Diptera, with many in-

dependent transitions of sex chromosomes, which may or

may not involve allosome–autosome fusion, but which indi-

cate substantial turnover in sex chromosome identity (Vicoso

and Bachtrog 2015). Dosage compensation and balance re-

main conserved in flies, but it is largely uncertain to what

extent the same mechanisms are retained across these multi-

ple changes in sex chromosomes.

Another poorly addressed issue in SCDC evolution is the

extent to which dosage compensation (as well as balance)

evolves via localized gene-by-gene mechanisms or, in con-

trast, through a “global” mechanism involving multi-gene

blocks or even entire chromosomes. Whether one or the

other is expected initially may depend on the manner by

which the Y chromosome degrades, for instance via selective

sweeps or Muller’s ratchet. It may also be influenced by the

effective population size of the organism in question. And of

course, it may be possible for localized compensation to pre-

cede “global” regulation. An extensive discussion of these

issues is provided by Charlesworth (1996) and Vicoso and

Bachtrog (2009), so we will not reiterate it further here. Yet

it does not seem we are much closer to answering these

questions now than in decades past.

It is clear that we are currently in the midst of a dynamic

and revolutionary moment for both research and theory con-

cerning SCDC. While the emerging diversity of patterns and

occasionally inconsistent results can seem bewildering or frus-

trating at times, opportunity abounds for future investiga-

tions, insights, and discoveries.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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