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Abstract

In molecular population genetics, adaptation is typically thought to occur via selective sweeps, where targets of selection have

independent effects on the phenotype and rise to fixation, whereas in quantitative genetics, many loci contribute to the phenotype

and subtle frequency changes occur at many loci during polygenic adaptation. The sweep model makes specific predictions about

frequency changes of beneficial alleles and many test statistics have been developed to detect such selection signatures. Despite

polygenic adaptation is probably the prevalent mode of adaptation, because of the traditional focus on the phenotype, we are

lacking a solid understanding of the similarities and differences of selection signatures under the two models. Recent theoretical and

empirical studies have shown that both selective sweep and polygenic adaptation models could result in a sweep-like genomic

signature; therefore, additional criteria are needed to distinguish the two models. With replicated populations and time series data,

experimental evolution studies have the potential to identify the underlying model of adaptation. Using the framework of exper-

imental evolution,weperformedcomputer simulations to study thepatternof selectedalleles for twomodels:1) adaptationofa trait

via independent beneficial mutations that are conditioned for fixation, that is, selective sweep model and 2) trait optimum model

(polygenic adaptation), that is adaptation of a quantitative trait under stabilizing selection after a sudden shift in trait optimum. We

identify several distinct patterns of selective sweep and trait optimum models in populations of different sizes. These features could

provide the foundation for development of quantitative approaches to differentiate the two models.

Key words: polygenic adaptation, selective sweep model, trait optimum model, quantitative trait, laboratory natural se-

lection, computer simulations.

Introduction

Characterizing adaptive traits and, more recently, identifica-

tion of their genetic basis has been one of the long-standing

research fields in evolutionary biology. The fields of molecular

population genetics and quantitative genetics have had dif-

ferent approaches in addressing the genetic basis of pheno-

typic adaptation. Molecular population genetic theory

assumes that adaptation occurs via independent mutations

that rise in frequency until fixation (Maynard Smith and

Haigh 1974), that is, hard sweeps. Therefore, adaptation is

viewed to occur by large frequency changes of beneficial

mutations. More recently, the concept of classic hard sweeps

has been extended by soft sweeps—the beneficial allele either

starts from standing genetic variation or multiple beneficial

alleles are generated by mutation in the same gene

(Hermisson and Pennings 2005; Przeworski et al. 2005).

Beneficial alleles may not be fixed quickly; under weak selec-

tion, allele frequency changes (AFCs) will be small and they

may only become fixed after a very long time. For decades,

the selective sweep model has dominated molecular popula-

tion genetics and the distortion of the allele frequency spec-

trum of sites flanking beneficial mutations has been exploited

by a wealth of statistical tests to distinguish selective sweeps

(hard and soft) from neutrality (e.g., in Messer and Petrov

2013; Pavlidis and Alachiotis 2017). Many traits such as HIV

resistance, lactose tolerance, and pesticide resistance show

molecular signatures compatible with hard and soft selective

sweeps (reviewed by Messer and Petrov [2013]).

Quantitative genetics, on the other hand, traditionally has a

strong focus on the evolution of phenotype, which is assumed

to be determined by many contributing alleles, each with

subtle effect, that is, infinitesimal model (Barton et al.

2017). Therefore, the AFC caused by selection on each locus

is very small. Although evolution of adaptive traits frequently

seems to be influenced by many loci (Burke et al. 2010; Turner

et al. 2011; Tobler et al. 2014; Barghi et al. 2019), only
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recently the genomic signature of polygenic adaptation is be-

ing studied (Chevin and Hospital 2008; Pritchard and Di

Rienzo 2010; Pritchard et al. 2010; Jain and Stephan 2017;

Höllinger et al. 2019). Statistical tests for detecting polygenic

adaptation all rely on the collective response of many loci,

each displaying only small AFCs (Turchin et al. 2012; Berg

and Coop 2014; Field et al. 2016). These methods have iden-

tified the mode of adaptation to be polygenic for many traits

such as height in human populations (Berg and Coop 2014),

body size in Atlantic silverside (Therkildsen et al. 2019), and

morphological features in sticklebacks (Conte et al. 2015).

The main difference between selective sweep and poly-

genic adaptation is that AFC of each locus is not influenced

by other loci under the selective sweep model, whereas se-

lection in polygenic adaptation is collective and loci interact

epistatically for fitness. Subtle frequency changes can be ob-

served for selective sweeps (Höllinger et al. 2019). On the

other hand, recent theoretical (Chevin and Hospital 2008;

Jain and Stephan 2017; Hayward and Sella 2019; Höllinger

et al. 2019; Thornton 2019) and empirical studies (Barghi

et al. 2019) demonstrated that polygenic adaptation can

also occur by the means of large allelic frequency changes

(sweep-like selection signatures). Sweep-like selection signa-

tures arising from selective sweeps and polygenic adaptation

suggest that the standard approach of studying genomic sig-

natures in extant/evolved populations is not conclusive about

the underlying model. Because knowledge of the underlying

model of adaptation is crucial for the proper theoretical

modeling and neutrality tests, alternative approaches are

needed to distinguish between them and determine their im-

portance for adaptation processes.

Time series data provide information about the trajectories

of beneficial alleles in evolving populations, which can be used

to distinguish between the models. Time series data are, how-

ever, quite rare. In addition to fossil data, experimental evo-

lution provides a powerful approach to study the adaptive

architecture of traits (Kawecki et al. 2012; Schlötterer et al.

2015). The cost-effectiveness of sequencing pools of individ-

uals (Schlötterer et al. 2014) provides the opportunity to gen-

erate time series of genome-wide polymorphism data in

multiple replicates.

Recently, the extent of genomic similarity among replicates

was used as a summary statistic to determine the underlying

evolutionary model in ten experimental replicates of

Drosophila simulans (Barghi et al. 2019). With a single discrim-

inating summary statistic not being powerful enough, in this

study we aim to identify additional patterns in the evolving

populations which are informative for recognizing the under-

lying evolutionary model.

Reasoning that genetic drift provides a major perturbation

of the directed forces of selection, we explored the potential

of different experimental population sizes to distinguish be-

tween the selective sweep and polygenic models. Here, we

define polygenic adaptation as “trait optimum model” that is

adaptation of a quantitative trait under stabilizing selection

after a sudden shift in trait optimum via alleles that interact

epistatically for fitness. Selective sweep model is adaptation of

a trait via independent beneficial mutations that are condi-

tioned for fixation. Using computer simulations, we identify

several parameters such as allele frequency trajectories, time

series fitness, distribution of selected alleles on haplotypes,

and parallelism among replicates that distinguish sweep and

trait optimum models.

Materials and Methods

We simulated a quantitative trait with linked loci under sweep

and trait optimum models for two population sizes, that is,

450 and 9,000 diploid individuals, assuming random mating

among individuals (scenario A in table 1a and b). We define

the trait optimum model as polygenic adaptation of a quan-

titative trait after a shift in phenotypic optimum. The positions

of the selection targets were randomly distributed along the

entire chromosomes 2 and 3 of D. simulans but kept the same

for sweep and trait optimum models. For a realistic linkage

structure and to mimic the number of haplotypes typically

used in evolve and resequence (E&R) studies, we used 189

haplotypes from a D. simulans population collected in Florida

(Howie et al. 2019) to construct populations of 450 and 9,000

individuals for the simulations, that is, each haplotype is pre-

sent in multiple copies in the founder population. We used

the recombination landscape of D. simulans in our simulations

(Howie et al. 2019). Population fitness (sweep model) or phe-

notype (trait optimum model) and allele frequencies were

recorded every tenth generation until generation 140. Each

simulation scenario was performed in 500 iterations. For char-

acterization of the qualitative differences between sweep and

trait optimum model, we performed computer simulations

using functions w (sweep) and qff (trait optimum) of

MimicrEE2 (version mim2-v193) (Vlachos and Kofler 2018).

Simulations of Selective Sweep Model

We performed forward Wright–Fisher simulations using 100

linked loci (linkage structure of the phased haplotypes [Howie

et al. 2019]) with equal starting frequencies of 0.05 and equal

selection coefficients of 0.08 constant across time in popula-

tions of 450 and 9,000 diploid individuals for 140 generations

(scenario A in table 1a). In addition to this default scenario, we

also performed simulations with different numbers of contrib-

uting loci, for example, 10, 20, 50, and 100 (scenario B in

table 1a) and different values for the selection coefficient, for

example, 0.02, 0.05, 0.08, and 0.1 (scenario C in table 1a) in

populations of 450 and 9,000 diploid individuals.

Simulations of Trait Optimum Model

In trait optimum simulations, we simulated adaptation of a

quantitative trait to a new trait optimum. Trait z is affected by
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L diallelic loci. The effect size of the “þ” allele is þa with

frequency pi and the effect size of the “�” allele is –a with

frequency qi ¼ 1 � pi. Trait z is computed as

z ¼
XL

i¼1
ai pi � qið Þ þ 2piqidi : (1)

We assume codominance (h¼ 0.5), d¼ 0, and epistasis is

neglected, thus trait z was determined additively. The trait

value is mapped to fitness (w) using a Gaussian fitness function

where PDF is the probability distribution function and maxfit

and minfit are the maximum and minimum fitness values:

PDF ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p sdð Þ2

q � e
� x�lð Þ2

2 sdð Þ2 ; (2)

fitness wð Þ ¼ PDF
maxfit �minfit

max PDFð Þ þminfit: (3)

We simulated 100 linked loci starting at frequency of 0.05

with equal effects, that is, 0.04 in populations of 450 and

9,000 diploid individuals (scenario A in table 1b). The trait

optimum (phenotype) was set at �2.5 (m) with standard de-

viation of 0.3 and fitness ranged between 0.5 and 4.5 (sce-

nario A in table 1b). In addition, further simulations with

different number of loci (scenario B in table 1b) and different

values for effect sizes (scenario C in table 1b) were performed;

for each simulation run, the same effect sizes were used for all

loci. The phenotypic value of the populations at the beginning

of the simulations varies depending on the effect size and the

number of loci. To enable comparison of simulations with

different number of contributing loci and/or different effect

sizes, independent of the phenotypic variance in the founder

population, we adjusted the phenotypic optimum for each

simulation scenario such that all populations move the same

distance in the phenotypic space to reach the phenotypic

optimum (supplementary fig. S13, Supplementary Material

online).

Neutral Simulations

To account for the effect of drift in AFCs, we performed

simulations for populations with 450 and 9,000 individuals

with no selection; all parameters of simulations matched sce-

nario A in table 1a but without selection. We determined the

AFCs, and set the threshold for identification of alleles with

AFC more than expected under drift based on the upper 5%

tail of neutral AFC distribution between the founder and

evolving populations at each time point across 500 iterations

(supplementary fig. S1, Supplementary Material online).

Table 1

Simulation Parameters for Sweep and Trait Optimum Models

(a) Sweep

Model A B C

Default Different no. of loci Different s

Parameters

N 450, 9,000 450, 9,000 450, 9,000

No. of loci 100 10, 20, 50, 100 100

Selection 0.08 0.08 0.02, 0.05, 0.08, 0.1

Starting frequency 0.05 0.05 0.05

Recombination

map

Drosophila simulans Drosophila simulans Drosophila simulans

(b) Trait optimum

Model A B C

Default Different no. of loci Different effect size

Parameters

N 450, 9,000 450, 9,000 450, 9,000

No. of loci 100 10, 20, 50, 100 100

Effect size 0.04 0.04 0.04, 0.08, 0.2, 0.4

Fitness function Gaussian fitness function with stan-

dard deviation of 0.3, fitness

ranges between 0.5 and 4.5.

Optimum phenotype is �2.5

Gaussian fitness function with standard de-

viation of 0.3, fitness ranges between 0.5

and 4.5. Optimum phenotype varies

depending on the no. of locia

Gaussian fitness function with standard de-

viation of 0.3, fitness ranges between 0.5

and 4.5. Optimum phenotype varies

depending on the effect size of locib

Starting frequency 0.05 0.05 0.05

Heritability 0.5 0.5 0.5

Recombination

map

Drosophila simulans Drosophila simulans Drosophila simulans

aFitness functions are shown in supplementary figure S13A, Supplementary Material online.
bFitness functions are shown in supplementary figure S13B, Supplementary Material online.
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Repeatability of Adaptation (Similarity among Replicates)

The average pairwise Jaccard indices (Jaccard 1901) among

the replicates were calculated for 50 sets of ten-replicate pop-

ulations of the sweep and trait optimum simulations using the

number of alleles with AFCs more than expected under drift

(using the neutral simulations above).

Results and Discussion

With recent theoretical (Chevin and Hospital 2008; Jain and

Stephan 2017; Höllinger et al. 2019) and empirical studies

(Barghi et al. 2019) demonstrating that polygenic adaptation

can also result in sweep-like selection signatures, it has be-

come clear that the distinction of the underlying selection

model requires new approaches building on multiple diagnos-

tic features. For example, we recently showed that evolution-

ary models can be distinguished by the extent to which

targets of selection are shared among replicates (Barghi

et al. 2019). However, a reliable distinction between models

requires identification of additional features that distinguish

models. We performed computer simulations under sweep

and trait optimum models with small and large populations

sizes to identify distinct patterns for each model. Our com-

puter simulations are not designed to exhaustively cover all

possible parameter combinations, but we rather identify dis-

tinct features of each model.

Distinct Characteristics of Sweep and Trait Optimum

Models

We explored potential differences between selective sweep

and trait optimum models using a standard set of simulation

parameters. In a population of 450 diploid individuals, 100

linked beneficial loci, matching typical E&R experiments in

Drosophila (Barghi et al. 2019), were simulated. Beneficial

alleles had the same starting frequency of 0.05 and equal

effects (selection coefficient of 0.08 for selective sweep and

effect size of 0.04 for trait optimum model). Simulations were

performed using the D. simulans recombination landscape

(Howie et al. 2019) in 500 iterations (scenario A in table 1a,

for sweep, and table 1b, for trait optimum model) using

MimicrEE2 (Vlachos and Kofler 2018).

Typical E&R studies have relatively small population sizes,

which require accounting for the expected AFC due to ge-

netic drift to distinguish selection from neutrality. Regardless

of the selection model, genetic drift is quite strong in small

populations (supplementary fig. S1, Supplementary Material

online). We accounted for this by computing a frequency

cutoff based on the 95% quantile of AFC under neutral sim-

ulations and only alleles with more extreme AFCs were con-

sidered to be selected (supplementary fig. S1, Supplementary

Material online).

Allele Frequency Trajectories

One important difference between the two models is the

pattern of AFCs. Under the selective sweep model, selected

alleles continuously increase in frequency until they reach fix-

ation (fig. 1, solid green lines), whereas distinct phases of

AFCs were discerned for the trait optimum model (Franssen

et al. 2017). In the initial phase of adaptation, when the pop-

ulation is far from the trait optimum, most alleles increase in

frequency (fig. 1, solid red lines). After the phenotypic opti-

mum is reached (around generation 40, as seen in fig. 2), the

second phase starts where the allele frequencies plateau (that

is, the allele frequencies do not change much anymore, fig. 1,

dotted red lines). However, drift affects this phase and in small

populations this phase is either very short or not present at all.

In small populations, drift decreases the frequency of some

alleles below the threshold for identification of selected

alleles, and with loss of these alleles, the median frequency

of the remaining alleles continues to rise (fig. 1, solid red line).

The third phase of AFCs includes fixation and loss of selected

alleles. The first two phases are shown in figure 1 (for more

time points, see supplementary fig. S2, Supplementary

Material online); the third phase becomes noticeable after

more generations, for example, 2,500 (supplementary fig.

S3, Supplementary Material online). We illustrate the

expected allele frequencies under sweep model and the first

two phases of the trait optimum model by showing the tra-

jectories of alleles in a single replicate in supplementary figure

S4, Supplementary Material online.

Sweep-Like Signatures

Many alleles reach frequency of �0.9, that is, they exhibit

sweep-like signatures, in the sweep model (generation 60

onward in small populations, fig. 1, solid green lines), whereas

such signatures are typically not observed in the trait optimum

model (fig. 1, solid red lines).

Fitness

As the frequency of selected alleles rises under the selective

sweep model (fig. 1, solid green lines), population fitness also

increases until all selected alleles are fixed (fig. 2, solid green

line). Unlike the sweep model, the population fitness under

the trait optimum model increases only until the phenotypic

optimum is reached (fig. 2, solid red line). One distinct feature

of the two models is that for sweep model the phenotypic

value increases as long as the frequency of selected alleles

does so. For the trait optimum model, AFCs (fig. 1) are

decoupled from the phenotype as soon as the trait optimum

has been reached (fig. 2).

Parallelism across Replicates

We use the number of selected alleles shared among repli-

cates as a measure for parallelism. Because the loss of alleles is
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more common in small populations due to drift, different se-

lected alleles may be detected among replicates resulting in

lower parallelism among replicates (fig. 3). This feature is

shared between the two models. For the sweep model, par-

allelism continues to increase as more alleles reach frequen-

cies above neutrality. In trait optimum model, the loci have

epistasis for fitness and thus genetic redundancy is an intrinsic

feature of the model. Genetic redundancy describes the phe-

nomenon that more alleles are segregating in a population

than needed to reach the trait optimum (Goldstein and

Holsinger 1992; Nowak et al. 1997; Yeaman 2015; Barghi

et al. 2019). In this case, if some alleles contributing to the

phenotype are lost, the trait optimum can still be reached by

frequency increase of the remaining alleles. In the trait

optimum model, parallelism increases until populations reach

the phenotypic optimum but it decreases afterward (fig. 3).

This pattern can be explained by some alleles decreasing their

frequency below the detection cutoff after the trait optimum

is reached (for small population from generation 40 in fig. 1).

Because the stochasticity of the small populations in the first

phase results in different loci contributing to the reach of trait

optimum, the loss of alleles due to stochasticity in the second

phase reduces the parallelism even more (fig. 3). For small

populations, the similarity among replicates is higher than

for neutral populations when neutral alleles are used to cal-

culate the Jaccard index, but the difference becomes rather

small after the trait optimum has been reached due to the

large influence of genetic drift.

FIG. 1.—The site frequency spectrum of selected alleles differs in large and small populations for the sweep and trait optimum model. Populations with

450 and 9,000 individuals evolved for 140 generations under the two different selection regimes (scenario A in table 1a and b). The lines show the average

(binned from 0 to 1 with 0.05 intervals) frequency of selected alleles across 500 replicates and shaded areas depict standard deviation. On the y axis

(proportion), we show the fraction of loci that experienced a larger frequency increase than expected under neutrality. Asterisks depict the median frequency

increase of selected alleles averaged across 500 replicates. The number of alleles with frequency increase averaged across 500 replicates is shown with colors

corresponding to the labels. The number of alleles with sweep-like signature (frequency � 0.9) averaged across 500 replicates, if present, is shown in

parentheses. Rows correspond to time points of the experiments, that is, generation, and shown as “Gen #.” The site frequency spectra of selected alleles in

ten generation intervals are presented in supplementary figure S2, Supplementary Material online.
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Distribution of Selected Alleles on Haplotypes

In our simulations, the beneficial alleles were randomly dis-

tributed across the chromosomes in the founder populations

so that each haplotype carries on average five to six benefi-

cial alleles (fig. 4). Due to recombination, the number of

beneficial alleles per haplotype increases in both models.

Although under the sweep model, the number of beneficial

loci per haplotype continues to increase until fixation of all

alleles (fig. 4), for the trait optimum model, this number

increases only until the fitness optimum is reached (at gen-

eration 40 for small populations, as seen in fig. 2) but does

not change afterward. Thus, another distinctive pattern be-

tween the two models is the plateau in the number of ben-

eficial alleles per haplotype in the trait optimum model,

whereas this number continuously increases under the

sweep model until all alleles are fixed.

Effect of Population Size

Large populations experience less genetic drift than small

ones, which increases the efficacy of selection and the

power to detect selected alleles. To assess the impact of

population size on the ability to discriminate between sweep

and trait optimum models, we also performed simulations

with a larger population size, that is, 9,000 diploid individ-

uals (scenario A in table 1a, for sweep, and table 1b, for

trait optimum model). Comparison of the sweep and trait

optimum models in small and large populations revealed

additional distinctive features to differ between the models

possible only by the combined analysis of different popula-

tion sizes.

Allele Frequency Changes

The 95% quantile AFC under neutrality in the large popula-

tion (only 0.034 until generation 140, supplementary fig. S1,

FIG. 2.—Distinct pattern of fitness and phenotype evolution under sweep and trait optimum models, respectively. Populations of 450 (solid lines) and

9,000 (dotted lines) individuals were simulated (scenario A in table 1a and b). Lines depict the median fitness or phenotype averaged across 500 replicates

and the shaded areas show standard deviation. Fitness is log10 transformed. The optimum phenotype in trait optimum model (right panel) is 1.1. For plotting

the phenotype across different founder populations, we normalized it by subtracting the average phenotype of the population at generation 0 from the

phenotype of every individual at each time point.

FIG. 3.—Distinctive patterns of parallelism (that is, similarity among

replicate populations) under sweep and trait optimum models in popula-

tions of 450 and 9,000 individuals (scenario A in table 1a and b). We used

the Jaccard similarity index, which quantifies the extent to which alleles are

shared among replicates (0¼no overlap, 1¼ complete sharing), to quan-

tify the similarity among replicate populations. Lines show the average

pairwise Jaccard indices among replicates for 50 sets of ten-replicate evo-

lution experiments and the shaded area around each line shows standard

deviation. Solid and dotted gray lines show the average Jaccard index

under neutrality in populations of 450 and 9,000 individuals, respectively,

and standard deviation is shown as the shaded area around each line. For

the trait optimum model, the optimum phenotype is reached at genera-

tion 40 and 30 in small and large populations, respectively (as seen in

fig. 2, right panel).

Selective Sweep and Polygenic Adaptation GBE

Genome Biol. Evol. 12(6):890–904 doi:10.1093/gbe/evaa073 Advance Access publication April 18, 2020 895

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/12/6/890/5819555 by guest on 24 April 2024

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa073#supplementary-data


Supplementary Material online) is much less than in small

populations (0.18, supplementary fig. S1, Supplementary

Material online). Therefore, a plateau of the median allele

frequencies after reaching the optimal trait under the trait

optimum model is observed in large populations (fig. 1, dot-

ted red lines) which provides an unambiguous signature dif-

ferentiating the two models.

The difference in median allele frequencies between small

and large populations increases with time for the trait opti-

mum model (fig. 1). This pattern is the consequence of

more loci decreasing below the detection limit in the small

populations than for large ones after the trait optimum has

been reached. For the sweep model, the allele frequencies

continuously increase with time so the slight difference in

the median allele frequencies between small and large pop-

ulations decreases continuously. Hence, large and small pop-

ulations have characteristic signatures that distinguish trait

optimum model from sweep model. Combining the infor-

mation from large and small populations provides an even

stronger distinction between the two models.

Fitness

The evolution of fitness has the same trend in small and large

populations regardless of the evolutionary model. The

increase in fitness is higher in large populations than in the

small ones in the sweep model (fig. 2) because fewer alleles

are lost by drift (fig. 1). Furthermore, the population fitness

increases faster in the large population under the trait opti-

mum model but only until the phenotypic optimum is

reached (fig. 2). Despite faster increase of fitness in large

populations under trait optimum model, small and large

populations reach the fitness optimum almost at the same

time (fig. 2) and the differences in fitness between small and

large populations before reaching the fitness optimum are

very subtle. However, in the sweep model, the difference in

fitness gain between small and large populations increases

with time. Thus, the differential fitness in populations of

different sizes can serve as discriminator between the two

models.

Parallelism across Replicates

Regardless of the evolutionary model, the signature of selec-

tion is more repeatable in large populations than in small ones

because fewer alleles are lost due to drift (fig. 3). In large

populations, the similarity among replicates, measured by

the Jaccard index, is considerably higher than for neutral

alleles. In small populations the difference between neutral

and beneficial alleles is less pronounced.

FIG. 4.—The distribution of number of beneficial loci per haplotype under sweep (top panels) and trait optimum (bottom panels) models in populations

of 450 and 9,000 individuals (scenario A in table 1a and b). Lines show the number of beneficial loci per haplotype (binned from 0 to 100 with intervals of 1)

averaged across 50 replicates and the shaded area around lines show standard deviation. On the y axis (proportion), we show the fraction of haplotypes with

specific number of beneficial loci from the total number of haplotypes in each replicate. Time points, that is, generation, are shown as “Gen #.”
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Distribution of Selected Alleles on Haplotypes

Under the sweep model, more selected alleles are recombined

onto the same haplotype in large populations than in small

ones (fig. 4) and the number of selected alleles increases with

time for both population sizes. For the trait optimum model,

population size has no influence on the number of selected

alleles on haplotypes after trait optimum is reached (fig. 4).

Although for some discriminatory features, such as distri-

bution of selected alleles on haplotypes, no major difference

can be noted between large and small populations, contrast-

ing the patterns of fitness evolution, AFCs and parallelism

among replicates in small and large populations clearly pro-

vides some additional information not available from analysis

of a single population size alone.

Effect of the Number of Selection Targets

We determined the influence of the number of beneficial

alleles by simulating 10, 20, 50, and 100 linked loci (scenario

B in table 1a, for sweep, and table 1b, for trait optimum

model) with starting frequency of 0.05 and equal effects

(0.08 for selective sweep and 0.04 for trait optimum model)

in small (450) and large (9,000) populations in 500 iterations.

In the sweep model, fitness of populations with more se-

lected alleles is greater than that of populations with fewer

alleles (supplementary fig. S5, Supplementary Material online)

due to the frequency increase of more selected alleles

throughout the time (supplementary fig. S6, Supplementary

Material online). For the trait optimum, we noticed a marked

difference for founder populations with few alleles (e.g., 10

and 20), as in these simulations the trait optimum could not

be reached (fig. 5, see supplementary fig. S7, Supplementary

Material online, for site frequency spectra across 140 gener-

ations in ten-generation intervals), hence, no genetic redun-

dancy was observed. In populations without redundancy

(e.g., with 10 and 20 loci) and the sweep model, the median

allele frequency continues to increase such that the two mod-

els cannot be distinguished (fig. 6).

Nevertheless, we noticed an interesting pattern: Under the

sweep model in small populations, the fraction of selected

alleles (loci with frequency change more than expected under

drift) decreases as the number of beneficial loci in the founder

population increases (supplementary fig. S6, Supplementary

Material online). Barton (1995) showed that selection at

linked loci causes variation in fitness and reduces the proba-

bility of fixation of selected loci. In our simulations, for pop-

ulations with more selected loci (e.g., 100), recombination

generates haplotypes with large variance in the number of

selected alleles (supplementary fig. S8, Supplementary

Material online, top panel). Variance in the number of se-

lected alleles in turn increases the variance in fitness for those

populations (supplementary fig. S8, Supplementary Material

online, bottom panel), ultimately leading to the loss of some

selected alleles by genetic drift. As a consequence, under

sweep model, the similarity among replicates in populations

with fewer selected alleles is greater than those with more

alleles (supplementary fig. S9A, Supplementary Material

online).

Importance of Allelic Effect Size

We evaluated the influence of allelic effect size by simulating

100 linked loci with starting frequency of 0.05 and varying

effect sizes (scenario C in table 1a, for sweep, and table 1b,

for trait optimum model) in small and large populations in 500

iterations. Effect size has pronounced influence on the evolu-

tionary trajectories. The fitness gain is higher and faster when

alleles have larger effect sizes, that is, higher selection coef-

ficients, under sweep model (fig. 7). Sweep signatures also

become more frequent (fig. 8). As the effect size of beneficial

alleles increases, the rise in frequency is higher (fig. 8 see

supplementary fig. S10, Supplementary Material online, for

site frequency spectra across 140 generations in ten-

generation intervals), resulting in more beneficial loci recom-

bining on the same haplotypes (fig. 9). This results in a higher

parallelism among replicates (supplementary fig. S9B,

Supplementary Material online). Under the trait optimum

model, the trait optimum is also reached faster with alleles

of larger effect sizes (supplementary fig. S11, Supplementary

Material online) because smaller frequency shifts are required

to achieve the same phenotypic change as the alleles of small

effect size (supplementary fig. S12, Supplementary Material

online). Thus, the signatures of reaching trait optimum are

seen at earlier time points; drift reduces parallelism among

replicates so that similarity among replicates, measured by

Jaccard index, is almost as much as neutral alleles (trait opti-

mum with effect size 0.2 and 0.4 in supplementary fig. S9B,

Supplementary Material online), and the number of beneficial

alleles per haplotypes remains stable (trait optimum with ef-

fect size 0.2 and 0.4 in fig. 9). Except for minor differences,

the main distinctions between sweep and trait optimum mod-

els are not affected by allelic effect sizes.

One example for qualitatively different signatures can be

found for the sweep model where the median frequency of

the selected alleles with small selection coefficient (s¼ 0.02)

continues to increase faster in small populations than the sub-

tle changes in the large ones (fig. 8) because drift acts syner-

gistically for some alleles that are at a low frequency. A similar

pattern can be seen for the trait optimum model (supplemen-

tary fig. S12, Supplementary Material online). Nevertheless,

for the sweep model, the number of identified selection tar-

gets, even when s is small, increases as populations evolve

(fig. 8), whereas due to drift it decreases for the trait optimum

model (supplementary fig. S12, Supplementary Material on-

line). These distinctive patterns can be used for differentiating

the models.
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Conclusions

Our computer simulations identified several features that can

be used to distinguish between the selective sweep and trait

optimum models. Although one distinguishing feature

requires phenotypic data, majority of features can be inferred

from genomic data alone provided that reaching the trait

optimum is assured.

1. The fitness of large populations is greater than that of

small ones under the sweep model and continues to in-

crease until the fixation of all selected alleles (fig. 2). For

the trait optimum model, however, the fitness between

small and large populations differs only until the trait op-

timum is reached and is not affected by further AFCs

(fig. 2). No genetic data are required for this distinguish-

ing feature.

2. The selected alleles increase in frequency until fixation un-

der the sweep model, whereas the frequency of selected

alleles increases until the phenotypic optimum is reached in

the trait optimum model (fig. 1). After reaching the trait

optimum, the median allele frequencies plateau in large

populations but not in small populations. Strong drift and

frequency decrease of selected alleles below detection

limit are responsible for continued increase of the median

allele frequencies. Nevertheless, the number of identified

selected alleles is strongly reduced in later generations in

small populations (fig. 1). Therefore, there is a clear differ-

ence between the two models in either small or large

populations provided that the experiment is conducted

for a sufficient number of generations.

3. The number of selected alleles shared among replicates

(parallelism) is another distinguishing feature between

the models. The parallelism among replicates continues

to increase in the sweep model, whereas after reaching

the trait optimum repeatability of adaptation decreases

under the trait optimum model (fig. 3). Therefore,

FIG. 5.—Populations of 450 (solid lines) and 9,000 (dotted lines) individuals reach the phenotypic optimum at different time points (scenario B in

table 1b). Lines show the median phenotype of populations averaged across 500 replicates and the shaded area around lines show standard deviation. The

optimum phenotype is 1.1 (shown by yellow lines). Note that the distance between the population phenotype at generation 0 and the phenotypic optimum

is the same across simulations with different number of beneficial loci. The plotted phenotype is normalized to account for different phenotypic means in the

founder population; the mean phenotype of each population at generation 0 is subtracted from the phenotype of every individual at each time point.
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replication provides a powerful means for distinguishing

evolutionary models.

4. The number of beneficial alleles per haplotype continues to

increase in the sweep model, whereas after reaching the

phenotypic optimum, it plateaus under the trait optimum

model (fig. 4). This feature requires availability of phased

haplotypes but provides another confirmatory test for dis-

tinguishing the two evolutionary models.

Despite the presence of several distinct features to differ-

entiate the two models, discerning the models is limited under

specific conditions. As a consequence of consistent frequency

increase in the sweep model, many alleles reach frequencies

close to fixation, that is, sweep-like signatures (fig. 1).

However, sweep-like signatures were extremely rare for the

trait optimum model (fig. 1). Nevertheless, we caution that

this is not a very reliable discriminating feature. Under sweep

model, if the effect size of contributing loci is small AFC is very

small and fixation is not seen because the duration of the

experiments is not sufficiently long. On the other hand, if

the genetic diversity in the founder population is low, that

is, few beneficial loci (fig. 6), or the new trait optimum is

far from the median phenotypic state of the founder popula-

tion allele frequencies will have sweep-like signatures under

the trait optimum model. Frequency change of alleles with

small effect size under sweep model is so small (allele fre-

quency trajectories for s¼ 0.02 in fig. 8) that they may be-

come fixed after a long time. In this case, the pattern of AFCs

during the course of experiment resembles the plateau in al-

lele frequencies observed in trait optimum model (e.g., in

fig. 1), and allele frequencies cannot serve as a discriminating

feature. Unlike trait optimum model, the number of selected

alleles increases throughout the experiment (fig. 8). In addi-

tion, other distinctive features such as the consistent increase

in fitness, high parallelism among replicates, and haplotype

structure will have sweep-specific features.

FIG. 6.—Influence of population size and number of selection target on the site frequency spectrum of selected alleles for the trait optimum model.

Populations with 450 and 9,000 individuals under trait optimum model are shown at different time points of the experiment (scenario B in table 1b). The lines

(dotted: 10, dash dotted: 20, dashed: 50, and solid: 100 loci) show the average (binned from 0 to 1 with 0.05 intervals) frequency of selected alleles across

500 replicates and shaded areas depict standard deviation. On the y axis (proportion), we show the fraction of loci that experienced a larger frequency

increase than expected under neutrality. Asterisks depict the median frequency increase of selected alleles averaged across 500 replicates. The number of

alleles with frequency increase averaged across 500 replicates is shown with colors corresponding to the labels. The number of alleles with sweep-like

signature (frequency� 0.9) averaged across 500 replicates, if present, is shown in parentheses. Rows correspond to time points of the experiments, that is,

generation, and shown as “Gen #.” The site frequency spectra of selected alleles in ten generation intervals are presented in supplementary figure S7,

Supplementary Material online.
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The main characteristics to distinguish the two models are

the temporal changes in allele frequencies, phenotype and

haplotype structure which require availability of time series

data (Pool-Seq for accurate estimation of allele frequencies in

populations and haplotype sequences for inference of link-

age disequilibrium, LD, among selected sites). Experimental

evolution provides the opportunity for collecting time series

data but availability of such data may not be possible for

most natural systems. Fossils can be used but they are rarely

available, and if present, can only provide information about

allele frequencies. Sampling populations from the same lo-

cation in consecutive years can be a useful approach

(Bergland et al. 2014). However, factors such as migration

cannot be ruled out. Also, the selection signature signals

might be confounded by other unknown environmental

changes.

Another key feature to distinguish sweep and trait opti-

mum models is the level of parallelism among replicates.

Availability of replication is generally not a constraint in exper-

imental evolution studies but can only be obtained from

specific natural study systems. It should be noted that natural

populations that can be considered as replicates are generally

exposed to similar, but not identical, environmental condi-

tions. Moreover, local adaptation can reduce the similarity

among replicates (Stuart et al. 2017). Several natural study

systems are available for investigating polygenic adaptation

although the level of replication varies among them. For ex-

ample, latitudinal (Adrion et al. 2015) and altitudinal (Bigham

et al. 2010; Yi et al. 2010; Keller et al. 2013; Crawford et al.

2017; Fior et al. 2018) clines where populations are exposed

to similar conditions, populations of cichlids that have inde-

pendently colonized lakes (Elmer and Meyer 2011; Meier

et al. 2018), guppy populations in rivers of the Northern

Mountain range in Trinidad that are exposed to high and

low predation (Alexander et al. 2006; Hendry et al. 2006),

and probably the system with highest level of replication are

sticklebacks in multiple rivers that allow contrasts of marine

and freshwater, lake and stream, and benthic and limnetic

habitats (Hohenlohe et al. 2010; Jones, Chan, et al. 2012;

Jones, Grabherr, et al. 2012).

FIG. 7.—Larger effect sizes result in higher fitness under the sweep model. Lines show the median fitness of the populations with 450 (solid lines) and

9,000 (dotted lines) individuals (averaged across 500 replicates) with 100 alleles of different selection coefficients (0.02, 0.05, 0.08, and 0.1) (scenario C in

table 1a) and the shaded area show standard deviation. Fitness is log10 transformed.
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A variety of methods have been developed for the identi-

fication of selective sweeps. These methods rely on specific

features of the genomic region under selection including re-

duced variation, change in patterns of LD, or shift in site fre-

quency spectrum (e.g., Messer and Petrov 2013; Pavlidis and

Alachiotis 2017). Several tests for identification of polygenic

adaptation have also been developed. Selected variants are

either identified via the correlation of single-nucleotide poly-

morphism (SNP) frequencies in multiple populations with en-

vironmental variables (Coop et al. 2010) or using Gene

Ontology categories or pathways (Daub et al. 2013; Gouy

et al. 2017). However, these methods do not provide infor-

mation about the causal relationship between the selected

variants and phenotypes. Availability of phenotypes and gen-

otypes in genome-wide association studies allows identifica-

tion of a group of SNPs with significant association

(statistically different from the background SNPs) with the

focal trait (Turchin et al. 2012). This approach has been

used for identification of polygenic basis for waist-to-hip ratio

and height in human populations (Field et al. 2016).

Alternatively, not only the significant SNPs but all SNPs

weighted according to the explained phenotypic variance

are used (Berg and Coop 2014). Using this approach, selec-

tion signatures for traits including body size and skin pigmen-

tation in human populations are identified (Novembre and

Barton 2018). Here, we identified several discriminating fea-

tures for sweep and trait optimum models and showed that

the combination of large and small replicate populations fur-

ther uncovers some distinctive patterns that can be used for

developing test statistics to discriminate between the two

models. Machine learning has been used for identification

of loci under hard sweep, soft sweep, and balancing selec-

tion (Lin et al. 2011; Schrider and Kern 2016, 2018;

Sheehan and Song 2016; Kern and Schrider 2018). We

propose that machine learning could be a powerful ap-

proach to also exploit the described features for a

FIG. 8.—Effect size determines the site frequency spectrum under sweep model. Populations with 450 and 9,000 individuals have a characteristic site

frequency spectrum of selected alleles at different time points of the experiment (scenario C in table 1b). The lines (dotted: s¼0.02, dash dotted: s¼0.05,

solid: s¼0.08, and dashed: s¼0.1) show the average (binned from 0 to 1 with 0.05 intervals) frequency of selected alleles across 500 replicates and shaded

areas depict standard deviation. On the y axis (proportion), we show the fraction of loci that experienced a larger frequency increase than expected under

neutrality. Asterisks depict the median frequency increase of selected alleles averaged across 500 replicates. The number of alleles with frequency increase

averaged across 500 replicates is shown with colors corresponding to the labels. The number of alleles with sweep-like signature (frequency� 0.9) averaged

across 500 replicates, if present, is shown in parentheses. Rows correspond to time points of the experiments, that is, generation, and shown as “Gen #.”

The site frequency spectra of selected alleles in ten generation intervals are presented in supplementary figure S10, Supplementary Material online.
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quantitative approach to distinguish between the two

models. We consider combining the analysis of small and

large populations as a suitable means for the analysis of the

adaptive architectures. Large populations clearly offer the

advantage to identify a larger number of selected alleles

which increase in frequency in multiple replicates. Small

populations are easier and cheaper to maintain while still

offering discriminative features. However, mapping the

causative variant will be more challenging in small popula-

tions because of stronger LD and more confounding signal

from neutral alleles.

Data Availability

Scripts to generate files needed for simulations, command

lines for simulations, and scripts for data analysis and

FIG. 9.—Distribution of the number of beneficial loci per haplotype is affected by the effect size of loci under sweep and trait optimum models in

populations of 450 and 9,000 individuals (scenario C in table 1a and b). Lines show the number of beneficial loci per haplotype (binned from 0 to 100 with

intervals of 1) averaged across 50 replicates and the shaded area around lines show standard deviation. On the y axis (proportion), we show the fraction of

haplotypes with specific number of beneficial loci from the total number of haplotypes in each replicate. Time points, that is, generation, are shown as “Gen

#.” s, selection coefficient; eff_size, effect size.
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visualization are provided in https://github.com/popgen-

vienna/SweepVersusTraitOptimum (last accessed April 20,

2020).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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