Abstract

Brown algae are important primary producers and ecosystem engineers in the ocean, and Ectocarpus has been established as a laboratory model for this lineage. Like most multicellular organisms, Ectocarpus is associated with a community of microorganisms, a partnership frequently referred to as holobiont due to the tight interconnections between the components. Although genomic resources for the algal host are well established, its associated microbiome is poorly characterized from a genomic point of view, limiting the possibilities of using these types of data to study host–microbe interactions. To address this gap in knowledge, we present the annotated draft genome sequences of seventy-two cultivable Ectocarpus-associated bacteria. A screening of gene clusters related to the production of secondary metabolites revealed terpene, bacteriocin, NRPS, PKS-t3, siderophore, PKS-t1, and homoserine lactone clusters to be abundant among the sequenced genomes. These compounds may be used by the bacteria to communicate with the host and other microbes. Moreover, detoxification and provision of vitamin B pathways have been observed in most sequenced genomes, highlighting potential contributions of the bacterial metabolism toward host fitness and survival. The genomes sequenced in this study form a valuable resource for comparative genomic analyses and evolutionary surveys of alga-associated bacteria. They help establish Ectocarpus as a model for brown algal holobionts and will enable the research community to produce testable hypotheses about the molecular interactions within this complex system.

Introduction

Brown macroalgae are important primary producers and major ecosystem engineers on marine rocky shores, providing both shelter and nutrients for other forms of life (Brodie et al. 2017). They belong to the stramenopiles, an evolutionarily distinct lineage from the Achaeplastida, which comprise red and green algae as well as land plants (Charrier et al. 2008) and are of commercial importance in several regions of the world (Koru 2013; Raja et al. 2013; Venkatesan et al. 2015). Ectocarpus is a genus of brown algae that has been established as a laboratory model for this lineage (Peters et al. 2004) due to its small genome (Cock et al. 2010), the possibility of cultivation in the lab, and its short life cycle.

Like most if not all multicellular eukaryotes, brown algae, including Ectocarpus, are associated with bacteria (Paix et al. 2019). These interactions may be so intimate that the term holobiont has been suggested to describe the functional unit of a host and its associated microbiome (Zilber‐Rosenberg and Rosenberg 2008; Douglas and Werren 2016). For instance, it has been estimated that approximately half of all algae (including 49 out of 83 surveyed stramenopiles) rely on their bacteria associated to provide them with vitamin B12 (Croft et al. 2005; Tang et al. 2010). In Ectocarpus, associated bacteria are known to provide functions related to developmental transitions and growth of the algae (Pedersen 1968; Tapia et al. 2016). Furthermore, they may impact their capacity to tolerate environmental stressors (Dittami et al. 2016).

Collections of cultivable bacteria provide a valuable resource to study the mechanisms underlying these interactions, and in Ectocarpus three recent papers describe the generation of culture collections. In Ectocarpus siliculosusTapia et al. (2016) have reported the isolation of 9 bacterial strains, and in Ectocarpus subulatusKleinJan et al. (2017) cultivated 46 strains corresponding to 33 different bacterial genera from algal surfaces. An additional 95 strains corresponding to 27 different genera have also recently been isolated from field material of E. subulatus (Dittami et al. 2019).

In present study, we describe genomic resources for 72 of these cultivable Ectocarpus-associated bacteria. Sixty-two genomes were sequenced specifically for this study, plus ten previously sequenced genomes from the same culture collection (Burgunter-Delamare et al. 2019) were also included. These genomes constitute a valuable resource both to study the genomic adaptations of bacteria to life on the surface of brown algae, but also to generate hypotheses on potential beneficial interactions between the bacteria and their host, for example, via metabolic complementarity-based approaches (Frioux et al. 2018). They furthermore constitute a first step toward filling a big gap in our current knowledge: The fact that currently (September 2019), based on our research through Marine Metagenomics Portal (Robertsen et al. 2017; Klemetsen et al. 2018), only ∼100 draft and complete bacterial genomes isolated from algae/seaweed are publicly available in GenBank. Thus, the genomes from this study could add a great amount of information to algal microbiomes and will promote other studies aiming to decipher algal-microbial associations.

Materials and Methods

Bacterial Strains and DNA Extraction

Bacterial strains were isolated from a laboratory culture of E.subulatus (strain CCAP 1310/19; KleinJan et al. 2017) as well as from field samples of the same species (Dittami et al. 2019). Field samples were collected in March 2017 from two locations along the Hopkins River, Victoria, Australia, a few km upstream of Hopkins River falls, the original collection site of strain CCAP 1310/19 (West and Kraft 1996): Framlingham Forest reserve (–38.297064, 142.668291) and Kent's Ford (–38.191574, 142.698058). All bacterial strains were identified by Sanger-sequencing of the 16S rDNA gene using the 8F and the 1492R primer pair (Weisburg et al. 1991). Bacteria were grown on 90 mm Petri dishes with R2A medium (Reasoner and Geldreich 1985) Sigma–Aldrich at 19 °C for 4–7 days. Subsequently, a single colony was selected and grown at 25 °C in liquid R2A medium overnight. The bacterial genomic DNA was extracted using Promega Wizard Genomic DNA purification kit following the manufacturer’s instructions. The extracted DNA was quantified using a Qubit and its quality was determined using agarose gel electrophoresis.

Genome Sequencing, Assembly, and Annotation

Paired-end DNA libraries with an average insert size of 500 bp were prepared using the Nextera XT DNA library kit (library average size ∼1,100 bp). Libraries were then sequenced using the Illumina MiSeq technology (V3, paired-end, 2 × 300 bp reads) at GENOMER platform (Station Biologique de Roscoff), multiplexing ∼20 bacterial genomes per run. Raw reads were first examined using FastQC (Andrews 2010). Low-quality sequences were trimmed or removed using Trimmomatic v.0.38 and a sliding window with a quality score of 15 as well as a minimal read length of 36 bp as filters. Trimmed read pairs were used for genome assembly with SPAdes v.3.12.0 (Bankevich et al. 2012) using default parameters. Genomic sequences encoding parts of the ribosome were identified using Barrnap v. 0.8 (https://github.com/tseemann/barrnap) and 16S rDNA sequences used to search for complete reference genomes in the GenBank. These reference genomes were used for scaffolding with Medusa version 1.6. Finally, gaps in the scaffolds were filled wherever possible using GapCloser 1.12 (Li et al. 2010) and the resulting draft genomes were annotated and prepared for submission to public databases using the MicroScope platform (Vallenet et al. 2017). The genomes were deposited at the European Nucleotide Archive.

Phylogenomic Analyses

Phylogenomic relationships among all studied strains were confirmed by running genome clustering based on pairwise distances and Average Nucleotide Identity (ANI) between all selected genomes using the Neighbor-Joining algorithm in MicroScope. Furthermore, the closest genome has been provided for all genomes, based on their resulting Tetra-nucleotide signature correlation index via the JSpeciesWS tool (Richter et al. 2016).

In Silico Analysis of Bacterial Metabolism

Models of primary metabolism for each sequenced bacterium were generated using the Pathway tools pipeline implemented in the MicroScope platform. The output of this pipeline is a pathway completion value, that is, the ratio between the number of reactions for a specific pathway in a bacterium and the total number of reactions for that pathway defined in the MetaCyc (Caspi et al. 2018) or KEGG (Kanehisa et al. 2008) databases. In addition, secondary metabolite-related gene clusters were predicted using antiSMASH (Blin et al. 2017).

Results and Discussion

Genome Characteristics

Here, we report the sequencing of 62 and the analysis of 72 genomes of Ectocarpus-associated bacterial strains corresponding to 43 different genera and 16 different orders. The individual strains as well as key attributes of their genome sequences are listed in table 1. The genome size of all strains ranged from 2.4 Mb to 6.8 Mb. The largest genome was that of Imperialibacter sp. strain SDR9 from the Bacteroidetes and the smallest was that of Micrococcus sp. strain 11B from the Actinobacteria. The analyzed genomes showed diverse GC contents with strains belonging to the Bacteroidetes and Firmicutes exhibiting GC contents <40% (e.g., 30% in Flavobacterium sp. 9AF) contrary to Actinobacteria, where most strains exhibit GC contents over 70%. Overall, the GC content was positively correlated with genome size (Pearson correlation r = 0.73, P = 0.042). CheckM analyses (Parks et al. 2015) suggest that the sequenced genomes are nearly complete (>98%, table 1) and free of or with very low levels of contamination (<2.5%; supplementary table S1, Supplementary Material online). The only exception was Arthrobacter sp. strain 9V with 4.8% contamination (22 marker genes). This indicates that, overall, the presented genomes are suitable for downstream analyses such as comparisons of metabolic capacities.

Phylogenomic Tree

Several of the sequenced bacteria in this study correspond to bacteria with no or only few closely related sequences in the databases. Notably, Enterobacterales bacterium 8AC, and Moraxellaceae bacterium 17A could be confidently identified only to the family level through RDP classifier (supplementary table S1, Supplementary Material online), making these strains candidates for new species or genera. Besides, fifteen strains including Imperialibacter sp. EC-SDR9, Marinoscillum sp. 108, Sphingomonas sp., AX6, and Novosphingobium sp., and Burkholderiales bacterium 8X have low similarity (z-score below cutoff < 0.989) with their closest genome-sequenced relatives (based on the tetra-nucleotide signature correlation index, table 1 and supplementary fig. S1, Supplementary Material online). This phylogenomic analysis yielded a tree generally grouping together bacteria from the same taxon (supplementary fig. S1, Supplementary Material online). However, Imperialibacter sp. EC-SDR9 and Sphingobacterium sp. 8BC from Bacteroidetes clustered with Firmicutes.

Secondary Metabolic Activities and Potentially Symbiosis-Related Metabolites

Algal-associated microbes are likely to interact with both the host and other microbes within the community. Secondary metabolites are metabolites not essential for normal growth of microorganisms, but they play a major role as chemical signals for interaction with other microorganisms (Netzker et al. 2015), restriction of pathogens (antimicrobial activities), and biofouling (Wiese et al. 2009; Nasrolahi et al. 2012; Susilowati et al. 2015). For instance, terpenes as the largest class of natural compounds have protective roles against competitors and are involved in interspecies signaling (Gershenzon and Dudareva 2007; Yamada et al. 2015). Similarly, bacteriocins, peptidic toxins produced by bacteria, have been suggested to play a role in pathogenesis by induction of cell lysis (Li and Tian 2012). The annotation of the 72 bacterial genomes with respect to genes involved in secondary metabolism obtained from AntiSMASH via the MicroScope platform showed that all analyzed strains except Oceanicaulis sp. strain 350, had at least one secondary biosynthetic gene cluster. Furthermore, 68% of genomes have at least one predicted terpene cluster gene, followed by bacteriocin (40.2%), nonribosomal Peptide Synthetases (NRPS, 36%), Type 3 polyketide synthases (PKS-t3, 33.33%), siderophores (23.6%), Type 1 polyketide synthases (PKS-t1, 20.8%), and homoserine lactone synthesis genes (16.6%; fig. 1 and supplementary table S1, Supplementary Material online). These genes are likely to be at least partially involved in the communication with the host and between microbes.

—Heatmap of representative secondary metabolite clusters, detoxification-, and vitamin biosynthetic genes in the studied bacterial genomes. The dendrogram represents a whole-genome phylogeny, secondary metabolite gene clusters were predicted via AntiSMASH, detoxification genes were identified based on the MicroCyc database, and vitamin biosynthesis capacities were assess based on KEGG entries. The color code represents the number of genes per cluster (secondary metabolites) or the proportion of genes found in a particular organism and pathway.
Fig. 1.

Heatmap of representative secondary metabolite clusters, detoxification-, and vitamin biosynthetic genes in the studied bacterial genomes. The dendrogram represents a whole-genome phylogeny, secondary metabolite gene clusters were predicted via AntiSMASH, detoxification genes were identified based on the MicroCyc database, and vitamin biosynthesis capacities were assess based on KEGG entries. The color code represents the number of genes per cluster (secondary metabolites) or the proportion of genes found in a particular organism and pathway.

Detoxification Role of Symbionts and Provision of Vitamins

In terms of detoxification mechanisms, one pathway that was complete in all studied genomes was the capacity to degrade superoxide radicals. Moreover, 46 strains of 72 possessed the complete pathway for glutaredoxin synthesis (fig. 1). This mechanism is important for the degradation reactive oxygen species (ROS), which are formed by the algae through metabolic processes and in response to different stressors (Cosse et al. 2007). ROS can cause significant damage to the cell; thus, microorganisms have developed defense systems to detoxify ROS in order to survive.

Furthermore, the cyanate degradation pathway was complete or semicomplete in all bacteria except in strains 8BE, 8AC, and 8AQ. Cyanate is a common compound in marine environments and may serve as both an energy source for marine microbes (Palatinszky et al. 2015) as well as a potential source of nitrogen (Kamennaya et al. 2008; Sáez et al. 2019). Whether this pathway also plays a role during the interactions of microbes with their algal host, for example, by enabling the microbes to provide nitrogen to their host, remains to be tested.

Finally, most genomes analyzed encoded nearly complete or complete pathways for production of B vitamins like biotin (B7), folate (B9), riboflavin (B2), thiamine (B1), and pyridoxine (B6) (fig. 1). They may thus be contributors of vitamin B for the algal host, as has previously been suggested for diatom-bacteria associations (Behringer et al. 2018). All in all, these studied metabolic features highlight the possible contributions of the alga-associated bacteria to maintain host fitness and survival.

Table 1

Genome Features of Algal-Associated Bacteria Analyzed in This Study

StrainComplete-ness (%)aGenome Size (Mb)Coverage (X)N50 (Mb)%GCScaffold Nb.CDS Nb.Mean CDS LengthtRNA Nb.rRNA Nb.Closest RelativeAccession Numbers
Actinobacteria
 Aeromicrobium sp. 9AM99.74.21442.986894,422897463Aeromicrobium sp. Root236LR733303–LR733311
 Arthrobacter sp. 8AJ99.74.3884.226644,228944515Moraxella osloensis NCTC10465LR733289–LR733292
 Arthrobacter sp. 9AX99.74.42304.416674,453918506Pseudarthrobacter siccitolerans 4J27LR733289–LR733292
 Arthrobacter sp. 9V99.75.12214.82621585,091925629Arthrobacter sp. EpRS71LR732912–LR733069
 Citricoccus sp. K599.23.93243.746993,708974475Citricoccus muralis DSM 14442LR732817–LR732825
 Curtobacterium sp. 8I–2993.61092.807153,767911476Curtobacterium flaccumfaciens UCD-AKULR732826–LR732830
 Frigoribacterium sp. 9N98.53.31512.5371163,339926455Frigoribacterium sp. Leaf8LR733390–LR733405
 Microbacterium sp. 8M99.53.71853.687123,659961444Microbacterium azadirachtae DSM 23848LR733284–LR733285
 Micrococcus sp. 11698.62.62152.4973192,526943485Micrococcus luteus 2385LR732370–LR732388
 Micrococcus sp. 11B98.12.44501.8973522,398952485Micrococcus luteus 2385LR733070–LR733121
 Micrococcus sp. 80W98.12.52241.7873802,521942484Micrococcus luteus 2385LR732389–LR732468
 Nocardioides sp. AX2bis98.74.22213.9673374,397915454Marmoricola aurantiacus DSM 12652*LR733215–LR733251
 Plantibacter sp. T399.542873.986934,131924484Plantibacter flavus VKM Ac-2504LR733286–LR733288
 Pseudoclavibacter sp. 8L98.24.1981.4368304,137921454Microbacterium sp. TS-1*LR733185–LR733214
Bacteroidetes
 Imperialibacter sp. SDR91006.81110.9647655,7671069384Arcticibacter pallidi-corallinus CGMCC 1.9313*LR701573–LR701637
 Marinoscillum sp. 10899.15.2833.7346124,4891086374Marinoscillum furvescens DSM 4134*LR734808–LR734819
 Chryseobacterium sp. 8AT1004.71144.4334314,483931707Chryseobacterium scophthalmum DSM 16779LR733314–LR733344
 Flavobacterium sp. 9AF98.94.21012.9530743,871992515Flavobacterium sp. 316*LR733556–LR733629
 Flavobacterium sp. 9R99.63.61843.4235163,1751006426Flavobacterium succinicans DD5b*LR733413–LR733428
 Maribacter sp. 15199.74.4594.353643,8571044366Maribacter litoralis SDRB-Phe2LR733271–LR733274
 Sphingobacterium sp. 8BC1005.81295.7340145,379960709Sphingobacterium multivorum NCTC11343LR733857–LR733870
Firmicutes
 Bacillus sp. 34899.63.82463.584154,070846799Bacillus stratosphericus LK33LR732831–LR732835
 Bacillus sp. 349Y99.34.51140.1248854,616839979Bacillus sp. Leaf406LR733732–LR733816
 Bacillus sp. 7199.35.71165.6935146,0927969818Bacillus cereus HuA2-4LR733376–LR733389
 Bacillus sp. 9J99.63.81793.7442764,109834869Bacillus sp. Leaf49LR732836–LR732911
 Exiguobacterium sp. 8A99.33.11842.8748773,2348686313Exiguobacterium sp. AT1bLR733630–LR733706
 Exiguobacterium sp. 8H99.332960.8748403,1548686314Exiguobacterium sp. AT1bLR733429–LR733468
 Exiguobacterium sp. 9Y99.33881.6147203,0708766511Exiguobacterium oxidotolerans JCM 12280LR732308–LR732327
 Staphylococcus sp. 8AQ99.22.52692.493142,501886629Staphylococcus pasteuri BAB3LR733871–LR733874
Proteobacteria
 Aeromonas sp. 8C1004.63454.575934,76989911411Aeromonas veronii TTU2014-115ASCLR732797–LR732799
 Aeromonas sp. 9A1004.81054.7059114,59092511416Aeromonas salmonicida Y577LR732779–LR732789
 Alteromonas sp. 381004.72094.704434,324975626Alteromonas stellipolaris LMG 21856LR733300–LR733302
 Marinobacter sp. HK3771004.41724.345774,176976456Marinobacter salarius R9SW1LR701480–LR701486
 Marinobacter sp. N11004.41524.355724,125978456Marinobacter salarius R9SW1LR733269–LR733270
 Burkholderia sp. 8Y1006.3612.3663376,403874528Burkholderia sp. MR1LR733519–LR733555
 Limnobacter sp. 130993.3741.825263,0341007373Limnobacter sp. MED105*LR732328–LR732333
 Massilia sp. 9I1005.51955.516695,242984707Massilia alkalitolerans DSM 17462LR733275–LR733283
 Burkholderiales bacterium 8X99.84.81414.786734,776973445Variovorax sp. WDL1*LR732703–LR732705
 Brevundimonas sp. G899.73.33753.326613,308927473Brevundimonas sp. Leaf280LR732816–LR732816
 Oceanicaulis sp. 35099.83.11852.986243,035939476Oceanicaulis alexandrii DSM 11625CABWMW010000001–CABWMW010000008
 Pantoea sp. 1111004.9624.0956354,807890739Pantoea brenneri LMG 5343LR733469–LR733503
 Enterobacterales bacterium 8AC1005.31344.8153634,8589367410Serratia oryzae J11-6LR733916–LR733978
 Halomonas sp. 1531005.5355.4455115,045972595Halomonas titanicae BH1LR733721–LR733731
 Halomonas sp. 981005.51095.4355145,029975596Halomonas titanicae BH1LR733707–LR733720
 Acinetobacter sp. 8BE1004.41443.9441354,368891617Acinetobacter sp. NIPH 809LR732744–LR732778
 Acinetobacter sp. 8I-beige1003.51382.084173,452895737Acinetobacter johnsonii DSM 6963LR732790–LR732796
 Moraxellaceae bacterium 17A10031942.7543372,973897416Moraxella osloensis CCUG 57516LR732269–LR732305
 Enhydrobacter sp. 8BJ1002.83012.6243312,628919457Moraxella osloensis NCTC10465LR733345–LR733375
 Enhydrobacter sp. AX199.72.73502.6544162,517943496Enhydrobacter aerosaccus SK60LR732800–LR732815
 Pseudomonas sp. 8AS98.14.31994.266674,113945574Pseudomonas alcaligenes NBRC 14159LR733406–LR733412
 Pseudomonas sp. 8BK1004.51454.3860114,205960639Pseudomonas peli DSM 17833LR733252–LR733262
 Pseudomonas sp. 8O99.85.2781.616264,949949605Pseudomonas pseudoalcaligenes AD6LR733263–LR733268
 Pseudomonas sp. 8Z99.44.81441.1261124,625935618Pseudomonas composti CCUG 59231*LR733824–LR733835
 Pseudomonas sp. 9Ag1004.71364.626044,465946524Pseudomonas sp. 10B238LR733836–LR733839
 Pseudomonas sp. 9AZ99.74.52354.466044,260961608Pseudomonas peli DSM 17833LR733840–LR733843
 Bosea sp. 12599.16.3466.1267636,435899463Bosea sp. Root483D1LR733122–LR733184
 Bosea sp. 12799.16.3786.286786,705876463Bosea sp. Root483D1LR733511–LR733518
 Bosea sp. 29B99.16.31376.326776,422904463Bosea sp. Root483D1LR733817–LR733823
 Bosea sp. 6299.16.31546.286776,411905463Bosea sp. Root483D1LR733504–LR733510
 Bosea sp. HK365B99.16.31331.0367186,738876463Bosea sp. Root483D1LR701663–LR701680
 Hoeflea sp. HK42599.95.23264.6861285,266898433Hoeflea halophila KCTC 23107LR701545–LR701572
 Rhizobium sp. SD4041004.21484.2262184,192920423Pararhizobium haloflavum XC0140*LR701442–LR701459
 Roseovarius sp. SD19099.34.7803.8961174,794902443Roseovarius sp. TM1035LR701460–LR701476
 Erythrobacter sp. HK42799.13.11573.126333,097947453Porphyrobacter sp. AAP60*LR701477–LR701479
 Novosphingobium sp. 9U99.64.62212.8265754,843867495Novosphingobium resinovorum SA1*LR732469–LR732543
 Sphingomonas sp. 8AM99.73.81193.6667133,739929484Sphingomonas phyllosphaerae FA2LR733844–LR733856
 Sphingomonas sp. AX699.432283.016413,161892443Sphingomonas echinoides ATCC 14820*LR733857–LR733870
 Sphingomonas sp. HK36199.73.31501.786683,274935453Hephaestia caeni DSM 25527*LR701487–LR701494
 Sphingomonas sp. SD39199.54.61144.1566344,682903495Sphingomonas sp. Leaf28LR701495–LR701528
 Sphingomonas sp. T199.34.52433.8366414,647900503Sphingomonas sp. Leaf30LR733875–LR733915
 Sphingorhabdus sp. 10999.23.6973.565853,585928456Sphingorhabdus sp. M41*LR732707–LR732711
 Luteimonas sp. 9C1003.3772.836923,207957483Xanthomonas sp. Mitacek01LR733312–LR733313
StrainComplete-ness (%)aGenome Size (Mb)Coverage (X)N50 (Mb)%GCScaffold Nb.CDS Nb.Mean CDS LengthtRNA Nb.rRNA Nb.Closest RelativeAccession Numbers
Actinobacteria
 Aeromicrobium sp. 9AM99.74.21442.986894,422897463Aeromicrobium sp. Root236LR733303–LR733311
 Arthrobacter sp. 8AJ99.74.3884.226644,228944515Moraxella osloensis NCTC10465LR733289–LR733292
 Arthrobacter sp. 9AX99.74.42304.416674,453918506Pseudarthrobacter siccitolerans 4J27LR733289–LR733292
 Arthrobacter sp. 9V99.75.12214.82621585,091925629Arthrobacter sp. EpRS71LR732912–LR733069
 Citricoccus sp. K599.23.93243.746993,708974475Citricoccus muralis DSM 14442LR732817–LR732825
 Curtobacterium sp. 8I–2993.61092.807153,767911476Curtobacterium flaccumfaciens UCD-AKULR732826–LR732830
 Frigoribacterium sp. 9N98.53.31512.5371163,339926455Frigoribacterium sp. Leaf8LR733390–LR733405
 Microbacterium sp. 8M99.53.71853.687123,659961444Microbacterium azadirachtae DSM 23848LR733284–LR733285
 Micrococcus sp. 11698.62.62152.4973192,526943485Micrococcus luteus 2385LR732370–LR732388
 Micrococcus sp. 11B98.12.44501.8973522,398952485Micrococcus luteus 2385LR733070–LR733121
 Micrococcus sp. 80W98.12.52241.7873802,521942484Micrococcus luteus 2385LR732389–LR732468
 Nocardioides sp. AX2bis98.74.22213.9673374,397915454Marmoricola aurantiacus DSM 12652*LR733215–LR733251
 Plantibacter sp. T399.542873.986934,131924484Plantibacter flavus VKM Ac-2504LR733286–LR733288
 Pseudoclavibacter sp. 8L98.24.1981.4368304,137921454Microbacterium sp. TS-1*LR733185–LR733214
Bacteroidetes
 Imperialibacter sp. SDR91006.81110.9647655,7671069384Arcticibacter pallidi-corallinus CGMCC 1.9313*LR701573–LR701637
 Marinoscillum sp. 10899.15.2833.7346124,4891086374Marinoscillum furvescens DSM 4134*LR734808–LR734819
 Chryseobacterium sp. 8AT1004.71144.4334314,483931707Chryseobacterium scophthalmum DSM 16779LR733314–LR733344
 Flavobacterium sp. 9AF98.94.21012.9530743,871992515Flavobacterium sp. 316*LR733556–LR733629
 Flavobacterium sp. 9R99.63.61843.4235163,1751006426Flavobacterium succinicans DD5b*LR733413–LR733428
 Maribacter sp. 15199.74.4594.353643,8571044366Maribacter litoralis SDRB-Phe2LR733271–LR733274
 Sphingobacterium sp. 8BC1005.81295.7340145,379960709Sphingobacterium multivorum NCTC11343LR733857–LR733870
Firmicutes
 Bacillus sp. 34899.63.82463.584154,070846799Bacillus stratosphericus LK33LR732831–LR732835
 Bacillus sp. 349Y99.34.51140.1248854,616839979Bacillus sp. Leaf406LR733732–LR733816
 Bacillus sp. 7199.35.71165.6935146,0927969818Bacillus cereus HuA2-4LR733376–LR733389
 Bacillus sp. 9J99.63.81793.7442764,109834869Bacillus sp. Leaf49LR732836–LR732911
 Exiguobacterium sp. 8A99.33.11842.8748773,2348686313Exiguobacterium sp. AT1bLR733630–LR733706
 Exiguobacterium sp. 8H99.332960.8748403,1548686314Exiguobacterium sp. AT1bLR733429–LR733468
 Exiguobacterium sp. 9Y99.33881.6147203,0708766511Exiguobacterium oxidotolerans JCM 12280LR732308–LR732327
 Staphylococcus sp. 8AQ99.22.52692.493142,501886629Staphylococcus pasteuri BAB3LR733871–LR733874
Proteobacteria
 Aeromonas sp. 8C1004.63454.575934,76989911411Aeromonas veronii TTU2014-115ASCLR732797–LR732799
 Aeromonas sp. 9A1004.81054.7059114,59092511416Aeromonas salmonicida Y577LR732779–LR732789
 Alteromonas sp. 381004.72094.704434,324975626Alteromonas stellipolaris LMG 21856LR733300–LR733302
 Marinobacter sp. HK3771004.41724.345774,176976456Marinobacter salarius R9SW1LR701480–LR701486
 Marinobacter sp. N11004.41524.355724,125978456Marinobacter salarius R9SW1LR733269–LR733270
 Burkholderia sp. 8Y1006.3612.3663376,403874528Burkholderia sp. MR1LR733519–LR733555
 Limnobacter sp. 130993.3741.825263,0341007373Limnobacter sp. MED105*LR732328–LR732333
 Massilia sp. 9I1005.51955.516695,242984707Massilia alkalitolerans DSM 17462LR733275–LR733283
 Burkholderiales bacterium 8X99.84.81414.786734,776973445Variovorax sp. WDL1*LR732703–LR732705
 Brevundimonas sp. G899.73.33753.326613,308927473Brevundimonas sp. Leaf280LR732816–LR732816
 Oceanicaulis sp. 35099.83.11852.986243,035939476Oceanicaulis alexandrii DSM 11625CABWMW010000001–CABWMW010000008
 Pantoea sp. 1111004.9624.0956354,807890739Pantoea brenneri LMG 5343LR733469–LR733503
 Enterobacterales bacterium 8AC1005.31344.8153634,8589367410Serratia oryzae J11-6LR733916–LR733978
 Halomonas sp. 1531005.5355.4455115,045972595Halomonas titanicae BH1LR733721–LR733731
 Halomonas sp. 981005.51095.4355145,029975596Halomonas titanicae BH1LR733707–LR733720
 Acinetobacter sp. 8BE1004.41443.9441354,368891617Acinetobacter sp. NIPH 809LR732744–LR732778
 Acinetobacter sp. 8I-beige1003.51382.084173,452895737Acinetobacter johnsonii DSM 6963LR732790–LR732796
 Moraxellaceae bacterium 17A10031942.7543372,973897416Moraxella osloensis CCUG 57516LR732269–LR732305
 Enhydrobacter sp. 8BJ1002.83012.6243312,628919457Moraxella osloensis NCTC10465LR733345–LR733375
 Enhydrobacter sp. AX199.72.73502.6544162,517943496Enhydrobacter aerosaccus SK60LR732800–LR732815
 Pseudomonas sp. 8AS98.14.31994.266674,113945574Pseudomonas alcaligenes NBRC 14159LR733406–LR733412
 Pseudomonas sp. 8BK1004.51454.3860114,205960639Pseudomonas peli DSM 17833LR733252–LR733262
 Pseudomonas sp. 8O99.85.2781.616264,949949605Pseudomonas pseudoalcaligenes AD6LR733263–LR733268
 Pseudomonas sp. 8Z99.44.81441.1261124,625935618Pseudomonas composti CCUG 59231*LR733824–LR733835
 Pseudomonas sp. 9Ag1004.71364.626044,465946524Pseudomonas sp. 10B238LR733836–LR733839
 Pseudomonas sp. 9AZ99.74.52354.466044,260961608Pseudomonas peli DSM 17833LR733840–LR733843
 Bosea sp. 12599.16.3466.1267636,435899463Bosea sp. Root483D1LR733122–LR733184
 Bosea sp. 12799.16.3786.286786,705876463Bosea sp. Root483D1LR733511–LR733518
 Bosea sp. 29B99.16.31376.326776,422904463Bosea sp. Root483D1LR733817–LR733823
 Bosea sp. 6299.16.31546.286776,411905463Bosea sp. Root483D1LR733504–LR733510
 Bosea sp. HK365B99.16.31331.0367186,738876463Bosea sp. Root483D1LR701663–LR701680
 Hoeflea sp. HK42599.95.23264.6861285,266898433Hoeflea halophila KCTC 23107LR701545–LR701572
 Rhizobium sp. SD4041004.21484.2262184,192920423Pararhizobium haloflavum XC0140*LR701442–LR701459
 Roseovarius sp. SD19099.34.7803.8961174,794902443Roseovarius sp. TM1035LR701460–LR701476
 Erythrobacter sp. HK42799.13.11573.126333,097947453Porphyrobacter sp. AAP60*LR701477–LR701479
 Novosphingobium sp. 9U99.64.62212.8265754,843867495Novosphingobium resinovorum SA1*LR732469–LR732543
 Sphingomonas sp. 8AM99.73.81193.6667133,739929484Sphingomonas phyllosphaerae FA2LR733844–LR733856
 Sphingomonas sp. AX699.432283.016413,161892443Sphingomonas echinoides ATCC 14820*LR733857–LR733870
 Sphingomonas sp. HK36199.73.31501.786683,274935453Hephaestia caeni DSM 25527*LR701487–LR701494
 Sphingomonas sp. SD39199.54.61144.1566344,682903495Sphingomonas sp. Leaf28LR701495–LR701528
 Sphingomonas sp. T199.34.52433.8366414,647900503Sphingomonas sp. Leaf30LR733875–LR733915
 Sphingorhabdus sp. 10999.23.6973.565853,585928456Sphingorhabdus sp. M41*LR732707–LR732711
 Luteimonas sp. 9C1003.3772.836923,207957483Xanthomonas sp. Mitacek01LR733312–LR733313

Note.—The closest relative with the similarity below Cut-off [z-score (<0.98)] is marked with asterisk. Nb, number; CDS, coding sequence.

a

Determined using the CheckM tool.

Table 1

Genome Features of Algal-Associated Bacteria Analyzed in This Study

StrainComplete-ness (%)aGenome Size (Mb)Coverage (X)N50 (Mb)%GCScaffold Nb.CDS Nb.Mean CDS LengthtRNA Nb.rRNA Nb.Closest RelativeAccession Numbers
Actinobacteria
 Aeromicrobium sp. 9AM99.74.21442.986894,422897463Aeromicrobium sp. Root236LR733303–LR733311
 Arthrobacter sp. 8AJ99.74.3884.226644,228944515Moraxella osloensis NCTC10465LR733289–LR733292
 Arthrobacter sp. 9AX99.74.42304.416674,453918506Pseudarthrobacter siccitolerans 4J27LR733289–LR733292
 Arthrobacter sp. 9V99.75.12214.82621585,091925629Arthrobacter sp. EpRS71LR732912–LR733069
 Citricoccus sp. K599.23.93243.746993,708974475Citricoccus muralis DSM 14442LR732817–LR732825
 Curtobacterium sp. 8I–2993.61092.807153,767911476Curtobacterium flaccumfaciens UCD-AKULR732826–LR732830
 Frigoribacterium sp. 9N98.53.31512.5371163,339926455Frigoribacterium sp. Leaf8LR733390–LR733405
 Microbacterium sp. 8M99.53.71853.687123,659961444Microbacterium azadirachtae DSM 23848LR733284–LR733285
 Micrococcus sp. 11698.62.62152.4973192,526943485Micrococcus luteus 2385LR732370–LR732388
 Micrococcus sp. 11B98.12.44501.8973522,398952485Micrococcus luteus 2385LR733070–LR733121
 Micrococcus sp. 80W98.12.52241.7873802,521942484Micrococcus luteus 2385LR732389–LR732468
 Nocardioides sp. AX2bis98.74.22213.9673374,397915454Marmoricola aurantiacus DSM 12652*LR733215–LR733251
 Plantibacter sp. T399.542873.986934,131924484Plantibacter flavus VKM Ac-2504LR733286–LR733288
 Pseudoclavibacter sp. 8L98.24.1981.4368304,137921454Microbacterium sp. TS-1*LR733185–LR733214
Bacteroidetes
 Imperialibacter sp. SDR91006.81110.9647655,7671069384Arcticibacter pallidi-corallinus CGMCC 1.9313*LR701573–LR701637
 Marinoscillum sp. 10899.15.2833.7346124,4891086374Marinoscillum furvescens DSM 4134*LR734808–LR734819
 Chryseobacterium sp. 8AT1004.71144.4334314,483931707Chryseobacterium scophthalmum DSM 16779LR733314–LR733344
 Flavobacterium sp. 9AF98.94.21012.9530743,871992515Flavobacterium sp. 316*LR733556–LR733629
 Flavobacterium sp. 9R99.63.61843.4235163,1751006426Flavobacterium succinicans DD5b*LR733413–LR733428
 Maribacter sp. 15199.74.4594.353643,8571044366Maribacter litoralis SDRB-Phe2LR733271–LR733274
 Sphingobacterium sp. 8BC1005.81295.7340145,379960709Sphingobacterium multivorum NCTC11343LR733857–LR733870
Firmicutes
 Bacillus sp. 34899.63.82463.584154,070846799Bacillus stratosphericus LK33LR732831–LR732835
 Bacillus sp. 349Y99.34.51140.1248854,616839979Bacillus sp. Leaf406LR733732–LR733816
 Bacillus sp. 7199.35.71165.6935146,0927969818Bacillus cereus HuA2-4LR733376–LR733389
 Bacillus sp. 9J99.63.81793.7442764,109834869Bacillus sp. Leaf49LR732836–LR732911
 Exiguobacterium sp. 8A99.33.11842.8748773,2348686313Exiguobacterium sp. AT1bLR733630–LR733706
 Exiguobacterium sp. 8H99.332960.8748403,1548686314Exiguobacterium sp. AT1bLR733429–LR733468
 Exiguobacterium sp. 9Y99.33881.6147203,0708766511Exiguobacterium oxidotolerans JCM 12280LR732308–LR732327
 Staphylococcus sp. 8AQ99.22.52692.493142,501886629Staphylococcus pasteuri BAB3LR733871–LR733874
Proteobacteria
 Aeromonas sp. 8C1004.63454.575934,76989911411Aeromonas veronii TTU2014-115ASCLR732797–LR732799
 Aeromonas sp. 9A1004.81054.7059114,59092511416Aeromonas salmonicida Y577LR732779–LR732789
 Alteromonas sp. 381004.72094.704434,324975626Alteromonas stellipolaris LMG 21856LR733300–LR733302
 Marinobacter sp. HK3771004.41724.345774,176976456Marinobacter salarius R9SW1LR701480–LR701486
 Marinobacter sp. N11004.41524.355724,125978456Marinobacter salarius R9SW1LR733269–LR733270
 Burkholderia sp. 8Y1006.3612.3663376,403874528Burkholderia sp. MR1LR733519–LR733555
 Limnobacter sp. 130993.3741.825263,0341007373Limnobacter sp. MED105*LR732328–LR732333
 Massilia sp. 9I1005.51955.516695,242984707Massilia alkalitolerans DSM 17462LR733275–LR733283
 Burkholderiales bacterium 8X99.84.81414.786734,776973445Variovorax sp. WDL1*LR732703–LR732705
 Brevundimonas sp. G899.73.33753.326613,308927473Brevundimonas sp. Leaf280LR732816–LR732816
 Oceanicaulis sp. 35099.83.11852.986243,035939476Oceanicaulis alexandrii DSM 11625CABWMW010000001–CABWMW010000008
 Pantoea sp. 1111004.9624.0956354,807890739Pantoea brenneri LMG 5343LR733469–LR733503
 Enterobacterales bacterium 8AC1005.31344.8153634,8589367410Serratia oryzae J11-6LR733916–LR733978
 Halomonas sp. 1531005.5355.4455115,045972595Halomonas titanicae BH1LR733721–LR733731
 Halomonas sp. 981005.51095.4355145,029975596Halomonas titanicae BH1LR733707–LR733720
 Acinetobacter sp. 8BE1004.41443.9441354,368891617Acinetobacter sp. NIPH 809LR732744–LR732778
 Acinetobacter sp. 8I-beige1003.51382.084173,452895737Acinetobacter johnsonii DSM 6963LR732790–LR732796
 Moraxellaceae bacterium 17A10031942.7543372,973897416Moraxella osloensis CCUG 57516LR732269–LR732305
 Enhydrobacter sp. 8BJ1002.83012.6243312,628919457Moraxella osloensis NCTC10465LR733345–LR733375
 Enhydrobacter sp. AX199.72.73502.6544162,517943496Enhydrobacter aerosaccus SK60LR732800–LR732815
 Pseudomonas sp. 8AS98.14.31994.266674,113945574Pseudomonas alcaligenes NBRC 14159LR733406–LR733412
 Pseudomonas sp. 8BK1004.51454.3860114,205960639Pseudomonas peli DSM 17833LR733252–LR733262
 Pseudomonas sp. 8O99.85.2781.616264,949949605Pseudomonas pseudoalcaligenes AD6LR733263–LR733268
 Pseudomonas sp. 8Z99.44.81441.1261124,625935618Pseudomonas composti CCUG 59231*LR733824–LR733835
 Pseudomonas sp. 9Ag1004.71364.626044,465946524Pseudomonas sp. 10B238LR733836–LR733839
 Pseudomonas sp. 9AZ99.74.52354.466044,260961608Pseudomonas peli DSM 17833LR733840–LR733843
 Bosea sp. 12599.16.3466.1267636,435899463Bosea sp. Root483D1LR733122–LR733184
 Bosea sp. 12799.16.3786.286786,705876463Bosea sp. Root483D1LR733511–LR733518
 Bosea sp. 29B99.16.31376.326776,422904463Bosea sp. Root483D1LR733817–LR733823
 Bosea sp. 6299.16.31546.286776,411905463Bosea sp. Root483D1LR733504–LR733510
 Bosea sp. HK365B99.16.31331.0367186,738876463Bosea sp. Root483D1LR701663–LR701680
 Hoeflea sp. HK42599.95.23264.6861285,266898433Hoeflea halophila KCTC 23107LR701545–LR701572
 Rhizobium sp. SD4041004.21484.2262184,192920423Pararhizobium haloflavum XC0140*LR701442–LR701459
 Roseovarius sp. SD19099.34.7803.8961174,794902443Roseovarius sp. TM1035LR701460–LR701476
 Erythrobacter sp. HK42799.13.11573.126333,097947453Porphyrobacter sp. AAP60*LR701477–LR701479
 Novosphingobium sp. 9U99.64.62212.8265754,843867495Novosphingobium resinovorum SA1*LR732469–LR732543
 Sphingomonas sp. 8AM99.73.81193.6667133,739929484Sphingomonas phyllosphaerae FA2LR733844–LR733856
 Sphingomonas sp. AX699.432283.016413,161892443Sphingomonas echinoides ATCC 14820*LR733857–LR733870
 Sphingomonas sp. HK36199.73.31501.786683,274935453Hephaestia caeni DSM 25527*LR701487–LR701494
 Sphingomonas sp. SD39199.54.61144.1566344,682903495Sphingomonas sp. Leaf28LR701495–LR701528
 Sphingomonas sp. T199.34.52433.8366414,647900503Sphingomonas sp. Leaf30LR733875–LR733915
 Sphingorhabdus sp. 10999.23.6973.565853,585928456Sphingorhabdus sp. M41*LR732707–LR732711
 Luteimonas sp. 9C1003.3772.836923,207957483Xanthomonas sp. Mitacek01LR733312–LR733313
StrainComplete-ness (%)aGenome Size (Mb)Coverage (X)N50 (Mb)%GCScaffold Nb.CDS Nb.Mean CDS LengthtRNA Nb.rRNA Nb.Closest RelativeAccession Numbers
Actinobacteria
 Aeromicrobium sp. 9AM99.74.21442.986894,422897463Aeromicrobium sp. Root236LR733303–LR733311
 Arthrobacter sp. 8AJ99.74.3884.226644,228944515Moraxella osloensis NCTC10465LR733289–LR733292
 Arthrobacter sp. 9AX99.74.42304.416674,453918506Pseudarthrobacter siccitolerans 4J27LR733289–LR733292
 Arthrobacter sp. 9V99.75.12214.82621585,091925629Arthrobacter sp. EpRS71LR732912–LR733069
 Citricoccus sp. K599.23.93243.746993,708974475Citricoccus muralis DSM 14442LR732817–LR732825
 Curtobacterium sp. 8I–2993.61092.807153,767911476Curtobacterium flaccumfaciens UCD-AKULR732826–LR732830
 Frigoribacterium sp. 9N98.53.31512.5371163,339926455Frigoribacterium sp. Leaf8LR733390–LR733405
 Microbacterium sp. 8M99.53.71853.687123,659961444Microbacterium azadirachtae DSM 23848LR733284–LR733285
 Micrococcus sp. 11698.62.62152.4973192,526943485Micrococcus luteus 2385LR732370–LR732388
 Micrococcus sp. 11B98.12.44501.8973522,398952485Micrococcus luteus 2385LR733070–LR733121
 Micrococcus sp. 80W98.12.52241.7873802,521942484Micrococcus luteus 2385LR732389–LR732468
 Nocardioides sp. AX2bis98.74.22213.9673374,397915454Marmoricola aurantiacus DSM 12652*LR733215–LR733251
 Plantibacter sp. T399.542873.986934,131924484Plantibacter flavus VKM Ac-2504LR733286–LR733288
 Pseudoclavibacter sp. 8L98.24.1981.4368304,137921454Microbacterium sp. TS-1*LR733185–LR733214
Bacteroidetes
 Imperialibacter sp. SDR91006.81110.9647655,7671069384Arcticibacter pallidi-corallinus CGMCC 1.9313*LR701573–LR701637
 Marinoscillum sp. 10899.15.2833.7346124,4891086374Marinoscillum furvescens DSM 4134*LR734808–LR734819
 Chryseobacterium sp. 8AT1004.71144.4334314,483931707Chryseobacterium scophthalmum DSM 16779LR733314–LR733344
 Flavobacterium sp. 9AF98.94.21012.9530743,871992515Flavobacterium sp. 316*LR733556–LR733629
 Flavobacterium sp. 9R99.63.61843.4235163,1751006426Flavobacterium succinicans DD5b*LR733413–LR733428
 Maribacter sp. 15199.74.4594.353643,8571044366Maribacter litoralis SDRB-Phe2LR733271–LR733274
 Sphingobacterium sp. 8BC1005.81295.7340145,379960709Sphingobacterium multivorum NCTC11343LR733857–LR733870
Firmicutes
 Bacillus sp. 34899.63.82463.584154,070846799Bacillus stratosphericus LK33LR732831–LR732835
 Bacillus sp. 349Y99.34.51140.1248854,616839979Bacillus sp. Leaf406LR733732–LR733816
 Bacillus sp. 7199.35.71165.6935146,0927969818Bacillus cereus HuA2-4LR733376–LR733389
 Bacillus sp. 9J99.63.81793.7442764,109834869Bacillus sp. Leaf49LR732836–LR732911
 Exiguobacterium sp. 8A99.33.11842.8748773,2348686313Exiguobacterium sp. AT1bLR733630–LR733706
 Exiguobacterium sp. 8H99.332960.8748403,1548686314Exiguobacterium sp. AT1bLR733429–LR733468
 Exiguobacterium sp. 9Y99.33881.6147203,0708766511Exiguobacterium oxidotolerans JCM 12280LR732308–LR732327
 Staphylococcus sp. 8AQ99.22.52692.493142,501886629Staphylococcus pasteuri BAB3LR733871–LR733874
Proteobacteria
 Aeromonas sp. 8C1004.63454.575934,76989911411Aeromonas veronii TTU2014-115ASCLR732797–LR732799
 Aeromonas sp. 9A1004.81054.7059114,59092511416Aeromonas salmonicida Y577LR732779–LR732789
 Alteromonas sp. 381004.72094.704434,324975626Alteromonas stellipolaris LMG 21856LR733300–LR733302
 Marinobacter sp. HK3771004.41724.345774,176976456Marinobacter salarius R9SW1LR701480–LR701486
 Marinobacter sp. N11004.41524.355724,125978456Marinobacter salarius R9SW1LR733269–LR733270
 Burkholderia sp. 8Y1006.3612.3663376,403874528Burkholderia sp. MR1LR733519–LR733555
 Limnobacter sp. 130993.3741.825263,0341007373Limnobacter sp. MED105*LR732328–LR732333
 Massilia sp. 9I1005.51955.516695,242984707Massilia alkalitolerans DSM 17462LR733275–LR733283
 Burkholderiales bacterium 8X99.84.81414.786734,776973445Variovorax sp. WDL1*LR732703–LR732705
 Brevundimonas sp. G899.73.33753.326613,308927473Brevundimonas sp. Leaf280LR732816–LR732816
 Oceanicaulis sp. 35099.83.11852.986243,035939476Oceanicaulis alexandrii DSM 11625CABWMW010000001–CABWMW010000008
 Pantoea sp. 1111004.9624.0956354,807890739Pantoea brenneri LMG 5343LR733469–LR733503
 Enterobacterales bacterium 8AC1005.31344.8153634,8589367410Serratia oryzae J11-6LR733916–LR733978
 Halomonas sp. 1531005.5355.4455115,045972595Halomonas titanicae BH1LR733721–LR733731
 Halomonas sp. 981005.51095.4355145,029975596Halomonas titanicae BH1LR733707–LR733720
 Acinetobacter sp. 8BE1004.41443.9441354,368891617Acinetobacter sp. NIPH 809LR732744–LR732778
 Acinetobacter sp. 8I-beige1003.51382.084173,452895737Acinetobacter johnsonii DSM 6963LR732790–LR732796
 Moraxellaceae bacterium 17A10031942.7543372,973897416Moraxella osloensis CCUG 57516LR732269–LR732305
 Enhydrobacter sp. 8BJ1002.83012.6243312,628919457Moraxella osloensis NCTC10465LR733345–LR733375
 Enhydrobacter sp. AX199.72.73502.6544162,517943496Enhydrobacter aerosaccus SK60LR732800–LR732815
 Pseudomonas sp. 8AS98.14.31994.266674,113945574Pseudomonas alcaligenes NBRC 14159LR733406–LR733412
 Pseudomonas sp. 8BK1004.51454.3860114,205960639Pseudomonas peli DSM 17833LR733252–LR733262
 Pseudomonas sp. 8O99.85.2781.616264,949949605Pseudomonas pseudoalcaligenes AD6LR733263–LR733268
 Pseudomonas sp. 8Z99.44.81441.1261124,625935618Pseudomonas composti CCUG 59231*LR733824–LR733835
 Pseudomonas sp. 9Ag1004.71364.626044,465946524Pseudomonas sp. 10B238LR733836–LR733839
 Pseudomonas sp. 9AZ99.74.52354.466044,260961608Pseudomonas peli DSM 17833LR733840–LR733843
 Bosea sp. 12599.16.3466.1267636,435899463Bosea sp. Root483D1LR733122–LR733184
 Bosea sp. 12799.16.3786.286786,705876463Bosea sp. Root483D1LR733511–LR733518
 Bosea sp. 29B99.16.31376.326776,422904463Bosea sp. Root483D1LR733817–LR733823
 Bosea sp. 6299.16.31546.286776,411905463Bosea sp. Root483D1LR733504–LR733510
 Bosea sp. HK365B99.16.31331.0367186,738876463Bosea sp. Root483D1LR701663–LR701680
 Hoeflea sp. HK42599.95.23264.6861285,266898433Hoeflea halophila KCTC 23107LR701545–LR701572
 Rhizobium sp. SD4041004.21484.2262184,192920423Pararhizobium haloflavum XC0140*LR701442–LR701459
 Roseovarius sp. SD19099.34.7803.8961174,794902443Roseovarius sp. TM1035LR701460–LR701476
 Erythrobacter sp. HK42799.13.11573.126333,097947453Porphyrobacter sp. AAP60*LR701477–LR701479
 Novosphingobium sp. 9U99.64.62212.8265754,843867495Novosphingobium resinovorum SA1*LR732469–LR732543
 Sphingomonas sp. 8AM99.73.81193.6667133,739929484Sphingomonas phyllosphaerae FA2LR733844–LR733856
 Sphingomonas sp. AX699.432283.016413,161892443Sphingomonas echinoides ATCC 14820*LR733857–LR733870
 Sphingomonas sp. HK36199.73.31501.786683,274935453Hephaestia caeni DSM 25527*LR701487–LR701494
 Sphingomonas sp. SD39199.54.61144.1566344,682903495Sphingomonas sp. Leaf28LR701495–LR701528
 Sphingomonas sp. T199.34.52433.8366414,647900503Sphingomonas sp. Leaf30LR733875–LR733915
 Sphingorhabdus sp. 10999.23.6973.565853,585928456Sphingorhabdus sp. M41*LR732707–LR732711
 Luteimonas sp. 9C1003.3772.836923,207957483Xanthomonas sp. Mitacek01LR733312–LR733313

Note.—The closest relative with the similarity below Cut-off [z-score (<0.98)] is marked with asterisk. Nb, number; CDS, coding sequence.

a

Determined using the CheckM tool.

The genomic resources provided here constitute a valuable resource for comparative genomic analyses and evolutionary surveys of alga-associated bacteria and will allow us to produce testable hypotheses about the molecular interactions between the microbes and their host. They may, among other uses, facilitate metabolic complementarity centered approach as proposed by Dittami et al. (2014), to identify potential beneficial interactions between the partners. They will also form the bases for more targeted molecular approaches, for example, gene knockouts or gene expression analyses once specific interactions are being targeted in coculture experiments.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Data deposition: The projects PRJEB31339 and PRJEB34356 have been deposited at European Nucleotide Archive - European Molecular Biology Laboratory- EBI under the accession numbers given in Table 1 (http://www.ebi.ac.uk/ena/data/view/ <ACCESSION NUMBER>).

Acknowledgments

We appreciate the LABGeM (CEA/Genoscope & CNRS UMR8030), the France Génomique and French Bioinformatics Institute national infrastructures (funded as part of Investissement d'Avenir program managed by Agence Nationale pour la Recherche, contracts ANR-10-INBS-09 and ANR-11-INBS-0013) for their technical support within the MicroScope annotation platform and thank to Sylvie Rousvoal for help with DNA extractions.

This study was supported partially by the CNRS Momentum call, the ANR project IDEALG [ANR-10-BTBR-04] “Investissements d’Avenir, Biotechnologies-Bioressources,” and the European Union’s Horizon 2020 research and innovation Programme under the Marie Sklodowska-Curie grant agreement [624575 (ALFF)]. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author Contributions

E.K. participated in the conception and design of the study, sample processing, genome sequencing and assembly, data analysis, writing the manuscript. E.G. participated in the genome assembling, submission of genomes to MicroScope, and helped with the preparation of the figures. H.K. participated in the isolation of bacteria and genome sequencing. G.T. and E.L. both contributed to the sequencing of the genomes. E.C. participated in the assembling protocol and revision. S.M.D. participated in the conception and design of the study, isolation of bacteria, genome assembly and writing the manuscript. All authors approved the final draft.

Literature Cited

Andrews
S.
2010
. FastQC: a quality control tool for high throughput sequence data. In: Babraham Bioinformatics. Cambridge: Babraham Institute.

Bankevich
A
, et al. .
2012
.
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
.
J Comput Biol
. 19(5): 455–477. doi:10.1089/cmb.2012.0021.

Behringer
G
, et al. .
2018
.
Bacterial communities of diatoms display strong conservation across strains and time
.
Front Microbiol
.
9
:
659
.

Blin
K
, et al. .
2017
.
antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification
.
Nucleic Acids Res
.
45
(
W1
):
W36
W41
.

Brodie
J
, et al. .
2017
.
The algal revolution
.
Trends Plant Sci
.
22
(
8
):
726
738
.

Burgunter-Delamare
B
, et al. .
2019
.
Metabolic complementarity between a brown alga and associated cultivable bacteria provide indications of beneficial interactions
.
bioRxiv
813683
. doi:10.1101/813683.

Caspi
R
, et al. .
2018
.
The MetaCyc database of metabolic pathways and enzymes
.
Nucleic Acids Res
.
46
(
D1
):
D633
D639
.

Charrier
B
, et al. .
2007
.
Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research
.
New Phytol
.
177
(
2
):
319
332
.

Cock
JM
, et al. .
2010
.
The Ectocarpus genome and the independent evolution of multicellularity in brown algae
.
Nature
465
(
7298
):
617
621
.

Cosse
A
,
Leblanc
C
,
Potin
P.
2007
. Dynamic defense of marine macroalgae against pathogens: from early activated to gene‐regulated responses. In:
Adv. Bot. Res
.
Academic Press
. p.
221
266
.

Croft
MT
,
Lawrence
AD
,
Raux-Deery
E
,
Warren
MJ
,
Smith
AG.
2005
.
Algae acquire vitamin B12 through a symbiotic relationship with bacteria
.
Nature
438
(
7064
):
90
93
.

Dittami
SM
, et al. .
2016
.
Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures
.
ISME J
.
10
(
1
):
51
63
.

Dittami
SM
,
Eveillard
D
,
Tonon
T.
2014
.
A metabolic approach to study algal–bacterial interactions in changing environments
.
Mol Ecol
.
23
(
7
):
1656
1660
.

Dittami
SM
, et al. .
2019
. Revisiting Australian Ectocarpus subulatus (Phaeophyceae) from the Hopkins River: distribution, abiotic environment, and associated microbiota
.
bioRxiv
821579
. doi:10.1101/821579.

Douglas
AE
,
Werren
JH.
2016
.
Holes in the hologenome: why host–microbe symbioses are not holobionts
.
mBio
7
(
2
):
e02099
02015
.

Frioux
C
,
Fremy
E
,
Trottier
C
,
Siegel
A.
2018
.
Scalable and exhaustive screening of metabolic functions carried out by microbial consortia
.
Bioinformatics
34
(
17
):
i934
i943
.

Gershenzon
J
,
Dudareva
N.
2007
.
The function of terpene natural products in the natural world
.
Nat Chem Biol
.
3
(
7
):
408
414
.

Kamennaya
NA
,
Chernihovsky
M
,
Post
AF.
2008
.
The cyanate utilization capacity of marine unicellular Cyanobacteria
.
Limnol Oceanogr
.
53
(
6
):
2485
2494
.

Kanehisa
M
, et al. .
2008
.
KEGG for linking genomes to life and the environment
.
Nucleic Acids Res
. 36 (suppl_1):D480–D484. doi:10.1093/nar/gkm882.

KleinJan
H
,
Jeanthon
C
,
Boyen
C
,
Dittami
SM.
2017
.
Exploring the cultivable Ectocarpus microbiome
.
Front Microbiol
. 8:2456. doi:10.3389/fmicb.2017.02456.

Klemetsen
T
, et al. .
2018
.
The MAR databases: development and implementation of databases specific for marine metagenomics
.
Nucleic Acids Res
.
46
(
D1
):
D692
D699
.

Koru
E.
2013
.
Seaweeds for food and industrial applications
. In:
Muzzalupo
I
, editor.
IntechOpen
. p.
735
748
.

Li
R
, et al. .
2010
.
De novo assembly of human genomes with massively parallel short read sequencing
.
Genome Res
.
20
(
2
):
265
272
.

Li
Y-H
,
Tian
X.
2012
.
Quorum sensing and bacterial social interactions in biofilms
.
Sensors (Basel)
12
(
3
):
2519
2538
.

Nasrolahi
A
,
Stratil
SB
,
Jacob
KJ
,
Wahl
M.
2012
.
A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment
.
FEMS Microbiol Ecol
.
81
(
3
):
583
595
.

Netzker
T
, et al. .
2015
.
Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters
.
Front Microbiol
. 6:299. doi:10.3389/fmicb.2015.00299.

Paix
B
,
Othmani
A
,
Debroas
D
,
Culioli
G
,
Briand
J-F.
2019
.
Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria
.
Environ Microbiol
.
21
(
9
):
3346
3363
.

Palatinszky
M
, et al. .
2015
.
Cyanate as an energy source for nitrifiers
.
Nature
524
(
7563
):
105
108
.

Parks
DH
,
Imelfort
M
,
Skennerton
CT
,
Hugenholtz
P
,
Tyson
GW.
2015
.
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes
.
Genome Res
.
25
(
7
):
1043
1055
.

Pedersen
M.
1968
.
Ectocarpus fasciculatus: marine brownalga requiring kinetin
.
Nature
218
:
776
.

Peters
AF
,
Marie
D
,
Scornet
D
,
Kloareg
B
,
Mark Cock
J.
2004
.
Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics
.
J Phycol
.
40
(
6
):
1079
1088
.

Raja
A
,
Vipin
C
,
Aiyappan
A.
2013
.
Biological importance of marine algae—an overview
.
Int J Curr Microbiol Appl Sci
.
2
:
222
227
.

Reasoner
DJ
,
Geldreich
EE.
1985
.
A new medium for the enumeration and subculture of bacteria from potable water
.
Appl Environ Microbiol
.
49
(
1
):
1
7
.

Richter
M
,
Rosselló-Móra
R
,
Oliver Glöckner
F
,
Peplies
J.
2016
.
JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison
.
Bioinformatics
32
(
6
):
929
931
.

Robertsen
E
, et al. .
2017
.
ELIXIR pilot action: marine metagenomics? Towards a domain specific set of sustainable services [version 1; peer review: 1 approved, 2 approved with reservations]
.
F1000Research
6
:
70
.

Sáez
LP
, et al. .
2019
.
Cyanate assimilation by the alkaliphilic cyanide-degrading bacterium pseudomonas pseudoalcaligenes CECT5344: mutational analysis of the cyn gene cluster
.
IJMS
20
(
12
):
3008
.

Susilowati
R
,
Sabdono
A
,
Widowati
I.
2015
.
Isolation and characterization of bacteria associated with brown algae Sargassum spp. from Panjang island and their antibacterial activities
.
Proc Environ Sci
.
23
:
240
246
.

Tang
YZ
,
Koch
F
,
Gobler
CJ.
2010
.
Most harmful algal bloom species are vitamin B1and B12 auxotrophs
.
Proc Natl Acad Sci USA
.
107
(
48
):
20756
20761
.

Tapia
JE
,
González
B
,
Goulitquer
S
,
Potin
P
,
Correa
JA.
2016
.
Microbiota influences morphology and reproduction of the brown alga Ectocarpus sp
.
Front Microbiol
. 7:197. doi:10.3389/fmicb.2016.00197.

Vallenet
D
, et al. .
2017
.
MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes
.
Nucleic Acids Res
.
45
(
D1
):
D517
D528
.

Venkatesan
J
,
Manivasagan
P
,
Kim
S-K.
2015
. Chapter 1—Marine microalgae biotechnology: present trends and future advances. In:
Kim
S-K
, editor.
Handbook of marine microalgae
.
Boston
:
Academic Press
. p. 
1
9
.

Weisburg
WG
,
Barns
SM
,
Pelletier
DA
,
Lane
DJ.
1991
.
16S ribosomal DNA amplification for phylogenetic study
.
J Bacteriol
.
173
(
2
):
697
703
.

West
J
,
Kraft
G.
1996
.
Ectocarpus siliculosus (Dillwyn) Lyngbye from the Hopkins River Falls, Victoria. The first record of a freshwater brown alga in Australia
.
Muelleria
9
:
29
33
.

Wiese
J
,
Thiel
V
,
Nagel
K
,
Staufenberger
T
,
Imhoff
JF.
2009
.
Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic sea
.
Mar Biotechnol
.
11
(
2
):
287
300
.

Yamada
Y
, et al. .
2015
.
Terpene synthases are widely distributed in bacteria
.
Proc Natl Acad Sci USA
.
112
(
3
):
857
862
.

Zilber‐Rosenberg
I
,
Rosenberg
E.
2008
.
Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution
.
FEMS Microbiol Rev
.
32
(
5
):
723
735
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]
Associate Editor: Howard Ochman
Howard Ochman
Associate Editor
Search for other works by this author on:

Supplementary data