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ABSTRACT
There is a growing need for the development of statistical techniques capable of mapping quantitative

trait loci (QTL) in general outbred animal populations. Presently used variance component methods,
which correctly account for the complex relationships that may exist between individuals, are challenged
by the difficulties incurred through unknown marker genotypes, inbred individuals, partially or unknown
marker phases, and multigenerational data. In this article, a two-step variance component approach that
enables practitioners to routinely map QTL in populations with the aforementioned difficulties is explored.
The performance of the QTL mapping methodology is assessed via its application to simulated data. The
capacity of the technique to accurately estimate parameters is examined for a range of scenarios.

WITH the widespread usage of genetic markers in ties is determined by the number of QTL genotypes, and
helping to detect and localize quantitative trait assumptions regarding the total number of segregating

loci (QTL), marker data are becoming available on hu- alleles have a profound effect on the formulation of the
man and livestock populations with increasingly com- statistical model.
plex pedigree structures. QTL analysis in such popula- Random effects models, based upon the simple prem-
tions is challenging because the number of alleles ise that individuals of like phenotype are more likely
segregating at the QTL is unknown, the marker phases to share genes identical-by-descent (IBD), offer a less
may be unknown or only partially known, the marker parameterized statistical environment in which to map
and QTL allele frequencies must be estimated from the QTL. This environment is obtained by assuming the
data, inbreeding loops may exist in the pedigree, and QTL effects are normally distributed—an assumption
markers may be noninformative or ungenotyped. Al- that circumvents the estimation of QTL allele frequen-
though it is possible to simplify the analysis of complex cies and is robust to violation (Hoeschele et al. 1997).
pedigree data by fragmenting the pedigree into smaller Random effects models have long been utilized by
component families, methods that fully account for human geneticists interested in partitioning the genetic
complex relationships between individuals are expected variance of quantitative traits into effects due to specific
to provide greater power to detect QTL (Almasy and chromosomal regions. As early as the 1970s, variance
Blangero 1998). component approaches (i.e., analytical methods that

Literature surrounding the mapping of QTL in popu- estimate the parameters of random effects models) were
lations with complex pedigrees can be classified ac- being used to detect QTL in phase-known pedigrees
cording to the allelic assumptions associated with the (Jayakar 1970). Since then, the development of in-
QTL. Mapping methods either assume the QTL is a creasingly sophisticated variance component methods
fixed effect with a finite number of alleles or a random has enabled QTL to be mapped in increasingly general
effect with an infinite number of alleles. pedigrees (Amos 1994; Almasy and Blangero 1998).

Analysis of statistical models that treat the QTL as a In contrast to the long association human geneticists
fixed effect range from simple regression-based method- have had with random effects models, animal geneti-
ologies (Knott et al. 1996) to complex statistical analy- cists’ acceptance of QTL as random effects is relatively
ses involving Markov chain Monte Carlo (MCMC) meth- recent. Fernando and Grossman (1989), Hoeschele
ods within frequentist (Heath 1997; Jansen et al. 1998) (1993), and Van Arendonk et al. (1994) began by as-
and Bayesian (Uimari and Hoeschele 1997; George et suming the QTL variance and location, among other
al. 2000) paradigms. The statistical models are mixture parameters, were known. These parameters were later
distributions, where the number of component densi- estimated with a single-marker single-QTL model

(Grignola et al. 1996a,b) and multiple linked markers
and QTL model (Grignola et al. 1997). To date, QTL
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IBD (Malécot 1948). See Xie et al. (1998) for a detailedgranddaughter designs). This can be attributed to the
explanation of the interpretation of gij given inbred and nonin-availability of data and complexities associated with cal-
bred individuals.

culating (co)variance matrices for QTL effects given When no QTL is assumed to be segregating in the popula-
multigenerational pedigrees. tion, the mixed linear model in matrix notation becomes

The aim of this article is to present to the animal
y 5 Xb 1 Zu 1 e (2)genetics community a new two-step variance component

method that is capable of routinely mapping QTL in with u z Nq(0, As2
u) and e z Nm(0, Rs2

e).
Calculating the IBD probabilities for the G matrix: In prac-populations with considerable missing marker informa-

tice, QTL genotypes are unobservable. Instead, linked markerstion and complex pedigree structures. The methodol-
are genotyped and used to infer QTL IBD status. The markerogy is based upon an interval mapping procedure and information in complex pedigrees is often incomplete. Un-

begins by utilizing available marker data and pedigree known linkage phases, noninformative markers, and/or miss-
information to calculate the (co)variance matrices asso- ing marker genotypes complicate the calculation of G. Several

methods for calculating IBD probabilities in complex pedi-ciated with a QTL at a particular position on the ge-
grees have been developed. These methods fall into one ofnome. Once the (co)variance matrix is calculated, the
three classes—recursive algorithms, correlation-based algo-mixed linear model is constructed and parameter esti- rithms, or simulation-based algorithms.

mates are obtained. This two-step process of calculating Recursive algorithms: Recursive algorithms to calculate IBD
the (co)variance matrix and estimating the parameters probabilities for a QTL’s gametic relationship matrix were

developed by Van Arendonk et al. (1994) and Wang et al.of the mixed linear model is repeated for each position
(1995). These algorithms can also be used to construct G sinceon the genome. A test statistic measuring QTL presence
a simple linear relationship exists between the (co)varianceis then obtained from which position and size can also matrix used in animal QTL models and the gametic relation-

be determined. The ability of this method to analyze ship matrix. That is, gij 5 0.5 Rs5m,p Rt5m,pgis jt, where s, t P {mater-
complex pedigree data is owed to the recently upgraded nal (m), paternal (p)} and gis jt represents the probability of the
and freely available software package Loki (Heath sth parental gamete inherited from individual i being IBD
1997). Loki enables the IBD probabilities at a QTL to to the tth parental gamete inherited from individual j. The

calculation of the gametic IBD probabilities is based uponbe calculated between all pairs of individuals given con-
information from a single fully genotyped marker linked tosiderable missing information and pedigree complexi-
a QTL. Extensions to linked phase-known marker data wereties. These IBD probabilities are used to construct the made by Grignola et al. (1996a).

QTL’s (co)variance matrix. Recursive algorithms are an effective and economical way
of calculating IBD probabilities given the availability of full
marker information; however, this requirement is difficult to
guarantee for complex pedigrees. Wang et al. (1995) discussedMATERIALS AND METHODS
a nonstochastic approach to handling missing marker infor-
mation while maintaining the recursive integrity of the algo-Mixed linear models: When constructing a mixed linear

model that accounts for a QTL, the quantitative trait is com- rithm; however, large amounts of missing marker information
render the algorithm intractable. Furthermore, recursive algo-monly assumed to be controlled by a linear combination of

fixed effects, putative QTL, and additive residual (polygenic) rithms follow a “top-down” strategy beginning with the calcula-
tion of IBD probabilities for the parents and using these esti-effects. The polygenic effects account for the cumulative result

of all loci affecting the quantitative trait that are unlinked to mates to infer the IBD probabilities of the offspring. Missing
information on individuals early in the pedigree introducesthe QTL. Mixed linear models can be constructed at the ani-

mal or gametic level. In this article, an animal model is pre- estimation errors that propagate throughout the pedigree be-
cause recursive algorithms are incapable of utilizing informa-sented, which, in matrix notation, is defined as
tion that is not otherwise passed down through the parents.

y 5 Xb 1 Zu 1 Zv 1 e, (1) Correlation-based algorithms: Almasy and Blangero (1998)
developed an alternate approach for IBD probability calcula-where y is an (m 3 1) vector of phenotypes, X is an (m 3 s) tion. Their methodology espouses the IBD correlation rela-design matrix, b is a (s 3 1) vector of fixed effects, Z is an tionships of Amos (1994), who, in matrix notation, showed(m 3 q) incidence matrix relating animals to phenotypes, u

is a (q 3 1) vector of additive polygenic effects, v is a (q 3 1) G 5 A 1 B(r, u) ^ (GM 2 A), (3)
vector of additive QTL effects, and e is a residual vector.

The random effects u, v, and e are assumed to be uncorre- where B(r, u) is the correlation matrix between the proportion
of alleles shared IBD at the fully genotyped marker and alated and distributed as multivariate normal densities as fol-

lows: u z Nq(0, As2
u), v z Nq(0, Gs2

v), and e z Nm(0, Rs2
e), putative QTL, r denotes the rth kinship relationship, ^ repre-

sents the Hadamard product, and GM is the (q 3 q) (co)vari-where the scalar variances s2
u, s2

v, and s2
e are the polygenic

variance, the additive variance of the QTL, and the residual ance matrix conditioned on and calculated at the marker M.
Almasy and Blangero (1998) used the averaging method ofvariance, respectively; A is the standard additive genetic rela-

tionship matrix; G is the (q 3 q) (co)variance matrix for the Fulker et al. (1995) to extend (3) to allow the calculation of
G to be conditional on all available marker information.additive effects of the QTL conditional on marker informa-

tion; and R is a known (m 3 m) diagonal matrix. If individuals Almasy and Blangero (1998) have made a significant con-
tribution to the advancement of correlation-based algorithms;i and j are noninbred, then gij P G represents the proportion

of alleles IBD at the QTL. However, if i and j are inbred, gij however, little attention is paid to the difficulties of calculating
GM given missing marker information. The authors suggestis interpreted as twice the coefficient of coancestry for the

QTL. The coefficient of coancestry is defined as the probability Monte Carlo methods to impute the missing marker genotypes
but irreducibility (i.e., the ability of a sampler to visit anythat two randomly drawn alleles from individuals i and j are
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consistent state in a parameter space with positive probability)
of the chains is difficult to assess and guarantee. Issues relating
to the use of Monte Carlo methods to infer missing marker
genotypes are discussed in further detail below.

Simulation-based algorithms: For pedigrees with incomplete
marker information, direct application of recursive or correla-
tion-based IBD algorithms is impossible. In this situation, G is
often replaced by its expectation conditioned on the observed
marker data (Mobs) such that

E(G|Mobs) 5 o
vPV

GvPr(v|Mobs), (4)

where v is a single phase-known marker configuration for the
pedigree from the set of all possible marker configurations
(V), Gv is the (co)variance matrix for the QTL conditional
on v, and Pr(v|Mobs) is the conditional probability of the
complete marker configuration v given the observed data
Mobs. The (co)variance matrix Gv can now be estimated via
one of the above IBD algorithms as if full marker data are
available.

Calculating the expectation of G for pedigrees containing
substantial missing data presents two computational chal-
lenges. First, the number of configurations in V is potentially
large, thus the order of the summation in (4) makes the
calculation infeasible. In practice, a Monte Carlo approxima- Figure 1.—A simple pedigree illustrating the relationship
tion is used (see Grignola et al. 1996a). Second, the exact between marker genotypes (e.g., A|C) and segregation indica-

tors (e.g., 1|0): s, a female; h, a male; and d, the matingcalculation of Pr(v|Mobs) is intractable. Exact methods such
of two individuals. Individuals 4 and 7 have missing markeras the Elston and Stewart (1971) algorithm and peeling
genotypes. The marker genotypes are ordered such that x|yalgorithms (Cannings et al. 1978) are exponential in pedigree
signifies that allele x has been inherited from the maternalcomplexity and marker polymorphicity. Instead practitioners
parent and allele y has been inherited from the paternal par-rely on simulation techniques, namely MCMC methods.
ent. Three segregation patterns (i.e., s1, s2, s3) consistent withA plethora of MCMC algorithms have been developed for
the marker data are shown. These segregation patterns arethe exploration of V and thus approximation of Pr(v|Mobs).
vectors of segregation indicators and they give the possibleAmong the simplest are the “single-site” approaches (Sheehan
allelic pathways through the pedigree. For example, the first1990), which update each locus for each individual separately.
segregation pattern for individual 3 infers that this individualThe individual’s genotype is updated, conditioned upon the
inherited its mother’s paternal allele and its father’s maternalindividual’s phenotype and the current genotypes of the par-
allele. Note that 1|1 is not a valid set of segregation indicatorsents, spouses, and offspring. Unfortunately, single-site sam-
for individual 3 since the paternal marker allele of 2 is notplers can possess poor “mixing” qualities for complex pedi-
passed on to individual 3.grees and irreducibility of the chains can be ensured only for

biallelic loci (Lin et al. 1994). Difficulties in exploring V stem
from the observed marker data constraining the set of missing and later extended to the simultaneous updating of multiplemarker configurations. Not all marker configurations are con- sites in Thompson and Heath (1999).
sistent with Mendelian inheritance rules. Several more com- Segregation indicators and their use in estimating G: Using
plex samplers (Lin et al. 1993; Geyer and Thompson 1995; notation consistent with Thompson and Heath (1999), the
Lund and Jensen 1998) that reportedly ensure irreducibility segregation indicator (Sij) equals 0 if the inherited allele at
have been suggested; however, irreducibility of the chains can the ith segregation and the jth locus is the parent’s maternal
still not always be guaranteed as discovered by Jensen and allele. Alternately, Sij 5 1 if the inherited allele at the ith
Sheehan (1998). segregation and the jth locus is the parent’s paternal allele.

These difficulties prompted Thompson (1994) to devise an The set of segregation indicators for the m segregations in
alternate sampling strategy which can be used for a variety of the pedigree and the n loci where these loci may be marker
tasks including the estimation of G. It has long been recog- loci and/or QTL is represented by s 5 {Sij; i 5 1, · · · , m j 5
nized that segregation events (i.e., the separation of alleles at 1, · · · , n}.
a locus during meiosis) govern the inheritance of genetic Consider the pedigree depicted in Figure 1, where ordered
material from parent to offspring. In fact, marker genotypes marker information is recorded on a single locus (i.e., x|y
are merely the observed results of segregations. Thompson implies x is the allele inherited from the maternal parent and
(1994) developed a sampler, based upon segregation indica- y is the allele inherited from the paternal parent). Shown are
tors that are binary variables modeling segregations, to explore three different sets of segregation indicators consistent with
the set of possible segregation configurations (L). This then the observed marker data and pedigree structure. These segre-
allowed Gs, the (co)variance matrix for a QTL conditioned gation indicators give possible allelic pathways through the
on the segregation indicators, and Pr(s|Mobs) to be estimated pedigree. Since segregation events are not directly observable,
where s P L. Also the expectation of G can be easily calculated several segregation patterns may be consistent for the same
as E(G|Mobs) 5 RsPLGsPr(s|Mobs). The space of segregation set of marker data.
indicators is far less constrained than the space of missing By obtaining a large number of s with probability Pr(s|Mobs),
genotypes, culminating in Monte Carlo chains with improved these segregation indicators can be used to estimate IBD prob-
convergence and irreducibility properties. A single-site Me- abilities between any pair of individuals in the pedigree. For

example, in the first and third segregation patterns in Figuretropolis-Hastings sampler was developed by Thompson (1994)
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TABLE 1

Features of the four setups considered in the simulation study

No. of Pedigree Marker
Setup Description alleles/marker h2

v structure information

Benchmark Standard setup 8 0.10 Sheep Complete
A Pedigree structure altered 8 0.10 Pig Complete
B Partial marker information 8 0.10 Sheep Partial
C Change in marker polymorphism 3 0.10 Sheep Complete

1, the maternal allele of individual 6 originates from (or is tion number. Once the probabilities stabilize, the sampler is
deemed to have reached convergence.IBD to) the maternal allele of individual 1, while in the second

Two-step variance component approach: The variance com-segregation pattern, the maternal allele of individual 6 origi-
ponent approach to map QTL in complex pedigrees is com-nates from (or is IBD to) the maternal allele of individual 2.
posed of two distinct steps:Therefore, based upon these realizations, Pr(6m ; 2m|Mobs) 5

1⁄3 and Pr(6m ; 1m|Mobs) 5 2⁄3, where ; represents IBD.
Step 1. For each QTL position on the chromosomal segment,Multiple-site segregation sampler: A brief introduction to

the (co)variance matrix for the QTL (i.e., G) is calcu-the multiple-site segregation sampler, as developed by Thomp-
lated.son and Heath (1999) and employed in this article, is now

Step 2. For each position considered in step 1, construct thepresented. Readers who wish to pursue a more rigorous deriva-
mixed linear models (1) and (2), obtain estimates oftion are invited to read Thompson and Heath (1999). the parameters, and test for the presence of a QTL.Very simply, the multiple-site segregation sampler is a clev-

erly designed Gibbs sampler (Geman and Geman 1984) with These steps are common to all interval mapping-based vari-
batch updating, which allows IBD probabilities to be calculated ance component methods; however, their implementation dif-
in pedigrees with unknown marker genotypes and unknown fers greatly among practitioners. For example, there are vari-
marker phases. Exploration of the joint density Pr(s|Mobs), ous approaches to calculating the G matrix that have already
which may be of high dimension when the pedigree is large, been discussed and there are numerous analytical and simula-
is facilitated through the sampling of m simpler n-dimensional tion techniques for estimating the parameters of a mixed
conditional distributions such that linear model.

With regard to the implementation strategy adopted in this
article, in step 1 the IBD probabilities for the G matrix arePr(s|Mobs) 5 p

m

i51

Pr(si •|{sj •; j ? i}, Mobs), (5)
obtained via the multiple-site segregation sampler. In step 2
ASREML (Gilmour et al. 1998) provides restricted maximum-

where si • 5 {Si,; l 5 1, · · · , n} and Pr(si •|{sj •; j ? i}, Mobs) is the likelihood (REML) estimates of (1) and (2). ASREML was
probability of the segregation indicators across n loci at the chosen over other available REML packages due to its ability
ith segregation conditional on all other segregation indicators to handle large user-defined (co)variance matrices. To test
and observed marker data. Since the number of loci may for the presence of a QTL against no QTL at a particular
be large, drawing realizations directly from the conditional chromosomal position, the test statistic log LR 5 22 ln(L0(H0,distributions in (5) remains challenging. Therefore, Thomp- no QTL present) 2 L1(H1, QTL present)) is constructed,
son and Heath (1999) devised a two-step strategy to sample where L1 and L0 represent the respective likelihood values of
si • from its n-dimensional conditional distribution. (1) and (2) evaluated at the REML solutions.

The first step involves moving through the genome, calculat- Distribution of the test statistic: Statistical theory states that
ing locus by locus, cumulative probabilities for Sij. These proba- log LR follows a x2 distribution with the degrees of freedom
bilities are relatively easy to calculate recursively. Once all n equal to the number of parameters being tested (Wilks 1938).
cumulative probabilities have been obtained, the second step However, in the context of interval mapping, the asymptotic
involves moving back down the genome, sampling Sij from a behavior of log LR is under nonstandard conditions since the
univariate density that is a function of the associated cumula- null hypothesis places parameters on the boundary of the
tive probability, the previous sampled segregation indicator parameter space defined by the alternative hypothesis (Stram
(Si j11), and the recombination rate between loci j and j 1 1. and Lee 1994). Furthermore, the distribution of log LR under
In this way, si• can be sampled from its conditional distribution. H0 is influenced by the chromosomal segment length, the
By repeating these two steps for i 5 1, . . . , m, a realization degree of missing marker data, and the distributional proper-
from (5) is obtained. ties of the trait.

Implementation of the multiple-site segregation sampler: When a single chromosomal position is being tested, log
Implementation of the multiple-site segregation sampler is via LR follows a 50:50 mixture distribution, where one mixture
an adapted version of the QTL mapping software Loki. Loki component is a peak at 0 and the other component is a x2

1
was originally designed for multipoint linkage analysis in gen- distribution (Self and Liang 1987). When a chromosomal
eral pedigrees using MCMC methods; however, it has since interval is being tested, Xu and Atchley (1995) found the
been modified for IBD probability calculation. The user sup- empirical distribution of log LR follows a x2 distribution with
plies Loki with the pedigree structure, marker genotypes, between 1 and 2 d.f. QTL detection, however, is often carried
marker positions, and QTL positions for which the IBD matri- out over large chromosomal regions and even the entire ge-
ces are to be calculated. Dependent chains of IBD probabilities nome. For these situations, the distribution of log LR under
are then obtained for each QTL position. Convergence is H0 is unclear.

Since this article deals with simulated data, it is possibledetermined by monitoring the IBD probabilities over the itera-
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Figure 2.—The empirical distri-
butions of log LR (from 500 repli-
cates) under H0 for the benchmark
setup (i.e., a simulated sheep popu-
lation) and setup A (i.e., a simulated
pig population). (A) Locus-wide
test statistic: the distribution of the
test statistic when a single point on
the chromosome is being tested
(i.e., 35 cM). (B) Chromosome-wide
test statistic: the distribution of log
LR for a chromosome-wide test.
The possible theoretical distribu-
tions of log LR are also shown: j,
x2

1; m, x2
2; and d, the 50:50 mixture

distribution of Self and Liang
(1987).

to replicate data under the null hypothesis, construct the setup, involves the generation of fully genotyped, highly
empirical distribution of log LR, and derive empirical thresh- polymorphic marker data. A biallelic QTL that explains
old values in which to determine QTL presence. For real data,

10% of the total variation (i.e., h2
v 5 0.1) is segregatingpermutation methods (Churchill and Doerge 1994) have

in the population. Setups A, B, and C then change abeen suggested. The large number of required analyses,
though, limits the methodology to relatively small pedigrees. single feature of the benchmark setup, enabling the
Furthermore, it is not clear how the data should be permuted effect on the variance component method’s perfor-
given populations with complex pedigree structures. mance to be assessed. The four setups considered in

this study are summarized in Table 1 and are discussed
in detail below together with the generation of dataSIMULATION STUDY
under H0.

The simulation study begins with the analysis of data Generation of data under H0: Replicates are gener-
generated under H0. By constructing a histogram of the ated according to the benchmark setup and setup A
test statistic over replicates, an empirical distribution of (which are described below) but without a segregating
log LR is obtained. QTL presence at a chromosomal QTL in the population. These two setups are equivalent
position is then determined in subsequent analyses by except the benchmark setup is based upon a sheep
comparing the respective test statistic to the empirical pedigree where setup A is based upon a pig pedigree.
threshold. This allows the sensitivity of the test statistic’s distribu-

To investigate the performance of the two-step vari- tion to changes in pedigree structure to be assessed.
ance component method for mapping QTL in complex Benchmark setup: The pedigree structure is based
pedigrees, data are generated under four simulation upon a real pedigree created to explore copper defi-

ciency in a selected sheep population. The original ex-setups. The first setup, referred to as the “benchmark”
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Figure 3.—The mean log
LR over 50 replications of
data generated under the
benchmark setup (i.e.,
sheep pedigree, biallelic
QTL, h2

v 5 0.1, eight alleles
per marker, complete
marker information) and
setup A (i.e., pig pedigree,
biallelic QTL, h2

v 5 0.1, eight
alleles per marker, com-
plete marker information).
r and j, the mean log LR
profile for the benchmark
setup and setup A, respec-
tively; n, marker location;
⇓, the simulated position of
the QTL.

periment contained over 2000 individuals; however, for as the midhomozygote value, a as the additive effect,
and d as the dominance effect.the purposes of demonstrating the methodology, a sub-

set of 500 individuals is selected. In reducing the pedi- The polygenic contribution made by an individual
is dependent upon the polygenic contributions of itsgree’s size, careful attention is given to maintaining

the structure’s original complex nature. The reduced parents and Mendelian sampling. Since the complete
parentage of every individual in the pedigree is notpedigree consists of 269 related families spanning four

generations with 1.8 offspring on average per mating. available, ui is generated according to the number of
known parents. If both parents are unknown (i.e., theThe pedigree structure contains no inbreeding.

The marker information consists of four polymorphic individual is a founder), then ui z N(0, s2
u). Sup-

pose, however, the sire of the ith individual (si) is inmarkers segregating with eight equally frequent alleles
and placed on a chromosomal segment of length 60 the pedigree. Then ui z N(0.5usi, (0.75 2 0.25 fsi)s2

u),
where fsi is the inbreeding coefficient of si. A similarcM at positions 0, 20, 40, and 60 cM. A biallelic QTL

with alleles Q and q segregating at equal frequencies is distribution is used to generate ui when only the individ-
ual’s dam is in the pedigree. If both parents are present,then placed between the second and third markers at

position 35 cM. If an individual inherits QQ from its ui z N(0.5(usi 1 uDi), 0.5(1 2 0.5(fsi 1 fDi)s2
u)), where

fDi is the inbreeding coefficient for the dam of individualparents, its phenotypic contribution due to the QTL is
vi 5 m 1 a, where m 5 0 and a 5 13.5. If the individual’s i. The environmental error term ei is generated from

N(0, s2
e). Fixed effects are not generated; thus Xb inQTL genotype is heterozygous or qq, the individual’s

phenotypic contribution is vi 5 m 1 d or vi 5 m 2 a, (1) and (2) equals m, the overall mean.
The value of s2

v is dependent upon m, a, d, and pQrespectively, where d 5 0. Falconer (1989) defines m

TABLE 2

Results from the analysis of data generated under the benchmark setup

Simulated Mean Mean
Parameters value estimate SD BRV bias

h2
v 0.10 0.145 0.091 0.86a 0.040

h2
u 0.34 0.296 0.127 1.03a 20.039

s2
e 500 488.59 65.76 0.33 24.03

dQ 35 34.48 15.64 4.31 20.91
Log LR — 4.96 4.40 0.001 —

The parameter estimates’ mean, standard deviation (SD), mean between-run variance (BRV), and mean
biases for h2

v, h2
u, s2

e , and dQ are based upon 50 replicates. The mean estimate, SD, and BRV of the peak log
LR are also shown.

a Multiply values by 1025.
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TABLE 3

Results from the analysis of data generated under setup A

Simulated Mean Mean
Parameters value estimate SD BRV bias

h2
v 0.10 0.113 0.051 0.23a 0.009

h2
u 0.34 0.324 0.119 0.19a 20.022

s2
e 500 496.51 56.99 1.43 6.52

dQ 35 34.23 9.22 2.05 21.09
Log LR — 12.10 7.34 0.073 —

See Table 2 for description.
a Multiply values by 1025.

(the Q allele frequency), where s2
v 5 2pQ(1 2 pQ)a2 tion of offspring that are not themselves parents. This

results in a 53% loss in marker information.when d 5 0 (Falconer 1989). Although altering m, a,
d, and pQ affects s2

v, the size of the QTL is characterized Setup C: The final setup investigates the effect a re-
duction in marker informativeness has upon the analy-by the amount of total variation explained by the QTL.

To obtain a QTL explaining 10% of the total variation, sis. Data are generated according to the benchmark
setup except three alleles as opposed to eight alleless2

u and s2
e are set to 300.0 and 500.0, respectively. For

these values, the heritability of the trait is 44%. are segregating at the markers.
Setup A: The ability of the variance component

method to map QTL in a pedigree with large numbers
RESULTS

of offspring per mating and inbreeding is investigated.
The pedigree used in this study is again based upon a Results from the application of the two-step variance

component method to replicated data generated underreal structure originating from a Meishan pig experi-
ment. The initial experiment contained z2500 related the above-described simulation study are now reported.

Due to the analyses being computationally demanding,individuals, but for meaningful comparisons to be made
with the benchmark analysis, 500 related individuals are only every third centimorgan is tested for the presence

of a QTL. A single analysis across the chromosome canselected. The average number of offspring per family
is 14.3 across five generations of matings, consisting of take up to 56 min on a Compaq Professional Worksta-

tion XP1000 utilizing a single Alpha 21264 processor35 related families. The average inbreeding coefficient
is 4.5% with a maximum inbreeding coefficient of 17%. running at 500 MHz. Four parallel analyses per replicate

are performed, where Loki and ASREML runs beginSetup B: Complex pedigrees often contain individuals
with missing marker genotypes. This missing informa- from different well-dispersed starting values. The empir-

ical distributions of the test statistic, however, are cre-tion introduces uncertainty into the analysis. To better
understand the ability of the methodology to cope with ated from the analysis of 500 replicated data sets; there-

fore only a single run is performed per replicate duethis uncertainty, two approaches to removing the
marker information generated according to the bench- to obvious computational constraints.

Construction of the empirical distribution of log LRmark setup are explored. The first approach is where
50% of the marker genotypes are randomly removed. under H0: Figure 2A reveals close agreement between

the empirical and theoretical (i.e., 50:50 mixture whereThe second approach removes only the marker informa-
one component mixture is a peak at 0 and the other is
a x2

1) distributions of log LR when a single position on
TABLE 4 the chromosome is tested for QTL presence (i.e., the

35-cM position). This was found to hold regardless ofThe proportion of individuals in the pedigree with 0, 1,
the position being tested.2, 3, and 4 missing marker genotypes for patterns

1–5 in setup B In Figure 2B, when a chromosome-wide QTL search
is performed, the empirical distributions appear to fol-

No. of missing marker genotypes low a x2
1. However, the 5% threshold value obtained

Pattern of missing from x2
1 is less conservative than the empirical thresh-marker genotypes 0 1 2 3 4

olds. The 5% empirical threshold values are 4.74 and
1 0.05 0.26 0.38 0.24 0.07 4.32 for the benchmark setup and setup A, respectively,
2 0.08 0.23 0.41 0.24 0.04 where x2

1,0.05 5 3.84. Empirical thresholds are used
3 0.07 0.26 0.37 0.23 0.06 throughout this article. It is interesting to note that the
4 0.08 0.28 0.34 0.22 0.08

empirical distributions are relatively unaffected by5 0.0 0.0 0.0 0.0 0.53
changes in pedigree structure.
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Figure 4.—The mean log LR over 50 replications of data generated under setup B (i.e., sheep pedigree, biallelic QTL, h2
v 5

0.1, eight alleles per marker, partial marker information). h, j, 1, d, *, patterns 1, 2, 3, 4, and 5 respectively. For comparison,
the mean log LR of data generated under the benchmark setup is provided (r). n, marker location; ⇓, the simulated position
of the QTL.

Benchmark setup: The mean log LR profile over 50 amount of variation explained by the QTL. A similar
result is evident in Grignola et al. (1996b) from theirreplications of data generated under the benchmark

setup is shown in Figure 3. The profile peaks between simulation study. Also, the mean of the maximum log
LR test statistic is 4.96, considerably larger than the peakmarkers 2 and 3 at the position of the simulated QTL

(i.e., 35 cM). The mean peak is well below the 5% empiri- of the mean profile given in Figure 3. This substantiates
the previous claim of the mean profile being down-cal threshold; however, this result is slightly misleading.

The peak of the mean profile is biased downward be- wardly biased.
Setup A: Increasing the average family size has ancause the estimated position, and thus corresponding

peak of the profile, varies across replicates. In fact, 48% obvious effect on the performance of the methodology
as evidenced in Figure 3. With larger families, the peakof the analyses yield a test statistic along the chromo-

somal segment in excess of the 5% threshold. of the log LR profile (based upon 50 replicates) in-
creases from 3.9 to 11.0, where 82% of the analyses yieldThe ability of the methodology to accurately estimate

the parameters of interest can be gauged from the re- a log LR in excess of the 5% empirical threshold. Once
again, the parameters are well estimated (see Table 3),sults presented in Table 2. The mean parameter esti-

mates of h2
v, h2

u, s2
e , and dQ, where dQ represents the loca- with mean biases slightly smaller than the biases ob-

tained under the benchmark setup.tion of the QTL in centimorgans, are close to the
simulated values; the parameter estimates’ standard de- Setup B: In setup B, five patterns of missing marker

data are analyzed. Patterns 1–4 correspond to the ran-viations (SD) are reasonable; and the mean between-
run variance is small. However, a more appropriate mea- dom removal of 50% of the marker genotypes while

pattern 5 is obtained by only genotyping the parents,sure of accuracy is the mean bias. The mean bias, E(û 2
u), is defined as the expected value of the difference which constitutes a 53% loss in marker genotypes. The

proportions of individuals in the pedigree with 0, 1, 2,between the estimator (û) and the parameter’s true
value (u). For example, the mean bias of the estimate 3, and 4 missing marker genotypes, for each pattern, are

given in Table 4. Each pattern consists of 50 replicates.of h2
v is E(ĥ2

v 2 h2
v) 5 R50

i51 R4
j51[(ĥ2

v)ij 2 (h2
v)i]/200, where

(ĥ2
v)ij represents the REML estimate of h2

v from the analy- These replicates, before the marker data are removed,
are the same as those replicates generated under thesis of the ith replicate and the jth parallel run, and (h2

v)i

represents the true parameter value of h2
v. benchmark setup. Thus, differences between the results

obtained under setup B and the benchmark setup canFor the parameters h2
u, s2

e , and dQ in Table 2 the mean
bias is small and negative, implying a slight underesti- be directly attributed to the effect of missing marker

information.mating of the parameters. For h2
v, the mean bias of z0.04

suggests that the method tends to overestimate the The mean log LR profiles for patterns 1–5 together
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TABLE 5

Results are based upon the analysis of five different patterns of
missing marker data generated under setup B

Simulated Pattern Mean Mean
Parameters value no. estimate SD BRV bias

h2
v 0.10 1 0.148 0.097 2.56a 0.044

2 0.151 0.094 1.06a 0.046
3 0.152 0.100 2.15a 0.047
4 0.164 0.106 2.73a 0.059
5 0.240 0.156 1.52a 0.134

h2
u 0.34 1 0.292 0.112 2.59a 20.053

2 0.291 0.129 1.17a 20.049
3 0.296 0.156 2.40a 20.044
4 0.272 0.111 2.56a 20.072
5 0.211 0.162 1.34a 20.134

s2
e 500 1 494.51 61.40 0.26 1.99

2 491.82 54.66 0.19 5.18
3 485.64 91.46 0.52 213.39
4 497.73 60.38 1.60 4.63
5 488.07 63.76 6.16 24.44

dQ 35 1 28.32 19.03 2.21 27.40
2 33.46 18.49 1.32 22.40
3 30.18 17.86 1.25 25.45
4 32.40 18.93 1.36 23.32
5 29.98 21.13 4.98 25.72

log LR — 1 2.95 2.62 0.006 —
2 3.93 3.74 0.005
3 3.12 2.94 0.037
4 3.28 2.81 0.019
5 2.57 2.51 0.019

See Table 2 for description.
a Multiply values by 1025.

with the mean log LR profile for the benchmark setup mean bias for h2
v being more than double the mean bias

obtained under the other patterns.are shown in Figure 4. There are two points of interest
Setup C: The impact of less informative markers onto note with respect to this figure. First, the mean log

the ability of the variance component method to detectLR profile for data with partially genotyped markers
QTL is evident from Figure 5. The mean log LR profilelies below the profile obtained with complete marker
is well below the 5% threshold with only 26% of theinformation. Less marker information introduces extra
analyses yielding a significant peak log LR. The parame-uncertainty into the analysis and the method’s ability
ter estimates (shown in Table 6), however, are similarto detect QTL decreases. In fact, the percentages of
to the estimates obtained under the benchmark setupanalyses yielding a log LR in excess of the 5% empirical
with highly informative markers. Thus, the use of lessthreshold are only 24, 36, 24, 28, and 20% for patterns
polymorphic markers imparts greater uncertainty into1–5, respectively, well below the 48% achieved when the
the detection of QTL as opposed to the estimation ofsame data contain completely genotyped individuals.
QTL.Second, no real difference exists between the perfor-

mance of the method across patterns 1–4. However, the
mean profile for pattern 5, where only the parents are

DISCUSSIONgenotyped, does appear to differ from the other log LR
profiles. To date, several statistical approaches have been de-

The difference in the method’s performance across veloped to map QTL in outbred livestock populations;
the five patterns of missing marker data is further evi- however, these methods focus on granddaughter or
denced in Table 5. The SD, average between-run vari- half-sib designs and are not easily extended to more
ance, and mean bias are marginally higher for patterns challenging pedigree structures. In this article, a two-
1–4 than they are under the benchmark stepup (given step variance component method is presented that is
in Table 2). For pattern 5, though, the method struggles capable of detecting and estimating QTL in popula-

tions with complex pedigrees and considerable missingto obtain reasonable parameter estimates, with the
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Figure 5.—The mean log LR over 50 replications of data generated under the setup C (i.e., sheep pedigree, biallelic QTL,
h2

v 5 0.1, three alleles per marker, complete marker information). j, the mean log LR profile for setup C. For comparison, the
mean log LR of data generated under the benchmark setup is provided (r). n, marker location; and ⇓, the simulated position
of the QTL.

marker information. The methodology is illustrated (co)variance matrices of v1 and v2 at two separate test
positions along the chromosome. Estimates of the pa-through its application to simulated sheep and pig pop-

ulations. rameters are then obtained via ASREML and the test
statistic for the presence of two linked QTL is con-By formulating the QTL mapping problem within a

mixed linear model framework, a less parameterized structed. This process is repeated for each pair of test
positions on the chromosome, enabling multiple QTLstatistical environment is obtained, reducing the compu-

tational burden of the analysis. The complex relation- to be detected and localized. Note, when two QTL are
being mapped, the QTL profile is a two-dimensionalships that may exist between individuals are included

within the model, leading to more accurate parameter surface.
A two-step process to estimating the variance compo-inferences, and additional fixed and random effects can

be easily incorporated into the analysis with minimal nents of a mixed linear model is not new per se. Fer-
nando and Grossman (1989), Van Arendonk et al.adjustment to the methodology.

For example, to simultaneously map two linked QTL, (1994), and Wang et al. (1995) are but a few who first
calculate the IBD probabilities for the QTL’s (co)vari-the mixed linear model becomes y 5 Xb 1 Zu 1 Zv1 1

Zv2 1 e, where v1 and v2 are the additive effects of ance matrix and then estimate the parameters of the
mixed linear models using standard statistical tech-the linked QTL. Analogous to the two-step process of

mapping a single QTL, Loki is used to calculate the niques. Difficulties in determining marker phase and

TABLE 6

Results from the analysis of data generated under setup C

Simulated Mean Mean
Parameters value estimate SD BRV bias

h2
v 0.10 0.137 0.088 1.49a 0.032

h2
u 0.34 0.287 0.133 1.70a 20.048

s2
e 500 493.54 60.81 2.13 0.910

dQ 35 32.21 19.66 4.29 22.94
log LR — 3.58 3.79 0.023 —

See Table 2 for description.
a Multiply values by 1025.
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approximately known for chromosome (or genome)-
wide scans. Questions of how missing marker genotypes,
unknown marker phase, pedigree size, map density, and
QTL size influence the distribution of the test statistic
remain unanswered. One solution is, given N indepen-
dent tests over the chromosome (genome), calculate
the (1 2 a)% threshold value using the distribution of
the test statistic at a single point but with the level of
confidence adjusted to a/N% (i.e., the Bonferroni cor-
rection for multiple testing). See Lander and Krug-
lyak (1995) for a discussion relating to the calculation
of N. An alternate solution is to further develop permu-
tation testing (Churchill and Doerge 1994) so thatFigure 6.—The log LR profiles for a single replicate from
the trait is reshuffled in a way that destroys the associa-setup A using two different approaches to calculating the

REML estimates. The test statistics at nonmarker positions tion between QTL and trait but retains the association
vary slightly due to the REML packages being run on comput- between polygenic effect and trait. It is not yet clear
ers with differing machine architectures and precisions. r, how this can be accomplished for complex pedigrees.the log LR profile obtained with ASREML; j, the log LR

Problems also surround the construction of confi-profile obtained with the derivative-free REML package of
dence intervals for QTL position estimates. These prob-Visscher; n, marker location; ⇓, the simulated position of the

QTL. lems are not unexpected given that the construction of
such intervals is challenging in even simple pedigrees.
For an approximate confidence interval, the LOD drop-

unknown marker genotypes, however, mean these off method could be employed and more accurate con-
methods have limited application to populations with fidence intervals obtained under parametric and/or
general pedigree structures. Via the multiple-site segre- nonparametric bootstrapping methods. However, as
gation sampler, opportunities now exist to analyze data with permutation testing, resampling for nonparametric
with considerably complex pedigrees. bootstrapping methods may be difficult. Clearly, further

A variety of algorithms are available for the calculation research is needed to resolve these issues.
of REML estimates. Standard algorithms such as AS- This article has been catalytic to initiating work in
REML require the inverse of the QTL’s (co)variance three further areas of research. First, the simulation
matrix, which is singular at marker loci. In this article, study suggests partial marker information on most indi-
G and thus the test statistic are calculated at a position viduals is to be desired over having a mixture of fully
slightly to the right or left of the marker, an approach genotyped and completely ungenotyped individuals.
also adopted by I. Hoeschele (personal communica- This is currently being explored in greater detail for
tion). Visscher et al. (1999) instead use a derivative- a range of missing marker scenarios. Second, a new
free algorithm to calculate REML estimates that does recursive algorithm to calculate IBD probability in com-
not require G21 but V21, where V represents the com- plex pedigrees has been developed and is currently be-
plete (co)variance matrix for the likelihood. The com- ing tested. Third, the methodology is to be applied to
plete (co)variance matrix is always nonsingular, allowing the analysis of real sheep and beef cattle data.
the test statistic to be calculated at marker positions. The authors thank Simon Heath for his many useful comments
The two approaches give almost identical results. To and fine-tuning of Loki. This work was partly supported by a Biotech-
illustrate this, a single replicate from setup A was ana- nology and Biological Sciences Research Council award.
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