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ABSTRACT Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. While many AMD
susceptibility variants have been identified, their influence on AMD progression has not been elucidated. Using data from two large
clinical trials, Age-Related Eye Disease Study (AREDS) and AREDS2, we evaluated the effects of 34 known risk variants on disease
progression. In doing so, we calculated the eye-level time-to-late AMD and modeled them using a bivariate survival analysis approach,
appropriately accounting for between-eye correlation. We then derived a genetic risk score (GRS) based on these 34 risk variants, and
analyzed its effect on AMD progression. Finally, we used the AREDS data to fit prediction models of progression based on demographic
and environmental factors, eye-level AMD severity scores and the GRS and tested the models using the AREDS2 cohort. We observed
that GRS was significantly associated with AMD progression in both cohorts, with a stronger effect in AREDS than in AREDS2 (AREDS:
hazard ratio (HR) = 1.34, P = 1.63 10222; AREDS2: HR = 1.11, P = 2.13 1024). For prediction of AMD progression, addition of GRS to
the demographic/environmental risk factors considerably improved the prediction performance. However, when the baseline eye-level
severity scores were included as the predictors, any other risk factors including the GRS only provided small additional predictive power.
Our model for predicting the disease progression risk demonstrated satisfactory performance in both cohorts, and we recommend its
use with baseline AMD severity scores plus baseline age, education level, and smoking status, either with or without GRS.
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AGE-RELATED macular degeneration (AMD) is a com-
mon, polygenic, and progressive neurodegenerative dis-

ease, which is a leading cause of blindness in the elderly
population of developed countries (Congdon et al. 2004;
Swaroop et al. 2009). Both common and rare genetic variants

associated with AMD risk have been identified in multiple
large-scale case–control association studies (Fritsche et al.
2013). In a recent report by The International AMD Geno-
mics Consortium, a total of 34 loci with 52 independent com-
mon and rare variants (either from the exome chip or
imputed) were discovered or confirmed to have an associa-
tion with AMD risk (Fritsche et al. 2016).

Some patients with AMD maintain good vision for a long
time with little disease progression over time, while others
quickly advance to vision-threatening late AMD. Patients can
progress to oneor both formsof lateAMD – central geographic
atrophy (GA) and choroidal neovascularization (CNV). De-
spite remarkable successes in discovering genetic variants as-
sociated with AMD risk, the genetic underpinnings of AMD
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progression have not been well studied. The Age-Related Eye
Disease Study (AREDS) was designed to assess risk factors for
the development and progression of AMD and to assess the
role of micronutrients in delaying the progression to late AMD
(Age-Related EyeDisease StudyResearch 1999). A subsequent
randomized clinical trial of additional oral supplements,
AREDS2, evaluated progression to late AMD in a cohort of
patients who were at higher risk of progression to late AMD
(Group et al. 2012; Age-Related Eye Disease Study 2 Research
2013). Both studies collected DNA samples of consenting par-
ticipants and performed genome-wide genotyping (Fritsche
et al. 2016). More recently, other researchers have studied
the effects of AMD risk variants on progression using the
AREDS data (Seddon et al. 2009, 2011; Farwick et al. 2010;
Klein et al. 2011), suggesting that some, but not all, of the
known AMD risk variants/loci can influence AMDprogression.

Previous studies typically analyzed only one eye per subject
for AMD progression, where only the progression time of the
faster-progressed eyewas analyzed (Seddon et al. 2011; Perlee
et al. 2013). Other studies analyzed the progression status of
eyes as noted at the final study visit (e.g., no progression, early
progression, or late progression) instead of their progression
time (Farwick et al. 2010). For the participants who had two
eyes free of late AMD at baseline, the progression statuses for
both eyes were analyzed accounting for the dependence be-
tween eyes. In this setting the progression time was not eval-
uated due to the short follow-up of their study. Recently,
Sardell et al. (2016) analyzed the effects of seven SNPs from
four known AMD risk genes on AMD progression (from inter-
mediate AMD to CNV or GA), where they analyzed both eyes
using a Coxmodel that accounted for between-eye correlation.

In this study, we analyzed AMD progression using all eyes
thatwerenot in the lateAMDstageatbaseline.Specifically,we
calculated their time-to-progression to lateAMDandanalyzed
themusingCoxmodels that take intoaccount thebetween-eye
correlation, which is similar to the analysis model used in
Sardell et al. (2016). In addition to evaluating the effect of
each known AMD risk variant on the disease progression, we
studied the impact of the AMD genetic risk score (GRS), de-
veloped based on a combination of all known 34 AMD risk
variants (Fritsche et al. 2016). We performed the analyses in
each study cohort separately and compared the results. To
explain the differences in the findings from the two studies, we
performed additional subgroup analyses. Moreover, we estab-
lished prediction models based on demographic/environmental
factors, baseline eye-level AMD severity scores, and the GRS
and used these models to predict the risk of progression to
late AMD. The prediction models were established using the
AREDS data and validated on the AREDS2 data.

Materials and Methods

Study population and progression data

The main study population consisted of AREDS participants
while the AREDS2 cohort was used as an independent vali-

dationdataset. AREDSwas amulticenter, controlled, random-
ized clinical trial of AMD and age-related cataract sponsored
by the National Eye Institute (Age-Related Eye Disease Study
Research 1999). It was designed to assess the clinical course
of, and risk factors for, the development and progression of
AMD and cataract, and to evaluate the effects of oral supple-
mentation with antioxidant vitamins and minerals on AMD
progression and visual acuity. AREDS2 was another large
multicenter randomized clinical trial of AMD and age-related
cataracts, conducted after AREDS (Group et al. 2012).
AREDS2 was designed to evaluate the effect of the refined
AREDS formulation on progression to late AMD or cataract.
Participants of AREDS2 were selected to have more severe
disease at baseline as compared to AREDS and the follow-up
time was only about half of that in AREDS. We confined our
analyses to the AMD data for this report. Caucasian partici-
pants (validated with principal component analysis) with ge-
notype data and at least one follow-up visit were deemed
“eligible” for our analysis.

For each eligible participant, the outcome for eye(s) that
did not have late AMDat baselinewas included in the analysis
to study the time-to-lateAMD.ThedetailedAREDSAMDscale
(Davis et al. 2005), based upon severity score from 1 to 12,
was used to determine whether the eye was in the late AMD
stage or not. We define any eye that was not in late AMD at
baseline to be a “study eye.” We use “fellow eye” to denote
the other eye from the same subject of any given eye. So the
two eyes from the same subject mutually serve as the fellow
eye of each other. For each study eye, we calculated its time-
to-progression, defined as the time from the baseline visit to
the first visit when the severity score of the eye reached
AREDS AMD scale 9 (noncentral GA) or higher (10: central
GA, 11: CNV, and 12: CNV and central GA). If the eye’s
severity score did not progress to scale 9 or higher by the
end of follow-up, time to the development of late AMD was
censored at the last visit.

Other variables we have considered in the progression
analysis are: gender, baseline age, education level (#high
school, .high school), baseline smoking status (never,
former, current), and treatment group [AREDS: placebo,
antioxidants alone, zinc, antioxidants plus zinc; AREDS2:
placebo, lutein plus zeaxanthin (L+Z), v-3 long-chain poly-
unsaturated fatty acid (LCPUFA), combination of L+Z and
LCPUFA]. Body mass index was not included since these data
were not collected for AREDS2.

Genotype data

DNA samples from consenting participants in AREDS and
AREDS2were collected and genotyped centrally, as described
previously (Fritsche et al. 2016). The risk variants at 34 loci,
either confirmed or newly discovered (Fritsche et al. 2016),
were analyzed for AMD progression here. We computed a
weighted risk score of these 34 variants, with weights deter-
mined by their estimated effect size (Fritsche et al. 2016). For
each participant, GRS ¼ P34

i¼1ðbiGiÞ=
P34

i¼1bi;where bi is the
log(odds ratio) of the risk variant i as provided in Table 1 of
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Fritsche et al. (2016) and Gi is the corresponding genotype
(coded as 0: no risk allele; 1: one copy of risk allele; 2: two
copies of risk allele). Note that in this coding all bi are positive
and GRS ranges from 0 to 2.

Statistical analysis of the genetic effects on progression

We analyzed the genetic effects on AMD progression as
follows. The time (from baseline) to late AMD was modeled
for all study eyes through a multivariable Cox proportional
hazards model while using a robust sandwich variance–
covariance estimator to account for the intrasubject correla-
tion (whichwewill refer to as a “robust Cox”model) (Lee et al.
1992). Hence, the individuals with two eyes free of late AMD
at baseline contributed two study eyes as a pair (denoted as
the “bivariate” outcome). In addition to our primary predic-
tor, i.e., a single genetic variant (treated as a continuous vari-
able with 0, 1, 2 coding) or the GRS, the analysis was
controlled for other baseline risk factors. Selection of baseline
covariates for inclusion in the multivariable robust Cox model
was guided by the results of univariable robust Cox models for
each of these covariates, where the variables with univariable

P-values , 0.1 were considered for inclusion. The multivari-
able robust Cox model is formulated as:

lijðtjXi; ZijÞ ¼ l0ðtÞexpfXiaþ Zijbg; (1)

where lijðtÞ is the hazard function for progression at time t for
the jth eye (j=1: left, 2: right) in the ith participant, Xi stands
for subject-level covariates (e.g., genetic variant or GRS)
for the ith participant, and Zij stands for the eye-level cova-
riate(s) (e.g., baseline severity) for the jth eye in the ith par-
ticipant. Note that we assume the baseline hazard function
l0ðtÞ to be the same for left and right eyes. After fitting the
multivariable analysis on the GRS, we plotted the Kaplan–
Meier (KM) curves of progression within three GRS groups
determined by genetic score quartiles (low:,25%, medium:
25–75%, high: .75%) with quartiles computed using all
participants from AREDS and AREDS2 combined, to visually
examine the difference in progression of these three groups.

In addition to examining theprogression to any formof late
AMD,we separately analyzed theeffects of genetic variants on
progression to GA and CNV through the same multivariable
robust Cox model approach. The eyes progressed to both GA

Table 1 Baseline characteristics of the AREDS and AREDS2 cohorts

AREDS AREDS2 P Valuea

Subject-level variables
Number of subjects N = 2721 N = 1700
Age

Mean (SD) 68.7 (4.9) 71.5 (7.7) 8.0 3 10243

Median (range) 68.5 (55.3–81.2) 73 (50–86)
Sex (n, %)

Female 1527 (56) 997 (59) 0.11
Male 1194 (44) 703 (41)

Education
#High school 906 (33) 485 (29) 3.0 3 1023

.High school 1814 (67) 1189 (70)
Missing 1 (0) 28 (2)

Smoking (n, %)
Never smoked 1272 (47) 739 (43) 0.08
Former smoker 1288 (47) 863 (51)
Current smoker 161 (6) 98 (6)

Treatment Placebo: 842 (31) Placebo: 409 (24)
Antioxidants alone: 850 (31) L+Z: 418 (25)

Zinc: 507 (19) LCPUFA: 451 (27)
Antioxidants+Zinc: 522 (19) L+Z plus LCPUFA: 422 (25)

Genetic risk score (GRS)
Mean (SD) 1.00 (0.14) 1.08 (0.13) 8.1 3 10267

Median (range) 1.01 (0.61–1.45) 1.08 (0.58–1.42)
Follow-up time

Mean (SD) 10.3 (1.7) 4.8 (0.5)
Median (range) 10.9 (1.8–12.6) 4.9 (2.1–5.9)

Eye-level variables
Number of eyes N = 5017 N = 2830
Baseline AREDS AMD severity score

Mean (SD) 3.0 (2.3) 6.3 (1.3) ,1.0 3 102300

Median (range) 2 (1–8) 7 (1–8) ,1.0 3 102300

1–3 (n, %) 3125 (62) 119 (4) ,1.0 3 102300

4–6 (n, %) 1293 (26) 1211 (43)
7–8 (n, %) 599 (12) 1500 (53)

a P-values were from two-sided t-test for continuous variables, and were from chi-square test for categorical variables. Wilcoxon rank-sum test was applied to test the median
of the eye-level baseline severity score.
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and CNV (coded as 12 in AMD severity score) contributed to
both analyses.

Establishing prediction models for progression

Todevelopprogressionpredictionmodels,wefittedmodels to
predict eye-level progression risk using ocular, demographic,
andgenetic information.Whenpredicting theprogression risk
for an eye (e.g., 5-year probability in progressing to late
AMD), here in addition to using its own baseline AMD sever-
ity score, its fellow eye’s baseline severity score was also in-
cluded as a predictor because the AMD severity status of the
fellow eye is known to be an important associated factor
(Chew et al. 2014). Note that this is different from the robust
Cox models for analyzing the genetic effects in the section
Statistical analysis of the genetic effects on progression where
only the baseline severity score of the eye itself was included
as a covariate. Such difference (in the choice of covariates/
predictors) is driven by the different focuses of the two anal-
yses. In the first set of analyses aimed at assessing the genetic
effects on progression, the primary interest is to get an accu-
rate estimate of the genetic effect and additionally including
the baseline severity score from the fellow eyewill bias (down-
ward) the effect estimate of a genetic variant (or GRS). In the
second set of analyses aimed at establishing predictionmodels,
the estimation of each individual predictor’s effect was not our
primary interest; rather we focused on the prediction accuracy
of the models. Therefore, all possibly useful predictors were
considered for predicting the progression.

We used the AREDS data to train the predictionmodel and
then evaluated its accuracy both within the AREDS cohort
(using fivefold cross-validation or bootstrap resampling) and
independently in the AREDS2 cohort. We compared and
assessed five different prediction models: (A) a model with
only demographic and environmental predictors; (B)model A
plus the GRS; (C) a model with only baseline AMD severity
scores (fromboth the study eye and its fellow eye); (D)model

A plus model C (demographic and environmental factors plus
baseline AMD severity scores); and (E)model D plus the GRS.

For each prediction model, we calculated the year-
specific (e.g., 10-year progression) Brier score (BrS) and
the integrated Brier score (iBrS) (Graf et al. 1999; Gerds
and Schumacher 2006). For a fixed time point t*, the
BrS measures the mean square error of the prediction:

BrSðt*Þ ¼ ð1=nÞ
Xn
i¼1

�
Iðti . t*Þ2p̂ðt*jxiÞ

�2
; where Iðti . t*Þ

is the true progression status at time t* for the ith observation
with progression time ti; and p̂ðt*jxiÞ is the predicted progres-
sion free probability for the ith observation at time t*; given a
prediction model with predictor(s) xi:When censoring exists
(i.e., ti is not observable for some observations), the weighted
version of BrS was proposed by Graf et al. (1999) and Gerds
and Schumacher (2006):

BrScðt*Þ ¼ 1
n

Xn
i¼1

��
02 p̂ðt*jxiÞ

�2 Iðti# t*; di ¼ 1Þ 1

ĜðtijxiÞ

þ �
12 p̂ðt*jxiÞ

�2 Iðti . t*Þ 1

Ĝðt*jxiÞ

�
;

where di is the censoring indicator for the ith observation (0:
censored, 1: progressed) and Ĝ is the estimated cumulative
distribution function for the censoring variable. Graf et al.
(1999) also recommended using an integrated version of
the BrS that incorporates quadratic loss averaged over time.
The lower the Brier score the better the model predicts. Note
that in our case the prediction was on the individual eye-level
(instead of joint progression risk on both eyes), so each eye is
treated as an observation.

In addition, we calculated the Harrell’s concordance index
(c-index) for each predictionmodel (Harrell et al. 1996). This
index calculates the proportion of all “usable” observation
pairs in which the predictions and the observed outcomes

Table 2 Progression counts and rates (from baseline up to the end of follow-up time) by baseline (BL) AMD severity score

Study eye’s own
BL severity score

Fellow eye’s BL
severity score

AREDS AREDS2

N total N progressed (%) N total N progressed (%)

1–3 1–3 2683 61 (2) 36 4 (1)
4–6 311 23 (7) 49 0 (0)
7–8 15 2 (13) 4 0 (0)
9+ 116 23 (20) 30 7 (23)
Any 3123 109 (3) 119 11 (9)

4–6 1–3 311 52 (17) 49 4 (8)
4–6 684 258 (38) 684 82 (12)
7–8 142 84 (59) 259 48 (19)
9+ 156 117 (75) 219 91 (42)
Any 1292 511 (40) 1211 225 (19)

7–8 1–3 15 6 (40) 4 1 (25)
4–6 142 96 (69) 259 95 (37)
7–8 290 246 (85) 914 432 (47)
9+ 152 137 (90) 323 229 (71)
Any 599 485 (81) 1500 757 (50)

Overall 5017 1105 (22) 2830 993 (35)

For AREDS, the follow-up length was up to 12.6 yr with mean follow-up of 10.3 yr; for AREDS2, the follow-up length was up to 5.9 yr with mean follow-up of 4.8 yr.
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are concordant. Here “usable” means the observation pairs’
true progression statuses can be ordered (two observations
where both are censored, or one is censored and the other is
progressed with the censoring time occurring before the pro-
gressed time, are not “usable” pairs). The larger the c-index
value the better the model predicts.

Besides the BrS and c-index, we also calculated the year-
specific AUC (area under the curve) of the Receiver Operator
Characteristic (ROC) curves and the integrated AUC (iAUC)
over a given time period as secondary metrics for model
performance evaluation. Theobservations thatwere censored
before the time of interest (for the progression prediction)
were not used in the ROC curve and its AUC computation,
because their trueprogression statuseswereunknown for that
time. Moreover, we generated the prediction calibration
curves for each prediction model to evaluate the consistency
of the predicted and observed progression risks (Pepe and
Janes 2013). We also generated the predicted probability
density plots for progressors and nonprogressors to visu-
alize the prediction performance (Pepe 2011; Pepe et al.
2013). Finally, for the best prediction model(s), we cal-
culated the sensitivity, specificity, positive prediction
value (PPV), and negative prediction value (NPV) in pre-
dicting the progression risks. The cutoff value to discrim-
inate the progressors and nonprogressors was determined
by the optimal threshold from the ROC curve, where the
optimal threshold was defined as the value under which
the sensitivity (Sn) and the specificity (Sp) minimize the

distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12SnÞ2 þ ð12SpÞ2

q
:

Data availability

All the phenotype data of AREDS participants required in this
report were obtained from the publicly available website
dbGap (accession: phs000001.v3.p1). The phenotype data
of AREDS2participants for this reportwill bemade available to
the public on dbGap. The genotype data of these 34 known
AMDrisk variants onbothAREDSandAREDS2participants are
part of the genotype data from Fritsche et al. (2016),which are
available from dbGap under accession phs001039.v1.p1.

Results

Descriptive statistics of the study population

TheAREDS cohort included 2721Caucasian participantswho
had at least one eye free of late AMD at baseline and at least
one follow-up visit (Table 1). The mean age of these
2721 participants at baseline was 68.7 years (SD= 4.9), with
range from 55.3 to 81.2 years. Fifty-six percent (n = 1527)
were females. A vastmajority (94%) had either never smoked
(n = 1272, 47%) or were former smokers (n = 1288, 47%),
and only 6% (n = 161) were current smokers. The mean
follow-up time was 10.3 years (SD = 1.7) with the follow-up
frequency being every 6months (in the first 6 years) to 1 year
(after year 6). The majority of participants received educa-
tion higher than high school (67%). In this AREDS cohort,
5017 eyes which were not in the late AMD stage at baseline
were analyzed for progression. The mean AMD severity score
at baseline was 3.0 (SD = 2.3). The baseline severity score

Table 3 Univariable robust Cox model result on progression to late AMD

AREDS AREDS2

HR (95% CI) P Value HR (95% CI) P Value

Variable
Baseline age (yr) 1.09 (1.07, 1.10) 2.8 3 10223 1.06 (1.05, 1.07) 6.6 3 10229

Sex
Female Reference Reference
Male 0.91 (0.78, 1.05) 0.20 0.91 (0.79, 1.06) 0.22

Education
#High school Reference Reference
.High school 0.67 (0.58, 0.78) 2.5 3 1027 0.78 (0.66, 0.91) 1.8 3 1023

Baseline smoking
Never Reference Reference
Former 1.32 (1.14, 1.54) 3.2 3 1024 1.21 (1.04, 1.40) 0.01
Current 2.20 (1.65, 2.92) 6.3 3 1028 1.15 (0.84, 1.57) 0.40

Treatmenta

Placebo: reference Placebo: reference
Antioxidants alone: 0.73 L+Z: 0.52
0.96 (0.79, 1.19) 0.94 (0.76, 1.15)

Zinc: 0.07 LCPUFA: 0.56
1.20 (0.98, 1.48) 1.06 (0.87, 1.30)

Antioxidants plus zinc: 0.40 L+Z plus LCPUFA: 0.21
1.09 (0.89, 1.34) 1.14 (0.93,1.40)

Baseline study eye severity score 1.96 (1,89, 2.03) ,1.0 3 102300 1.89 (1.74, 2.06) 1.0 3 10247

GRSb 1.85 (1.75, 1.96) 7.1 3 10299 1.14 (1.08, 1.21) 2.6 3 1026

a In AREDS, in addition to the treatment variable itself, the baseline AMD severity score of the study eye was also included to adjust for the unbalanced disease severity level
across treatment groups due to the randomization scheme.

b For 0.1 unit increase in GRS.
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(for eyes that were late AMD free at baseline) was further
grouped into three categories: 1–3, 4–6, and 7–8, which rep-
resented low, middle, and high severity level. A majority of
5017 eyes from AREDS had low to middle AMD severity
scores at baseline (62%with severity score 1–3 and 26%with
severity score 4–6). Of the AREDS participants with avail-
able DNA, 842 (31%) received placebo, 850 (31%) received
antioxidants alone, 507 (19%) received zinc alone, and
522 (19%) received antioxidants plus zinc. Note that more
participants received formulations of placebo or antioxidants
alone, since the participants with less severe AMD at baseline
were only randomized to placebo or antioxidants alone (with
equal likelihood) but not to the formulations with the addi-
tional dose of zinc (Age-Related Eye Disease Study Research
1999). In comparison, the AREDS2 cohort contained 1700 el-
igible participants. On average, their median age was 4.5
years older than the AREDS cohort (P = 8.0 3 10243, distri-
bution plot was shown in Supplemental Material, Figure S1
in File S1). The gender and smoking distribution in the
AREDS2 participants was not significantly different from that
of the AREDS participants (both P . 0.05). The education
distributions were statistically different between two cohorts
(P = 0.003) but the difference was small. One participant in
AREDS and 28 (2%) in AREDS2 did not provide education
information and were excluded from the multivariable anal-
ysis models where education level was included as a covari-
ate. Note that the mean follow-up time was much shorter in
AREDS2 (4.8 years; SD = 0.5) with the frequency of annual
follow-up. The 2830 eyes from these AREDS2 participants
were late AMD free at baseline and were included in the
analysis. On average, the AREDS2 eyes were much more
severe than AREDS eyes at baseline (with very small P-values
for comparing severity scores either continuously or by cate-
gories in Table 1). Almost all eyes in AREDS2were scored.3
(43% in 4–6 and 53% in 7–8). For AREDS2 participants,
409 (24%) received placebo, 418 (25%) received L+Z,
451 (27%) received LCPUFA, and 422 (25%) received the

combination of L+Z and LCPUFA. All AREDS2 participants
also received a form of the AREDS supplements in addition to
L + Z and/or LCPUFA.

We further examined theGRSdistributions in both studies.
On average, the AREDS2 participants had greater GRSs than
the AREDS participants (both mean and median = 1.0 in
AREDS vs. 1.1 in AREDS2)with a significant P=8.13 10267.
GRS distribution in AREDS2 was to the right of the AREDS
distribution (Figure S2 in File S1), indicating more AMD risk
alleles on average in AREDS2 participants.

From the descriptive analysis (Table 1), the two studies
appeared very different in several aspects. Not only were the
treatment formulations distinct, but the population charac-
teristics (e.g., participants’ age and AMD severity score at
baseline) and the follow-up length and frequency were also
different.

Genetic effects on progression to late AMD

We calculated the progression rate (through the entire fol-
low-up time) forall studyeyes (eyes thatwere freeof lateAMD
at baseline in AREDS and AREDS2), categorized by their own
and fellow eyes’ baseline severity level. As shown in Table 2,
within each data cohort, the study eye progression rate in-
creases with its increasing severity at baseline (AREDS: 3%
for severity 1–3, 40% for severity 4–6, and 81% for severity
7–8; AREDS2: 9% for severity 1–3, 19% for severity 4–6, and
50% for severity 7–8). In addition, within each study eye
baseline severity category, the progression rate increases as
the fellow eye’s baseline severity increases. This holds for all
three study eye baseline severity groups (except for the “1–3”
group in AREDS2, possibly due to the very small sample size
in that group). For example, in AREDS, for the eyes with
baseline severity scores in 1–3, the progression rate increases
from 2 to 7, 13 and 20% as their fellow eyes’ baseline severity
increases from 1–3 to 4–6, 7–8, and 9+, respectively. Thus,
an eye’s progression strongly depends on both its own base-
line severity and its fellow eye’s baseline severity.

Figure 1 KM plots on progression
to advanced AMD by GRS groups.
(A) AREDS, (B) AREDS2. Eyes were
categorized into three groups ac-
cording to their GRSs: low: 0–25%
quartile; medium: 25–75% quartile;
high: .75% quartile.
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When the univariable robust Coxmodelingwas carried out
(Table 3), increased baseline age was highly significantly
associated with increased progression but gender was not
significantly associated with progression. Education was sig-
nificant in both cohorts with higher education associated
with slower progression. Smoking was significant in AREDS,
where current smoker or former smoker status was associ-
ated with faster progression as compared to never smoker. In
AREDS, we performed an “adjusted” univariable analysis for
the treatment variable where the baseline AMD severity score
of the study eye was included as a covariate in addition to the
treatment. This was done because the stratified randomiza-
tion scheme made the baseline severity of the eyes not bal-
anced across the four treatment groups, as we noted in the
“descriptive statistics of the study population” result section.
In AREDS2, the standard univariable analysis was done for
the treatment variable as there was no such issue. Different
treatment groups were not associated with different hazard
rates of AMD progression, in either AREDS or AREDS2 (all
P . 0.05). The baseline AMD severity score of the study eye

was strongly associated with progression in both datasets.
The GRS was also found to be significantly associated with
progression. However, the significance level was much stron-
ger in AREDS (HR = 1.85, 95% CI: 1.75–1.96, P = 7.1 3
10299) than in AREDS2 (HR = 1.14, 95% CI: 1.08–1.21,
P = 2.6 3 1026).

In the multivariable modeling of progression, based on
the univariable results above, baseline age, education
level, smoking status, and AMD severity score (of the study
eye) were selected as covariates. The corresponding sta-
tistical formulation of the multivariable model is given in
Equation (2), where lijðtÞ stands for the hazard function
of progression time for the jth eye in the ith participant,
GNi is the genetic variant or GRS of the ith participant, SSij
is the baseline severity score for the jth eye in the ith
participant, and AGi is the baseline age, EDi is the educa-
tion level and SMi is the baseline smoking status of the ith
participant. Note that only the severity score is an eye-
level variable, while all other variables are participant-
level variables.

Table 4 Multivariable robust Cox model results for the 34 top AMD risk variants on progression to late AMD

Variant Chr Major/minor allele locus namea

Effect on progression (AREDS) Effect on progression (AREDS2)

HR P Value HR P Value

rs10922109 1 C/A CFH 0.69 7.2 3 1029 1.09 0.19
rs11884770 2 C/T COL4A3 1.02 0.69 0.86 1.2 3 1022

rs62247658 3 T/C ADAMTS9-AS2 1.09 9.9 3 1022 0.88 9.5 3 1023

rs140647181 3 T/C COL8A1 1.64 4.8 3 1022 0.98 0.91
rs10033900 4 C/T CFI 0.98 0.67 0.93 0.13
rs62358361 5 G/T C9 1.06 0.82 0.67 5.4 3 1022

rs114092250 5 G/A PRLR/SPEF2 0.61 1.4 3 1022 0.95 0.80
rs116503776 6 G/A C2/CFB/SKIV2L 0.75 1.6 3 1023 0.95 0.61
rs943080 6 T/C VEGFA 0.94 0.20 0.96 0.37
rs7803454 7 C/T PILRB/PILRA 1.00 0.99 1.21 2.5 3 1023

rs1142 7 C/T KMT2E/SRPK2 1.01 0.83 1.05 0.36
rs79037040 8 T/G TNFRSF10A 0.95 0.28 0.96 0.42
rs71507014 9 GC/G TRPM3 0.99 0.86 0.90 2.8 3 1022

rs10781182 9 G/T MIR6130/RORB 0.88 2.0 3 1022 0.90 3.6 3 1022

rs1626340 9 G/A TGFBR1 0.92 0.24 0.94 0.32
rs2740488 9 A/C ABCA1 0.99 0.81 1.04 0.52
rs12357257 10 G/A ARHGAP21 1.07 0.26 1.10 0.11
rs3750846 10 T/C ARMS2/HTRA1 1.44 1.3 3 10211 1.22 5.9 3 1025

rs3138141 12 C/A RDH5/CD63 1.18 4.4 3 1022 0.96 0.58
rs61941274 12 G/A ACAD10 1.14 0.50 1.00 0.98
rs9564692 13 C/T B3GALTL 0.83 1.6 3 1023 0.94 0.24
rs61985136 14 T/C RAD51B 1.17 6.6 3 1023 0.98 0.76
rs2043085 15 T/C LIPC 1.14 1.2 3 1022 0.99 0.88
rs5817082 16 C/CA CETP 0.90 6.8 3 1022 1.08 0.22
rs72802342 16 C/A CTRB2/CTRB1 0.79 6.3 3 1022 0.89 0.32
rs11080055 17 C/A TMEM97/VTN 1.11 3.3 3 1022 1.08 0.13
rs6565597 17 C/T NPLOC4/TSPAN10 1.04 0.48 1.01 0.79
rs67538026 19 C/T CNN2 0.89 3.2 3 1022 0.90 9.4 3 1022

rs2230199 19 C/G C3 0.86 1.6 3 1022 0.97 0.64
rs429358 19 T/C APOE 0.95 0.56 1.03 0.73
rs142450006 20 TTTTC/T MMP9 0.76 1.7 3 1023 0.76 8.9 3 1024

rs201459901 20 T/TA C20orf85 1.05 0.61 0.90 0.38
rs5754227 22 T/C SYN3/TIMP3 0.90 0.19 0.75 3.3 3 1024

rs8135665 22 C/T SLC16A8 0.99 0.86 1.02 0.79

Model was adjusted for baseline age, education, smoking status, and study eye’s baseline AMD severity score.
a The locus name is a label of the region using the nearest gene(s), but does not necessarily state the responsible gene.

Analysis of AMD Progression Using GRSs 125

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/206/1/119/6064235 by guest on 23 April 2024



lijðtjGNi; SSij;AGi; EDi; SMiÞ ¼l0ðtÞexpfb1GNi

þ b2SSij þ b3AGi

þ b4IðEDi .HighSchoolÞ
þ b5IðSMi ¼ FormerÞ
þ b6IðSMi ¼ CurrentÞg

(2)

The KM plot (Figure 1) shows a clear separation in the pro-
gression profiles for the three GRS groups, especially in
AREDS, where the eyes with higher GRSs had faster progres-
sion. In AREDS, the progression rates over the entire follow-up
time of 12 years increased from 6.9 to 22.4 and 50.2% as the
GRSs increased from low to medium and high, respectively.
The separation was less obvious in AREDS2, where the pro-
gression rates over the shorter entire follow-up time of 6 years
were 28.2, 33.4, and 40.6%, respectively.

Table 4 presents the multivariable robust Cox model re-
sults for AREDS and AREDS2 in the lead variants for the
reported 34 AMD-associated loci (Fritsche et al. 2016). In
AREDS, 15 variants were associated with progression with
P , 0.05 while only eight variants exhibited P , 0.05 in
AREDS2. Overall, AREDS2 showed lower significance levels
as compared to AREDS. The most significant variant was
consistent for AREDS and AREDS2 (rs3750846, locus
ARMS2/HTRA1) with an estimated HR = 1.44 and P =
1.3 3 10211 in AREDS and an estimated HR = 1.22 and
P = 5.9 3 1025 in AREDS2. The second most significant
variant in AREDS was in CFH (rs10922109, P = 7.2 3 1029)
but it was not significant in AREDS2 (P = 0.19). This is per-
haps surprising and merits further detailed examination of
other variants in the CFH locus. In addition to these two var-
iants, rs10781182 (locus MIR6130/RORB) and rs142450006
(locus MMP9) also showed consistent significant association
with AMD progression in the two studies (all P , 0.05).

When progression to CNV or GA was analyzed separately,
we observed that 508 eyes developed CNV, 615 eyes de-
veloped GA, and 18 eyes developed both CNV and central
GA in AREDS; and 457 eyes developed CNV, 536 eyes de-
velopedGA, andnoeyedevelopedbothCNVandcentralGA in

AREDS2. When the genetic effects on progression to CNV or
GAwere estimated separately, the resultswere consistentwith
the combined progression analysis (CNV+GA) for the major-
ity of the variants (Tables S1 and S2 in File S1). Overall, the
variants showed higher significance in progression to CNV as
compared to GA. There are some exceptions. For example,
rs6565597 (locus CNN2) showed consistent significance in
progression to GA (P , 0.05 in both cohorts), but was not
significant in progression to CNV in either of the two cohorts.

The GRS was significantly associated with AMD progres-
sion in both AREDS and AREDS2 using the multivariable
robust Cox model (Table 5). However, the significance level
was much stronger in AREDS (HR = 1.34, P = 1.63 10222)
than in AREDS2 (HR = 1.11, P = 2.1 3 1024). This was
consistent with the univariable analysis and was expected
given the single variant analysis results in Table 4. Neverthe-
less, this analysis demonstrated that the GRS was signifi-
cantly associated with AMD progression in two independent
cohorts. According to the Wald test results that compared
each model coefficient estimate between AREDS and AREDS2
(the last column in Table 5), all the covariates showed consis-
tent effect sizes on progression in both cohorts except for
the GRS and current smoker category in the smoking status
covariate.

Prediction models for eye-level progression risk

We used the AREDS data to fit models for predicting progres-
sion risk for a given eye using both participant-level and eye-
level predictors. We considered different sets of predictors
when establishing the prediction models (Table 6). Each
model was evaluated in both AREDS (in a resampling fash-
ion) and AREDS2 (as an independent validation dataset).
Table 7 presents the BrS for x-year prediction (x = 4 or
10 for AREDS and 4 for AREDS2) and the iBrS (from 0 up
to 4 or 10 years) for each prediction model. The c-index
values for each predictionmodel in AREDS (through 50 boot-
strapped samples) and in AREDS2 are also presented in Table
7. With only baseline age, education level, and smoking sta-
tus (model A), the model did not predict well (the c-indices
were between 0.61 and 0.62), although the BrSs were small,

Table 5 Multivariable robust Cox model result on progression to advanced AMD

AREDS AREDS2 Test for differencea

HR (95% CI) P Value HR (95% CI) P Value P Value

Variable
Age (yr) 1.05 (1.03, 1.06) 6.4 3 10210 1.06 (1.05, 1.07) 2.8 3 10228 0.14
Smoking

Never Reference Reference
Former 1.14 (0.98, 1.33) 0.06 1.18 (1.02, 1.37) 0.03 0.75
Current 1.98 (1.51, 2.58) 5.7 3 1027 1.30 (0.92, 1.81) 0.13 0.05

Education
#High school Reference Reference
.High school 0.87 (0.75, 1.01) 0.06 0.92 (0.78, 1.07) 0.27 0.65

Baseline study eye AMD severity score 1.85 (1.78, 1.92) 4.3 3 102226 1.90 (1.74, 2.07) 8.7 3 10248 0.61
GRSb 1.34 (1.26, 1.42) 1.6 3 10222 1.11 (1.05, 1.18) 2.1 3 1024 1.0 3 1025

a For each model coefficient estimate [i.e., log(HR)], a Wald test was performed to test whether the coefficient estimates differ between AREDS and AREDS2.
b For 0.1 unit increase in GRS.
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especially in AREDS. Adding the GRS alone to the predictor
list (model B) showed noticeable improvement in AREDS
(BrS = 0.058 and 0.123 for 4- and 10-year, respectively;
c-index = 0.75) but only small improvement in AREDS2.
One reason for this observation could be the fact that the
effects of GRS on progression were very different between
AREDS and AREDS2, as we found in our multivariable anal-
ysis (Table 5). Then, using only baseline severity scores from
both eyes (model C) produced obviously better prediction
performance compared to models A and B. For example,
the 4-year BrS values decreased from 0.058 (model B) to
0.047 (model C) for AREDS and decreased from 0.148
(model B) to 0.134 (model C) for AREDS2; and the c-index
increased from 0.75 (model B) to 0.88 (model C) for AREDS,
and from 0.63 (model B) to 0.71 (model C) for AREDS2.
After including the two baseline severity scores for both the
study eye and the fellow eye, adding the demographical/
environmental predictors, namely, age, smoking, and educa-
tion level (model D) or adding both demographical/environ-
mental predictors and the GRS (model E) only improved the
prediction by a small amount (0.01 or 0.02 unit increase in
c-index values or 0.001–0.003 decrease in BrSs). The results
indicate that the baseline disease severity scores from both
eyes, developed by AREDS (Davis et al. 2005), are the stron-
gest predictors for AMD progression of a given eye. The other
risk factors only provided limited improvement on prediction
after including these two in the model. This is not surprising,
given progression is directly measured by the severity score.

TheAUCs for AREDS andAREDS2were presented in Table
S3 in File S1. The results showed consistent findings with the
BrSs and c-index values (Table 7). Note that the eyes which
were censored before year X were excluded from the AUC
calculation as their true year X progression statuses were
unknown. This in fact led to a biased sample pool for pre-
diction evaluation. Whereas in the calculation of BrSs, the
biased sample issue did not exist because an appropriate
weighting strategy was implemented in calculating BrScðt*Þ
(Graf et al. 1999; Gerds and Schumacher 2006). Therefore,
we view the AUC only as a secondary measure in prediction
evaluation.

Therewere substantial performance differences in predict-
ing progression risks in AREDS and AREDS2 (Table 7 and
Table S3 in File S1). To explore this further, we made the
two datasets more comparable in terms of disease severity by
removing the least severe eyes, namely, the eyes with base-
line severity scores between 1 and 3, from both datasets. Note
that 62% of eyes from AREDS were removed, while only 4%
of eyes from AREDS2 were removed. When the least severe
eyes were removed, the BrSs for AREDS data clearly in-
creased while the BrSs for AREDS2 did not change much,
and the BrS values become much more similar between the
two datasets (Table 8). Consistent findings were observed for
the c-index values (Table 8) and AUC values (Table S4 in File
S1). This is because the “least severe” eyes were mostly pre-
dicted to not be progressed, which was consistent with their
actual progression statuses. Therefore, removing these easy-
to-predict eyes leads to increased BrSs or decreased c-indices.
The subgroup analysis presented in Table 8 reflects more re-
alistic model performance in terms of predicting progression
risks for eyes with intermediate or more severe AMD at
baseline.

Foreachpredictionmodel, although its performanceon the
full AREDS data differedmarkedly from that on the subgroup
AREDS data, we found that the covariate effects estimated
from the full AREDS data (Table S3 in File S1) and those from
the subgroup data (Table S4 in File S1) were very similar.
This reassured us that the predictionmodels established from
the full AREDS data were applicable to predict eyes with
different severity levels, including the eyes with more severe
AMD. We also specifically looked at the prediction for eyes

Table 6 Predictors for each prediction model A–E

Model
index Model predictors

A Baseline Age + Education + Smoking
B Baseline Age + Education + Smoking + GRS
C Baseline Severity Score (own eye) + Baseline

Severity Score (fellow eye)
D Baseline Age + Education + Smoking + Baseline

Severity Score (own eye) + Baseline Severity
Score (fellow eye)

E Baseline Age + Education + Smoking + Baseline
Severity Score (own eye) + Baseline Severity
Score (fellow eye) + GRS

Table 7 Harrell’s concordance index (c-index) and Brier scores (BrSs) for different prediction models evaluated in all eyes

Modela c-indexb

AREDS AREDS2

BrSc (4 yr) BrS (10 yr) iBrSd (up to 4 yr) iBrS (up to 10 yr) c-index BrS (4 yr) iBrS (up to 4 yr)

A 0.62 0.079 0.152 0.027 0.079 0.61 0.181 0.074
B 0.75 0.073 0.131 0.026 0.071 0.63 0.179 0.074
C 0.88 0.056 0.083 0.022 0.051 0.72 0.161 0.068
D 0.89 0.055 0.082 0.022 0.050 0.73 0.155 0.067
E 0.89 0.055 0.080 0.022 0.050 0.73 0.154 0.067

These prediction models were established using AREDS data and evaluated on both AREDS and AREDS2.
a Predictors for each model are given in Table 6.
b In AREDS, the c-index values were computed based on bootstrapped samples (average over 50 times).
c In AREDS, the Brier scores were computed based on fivefold cross-validation.
d iBrS: integrated Brier score.
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with intermediate AMD, i.e., the eyes which scored between
4 and 8 and of which the participant had no late AMD in
either eye at baseline. All the prediction models produced
very similar results to those in Table 8 and Table S4 in File
S1. This again is indicative of the performance robustness of
the prediction models we established using the full AREDS
data.

The calibration plots on prediction performance (Pepe
2011; Pepe and Janes 2013) are presented in Figure 2. Such
plots allow us to examine the consistency between the
predicted risks and the observed risks. For each model pre-

diction, we ordered all evaluable eyes (e.g., eyes with pro-
gression statuses known by year X) by their predicted risk and
divided them into 10 quantile groups. Within each quantile
group, we calculated their mean observed risk. Figure 2 plots
the 4-year observed and predicted risks over the risk quan-
tiles, for model C, model D, and model E. For the top panel
(corresponding to AREDS), the observed risks and predicted
risks were very well matched in all three plots, where
the match from models D and E were better. In Figure 2, B
and C, the dashed line intersects with the black curve close
to where the black curve drastically increases. This also

Table 8 Harrell’s concordance index (c-index) and Brier scores (BrSs) for different prediction models evaluated in eyes with baseline
severity score >3

AREDS AREDS2

Modela c-indexb BrSc (4 yr) BrS (10 yr) IBrSd (up to 4 yr) IBrS (up to 10 yr) c-index BrS (4 yr) IBrS (up to 4 yr)

A 0.56 0.170 0.238 0.062 0.152 0.61 0.186 0.076
B 0.63 0.164 0.219 0.061 0.144 0.62 0.184 0.076
C 0.73 0.136 0.178 0.054 0.118 0.71 0.165 0.070
D 0.74 0.134 0.174 0.053 0.117 0.72 0.160 0.069
E 0.75 0.134 0.171 0.053 0.115 0.73 0.159 0.069
a Predictors for each model are given in Table 6.
b In AREDS, the c-index values were computed based on bootstrapped samples (average over 50 times).
c In AREDS, the Brier scores were computed based on fivefold cross-validation.
d iBrS: integrated Brier score.

Figure 2 Calibration plots for model predictions on full data. (A–C) prediction model C, model D, and model E evaluated on 4-year progression risk in
AREDS, respectively; (D–F) prediction model C, model D, and model E evaluated on 4-year progression risk in AREDS2, respectively.
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indicates that model D and model E predicted very well since
the perfect predictionwill yield a smooth predicted curve that
is horizontal at zero and then jumps to one at the quantile of
(12overall progression rate). Figure 2, D–F are the corre-
sponding calibration plots when the prediction models were
evaluated in AREDS2. In these three cases, the observed risks
and predicted risks were less well matched overall. The pre-
dicted curves from model C were not smooth since only the
baseline severity scores were used and their values were dis-
crete. In the subgroup data where eyes with baseline severity
1–3 were removed, the calibration plots (Figure 3) show that
the predicted risks and the observed risks were less well
matched compared to those in Figure 2, for AREDS data,
which were consistent with the findings from Table 8.

When we examine the density curves of the predicted
progression risks separately by nonprogressors and progres-
sors (Figure 4 and Figure 5), we observe that model D and E
produced clear separation in predicting the 4-year progres-
sion risk in AREDS, especially in the full dataset. The separa-
tion was worse in AREDS2 in general, which was consistent
with our findings in BrSs and the calibration plots. Similar to
those in Figure 2 and Figure 3, model C produced un-
smoothed density curves. Therefore, although the prediction
performance of model C is close to model D and model E, we

recommend usingmodel D or E for predicting the progression
risk, sincemodel C is too parsimonious and can only provide a
small set of all possible predicted values.

Finally, to examine the model prediction accuracy in prac-
tice, we calculated sensitivities, specificities, PPVs, and NPVs
under model D and model E in predicting 4-year progression
risks for different datasets. The cutoff value on predicted
progression risks was determined by the optimal threshold
from the corresponding 4-year ROC plot in the full AREDS
data (Figure S6, A and B in File S1). The rationale is that the
full AREDS data were used to develop the prediction models
and thus they were used as well to decide the cutoff. For
model D, the optimal cutoff probability was 0.113 (progres-
sion risk.0.113 was determined as progressed;#0.113 was
determined as not progressed), and the corresponding sensi-
tivity was 0.86 and 0.97 for AREDS and AREDS2, respec-
tively, while the specificity was 0.82 and 0.19, respectively.
The PPV was 0.28 and 0.30 for AREDS and AREDS2, respec-
tively; and the NPV was 0.99 and 0.95, respectively. For
model E, the optimal cutoff probability was 0.132, and the
corresponding sensitivity was 0.84 and 0.95 for AREDS and
AREDS2, respectively, while the specificity was 0.84 and 0.25
respectively. The PPV was 0.31 for both studies and the NPV
was 0.98 and 0.93 for AREDS and AREDS2, respectively. The

Figure 3 Calibration plots for model predictions on subgroup data for eyes with baseline severity score .3. (A–C) prediction model C, model D, and
model E evaluated on 4-year progression risk in AREDS, respectively; (D–F) prediction model C, model D, and model E evaluated on 4-year progression
risk in AREDS2, respectively.
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low specificity and PPV in AREDS2 was due to nonseparable
predicted progression risk values between the true progres-
sors and nonprogressors, as we observed in Figure 4D and
Figure 5D. The PPV in AREDS was also low since the percent-
age of progressors in AREDS was small.

When comparing all five prediction models we have estab-
lished, model D and model E were found to have a similar
prediction performance and outperformed other prediction
models. Although the GRS only provided minimal improve-
ment to the prediction performance when added to a model
containing the baseline severity scores of both the study and
fellow eyes, it was still a significant predictor for AMD
progression.

Discussion

We have applied a bivariate statistical approach to rigorously
analyze thegenetic effects onAMDprogression.Our approach
has multiple advantages as compared to those existing ap-
proaches described earlier. First, time-to-progression is more
informative and reliable as compared to progression status,
since the progression status may change if the follow-up time
is extended. Instead of modeling the categorical progression
status, our approach models continuous progression time to

study the genetic effects on progression. Second, it is known
that the presence andprogressionofAMD in one eye is strongly
associatedwith thedisease in its felloweye (BarbeitoandHerse
1991; Murdoch et al. 1998; Sunness et al. 1999; Pauleikhoff
et al. 2002). Instead of only using the faster-progressed eye
while ignoring the data from the other eye, our approach takes
the advantage of all available data. We used the robust vari-
ance estimate in Cox models to appropriately account for the
between-eye correlations when evaluating the genetic effects
on AMD progression. Note that the traditional Cox model (as-
suming all the eyes are independent) will produce smaller
P-values for the genetic effects, and therefore is inclined to
identify false signals. In this study, it is important to use the
robust variance estimates when making inferences about ge-
netic effects because strong between-eye correlation was ob-
served in progression.

Overall, we found the genetic effects on AMD progression
weremuchstronger inAREDSthan inAREDS2.Webelieve the
major reasons contributing to this finding are: (1) the two
study populations differ with regard to distributions of base-
line age, baseline severity scores, and GRS; and (2) the study
follow-up lengths and frequencies were different. We did a
post hoc subgroup analysis where we used the following in-
clusion criteria to make the two populations similar: (1)

Figure 4 Density curves of the predicted progression risks for progressors and nonprogressors from full data. (A–C) prediction model C, model D, and
model E evaluated on 4-year progression risk in AREDS, respectively; (D–F) prediction model C, model D, and model E evaluated on 4-year progression
risk in AREDS2, respectively.
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participants aged between 55 and 80 years; (2) eyes with
baseline severity score of 3 or greater; and (3) follow-up time
of up to 6 years with annual frequency. Within this subgroup,
the estimated effects of the GRS on AMD progression were
much closer between the two cohorts (Table 9, P = 0.16) as
compared to those from the original full data analysis (Table
5, P = 1.0 3 1025). This supports our explanations for the

large differences in the genetic effects we have found for
AREDS and AREDS2. Nevertheless, the GRS was shown to
be significant in both studies in the full datasets and in the
subdatasets. Instead of using all of the top 34 variants from
Fritsche et al. (2016) to derive the GRS, we also explored
using only the top 5 genetic variants [with the smallest
P-values from Table 1 in Fritsche et al. (2016)] to derive a GRS

Figure 5 Density curves of the predicted progression risks for progressors and nonprogressors from subgroup data for eyes with baseline severity
score.3. (A–C) prediction model C, model D, and model E evaluated on 4-year progression risk in AREDS, respectively; (D–F) prediction model C, model
D, and model E evaluated on 4-year progression risk in AREDS2, respectively.

Table 9 Multivariable robust Cox model results on progression to late AMD using genetic risk score on subgroup data with (1) eyes of
baseline severity score >3, (2) age between 65 and 80, and (3) follow-up time of up to 6 yr with annual examination

AREDS AREDS2 Test for differencea

HR (95% CI) P Value HR (95% CI) P Value P Value

Variable
Age (yr) 1.04 (1.01, 1.07) 6.7 3 1023 1.07 (1.05, 1.10) 3.8 3 1028 0.09
Smoking

Never Reference Reference
Former 1.05 (0.85, 1.30) 0.63 1.22 (1.02, 1.47) 0.03 0.28
Current 1.69 (1.17, 2.44) 4.8 3 1023 1.00 (0.65, 1.52) 0.98 0.06

Education
#High school Reference Reference
.High school 0.87 (0.71, 1.07) 0.18 0.99 (0.81, 1.20) 0.90 0.37

Baseline study eye AMD severity score 1.89 (1.73, 2.06) 7.9 3 10247 1.97 (1.78, 2.19) 1.7 3 10236 0.53
GRSb 1.25 (1.15, 1.36) 4.0 3 1027 1.15 (1.07, 1.24) 2.4 3 1024 0.16
a For each model coefficient estimate [i.e., log(HR)], a Wald test was performed to test whether the coefficient estimates differ between AREDS and AREDS2.
b For 0.1 unit increase in genetic risk score.
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and reanalyzed the data. The results were quite consistent
with those obtained using the GRS based on all 34 variants.
This suggests that in practice, a GRS composed of a small
number of top AMD risk variants can perform well enough
in examining the genetic effects on AMD progression.

AREDS contains a large number of normal to early AMD
eyes, which have a very small chance of progressing to late
AMD. This fact contributes to the very low BrSs or high AUC
values achieved from the prediction models. It is worthwhile
to caution against the inappropriate interpretation that a low
BrS or a high AUC value always indicates that the model
predicts well. In the case where the event probability is very
low or very high (i.e., the data are skewed in terms of event or
nonevent), a low BrS or a high AUC may not necessarily in-
dicate good model prediction, since in this case, even an
extreme model that predicts no event (or all events) for all
the observations will yield a low BrS and a high AUC.

There are previous studies which analyzed some known
AMD risk variants on AMD progression using the AREDS data
(Seddon et al. 2007, 2011, 2014). In all these studies, only
one eye per participant was used and the analyses were lim-
ited to a small set of known AMD risk variants (two to nine).
The same groups also established models to predict AMD
progression using a set of (six or nine) known AMD risk
variants (in addition to demographic, environmental, and
ocular predictors) (Seddon et al. 2011, 2013, 2014). Com-
pared with these existing studies, in addition to the differ-
ences in the statistical approaches, our model predictors are
more parsimonious. For example, instead of using drusen size
and/or drusen area, we directly used the composite AMD
severity score (developed from AREDS), which was demon-
strated to provide better prediction performance than a sin-
gle ocular variable (detailed results not presented). Also
instead of using a set of individual AMD risk variants, we
used the composite GRS as a predictor. Another strength of
our study is that we thoroughly evaluated our model pre-
diction performance in a large independent AMD cohort
(AREDS2) with appropriate additional subgroup analyses.
We have discovered that the effect size of the genetic var-
iants (or the GRS) could differ significantly between two
study populations when the population characteristics
were different. Nevertheless, of the aforementioned differ-
ences, we similarly found that variants on loci CFH, ARMS,
C3, C2/CFB, COL8A1, and RAD51B have significant effects
on AMD progression in the AREDS data, which have been
reported previously (Seddon et al. 2007, 2011, 2013,
2014).

Finally, the current GRS is based on the variants and their
effects from a case–control meta-analysis for AMD risk
(Fritsche et al. 2016), which may not be optimal for
AMD progression. In future, it could be useful to use a
GRS based on a (potentially different) set of variants that
are significantly associated with AMD progression. We are
currently investigating this via a genome-wide associa-
tion analysis of AMD progression using AREDS and
AREDS2 data.
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