Abstract

By taking advantage of a recently developed reference marker set for avian genome analysis we have constructed a gene-based genetic map of the collared flycatcher, an important “ecological model” for studies of life-history evolution, sexual selection, speciation, and quantitative genetics. A pedigree of 322 birds from a natural population was genotyped for 384 single nucleotide polymorphisms (SNPs) from 170 protein-coding genes and 71 microsatellites. Altogether, 147 gene markers and 64 microsatellites form 33 linkage groups with a total genetic distance of 1787 cM. Male recombination rates are, on average, 22% higher than female rates (total distance 1982 vs. 1627 cM). The ability to anchor the collared flycatcher map with the chicken genome via the gene-based SNPs revealed an extraordinary degree of both synteny and gene-order conservation during avian evolution. The great majority of chicken chromosomes correspond to a single linkage group in collared flycatchers, with only a few cases of inter- and intrachromosomal rearrangements. The rate of chromosomal diversification, fissions/fusions, and inversions combined is thus considerably lower in birds (0.05/MY) than in mammals (0.6–2.0/MY). A dearth of repeat elements, known to promote chromosomal breakage, in avian genomes may contribute to their stability. The degree of genome stability is likely to have important consequences for general evolutionary patterns and may explain, for example, the comparatively slow rate by which genetic incompatibility among lineages of birds evolves.

GENOMICS is in a phase where new technology allows genome characterization beyond that of traditional model organisms and species of medical or agricultural interest. For example, genomic analyses of nonmodel species holds great promise for dissecting the genetic background to fitness traits in natural populations, to adaptive population divergence, to speciation, and to other key aspects of evolutionary biology (Ellegren and Sheldon 2008). Genomic characterization of new and phylogenetically divergent lineages has the additional benefit that it provides the necessary comparative perspective for addressing the evolution of genome organization. Specifically, with genetic maps or genome sequence information available across taxa, the broad-scale pattern of genome and chromosomal evolution can be investigated. This, in turn, opens the possibility of investigating to what extent evolution at the chromosomal level sets the stage for the evolutionary processes, which occur on the level of the phenotype.

Reshuffling of chromosomal segments, through translocations and inversions, is an integral part of genome evolution. However, it is clear that the rate of rearrangement differs radically among lineages as well as on a temporal scale (Kohn  et al. 2006; Ferguson-Smith and Trifonov 2007). From comparative mapping of chicken and different mammals it was suggested that the rate of chromosomal rearrangement in the avian lineage is very low (Burt  et al. 1999). This has subsequently been confirmed through analyses of vertebrate genome sequence data, including chicken (Bourque  et al. 2005), the only bird that has had its genome sequenced to date (International  Chicken  Genome  Sequencing  Consortium 2004). Moreover, evidence for an unusually stable avian karyotype with few interchromosomal rearrangements has been obtained by cross-species chromosome painting or the use of other types of in situ hybridization probes (Shetty  et al. 1999; Shibusawa  et al. 2001, 2004a,b; Raudsepp  et al. 2002; Guttenbach  et al. 2003; Kasai  et al. 2003; Derjusheva  et al. 2004; Schmid  et al. 2005; Itoh  et al. 2006; Fillon  et al. 2007; Griffin  et al. 2007; Nishida-Umehara  et al. 2007). However, these experiments rarely have the resolution for detecting intrachromosomal or small-scale interchromosomal rearrangements.

Genetic maps are available for turkey (Reed  et al. 2005) and quail (Kayang  et al. 2006), two agricultural species that are closely related to chicken as members of the order Galliformes. However, a lack of genetic markers, in particular those informative for comparative mapping, has been a major obstacle to linkage analyses of bird species belonging to other orders. As a consequence, linkage mapping in natural bird populations is still in its infancy. Hansson  et al. (2005) developed a partial microsatellite-based linkage map (58 markers) in the great reed warbler (Acrocephalus arundinaceus), a species from the order Passeriformes, the largest and ecologically most well-studied group of birds. This study also made the unexpected observation that the recombination rate was twice as high in females as in males, which is in contrast to the prevailing trend of recombination usually being lower in the heterogametic sex (in birds, males are ZZ and females ZW). Backström  et al. (2006) reported on a gene-based linkage map of the Z chromosome of another passerine species, the collared flycatcher (Ficedula albicollis). The Z chromosome was found to be completely syntenic between collared flycatcher and chicken. Subsequently, Dawson  et al. (2007) developed an extended great reed warbler map and found a high degree of chromosomal conservation when compared to chicken (see also kesson  et al. 2007).

We have recently adopted the comparative anchor-tagged sequences approach (Lyons  et al. 1997) to develop a genomewide, gene-based marker resource for avian comparative mapping (Backström  et al. 2008). This set of 200+ markers target conserved exonic sequences in genes spread over all chromosomes currently covered in the chicken genome assembly, with a mean marker interval of 4 Mb. The uniform distribution of these markers across the chicken genome means that, if they are used for comparative mapping in other birds, the degree of synteny and gene-order conservation across a significant part of the avian genome can be revealed. Here we present a genetic linkage map of the collared flycatcher based on the new marker set. This species has long been in focus for studies of sexual selection, life-history evolution, and speciation (Gustafsson and Sutherland 1988; Gustafsson and Pärt 1990; Gustafsson  et al. 1995; Ellegren  et al. 1996; Qvarnström  et al. 2000, 2006; Veen  et al. 2001; Saether  et al. 2007) and hence is a well-established “ecological model organism.” Importantly, songbirds (passeriforms) and galliforms diverged at the time of the major radiation of avian lineages ≈100 million years (MY) ago (Van  Tuinen  et al. 2000). With genetic map data for the collared flycatcher we can thus address genome evolution at the level of gene order across two highly divergent lineages of the avian phylogenetic tree.

MATERIALS AND METHODS

Species samples and DNA extraction:

Blood samples were collected from collared flycatcher (F. albicollis) families breeding on the Baltic islands Öland and Gotland and DNA was extracted by a standard proteinase K digestion/phenol–chlorophorm purification protocol. The mapping pedigree consisted of 24 half-sib families with a few interconnections and 11 F2's, in total 322 birds (supplemental Table 1) after excluding all recognized extra-pair offspring (see below).

Marker genotyping:

In a previous resequencing effort, we surveyed 200 collared flycatcher genes for intronic diversity among 10 unrelated individuals from the same population as the mapping pedigree, which uncovered 904 segregating sites (Backström  et al. 2008). From this, 341 single nucleotide polymorphisms (SNPs) with a minor allele frequency of >0.1 and representing the majority of all genes screened were selected for genotyping in the pedigree; for many genes, more than one SNP from the same intron were included. An additional 43 SNPs were obtained from 21 different genes previously screened for variability in collared flycatchers (Borge  et al. 2005) (Table 1). The total of 384 SNPs were genotyped using the Golden Gate Assay (Fan  et al. 2003) from Illumina (San Diego) at the SNP Technology Platform, Uppsala University (http://www.medsci.uu.se/molmed/snpgenotyping/index.htm). The overall genotype call rate was 95.7% and the reproducibility was 100% according to duplicate analysis of 5.4% (7218/132,848) of the genotypes. The quality of the genotype data was further assessed by testing for Hardy–Weinberg equilibrium (HWE) using the chi-square distribution for each assay. All SNPs conformed to HWE.

TABLE 1

Markers included in the collared flycatcher linkage map


Marker

Linkage group

Gene descriptiona

Ensembl IDb

Chicken chromosome

Chicken genome start position (bp)
Gene-based SNPs 
00548 Unlinked Hypothetical protein 00548 22 1,221,445 
02079 Unlinked Hypothetical protein 02079 10 1,854,152 
02419 Fal9 No longer in the Ensembl database, not mapped to new identifiers    
04550 Fal27 No longer in the Ensembl database, not mapped to new identifiers    
05087 Fal13 Hypothetical protein 05087 19 5,590,343 
07726 Fal16 Hypothetical protein 07726 11 10,700,742 
08235 Fal6 Hypothetical protein 08235 Un 42,824,332 
08544 Fal10 No description 08544 17,299,861 
12630 Fal28 Magmas-like protein 12630 14 13,386,833 
15691 Fal6 Uncharacterized protein C15orf24 precursor 15691 32,353,219 
15738 Fal5 Similar to CG1218-PA 15738 26,412,511 
17140 Fal5 No longer in the Ensembl database, not mapped to new identifiers    
18798 Fal6 Kinesin light chain 18798 52,944,389 
20352 Fal1 No description 20352 56,437,562 
20904 Fal1 Hypothetical protein 20904 67,141,279 
21277 Fal1 No description 21277 80,448,704 
22644 Fal2 No description 22644 58,129,917 
25613 Fal8 Hypothetical protein 25613 108,461,452 
25924 Unlinked Hypothetical protein 25924 93,260,081 
27425 Fal4 Hypothetical protein 27425 171,909,504 
27623 Fal4 No longer in the Ensembl database, not mapped to new identifiers    
ABHD10 Fal8 Abhydrolase domain-containing mitochondrial precursor 24813 91,842,859 
ACADL Fal7 Acyl-coenzyme A dehydrogenase, long chain 04557 2,734,809 
ACADSB Fal10 Acyl-coenzyme A dehydrogenase, short/branched chain 15724 33,024,247 
ACHA9 Fal5 Neuronal acetylcholine receptor subunit α-9 precursor 23080 70,872,474 
ACLYc Fal1 ATP citrate lyase 05502 27 4,344,212 
ACOT8 Fal15 Acyl-coenzyme A thioesterase 8 11074 20 10,473,488 
ACTBc Fal32 Actin, cytoplasmic type 5 39969 10 1,891,946 
ADAL Fal23 Adenosine deaminase-like 06419 10 7,196,900 
ADH5 Fal5 Alcohol dehydrogenase 5 (class III), χ polypeptide 19994 61,539,229 
ADIPOR1 Fal27 Adiponectin receptor 1 00132 26 1,090,425 
ALAS1c Fal21 5-Aminolevulinate synthase, nonspecific, mitochondrial precursor 06295 12 2,762,886 
AN32B Fal26 Acidic leucine-rich nuclear phosphoprotein 32 family member B 02401 28 1,324,041 
ANAPC5 Fal9 Anaphase-promoting complex subunit 5 06640 15 5,498,421 
ANKRD49 Fal4 Ankyrin repeat domain-containing protein 49 27818 189,909,241 
ARF1 Unlinked ADP-ribosylation factor 1 08661 2,259,733 
ARHGEF9 Unlinked Rho guanine nucleotide exchange factor 9 12303 11,866,519 
ARHL2 Unlinked Poly(ADP-ribose) glycohydrolase ARH3 03624 23 4,457,042 
ARP6 Fal3 Actin-related protein 6 18851 49,106,063 
ASB6 Fal25 Ankyrin repeat and SOCS box-containing 6 06983 17 6,201,193 
ATG4B Fal14 Cysteine protease ATG4B 10179 5,828,498 
ATP6AP2 Fal4 ATPase, H+ transporting, lysosomal accessory protein 2 26187 115,861,428 
ATP6V1E1 Unlinked Vacuolar H+ ATPase E1 21281 63,935,883 
BZW1 Fal7 Basic leucine zipper and W2 domain-containing protein 1 13380 12,346,390 
C12orf29 Fal3 Hypothetical protein 18208 44,668,513 
C7orf27 Fal32 HEAT repeat domain-containing protein C7orf27 precursor 06938 14 3,350,565 
C8orf53 Fal1 Uncharacterized protein C8orf53 25969 140,964,418 
CACYBP Fal19 Calcyclin-binding protein 07248 7,413,974 
CATB Fal2 Cathepsin B precursor 26896 110,173,920 
CBPZ Fal5 Carboxypeptidase Z precursor 25149 84,149,787 
CCDC104 Unlinked Coiled-coil domain-containing protein 104 13093 129,733 
CCDC132 Fal1 Coiled-coil domain containing 132 15463 22,899,725 
CCDC137 Unlinked MGC16597 protein 07177 18 9,164,974 
CCNG1 Fal12 Cyclin-G1 02636 13 6,483,608 
CCT2 Fal3 Chaperonin-containing TCP1, subunit 2 16215 37,378,125 
CDH9 Fal1 Cadherin-9 precursor 21079 72,557,369 
CEPU1c Fal24 Protein CEPU-1 precursor 29072 24 1,827,157 
CGI-62 Fal1 UPF0418 protein C8orf70 25374 125,087,485 
CHCc Fal13 Clathrin heavy chain 39267 19 7,239,507 
CHD1L Fal8 Chromodomain helicase DNA-binding protein 1-like 24254 83,862,026 
CHM1B Fal18 Charged multivesicular body protein 1b 06500 1,509,856 
CHMP5 Fal1 Charged multivesicular body protein 5 21491 87,941,041 
CNTN1 Fal3 Contactin-1 precursor 15506 30,637,524 
COEA1 Fal1 Collagen α-1(XIV) chain precursor 26472 142,375,665 
CRIPT Fal2 Postsynaptic protein CRIPT 16264 27,956,254 
CT030 Unlinked UPF0414 transmembrane protein C20orf30 00227 22 346,000 
DC1L1 Fal1 Cytoplasmic dynein 1 light intermediate chain 1 18728 40,471,155 
DDAH1 Fal11 Dimethylarginine dimethylaminohydrolase 1 14108 16,977,584 
DECR1 Fal1 2,4-dienoyl-CoA reductase, mitochondrial precursor 25647 129,135,915 
DLD Fal3 Dihydrolipoamide dehydrogenase 12884 15,844,353 
DPYSL3 Unlinked Dihydropyrimidinase-like 3 12260 13 18,592,762 
DST Fal2 Bullous pemphigoid antigen 1 26267 89,753,995 
EDF1 Unlinked Endothelial differentiation-related factor 1 homolog 14657 17 932,044 
EF1A1 Fal2 Elongation factor 1-α 1 25653 84,252,820 
EF1A Fal15 Elongation factor 1-α 09385 20 8,992,662 
EIF3S1 Unlinked Eukaryotic translation initiation factor 3, subunit 1-α 13336 10 21,935,894 
ENO1c Fal20 α-Enolase 03745 21 3,197,152 
ETNK1 Fal3 Ethanolamine kinase 1 21571 68,619,958 
FAK1 Fal1 Focal adhesion kinase 1 26060 151,344,071 
FNc Fal7 Fibronectin 05663 4,362,118 
FTHc Fal6 Ferritin H-subunit 11687 8,042,629 
GAS7 Unlinked Growth-arrest-specific protein 7 00500 18 181,941 
GH1c Fal8 Growth hormone factor 1 24989 96,197,113 
GNB1 Fal20 Guanine nucleotide-binding protein (G protein) β polypeptide 1 02040 21 1,907,993 
GTF2B Fal11 Transcription initiation factor IIB 10015 15,855,345 
HARS Fal12 Histidyl-tRNA synthetase 01152 13 825,160 
HEPACAM Fal24 Hepatocyte cell adhesion molecule 00574 24 244,611 
HMGB2 Fal5 High-mobility group protein B2 17483 44,739,576 
HMGN2 Fal29 Nonhistone chromosomal protein HMG-17 00504 23 132,497 
IGF2R Fal2 Insulin-like growth factor 2 receptor 18986 47,356,791 
IGFBP7 Fal5 Insulin-like growth factor-binding protein 7 precursor 18503 50,637,829 
KCNIP4 Unlinked Kv channel-interacting protein 4 23272 77,264,411 
KCRBc Fal6 Creatine kinase B-type 18765 52,833,368 
KIAA1706 Fal1 CDNA FLJ14480 fis, clone MAMMA1002215 19789 46,847,660 
LARP1 Fal12 La-related protein 1 06374 13 12,129,582 
LDHA Fal6 L-lactate dehydrogenase A chain 10181 13,644,404 
LHCGRc Fal22 Luteinizing hormone/choriogonadotropin receptor 14806 7,517,756 
MAGOH Fal11 Mago-nashi homolog, proliferation-associated 17388 25,398,748 
MBP Fal1 Myelin basic protein 22187 92,901,749 
METRNL Unlinked Meteorin-like protein precursor 02154 18 3,058,036 
MIC1 Fal1 Colon cancer-associated protein Mic1 24206 106,186,277 
MITD1 Fal4 MIT domain-containing protein 1 27060 136,635,855 
MMAA Fal5 Methylmalonic aciduria type A protein, mitochondrial precursor 16214 32,303,140 
MOSPD2 Fal4 Motile sperm domain-containing protein 2 26743 125,737,284 
MPP1c Fal18 Myelin proteolipid protein NA NA NA 
MPP6 Fal1 MAGUK p55 subfamily member 6 17898 31,506,073 
MRPS18A Fal2 28S ribosomal protein S18a, mitochondrial precursor 16751 32,021,644 
NAT5 Fal33 N-acetyltransferase 5 20554 38,349,143 
NDST3 Fal12 Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 3 19599 56,617,452 
NDUFA7 Fal33 NADH dehydrogenase 1 α subcomplex subunit 7 00895 28 871,010 
NSMAF Fal1 Protein FAN (factor associated with N-SMase activation) 24908 115,869,042 
NY-SAR-48 Fal26 Sarcoma antigen NY-SAR-48 isoform a 05915 28 3,757,065 
OAZ Fal26 Ornithine decarboxylase antizyme 01183 28 1,446,253 
ODC11c Fal2 Ornithine decarboxylase 26527 99,660,031 
PARK7 Fal20 Protein DJ-1 Parkinson disease protein 7 homolog 00742 21 235,467 
PDCD11 Fal10 RRP5 protein homolog programmed cell death protein 11 13446 25,047,124 
PDHL1 Fal4 Phosphoglycerate dehydrogenase-like 1 27270 148,754,342 
PES1 Fal9 Pescadillo homolog 1 12619 15 11,118,356 
PKHB2 Fal14 Pleckstrin homology domain-containing family B member 2 03399 3,184,527 
PNN Fal6 Pinin 16532 40,003,168 
POLR2C Fal16 DNA-directed RNA polymerase II subunit RPB3 01768 11 552,555 
POLR2H Fal14 DNA-directed RNA polymerases I, II, and III subunit RPABC3 13907 17,035,879 
PPIL4 Fal2 Peptidyl-prolyl cis-trans isomerase-like 4 20195 50,008,973 
PRS4 Fal6 26S protease regulatory subunit 4 17367 46,255,522 
PSMB1 Fal2 Proteasome (prosome, macropain) subunit, β-type, 1 18217 42,604,002 
PSMC2 Fal3 Proteasome (prosome, macropain) 26S subunit, ATPase, 2 13403 13,964,547 
PSMC3 Fal6 Proteasome 26S ATPase subunit 3 13163 25,021,822 
PSMC5 Fal17 26S protease regulatory subunit 8 00469 27 1,607,679 
PSMD14 Fal7 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 18142 22,963,970 
PSMD6 Fal21 26S proteasome non-ATPase regulatory subunit 6 11836 12 13,910,990 
PTMS Fal8 Parathymosin 23363 80,288,088 
RAB12 Fal1 Gallus gallus similar to Rab12 protein 22528 101,592,940 
RAB3GAP1 Fal7 Rab3 GTPase-activating protein catalytic subunit 19948 32,114,339 
RABL4 Fal3 Putative GTP-binding protein RAY-like 20454 53,623,713 
RASGEF1A Fal10 RasGEF domain family, member 1A 03978 5,681,912 
RBBP7 Fal4 Histone-binding protein RBBP7 26698 124,845,745 
RBM18 Unlinked Probable RNA-binding protein 18 02045 17 9,445,180 
RBM26 Fal4 RNA-binding protein 26 27331 157,186,094 
RHOc Fal31 Rhodopsin (opsin-2) 33236 12 20,163,795 
RL13 Fal30 60S ribosomal protein L13 09974 11 20,692,991 
RNASEH1 Fal2 Ribonuclease H1 26438 96,571,133 
ROBO1 Fal9 Roundabout1 protein 25008 99,689,366 
RPL5c Fal11 60S ribosomal protein L5 09525 14,745,903 
RPL7Ac Fal25 60S ribosomal protein L7a 21881 17 7,532,190 
RPL11 Fal29 Ribosomal protein L11 06305 23 5,837,007 
RPL23 Fal17 60S ribosomal protein L23 02496 27 3,957,106 
RPL30c Fal1 60S ribosomal protein L30 36621 132,392,442 
RPL37Ac Fal7 60S ribosomal protein L37a 18702 24,873,612 
SBDS Fal13 Shwachman–Bodian–Diamond syndrome 01658 19 782,450 
SERINC1 Fal2 Tumor differentially expressed 2 23989 63,939,040 
SPCS1 Fal21 Signal peptidase complex subunit 1 02526 12 749,082 
STYX Unlinked Serine/threonine/tyrosine-interacting protein 20280 60,813,050 
TGFB2c Fal2 Transforming growth factor β-2 precursor 15664 20,477,096 
THUMPD3 Fal31 THUMP domain-containing protein 3 13674 12 20,067,036 
TIMM17A Fal27 Translocase of inner mitochondrial membrane 17 homolog A 00123 26 1,096,567 
TMc Fal23 Tropomyosin α-1 chain 05572 10 5,107,950 
TMEM32 Fal18 Transmembrane protein 32 precursor 09949 4,186,140 
TUBGCP3 Fal4 Gamma-tubulin complex component 3 27189 142,174,289 
TXNDC14 Unlinked Thioredoxin domain containing 14 11887 18,159,850 
UBE2J1 Fal2 Ubiquitin-conjugating enzyme E2, J1 25442 78,396,237 
UCHL3 Fal4 Ubiquitin carboxyl-terminal esterase L3 27356 159,089,890 
UCHL5 Fal11 Ubiquitin carboxyl-terminal hydrolase L5 03977 3,533,310 
UQCRC1 Fal21 Ubiquinol-cytochrome-c reductase complex core protein 1 09300 12 9,301,215 
VIPR2 Fal1 Vasoactive intestinal peptide receptor 2 10623 9,569,988 
VISL1 Unlinked Visinin-like protein 1 26565 102,957,139 
VPS26A Unlinked Vacuolar protein sorting-associated protein 26A 06635 11,919,165 
WDR24 Fal28 WD repeat protein 24 03862 14 13,908,481 
YME1L1 Fal1 YME1-like 1 12112 15,827,680 
YPEL5 Unlinked Yippee-like 5 14726 8,031,083 
Microsatellites 
EST9 Fal10   24,700,943 
EST10 Fal10   24,725,801 
EST16 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,406 
EST31 Fal19 Peroxiredoxin-6  4,336,642 
EST46 Fal30 α-Fetoprotein enhancer-binding protein  11 21,546,200 
Fhy215 Fal1     
Fhy216 Fal3     
Fhy217 Fal3     
Fhy220 Fal4     
Fhy221 Fal16     
Fhy223 Fal4 NW_001471545.1 Gga1 WGA43_2  140,906,192 
Fhy224 Fal9 NW_001471459.1 Gga15 WGA207_2  15 1,723,096 
Fhy225 Fal2     
Fhy226 Fal2     
Fhy227 Fal8     
Fhy228 Fal22     
Fhy230 Fal1 NW_001471633.1 Gga2 WGA60_2  49,531,823 
Fhy231 Unlinked     
Fhy234 Fal1     
Fhy235 Fal22 NW_001471676.1 Gga3 WGA95_2  5,902,333 
Fhy236 Fal15 NW_001471568.1 Gga20 WGA258_2  20 12,551,523 
Fhy237 Fal6     
Fhy301 Fal16 NW_001471434.1 Gga11 WGA182_2  11 4,504,384 
Fhy304 Fal5     
Fhy306 Fal5     
Fhy310 Fal17     
Fhy321 Fal10     
Fhy326 Fal6 NW_001471698.1 Gga5 WGA124_2  16,318,616 
Fhy328 Fal5     
Fhy329 Fal2 NW_001471669.1 Gga3 WGA102_2  48,212,536 
Fhy336 Fal1     
Fhy339 Fal8     
Fhy341 Fal3     
Fhy342 Unlinked     
Fhy344 Fal5 NW_001471687.1 Gga4 WGA113_2  84,661,433 
Fhy350 Fal9 NW_001471461.1 Gga15 WGA209_2  15 9,498,662 
Fhy356 Fal3 NW_001471552.1 Gga1 WGA4_2  7,812,491 
Fhy361 Fal1 NW_001471633 Gga2 WGA60_2  45,075,848 
Fhy370 Fal8 NW_001471529.1 Gga1 WGA29_2  92,668,432 
Fhy401 Fal5     
Fhy403 Fal1     
Fhy404 Unlinked     
Fhy405 Fal9     
Fhy407 Fal4 NW_001471554.1 Gga1 WGA51_2  177,252,431 
Fhy408 Fal3     
Fhy413 Fal1     
Fhy415 Fal1 NW_001471639.1 Gga2 WGA66_2  79,942,990 
Fhy427 Fal3 NW_001471510.1 Gga1 WGA11_2  21,414,296 
Fhy428 Fal1     
Fhy429 Unlinked     
Fhy431 Fal10     
Fhy432 Unlinked     
Fhy444 Fal4     
Fhy448 Fal2     
Fhy450 Fal7     
Fhy452 Fal4     
Fhy453 Fal10 NW_001471713.1 Gga6 WGA139_2  3,534,436 
Fhy454 Unlinked     
Fhy458 Fal1 NW_001471651.1 Gga2 WGA78_2  129,424,241 
Fhy464 Fal2     
Fhy465 Fal4 NW_001471554.1 Gga1 WGA51_2  176,719,296 
Fhy466 Fal7 NW_001471729.1 Gga7 WGA155_2  13,437,385 
Fhy467 Fal1     
FhU3 Fal1     
FhU4 Fal3     
FhU5 Fal1     
GG-C25 Fal6   31,720,224 
SS12 Fal3     
ZF-C59 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,320 
ZF-S8 Unlinked Hypothetical protein  18 4,041,446 
ZF-S9
 
Fal12
 

 

 
13
 
8,811,918
 

Marker

Linkage group

Gene descriptiona

Ensembl IDb

Chicken chromosome

Chicken genome start position (bp)
Gene-based SNPs 
00548 Unlinked Hypothetical protein 00548 22 1,221,445 
02079 Unlinked Hypothetical protein 02079 10 1,854,152 
02419 Fal9 No longer in the Ensembl database, not mapped to new identifiers    
04550 Fal27 No longer in the Ensembl database, not mapped to new identifiers    
05087 Fal13 Hypothetical protein 05087 19 5,590,343 
07726 Fal16 Hypothetical protein 07726 11 10,700,742 
08235 Fal6 Hypothetical protein 08235 Un 42,824,332 
08544 Fal10 No description 08544 17,299,861 
12630 Fal28 Magmas-like protein 12630 14 13,386,833 
15691 Fal6 Uncharacterized protein C15orf24 precursor 15691 32,353,219 
15738 Fal5 Similar to CG1218-PA 15738 26,412,511 
17140 Fal5 No longer in the Ensembl database, not mapped to new identifiers    
18798 Fal6 Kinesin light chain 18798 52,944,389 
20352 Fal1 No description 20352 56,437,562 
20904 Fal1 Hypothetical protein 20904 67,141,279 
21277 Fal1 No description 21277 80,448,704 
22644 Fal2 No description 22644 58,129,917 
25613 Fal8 Hypothetical protein 25613 108,461,452 
25924 Unlinked Hypothetical protein 25924 93,260,081 
27425 Fal4 Hypothetical protein 27425 171,909,504 
27623 Fal4 No longer in the Ensembl database, not mapped to new identifiers    
ABHD10 Fal8 Abhydrolase domain-containing mitochondrial precursor 24813 91,842,859 
ACADL Fal7 Acyl-coenzyme A dehydrogenase, long chain 04557 2,734,809 
ACADSB Fal10 Acyl-coenzyme A dehydrogenase, short/branched chain 15724 33,024,247 
ACHA9 Fal5 Neuronal acetylcholine receptor subunit α-9 precursor 23080 70,872,474 
ACLYc Fal1 ATP citrate lyase 05502 27 4,344,212 
ACOT8 Fal15 Acyl-coenzyme A thioesterase 8 11074 20 10,473,488 
ACTBc Fal32 Actin, cytoplasmic type 5 39969 10 1,891,946 
ADAL Fal23 Adenosine deaminase-like 06419 10 7,196,900 
ADH5 Fal5 Alcohol dehydrogenase 5 (class III), χ polypeptide 19994 61,539,229 
ADIPOR1 Fal27 Adiponectin receptor 1 00132 26 1,090,425 
ALAS1c Fal21 5-Aminolevulinate synthase, nonspecific, mitochondrial precursor 06295 12 2,762,886 
AN32B Fal26 Acidic leucine-rich nuclear phosphoprotein 32 family member B 02401 28 1,324,041 
ANAPC5 Fal9 Anaphase-promoting complex subunit 5 06640 15 5,498,421 
ANKRD49 Fal4 Ankyrin repeat domain-containing protein 49 27818 189,909,241 
ARF1 Unlinked ADP-ribosylation factor 1 08661 2,259,733 
ARHGEF9 Unlinked Rho guanine nucleotide exchange factor 9 12303 11,866,519 
ARHL2 Unlinked Poly(ADP-ribose) glycohydrolase ARH3 03624 23 4,457,042 
ARP6 Fal3 Actin-related protein 6 18851 49,106,063 
ASB6 Fal25 Ankyrin repeat and SOCS box-containing 6 06983 17 6,201,193 
ATG4B Fal14 Cysteine protease ATG4B 10179 5,828,498 
ATP6AP2 Fal4 ATPase, H+ transporting, lysosomal accessory protein 2 26187 115,861,428 
ATP6V1E1 Unlinked Vacuolar H+ ATPase E1 21281 63,935,883 
BZW1 Fal7 Basic leucine zipper and W2 domain-containing protein 1 13380 12,346,390 
C12orf29 Fal3 Hypothetical protein 18208 44,668,513 
C7orf27 Fal32 HEAT repeat domain-containing protein C7orf27 precursor 06938 14 3,350,565 
C8orf53 Fal1 Uncharacterized protein C8orf53 25969 140,964,418 
CACYBP Fal19 Calcyclin-binding protein 07248 7,413,974 
CATB Fal2 Cathepsin B precursor 26896 110,173,920 
CBPZ Fal5 Carboxypeptidase Z precursor 25149 84,149,787 
CCDC104 Unlinked Coiled-coil domain-containing protein 104 13093 129,733 
CCDC132 Fal1 Coiled-coil domain containing 132 15463 22,899,725 
CCDC137 Unlinked MGC16597 protein 07177 18 9,164,974 
CCNG1 Fal12 Cyclin-G1 02636 13 6,483,608 
CCT2 Fal3 Chaperonin-containing TCP1, subunit 2 16215 37,378,125 
CDH9 Fal1 Cadherin-9 precursor 21079 72,557,369 
CEPU1c Fal24 Protein CEPU-1 precursor 29072 24 1,827,157 
CGI-62 Fal1 UPF0418 protein C8orf70 25374 125,087,485 
CHCc Fal13 Clathrin heavy chain 39267 19 7,239,507 
CHD1L Fal8 Chromodomain helicase DNA-binding protein 1-like 24254 83,862,026 
CHM1B Fal18 Charged multivesicular body protein 1b 06500 1,509,856 
CHMP5 Fal1 Charged multivesicular body protein 5 21491 87,941,041 
CNTN1 Fal3 Contactin-1 precursor 15506 30,637,524 
COEA1 Fal1 Collagen α-1(XIV) chain precursor 26472 142,375,665 
CRIPT Fal2 Postsynaptic protein CRIPT 16264 27,956,254 
CT030 Unlinked UPF0414 transmembrane protein C20orf30 00227 22 346,000 
DC1L1 Fal1 Cytoplasmic dynein 1 light intermediate chain 1 18728 40,471,155 
DDAH1 Fal11 Dimethylarginine dimethylaminohydrolase 1 14108 16,977,584 
DECR1 Fal1 2,4-dienoyl-CoA reductase, mitochondrial precursor 25647 129,135,915 
DLD Fal3 Dihydrolipoamide dehydrogenase 12884 15,844,353 
DPYSL3 Unlinked Dihydropyrimidinase-like 3 12260 13 18,592,762 
DST Fal2 Bullous pemphigoid antigen 1 26267 89,753,995 
EDF1 Unlinked Endothelial differentiation-related factor 1 homolog 14657 17 932,044 
EF1A1 Fal2 Elongation factor 1-α 1 25653 84,252,820 
EF1A Fal15 Elongation factor 1-α 09385 20 8,992,662 
EIF3S1 Unlinked Eukaryotic translation initiation factor 3, subunit 1-α 13336 10 21,935,894 
ENO1c Fal20 α-Enolase 03745 21 3,197,152 
ETNK1 Fal3 Ethanolamine kinase 1 21571 68,619,958 
FAK1 Fal1 Focal adhesion kinase 1 26060 151,344,071 
FNc Fal7 Fibronectin 05663 4,362,118 
FTHc Fal6 Ferritin H-subunit 11687 8,042,629 
GAS7 Unlinked Growth-arrest-specific protein 7 00500 18 181,941 
GH1c Fal8 Growth hormone factor 1 24989 96,197,113 
GNB1 Fal20 Guanine nucleotide-binding protein (G protein) β polypeptide 1 02040 21 1,907,993 
GTF2B Fal11 Transcription initiation factor IIB 10015 15,855,345 
HARS Fal12 Histidyl-tRNA synthetase 01152 13 825,160 
HEPACAM Fal24 Hepatocyte cell adhesion molecule 00574 24 244,611 
HMGB2 Fal5 High-mobility group protein B2 17483 44,739,576 
HMGN2 Fal29 Nonhistone chromosomal protein HMG-17 00504 23 132,497 
IGF2R Fal2 Insulin-like growth factor 2 receptor 18986 47,356,791 
IGFBP7 Fal5 Insulin-like growth factor-binding protein 7 precursor 18503 50,637,829 
KCNIP4 Unlinked Kv channel-interacting protein 4 23272 77,264,411 
KCRBc Fal6 Creatine kinase B-type 18765 52,833,368 
KIAA1706 Fal1 CDNA FLJ14480 fis, clone MAMMA1002215 19789 46,847,660 
LARP1 Fal12 La-related protein 1 06374 13 12,129,582 
LDHA Fal6 L-lactate dehydrogenase A chain 10181 13,644,404 
LHCGRc Fal22 Luteinizing hormone/choriogonadotropin receptor 14806 7,517,756 
MAGOH Fal11 Mago-nashi homolog, proliferation-associated 17388 25,398,748 
MBP Fal1 Myelin basic protein 22187 92,901,749 
METRNL Unlinked Meteorin-like protein precursor 02154 18 3,058,036 
MIC1 Fal1 Colon cancer-associated protein Mic1 24206 106,186,277 
MITD1 Fal4 MIT domain-containing protein 1 27060 136,635,855 
MMAA Fal5 Methylmalonic aciduria type A protein, mitochondrial precursor 16214 32,303,140 
MOSPD2 Fal4 Motile sperm domain-containing protein 2 26743 125,737,284 
MPP1c Fal18 Myelin proteolipid protein NA NA NA 
MPP6 Fal1 MAGUK p55 subfamily member 6 17898 31,506,073 
MRPS18A Fal2 28S ribosomal protein S18a, mitochondrial precursor 16751 32,021,644 
NAT5 Fal33 N-acetyltransferase 5 20554 38,349,143 
NDST3 Fal12 Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 3 19599 56,617,452 
NDUFA7 Fal33 NADH dehydrogenase 1 α subcomplex subunit 7 00895 28 871,010 
NSMAF Fal1 Protein FAN (factor associated with N-SMase activation) 24908 115,869,042 
NY-SAR-48 Fal26 Sarcoma antigen NY-SAR-48 isoform a 05915 28 3,757,065 
OAZ Fal26 Ornithine decarboxylase antizyme 01183 28 1,446,253 
ODC11c Fal2 Ornithine decarboxylase 26527 99,660,031 
PARK7 Fal20 Protein DJ-1 Parkinson disease protein 7 homolog 00742 21 235,467 
PDCD11 Fal10 RRP5 protein homolog programmed cell death protein 11 13446 25,047,124 
PDHL1 Fal4 Phosphoglycerate dehydrogenase-like 1 27270 148,754,342 
PES1 Fal9 Pescadillo homolog 1 12619 15 11,118,356 
PKHB2 Fal14 Pleckstrin homology domain-containing family B member 2 03399 3,184,527 
PNN Fal6 Pinin 16532 40,003,168 
POLR2C Fal16 DNA-directed RNA polymerase II subunit RPB3 01768 11 552,555 
POLR2H Fal14 DNA-directed RNA polymerases I, II, and III subunit RPABC3 13907 17,035,879 
PPIL4 Fal2 Peptidyl-prolyl cis-trans isomerase-like 4 20195 50,008,973 
PRS4 Fal6 26S protease regulatory subunit 4 17367 46,255,522 
PSMB1 Fal2 Proteasome (prosome, macropain) subunit, β-type, 1 18217 42,604,002 
PSMC2 Fal3 Proteasome (prosome, macropain) 26S subunit, ATPase, 2 13403 13,964,547 
PSMC3 Fal6 Proteasome 26S ATPase subunit 3 13163 25,021,822 
PSMC5 Fal17 26S protease regulatory subunit 8 00469 27 1,607,679 
PSMD14 Fal7 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 18142 22,963,970 
PSMD6 Fal21 26S proteasome non-ATPase regulatory subunit 6 11836 12 13,910,990 
PTMS Fal8 Parathymosin 23363 80,288,088 
RAB12 Fal1 Gallus gallus similar to Rab12 protein 22528 101,592,940 
RAB3GAP1 Fal7 Rab3 GTPase-activating protein catalytic subunit 19948 32,114,339 
RABL4 Fal3 Putative GTP-binding protein RAY-like 20454 53,623,713 
RASGEF1A Fal10 RasGEF domain family, member 1A 03978 5,681,912 
RBBP7 Fal4 Histone-binding protein RBBP7 26698 124,845,745 
RBM18 Unlinked Probable RNA-binding protein 18 02045 17 9,445,180 
RBM26 Fal4 RNA-binding protein 26 27331 157,186,094 
RHOc Fal31 Rhodopsin (opsin-2) 33236 12 20,163,795 
RL13 Fal30 60S ribosomal protein L13 09974 11 20,692,991 
RNASEH1 Fal2 Ribonuclease H1 26438 96,571,133 
ROBO1 Fal9 Roundabout1 protein 25008 99,689,366 
RPL5c Fal11 60S ribosomal protein L5 09525 14,745,903 
RPL7Ac Fal25 60S ribosomal protein L7a 21881 17 7,532,190 
RPL11 Fal29 Ribosomal protein L11 06305 23 5,837,007 
RPL23 Fal17 60S ribosomal protein L23 02496 27 3,957,106 
RPL30c Fal1 60S ribosomal protein L30 36621 132,392,442 
RPL37Ac Fal7 60S ribosomal protein L37a 18702 24,873,612 
SBDS Fal13 Shwachman–Bodian–Diamond syndrome 01658 19 782,450 
SERINC1 Fal2 Tumor differentially expressed 2 23989 63,939,040 
SPCS1 Fal21 Signal peptidase complex subunit 1 02526 12 749,082 
STYX Unlinked Serine/threonine/tyrosine-interacting protein 20280 60,813,050 
TGFB2c Fal2 Transforming growth factor β-2 precursor 15664 20,477,096 
THUMPD3 Fal31 THUMP domain-containing protein 3 13674 12 20,067,036 
TIMM17A Fal27 Translocase of inner mitochondrial membrane 17 homolog A 00123 26 1,096,567 
TMc Fal23 Tropomyosin α-1 chain 05572 10 5,107,950 
TMEM32 Fal18 Transmembrane protein 32 precursor 09949 4,186,140 
TUBGCP3 Fal4 Gamma-tubulin complex component 3 27189 142,174,289 
TXNDC14 Unlinked Thioredoxin domain containing 14 11887 18,159,850 
UBE2J1 Fal2 Ubiquitin-conjugating enzyme E2, J1 25442 78,396,237 
UCHL3 Fal4 Ubiquitin carboxyl-terminal esterase L3 27356 159,089,890 
UCHL5 Fal11 Ubiquitin carboxyl-terminal hydrolase L5 03977 3,533,310 
UQCRC1 Fal21 Ubiquinol-cytochrome-c reductase complex core protein 1 09300 12 9,301,215 
VIPR2 Fal1 Vasoactive intestinal peptide receptor 2 10623 9,569,988 
VISL1 Unlinked Visinin-like protein 1 26565 102,957,139 
VPS26A Unlinked Vacuolar protein sorting-associated protein 26A 06635 11,919,165 
WDR24 Fal28 WD repeat protein 24 03862 14 13,908,481 
YME1L1 Fal1 YME1-like 1 12112 15,827,680 
YPEL5 Unlinked Yippee-like 5 14726 8,031,083 
Microsatellites 
EST9 Fal10   24,700,943 
EST10 Fal10   24,725,801 
EST16 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,406 
EST31 Fal19 Peroxiredoxin-6  4,336,642 
EST46 Fal30 α-Fetoprotein enhancer-binding protein  11 21,546,200 
Fhy215 Fal1     
Fhy216 Fal3     
Fhy217 Fal3     
Fhy220 Fal4     
Fhy221 Fal16     
Fhy223 Fal4 NW_001471545.1 Gga1 WGA43_2  140,906,192 
Fhy224 Fal9 NW_001471459.1 Gga15 WGA207_2  15 1,723,096 
Fhy225 Fal2     
Fhy226 Fal2     
Fhy227 Fal8     
Fhy228 Fal22     
Fhy230 Fal1 NW_001471633.1 Gga2 WGA60_2  49,531,823 
Fhy231 Unlinked     
Fhy234 Fal1     
Fhy235 Fal22 NW_001471676.1 Gga3 WGA95_2  5,902,333 
Fhy236 Fal15 NW_001471568.1 Gga20 WGA258_2  20 12,551,523 
Fhy237 Fal6     
Fhy301 Fal16 NW_001471434.1 Gga11 WGA182_2  11 4,504,384 
Fhy304 Fal5     
Fhy306 Fal5     
Fhy310 Fal17     
Fhy321 Fal10     
Fhy326 Fal6 NW_001471698.1 Gga5 WGA124_2  16,318,616 
Fhy328 Fal5     
Fhy329 Fal2 NW_001471669.1 Gga3 WGA102_2  48,212,536 
Fhy336 Fal1     
Fhy339 Fal8     
Fhy341 Fal3     
Fhy342 Unlinked     
Fhy344 Fal5 NW_001471687.1 Gga4 WGA113_2  84,661,433 
Fhy350 Fal9 NW_001471461.1 Gga15 WGA209_2  15 9,498,662 
Fhy356 Fal3 NW_001471552.1 Gga1 WGA4_2  7,812,491 
Fhy361 Fal1 NW_001471633 Gga2 WGA60_2  45,075,848 
Fhy370 Fal8 NW_001471529.1 Gga1 WGA29_2  92,668,432 
Fhy401 Fal5     
Fhy403 Fal1     
Fhy404 Unlinked     
Fhy405 Fal9     
Fhy407 Fal4 NW_001471554.1 Gga1 WGA51_2  177,252,431 
Fhy408 Fal3     
Fhy413 Fal1     
Fhy415 Fal1 NW_001471639.1 Gga2 WGA66_2  79,942,990 
Fhy427 Fal3 NW_001471510.1 Gga1 WGA11_2  21,414,296 
Fhy428 Fal1     
Fhy429 Unlinked     
Fhy431 Fal10     
Fhy432 Unlinked     
Fhy444 Fal4     
Fhy448 Fal2     
Fhy450 Fal7     
Fhy452 Fal4     
Fhy453 Fal10 NW_001471713.1 Gga6 WGA139_2  3,534,436 
Fhy454 Unlinked     
Fhy458 Fal1 NW_001471651.1 Gga2 WGA78_2  129,424,241 
Fhy464 Fal2     
Fhy465 Fal4 NW_001471554.1 Gga1 WGA51_2  176,719,296 
Fhy466 Fal7 NW_001471729.1 Gga7 WGA155_2  13,437,385 
Fhy467 Fal1     
FhU3 Fal1     
FhU4 Fal3     
FhU5 Fal1     
GG-C25 Fal6   31,720,224 
SS12 Fal3     
ZF-C59 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,320 
ZF-S8 Unlinked Hypothetical protein  18 4,041,446 
ZF-S9
 
Fal12
 

 

 
13
 
8,811,918
 
a

The contig number from the chicken genome sequence build 2.1 is described for microsatellites.

b

ENSEMBL ID for the orthologous chicken gene (ENSGALG000000xxxxx).

TABLE 1

Markers included in the collared flycatcher linkage map


Marker

Linkage group

Gene descriptiona

Ensembl IDb

Chicken chromosome

Chicken genome start position (bp)
Gene-based SNPs 
00548 Unlinked Hypothetical protein 00548 22 1,221,445 
02079 Unlinked Hypothetical protein 02079 10 1,854,152 
02419 Fal9 No longer in the Ensembl database, not mapped to new identifiers    
04550 Fal27 No longer in the Ensembl database, not mapped to new identifiers    
05087 Fal13 Hypothetical protein 05087 19 5,590,343 
07726 Fal16 Hypothetical protein 07726 11 10,700,742 
08235 Fal6 Hypothetical protein 08235 Un 42,824,332 
08544 Fal10 No description 08544 17,299,861 
12630 Fal28 Magmas-like protein 12630 14 13,386,833 
15691 Fal6 Uncharacterized protein C15orf24 precursor 15691 32,353,219 
15738 Fal5 Similar to CG1218-PA 15738 26,412,511 
17140 Fal5 No longer in the Ensembl database, not mapped to new identifiers    
18798 Fal6 Kinesin light chain 18798 52,944,389 
20352 Fal1 No description 20352 56,437,562 
20904 Fal1 Hypothetical protein 20904 67,141,279 
21277 Fal1 No description 21277 80,448,704 
22644 Fal2 No description 22644 58,129,917 
25613 Fal8 Hypothetical protein 25613 108,461,452 
25924 Unlinked Hypothetical protein 25924 93,260,081 
27425 Fal4 Hypothetical protein 27425 171,909,504 
27623 Fal4 No longer in the Ensembl database, not mapped to new identifiers    
ABHD10 Fal8 Abhydrolase domain-containing mitochondrial precursor 24813 91,842,859 
ACADL Fal7 Acyl-coenzyme A dehydrogenase, long chain 04557 2,734,809 
ACADSB Fal10 Acyl-coenzyme A dehydrogenase, short/branched chain 15724 33,024,247 
ACHA9 Fal5 Neuronal acetylcholine receptor subunit α-9 precursor 23080 70,872,474 
ACLYc Fal1 ATP citrate lyase 05502 27 4,344,212 
ACOT8 Fal15 Acyl-coenzyme A thioesterase 8 11074 20 10,473,488 
ACTBc Fal32 Actin, cytoplasmic type 5 39969 10 1,891,946 
ADAL Fal23 Adenosine deaminase-like 06419 10 7,196,900 
ADH5 Fal5 Alcohol dehydrogenase 5 (class III), χ polypeptide 19994 61,539,229 
ADIPOR1 Fal27 Adiponectin receptor 1 00132 26 1,090,425 
ALAS1c Fal21 5-Aminolevulinate synthase, nonspecific, mitochondrial precursor 06295 12 2,762,886 
AN32B Fal26 Acidic leucine-rich nuclear phosphoprotein 32 family member B 02401 28 1,324,041 
ANAPC5 Fal9 Anaphase-promoting complex subunit 5 06640 15 5,498,421 
ANKRD49 Fal4 Ankyrin repeat domain-containing protein 49 27818 189,909,241 
ARF1 Unlinked ADP-ribosylation factor 1 08661 2,259,733 
ARHGEF9 Unlinked Rho guanine nucleotide exchange factor 9 12303 11,866,519 
ARHL2 Unlinked Poly(ADP-ribose) glycohydrolase ARH3 03624 23 4,457,042 
ARP6 Fal3 Actin-related protein 6 18851 49,106,063 
ASB6 Fal25 Ankyrin repeat and SOCS box-containing 6 06983 17 6,201,193 
ATG4B Fal14 Cysteine protease ATG4B 10179 5,828,498 
ATP6AP2 Fal4 ATPase, H+ transporting, lysosomal accessory protein 2 26187 115,861,428 
ATP6V1E1 Unlinked Vacuolar H+ ATPase E1 21281 63,935,883 
BZW1 Fal7 Basic leucine zipper and W2 domain-containing protein 1 13380 12,346,390 
C12orf29 Fal3 Hypothetical protein 18208 44,668,513 
C7orf27 Fal32 HEAT repeat domain-containing protein C7orf27 precursor 06938 14 3,350,565 
C8orf53 Fal1 Uncharacterized protein C8orf53 25969 140,964,418 
CACYBP Fal19 Calcyclin-binding protein 07248 7,413,974 
CATB Fal2 Cathepsin B precursor 26896 110,173,920 
CBPZ Fal5 Carboxypeptidase Z precursor 25149 84,149,787 
CCDC104 Unlinked Coiled-coil domain-containing protein 104 13093 129,733 
CCDC132 Fal1 Coiled-coil domain containing 132 15463 22,899,725 
CCDC137 Unlinked MGC16597 protein 07177 18 9,164,974 
CCNG1 Fal12 Cyclin-G1 02636 13 6,483,608 
CCT2 Fal3 Chaperonin-containing TCP1, subunit 2 16215 37,378,125 
CDH9 Fal1 Cadherin-9 precursor 21079 72,557,369 
CEPU1c Fal24 Protein CEPU-1 precursor 29072 24 1,827,157 
CGI-62 Fal1 UPF0418 protein C8orf70 25374 125,087,485 
CHCc Fal13 Clathrin heavy chain 39267 19 7,239,507 
CHD1L Fal8 Chromodomain helicase DNA-binding protein 1-like 24254 83,862,026 
CHM1B Fal18 Charged multivesicular body protein 1b 06500 1,509,856 
CHMP5 Fal1 Charged multivesicular body protein 5 21491 87,941,041 
CNTN1 Fal3 Contactin-1 precursor 15506 30,637,524 
COEA1 Fal1 Collagen α-1(XIV) chain precursor 26472 142,375,665 
CRIPT Fal2 Postsynaptic protein CRIPT 16264 27,956,254 
CT030 Unlinked UPF0414 transmembrane protein C20orf30 00227 22 346,000 
DC1L1 Fal1 Cytoplasmic dynein 1 light intermediate chain 1 18728 40,471,155 
DDAH1 Fal11 Dimethylarginine dimethylaminohydrolase 1 14108 16,977,584 
DECR1 Fal1 2,4-dienoyl-CoA reductase, mitochondrial precursor 25647 129,135,915 
DLD Fal3 Dihydrolipoamide dehydrogenase 12884 15,844,353 
DPYSL3 Unlinked Dihydropyrimidinase-like 3 12260 13 18,592,762 
DST Fal2 Bullous pemphigoid antigen 1 26267 89,753,995 
EDF1 Unlinked Endothelial differentiation-related factor 1 homolog 14657 17 932,044 
EF1A1 Fal2 Elongation factor 1-α 1 25653 84,252,820 
EF1A Fal15 Elongation factor 1-α 09385 20 8,992,662 
EIF3S1 Unlinked Eukaryotic translation initiation factor 3, subunit 1-α 13336 10 21,935,894 
ENO1c Fal20 α-Enolase 03745 21 3,197,152 
ETNK1 Fal3 Ethanolamine kinase 1 21571 68,619,958 
FAK1 Fal1 Focal adhesion kinase 1 26060 151,344,071 
FNc Fal7 Fibronectin 05663 4,362,118 
FTHc Fal6 Ferritin H-subunit 11687 8,042,629 
GAS7 Unlinked Growth-arrest-specific protein 7 00500 18 181,941 
GH1c Fal8 Growth hormone factor 1 24989 96,197,113 
GNB1 Fal20 Guanine nucleotide-binding protein (G protein) β polypeptide 1 02040 21 1,907,993 
GTF2B Fal11 Transcription initiation factor IIB 10015 15,855,345 
HARS Fal12 Histidyl-tRNA synthetase 01152 13 825,160 
HEPACAM Fal24 Hepatocyte cell adhesion molecule 00574 24 244,611 
HMGB2 Fal5 High-mobility group protein B2 17483 44,739,576 
HMGN2 Fal29 Nonhistone chromosomal protein HMG-17 00504 23 132,497 
IGF2R Fal2 Insulin-like growth factor 2 receptor 18986 47,356,791 
IGFBP7 Fal5 Insulin-like growth factor-binding protein 7 precursor 18503 50,637,829 
KCNIP4 Unlinked Kv channel-interacting protein 4 23272 77,264,411 
KCRBc Fal6 Creatine kinase B-type 18765 52,833,368 
KIAA1706 Fal1 CDNA FLJ14480 fis, clone MAMMA1002215 19789 46,847,660 
LARP1 Fal12 La-related protein 1 06374 13 12,129,582 
LDHA Fal6 L-lactate dehydrogenase A chain 10181 13,644,404 
LHCGRc Fal22 Luteinizing hormone/choriogonadotropin receptor 14806 7,517,756 
MAGOH Fal11 Mago-nashi homolog, proliferation-associated 17388 25,398,748 
MBP Fal1 Myelin basic protein 22187 92,901,749 
METRNL Unlinked Meteorin-like protein precursor 02154 18 3,058,036 
MIC1 Fal1 Colon cancer-associated protein Mic1 24206 106,186,277 
MITD1 Fal4 MIT domain-containing protein 1 27060 136,635,855 
MMAA Fal5 Methylmalonic aciduria type A protein, mitochondrial precursor 16214 32,303,140 
MOSPD2 Fal4 Motile sperm domain-containing protein 2 26743 125,737,284 
MPP1c Fal18 Myelin proteolipid protein NA NA NA 
MPP6 Fal1 MAGUK p55 subfamily member 6 17898 31,506,073 
MRPS18A Fal2 28S ribosomal protein S18a, mitochondrial precursor 16751 32,021,644 
NAT5 Fal33 N-acetyltransferase 5 20554 38,349,143 
NDST3 Fal12 Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 3 19599 56,617,452 
NDUFA7 Fal33 NADH dehydrogenase 1 α subcomplex subunit 7 00895 28 871,010 
NSMAF Fal1 Protein FAN (factor associated with N-SMase activation) 24908 115,869,042 
NY-SAR-48 Fal26 Sarcoma antigen NY-SAR-48 isoform a 05915 28 3,757,065 
OAZ Fal26 Ornithine decarboxylase antizyme 01183 28 1,446,253 
ODC11c Fal2 Ornithine decarboxylase 26527 99,660,031 
PARK7 Fal20 Protein DJ-1 Parkinson disease protein 7 homolog 00742 21 235,467 
PDCD11 Fal10 RRP5 protein homolog programmed cell death protein 11 13446 25,047,124 
PDHL1 Fal4 Phosphoglycerate dehydrogenase-like 1 27270 148,754,342 
PES1 Fal9 Pescadillo homolog 1 12619 15 11,118,356 
PKHB2 Fal14 Pleckstrin homology domain-containing family B member 2 03399 3,184,527 
PNN Fal6 Pinin 16532 40,003,168 
POLR2C Fal16 DNA-directed RNA polymerase II subunit RPB3 01768 11 552,555 
POLR2H Fal14 DNA-directed RNA polymerases I, II, and III subunit RPABC3 13907 17,035,879 
PPIL4 Fal2 Peptidyl-prolyl cis-trans isomerase-like 4 20195 50,008,973 
PRS4 Fal6 26S protease regulatory subunit 4 17367 46,255,522 
PSMB1 Fal2 Proteasome (prosome, macropain) subunit, β-type, 1 18217 42,604,002 
PSMC2 Fal3 Proteasome (prosome, macropain) 26S subunit, ATPase, 2 13403 13,964,547 
PSMC3 Fal6 Proteasome 26S ATPase subunit 3 13163 25,021,822 
PSMC5 Fal17 26S protease regulatory subunit 8 00469 27 1,607,679 
PSMD14 Fal7 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 18142 22,963,970 
PSMD6 Fal21 26S proteasome non-ATPase regulatory subunit 6 11836 12 13,910,990 
PTMS Fal8 Parathymosin 23363 80,288,088 
RAB12 Fal1 Gallus gallus similar to Rab12 protein 22528 101,592,940 
RAB3GAP1 Fal7 Rab3 GTPase-activating protein catalytic subunit 19948 32,114,339 
RABL4 Fal3 Putative GTP-binding protein RAY-like 20454 53,623,713 
RASGEF1A Fal10 RasGEF domain family, member 1A 03978 5,681,912 
RBBP7 Fal4 Histone-binding protein RBBP7 26698 124,845,745 
RBM18 Unlinked Probable RNA-binding protein 18 02045 17 9,445,180 
RBM26 Fal4 RNA-binding protein 26 27331 157,186,094 
RHOc Fal31 Rhodopsin (opsin-2) 33236 12 20,163,795 
RL13 Fal30 60S ribosomal protein L13 09974 11 20,692,991 
RNASEH1 Fal2 Ribonuclease H1 26438 96,571,133 
ROBO1 Fal9 Roundabout1 protein 25008 99,689,366 
RPL5c Fal11 60S ribosomal protein L5 09525 14,745,903 
RPL7Ac Fal25 60S ribosomal protein L7a 21881 17 7,532,190 
RPL11 Fal29 Ribosomal protein L11 06305 23 5,837,007 
RPL23 Fal17 60S ribosomal protein L23 02496 27 3,957,106 
RPL30c Fal1 60S ribosomal protein L30 36621 132,392,442 
RPL37Ac Fal7 60S ribosomal protein L37a 18702 24,873,612 
SBDS Fal13 Shwachman–Bodian–Diamond syndrome 01658 19 782,450 
SERINC1 Fal2 Tumor differentially expressed 2 23989 63,939,040 
SPCS1 Fal21 Signal peptidase complex subunit 1 02526 12 749,082 
STYX Unlinked Serine/threonine/tyrosine-interacting protein 20280 60,813,050 
TGFB2c Fal2 Transforming growth factor β-2 precursor 15664 20,477,096 
THUMPD3 Fal31 THUMP domain-containing protein 3 13674 12 20,067,036 
TIMM17A Fal27 Translocase of inner mitochondrial membrane 17 homolog A 00123 26 1,096,567 
TMc Fal23 Tropomyosin α-1 chain 05572 10 5,107,950 
TMEM32 Fal18 Transmembrane protein 32 precursor 09949 4,186,140 
TUBGCP3 Fal4 Gamma-tubulin complex component 3 27189 142,174,289 
TXNDC14 Unlinked Thioredoxin domain containing 14 11887 18,159,850 
UBE2J1 Fal2 Ubiquitin-conjugating enzyme E2, J1 25442 78,396,237 
UCHL3 Fal4 Ubiquitin carboxyl-terminal esterase L3 27356 159,089,890 
UCHL5 Fal11 Ubiquitin carboxyl-terminal hydrolase L5 03977 3,533,310 
UQCRC1 Fal21 Ubiquinol-cytochrome-c reductase complex core protein 1 09300 12 9,301,215 
VIPR2 Fal1 Vasoactive intestinal peptide receptor 2 10623 9,569,988 
VISL1 Unlinked Visinin-like protein 1 26565 102,957,139 
VPS26A Unlinked Vacuolar protein sorting-associated protein 26A 06635 11,919,165 
WDR24 Fal28 WD repeat protein 24 03862 14 13,908,481 
YME1L1 Fal1 YME1-like 1 12112 15,827,680 
YPEL5 Unlinked Yippee-like 5 14726 8,031,083 
Microsatellites 
EST9 Fal10   24,700,943 
EST10 Fal10   24,725,801 
EST16 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,406 
EST31 Fal19 Peroxiredoxin-6  4,336,642 
EST46 Fal30 α-Fetoprotein enhancer-binding protein  11 21,546,200 
Fhy215 Fal1     
Fhy216 Fal3     
Fhy217 Fal3     
Fhy220 Fal4     
Fhy221 Fal16     
Fhy223 Fal4 NW_001471545.1 Gga1 WGA43_2  140,906,192 
Fhy224 Fal9 NW_001471459.1 Gga15 WGA207_2  15 1,723,096 
Fhy225 Fal2     
Fhy226 Fal2     
Fhy227 Fal8     
Fhy228 Fal22     
Fhy230 Fal1 NW_001471633.1 Gga2 WGA60_2  49,531,823 
Fhy231 Unlinked     
Fhy234 Fal1     
Fhy235 Fal22 NW_001471676.1 Gga3 WGA95_2  5,902,333 
Fhy236 Fal15 NW_001471568.1 Gga20 WGA258_2  20 12,551,523 
Fhy237 Fal6     
Fhy301 Fal16 NW_001471434.1 Gga11 WGA182_2  11 4,504,384 
Fhy304 Fal5     
Fhy306 Fal5     
Fhy310 Fal17     
Fhy321 Fal10     
Fhy326 Fal6 NW_001471698.1 Gga5 WGA124_2  16,318,616 
Fhy328 Fal5     
Fhy329 Fal2 NW_001471669.1 Gga3 WGA102_2  48,212,536 
Fhy336 Fal1     
Fhy339 Fal8     
Fhy341 Fal3     
Fhy342 Unlinked     
Fhy344 Fal5 NW_001471687.1 Gga4 WGA113_2  84,661,433 
Fhy350 Fal9 NW_001471461.1 Gga15 WGA209_2  15 9,498,662 
Fhy356 Fal3 NW_001471552.1 Gga1 WGA4_2  7,812,491 
Fhy361 Fal1 NW_001471633 Gga2 WGA60_2  45,075,848 
Fhy370 Fal8 NW_001471529.1 Gga1 WGA29_2  92,668,432 
Fhy401 Fal5     
Fhy403 Fal1     
Fhy404 Unlinked     
Fhy405 Fal9     
Fhy407 Fal4 NW_001471554.1 Gga1 WGA51_2  177,252,431 
Fhy408 Fal3     
Fhy413 Fal1     
Fhy415 Fal1 NW_001471639.1 Gga2 WGA66_2  79,942,990 
Fhy427 Fal3 NW_001471510.1 Gga1 WGA11_2  21,414,296 
Fhy428 Fal1     
Fhy429 Unlinked     
Fhy431 Fal10     
Fhy432 Unlinked     
Fhy444 Fal4     
Fhy448 Fal2     
Fhy450 Fal7     
Fhy452 Fal4     
Fhy453 Fal10 NW_001471713.1 Gga6 WGA139_2  3,534,436 
Fhy454 Unlinked     
Fhy458 Fal1 NW_001471651.1 Gga2 WGA78_2  129,424,241 
Fhy464 Fal2     
Fhy465 Fal4 NW_001471554.1 Gga1 WGA51_2  176,719,296 
Fhy466 Fal7 NW_001471729.1 Gga7 WGA155_2  13,437,385 
Fhy467 Fal1     
FhU3 Fal1     
FhU4 Fal3     
FhU5 Fal1     
GG-C25 Fal6   31,720,224 
SS12 Fal3     
ZF-C59 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,320 
ZF-S8 Unlinked Hypothetical protein  18 4,041,446 
ZF-S9
 
Fal12
 

 

 
13
 
8,811,918
 

Marker

Linkage group

Gene descriptiona

Ensembl IDb

Chicken chromosome

Chicken genome start position (bp)
Gene-based SNPs 
00548 Unlinked Hypothetical protein 00548 22 1,221,445 
02079 Unlinked Hypothetical protein 02079 10 1,854,152 
02419 Fal9 No longer in the Ensembl database, not mapped to new identifiers    
04550 Fal27 No longer in the Ensembl database, not mapped to new identifiers    
05087 Fal13 Hypothetical protein 05087 19 5,590,343 
07726 Fal16 Hypothetical protein 07726 11 10,700,742 
08235 Fal6 Hypothetical protein 08235 Un 42,824,332 
08544 Fal10 No description 08544 17,299,861 
12630 Fal28 Magmas-like protein 12630 14 13,386,833 
15691 Fal6 Uncharacterized protein C15orf24 precursor 15691 32,353,219 
15738 Fal5 Similar to CG1218-PA 15738 26,412,511 
17140 Fal5 No longer in the Ensembl database, not mapped to new identifiers    
18798 Fal6 Kinesin light chain 18798 52,944,389 
20352 Fal1 No description 20352 56,437,562 
20904 Fal1 Hypothetical protein 20904 67,141,279 
21277 Fal1 No description 21277 80,448,704 
22644 Fal2 No description 22644 58,129,917 
25613 Fal8 Hypothetical protein 25613 108,461,452 
25924 Unlinked Hypothetical protein 25924 93,260,081 
27425 Fal4 Hypothetical protein 27425 171,909,504 
27623 Fal4 No longer in the Ensembl database, not mapped to new identifiers    
ABHD10 Fal8 Abhydrolase domain-containing mitochondrial precursor 24813 91,842,859 
ACADL Fal7 Acyl-coenzyme A dehydrogenase, long chain 04557 2,734,809 
ACADSB Fal10 Acyl-coenzyme A dehydrogenase, short/branched chain 15724 33,024,247 
ACHA9 Fal5 Neuronal acetylcholine receptor subunit α-9 precursor 23080 70,872,474 
ACLYc Fal1 ATP citrate lyase 05502 27 4,344,212 
ACOT8 Fal15 Acyl-coenzyme A thioesterase 8 11074 20 10,473,488 
ACTBc Fal32 Actin, cytoplasmic type 5 39969 10 1,891,946 
ADAL Fal23 Adenosine deaminase-like 06419 10 7,196,900 
ADH5 Fal5 Alcohol dehydrogenase 5 (class III), χ polypeptide 19994 61,539,229 
ADIPOR1 Fal27 Adiponectin receptor 1 00132 26 1,090,425 
ALAS1c Fal21 5-Aminolevulinate synthase, nonspecific, mitochondrial precursor 06295 12 2,762,886 
AN32B Fal26 Acidic leucine-rich nuclear phosphoprotein 32 family member B 02401 28 1,324,041 
ANAPC5 Fal9 Anaphase-promoting complex subunit 5 06640 15 5,498,421 
ANKRD49 Fal4 Ankyrin repeat domain-containing protein 49 27818 189,909,241 
ARF1 Unlinked ADP-ribosylation factor 1 08661 2,259,733 
ARHGEF9 Unlinked Rho guanine nucleotide exchange factor 9 12303 11,866,519 
ARHL2 Unlinked Poly(ADP-ribose) glycohydrolase ARH3 03624 23 4,457,042 
ARP6 Fal3 Actin-related protein 6 18851 49,106,063 
ASB6 Fal25 Ankyrin repeat and SOCS box-containing 6 06983 17 6,201,193 
ATG4B Fal14 Cysteine protease ATG4B 10179 5,828,498 
ATP6AP2 Fal4 ATPase, H+ transporting, lysosomal accessory protein 2 26187 115,861,428 
ATP6V1E1 Unlinked Vacuolar H+ ATPase E1 21281 63,935,883 
BZW1 Fal7 Basic leucine zipper and W2 domain-containing protein 1 13380 12,346,390 
C12orf29 Fal3 Hypothetical protein 18208 44,668,513 
C7orf27 Fal32 HEAT repeat domain-containing protein C7orf27 precursor 06938 14 3,350,565 
C8orf53 Fal1 Uncharacterized protein C8orf53 25969 140,964,418 
CACYBP Fal19 Calcyclin-binding protein 07248 7,413,974 
CATB Fal2 Cathepsin B precursor 26896 110,173,920 
CBPZ Fal5 Carboxypeptidase Z precursor 25149 84,149,787 
CCDC104 Unlinked Coiled-coil domain-containing protein 104 13093 129,733 
CCDC132 Fal1 Coiled-coil domain containing 132 15463 22,899,725 
CCDC137 Unlinked MGC16597 protein 07177 18 9,164,974 
CCNG1 Fal12 Cyclin-G1 02636 13 6,483,608 
CCT2 Fal3 Chaperonin-containing TCP1, subunit 2 16215 37,378,125 
CDH9 Fal1 Cadherin-9 precursor 21079 72,557,369 
CEPU1c Fal24 Protein CEPU-1 precursor 29072 24 1,827,157 
CGI-62 Fal1 UPF0418 protein C8orf70 25374 125,087,485 
CHCc Fal13 Clathrin heavy chain 39267 19 7,239,507 
CHD1L Fal8 Chromodomain helicase DNA-binding protein 1-like 24254 83,862,026 
CHM1B Fal18 Charged multivesicular body protein 1b 06500 1,509,856 
CHMP5 Fal1 Charged multivesicular body protein 5 21491 87,941,041 
CNTN1 Fal3 Contactin-1 precursor 15506 30,637,524 
COEA1 Fal1 Collagen α-1(XIV) chain precursor 26472 142,375,665 
CRIPT Fal2 Postsynaptic protein CRIPT 16264 27,956,254 
CT030 Unlinked UPF0414 transmembrane protein C20orf30 00227 22 346,000 
DC1L1 Fal1 Cytoplasmic dynein 1 light intermediate chain 1 18728 40,471,155 
DDAH1 Fal11 Dimethylarginine dimethylaminohydrolase 1 14108 16,977,584 
DECR1 Fal1 2,4-dienoyl-CoA reductase, mitochondrial precursor 25647 129,135,915 
DLD Fal3 Dihydrolipoamide dehydrogenase 12884 15,844,353 
DPYSL3 Unlinked Dihydropyrimidinase-like 3 12260 13 18,592,762 
DST Fal2 Bullous pemphigoid antigen 1 26267 89,753,995 
EDF1 Unlinked Endothelial differentiation-related factor 1 homolog 14657 17 932,044 
EF1A1 Fal2 Elongation factor 1-α 1 25653 84,252,820 
EF1A Fal15 Elongation factor 1-α 09385 20 8,992,662 
EIF3S1 Unlinked Eukaryotic translation initiation factor 3, subunit 1-α 13336 10 21,935,894 
ENO1c Fal20 α-Enolase 03745 21 3,197,152 
ETNK1 Fal3 Ethanolamine kinase 1 21571 68,619,958 
FAK1 Fal1 Focal adhesion kinase 1 26060 151,344,071 
FNc Fal7 Fibronectin 05663 4,362,118 
FTHc Fal6 Ferritin H-subunit 11687 8,042,629 
GAS7 Unlinked Growth-arrest-specific protein 7 00500 18 181,941 
GH1c Fal8 Growth hormone factor 1 24989 96,197,113 
GNB1 Fal20 Guanine nucleotide-binding protein (G protein) β polypeptide 1 02040 21 1,907,993 
GTF2B Fal11 Transcription initiation factor IIB 10015 15,855,345 
HARS Fal12 Histidyl-tRNA synthetase 01152 13 825,160 
HEPACAM Fal24 Hepatocyte cell adhesion molecule 00574 24 244,611 
HMGB2 Fal5 High-mobility group protein B2 17483 44,739,576 
HMGN2 Fal29 Nonhistone chromosomal protein HMG-17 00504 23 132,497 
IGF2R Fal2 Insulin-like growth factor 2 receptor 18986 47,356,791 
IGFBP7 Fal5 Insulin-like growth factor-binding protein 7 precursor 18503 50,637,829 
KCNIP4 Unlinked Kv channel-interacting protein 4 23272 77,264,411 
KCRBc Fal6 Creatine kinase B-type 18765 52,833,368 
KIAA1706 Fal1 CDNA FLJ14480 fis, clone MAMMA1002215 19789 46,847,660 
LARP1 Fal12 La-related protein 1 06374 13 12,129,582 
LDHA Fal6 L-lactate dehydrogenase A chain 10181 13,644,404 
LHCGRc Fal22 Luteinizing hormone/choriogonadotropin receptor 14806 7,517,756 
MAGOH Fal11 Mago-nashi homolog, proliferation-associated 17388 25,398,748 
MBP Fal1 Myelin basic protein 22187 92,901,749 
METRNL Unlinked Meteorin-like protein precursor 02154 18 3,058,036 
MIC1 Fal1 Colon cancer-associated protein Mic1 24206 106,186,277 
MITD1 Fal4 MIT domain-containing protein 1 27060 136,635,855 
MMAA Fal5 Methylmalonic aciduria type A protein, mitochondrial precursor 16214 32,303,140 
MOSPD2 Fal4 Motile sperm domain-containing protein 2 26743 125,737,284 
MPP1c Fal18 Myelin proteolipid protein NA NA NA 
MPP6 Fal1 MAGUK p55 subfamily member 6 17898 31,506,073 
MRPS18A Fal2 28S ribosomal protein S18a, mitochondrial precursor 16751 32,021,644 
NAT5 Fal33 N-acetyltransferase 5 20554 38,349,143 
NDST3 Fal12 Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 3 19599 56,617,452 
NDUFA7 Fal33 NADH dehydrogenase 1 α subcomplex subunit 7 00895 28 871,010 
NSMAF Fal1 Protein FAN (factor associated with N-SMase activation) 24908 115,869,042 
NY-SAR-48 Fal26 Sarcoma antigen NY-SAR-48 isoform a 05915 28 3,757,065 
OAZ Fal26 Ornithine decarboxylase antizyme 01183 28 1,446,253 
ODC11c Fal2 Ornithine decarboxylase 26527 99,660,031 
PARK7 Fal20 Protein DJ-1 Parkinson disease protein 7 homolog 00742 21 235,467 
PDCD11 Fal10 RRP5 protein homolog programmed cell death protein 11 13446 25,047,124 
PDHL1 Fal4 Phosphoglycerate dehydrogenase-like 1 27270 148,754,342 
PES1 Fal9 Pescadillo homolog 1 12619 15 11,118,356 
PKHB2 Fal14 Pleckstrin homology domain-containing family B member 2 03399 3,184,527 
PNN Fal6 Pinin 16532 40,003,168 
POLR2C Fal16 DNA-directed RNA polymerase II subunit RPB3 01768 11 552,555 
POLR2H Fal14 DNA-directed RNA polymerases I, II, and III subunit RPABC3 13907 17,035,879 
PPIL4 Fal2 Peptidyl-prolyl cis-trans isomerase-like 4 20195 50,008,973 
PRS4 Fal6 26S protease regulatory subunit 4 17367 46,255,522 
PSMB1 Fal2 Proteasome (prosome, macropain) subunit, β-type, 1 18217 42,604,002 
PSMC2 Fal3 Proteasome (prosome, macropain) 26S subunit, ATPase, 2 13403 13,964,547 
PSMC3 Fal6 Proteasome 26S ATPase subunit 3 13163 25,021,822 
PSMC5 Fal17 26S protease regulatory subunit 8 00469 27 1,607,679 
PSMD14 Fal7 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 18142 22,963,970 
PSMD6 Fal21 26S proteasome non-ATPase regulatory subunit 6 11836 12 13,910,990 
PTMS Fal8 Parathymosin 23363 80,288,088 
RAB12 Fal1 Gallus gallus similar to Rab12 protein 22528 101,592,940 
RAB3GAP1 Fal7 Rab3 GTPase-activating protein catalytic subunit 19948 32,114,339 
RABL4 Fal3 Putative GTP-binding protein RAY-like 20454 53,623,713 
RASGEF1A Fal10 RasGEF domain family, member 1A 03978 5,681,912 
RBBP7 Fal4 Histone-binding protein RBBP7 26698 124,845,745 
RBM18 Unlinked Probable RNA-binding protein 18 02045 17 9,445,180 
RBM26 Fal4 RNA-binding protein 26 27331 157,186,094 
RHOc Fal31 Rhodopsin (opsin-2) 33236 12 20,163,795 
RL13 Fal30 60S ribosomal protein L13 09974 11 20,692,991 
RNASEH1 Fal2 Ribonuclease H1 26438 96,571,133 
ROBO1 Fal9 Roundabout1 protein 25008 99,689,366 
RPL5c Fal11 60S ribosomal protein L5 09525 14,745,903 
RPL7Ac Fal25 60S ribosomal protein L7a 21881 17 7,532,190 
RPL11 Fal29 Ribosomal protein L11 06305 23 5,837,007 
RPL23 Fal17 60S ribosomal protein L23 02496 27 3,957,106 
RPL30c Fal1 60S ribosomal protein L30 36621 132,392,442 
RPL37Ac Fal7 60S ribosomal protein L37a 18702 24,873,612 
SBDS Fal13 Shwachman–Bodian–Diamond syndrome 01658 19 782,450 
SERINC1 Fal2 Tumor differentially expressed 2 23989 63,939,040 
SPCS1 Fal21 Signal peptidase complex subunit 1 02526 12 749,082 
STYX Unlinked Serine/threonine/tyrosine-interacting protein 20280 60,813,050 
TGFB2c Fal2 Transforming growth factor β-2 precursor 15664 20,477,096 
THUMPD3 Fal31 THUMP domain-containing protein 3 13674 12 20,067,036 
TIMM17A Fal27 Translocase of inner mitochondrial membrane 17 homolog A 00123 26 1,096,567 
TMc Fal23 Tropomyosin α-1 chain 05572 10 5,107,950 
TMEM32 Fal18 Transmembrane protein 32 precursor 09949 4,186,140 
TUBGCP3 Fal4 Gamma-tubulin complex component 3 27189 142,174,289 
TXNDC14 Unlinked Thioredoxin domain containing 14 11887 18,159,850 
UBE2J1 Fal2 Ubiquitin-conjugating enzyme E2, J1 25442 78,396,237 
UCHL3 Fal4 Ubiquitin carboxyl-terminal esterase L3 27356 159,089,890 
UCHL5 Fal11 Ubiquitin carboxyl-terminal hydrolase L5 03977 3,533,310 
UQCRC1 Fal21 Ubiquinol-cytochrome-c reductase complex core protein 1 09300 12 9,301,215 
VIPR2 Fal1 Vasoactive intestinal peptide receptor 2 10623 9,569,988 
VISL1 Unlinked Visinin-like protein 1 26565 102,957,139 
VPS26A Unlinked Vacuolar protein sorting-associated protein 26A 06635 11,919,165 
WDR24 Fal28 WD repeat protein 24 03862 14 13,908,481 
YME1L1 Fal1 YME1-like 1 12112 15,827,680 
YPEL5 Unlinked Yippee-like 5 14726 8,031,083 
Microsatellites 
EST9 Fal10   24,700,943 
EST10 Fal10   24,725,801 
EST16 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,406 
EST31 Fal19 Peroxiredoxin-6  4,336,642 
EST46 Fal30 α-Fetoprotein enhancer-binding protein  11 21,546,200 
Fhy215 Fal1     
Fhy216 Fal3     
Fhy217 Fal3     
Fhy220 Fal4     
Fhy221 Fal16     
Fhy223 Fal4 NW_001471545.1 Gga1 WGA43_2  140,906,192 
Fhy224 Fal9 NW_001471459.1 Gga15 WGA207_2  15 1,723,096 
Fhy225 Fal2     
Fhy226 Fal2     
Fhy227 Fal8     
Fhy228 Fal22     
Fhy230 Fal1 NW_001471633.1 Gga2 WGA60_2  49,531,823 
Fhy231 Unlinked     
Fhy234 Fal1     
Fhy235 Fal22 NW_001471676.1 Gga3 WGA95_2  5,902,333 
Fhy236 Fal15 NW_001471568.1 Gga20 WGA258_2  20 12,551,523 
Fhy237 Fal6     
Fhy301 Fal16 NW_001471434.1 Gga11 WGA182_2  11 4,504,384 
Fhy304 Fal5     
Fhy306 Fal5     
Fhy310 Fal17     
Fhy321 Fal10     
Fhy326 Fal6 NW_001471698.1 Gga5 WGA124_2  16,318,616 
Fhy328 Fal5     
Fhy329 Fal2 NW_001471669.1 Gga3 WGA102_2  48,212,536 
Fhy336 Fal1     
Fhy339 Fal8     
Fhy341 Fal3     
Fhy342 Unlinked     
Fhy344 Fal5 NW_001471687.1 Gga4 WGA113_2  84,661,433 
Fhy350 Fal9 NW_001471461.1 Gga15 WGA209_2  15 9,498,662 
Fhy356 Fal3 NW_001471552.1 Gga1 WGA4_2  7,812,491 
Fhy361 Fal1 NW_001471633 Gga2 WGA60_2  45,075,848 
Fhy370 Fal8 NW_001471529.1 Gga1 WGA29_2  92,668,432 
Fhy401 Fal5     
Fhy403 Fal1     
Fhy404 Unlinked     
Fhy405 Fal9     
Fhy407 Fal4 NW_001471554.1 Gga1 WGA51_2  177,252,431 
Fhy408 Fal3     
Fhy413 Fal1     
Fhy415 Fal1 NW_001471639.1 Gga2 WGA66_2  79,942,990 
Fhy427 Fal3 NW_001471510.1 Gga1 WGA11_2  21,414,296 
Fhy428 Fal1     
Fhy429 Unlinked     
Fhy431 Fal10     
Fhy432 Unlinked     
Fhy444 Fal4     
Fhy448 Fal2     
Fhy450 Fal7     
Fhy452 Fal4     
Fhy453 Fal10 NW_001471713.1 Gga6 WGA139_2  3,534,436 
Fhy454 Unlinked     
Fhy458 Fal1 NW_001471651.1 Gga2 WGA78_2  129,424,241 
Fhy464 Fal2     
Fhy465 Fal4 NW_001471554.1 Gga1 WGA51_2  176,719,296 
Fhy466 Fal7 NW_001471729.1 Gga7 WGA155_2  13,437,385 
Fhy467 Fal1     
FhU3 Fal1     
FhU4 Fal3     
FhU5 Fal1     
GG-C25 Fal6   31,720,224 
SS12 Fal3     
ZF-C59 Fal1 Adenylate cyclase-activating polypeptide 1  104,980,320 
ZF-S8 Unlinked Hypothetical protein  18 4,041,446 
ZF-S9
 
Fal12
 

 

 
13
 
8,811,918
 
a

The contig number from the chicken genome sequence build 2.1 is described for microsatellites.

b

ENSEMBL ID for the orthologous chicken gene (ENSGALG000000xxxxx).

Seventy microsatellites were isolated from the closely related pied flycatcher (Ficedula hypoleuca: Leder  et al. 2008). Sixty-three of these markers, as well as five EST-linked microsatellites and nine microsatellites from other passerines (Karaiskou  et al. 2008), were PCR multiplexed in sets of six to nine loci using 30 ng of DNA per reaction. Each PCR multiplex could be analyzed on a single run of an ABI3130xl (Applied Biosystems). Detailed PCR multiplex protocols and electrophoresis details can be found in Karaiskou and Primmer (2007).

Data analysis:

Microsatellites were scored using the GeneMapper software (Applied Biosystems). SNPs from the same intron were combined into haplotypes using the available pedigree information. For both types of markers, missing data points of parents were inferred from the haplotypes of offspring and mates when possible. Offspring showing deviations from the expected parental genotypes/haplotypes were not included in further analysis. These are likely to represent extra-pair offspring since previous work in this population has revealed that ∼15% of all offspring result from extra-pair copulations (Sheldon  et al. 1997; Sheldon and Ellegren 1999).

Linkage analyses were performed with CRI-MAP (Green  et al. 1990). Initially, all markers were tested against each other with the two-point option and markers that clustered together with significant lod score support (>3.0) were treated as linkage groups. Framework maps were constructed with the build option and the best position of all markers within an ordered linkage group was then estimated with recurrent runs of the option flips4 until no better order could be found (best order map).

Microsatellite clone sequences were used in cross-species MEGABLAST searches against the chicken genome sequence (http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/BlastGen.cgi?taxid=9031), first with default settings and then with relaxed settings according to Dawson  et al. (2006). Both search methods generated the same set of significant (arbitrarily set at <E−5) hits, although the relaxed settings generated somewhat lower E-values. Because of this procedure 20 of the microsatellites could be anchored to a single location in the chicken genome and therefore be used for comparative studies. Chicken genomic locations were taken from Build 2.1 of the chicken genome, obtained from http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?taxid=9031. Data on chicken recombination rates were from the same source. The particular markers that we used for collared flycatcher mapping were not always included in the chicken genetic map. To obtain recombination rate estimates for orthologous regions of the collared flycatcher and chicken genomes, we therefore used data from genetic markers located preferably within 1 Mb of our markers in the chicken genome. Graphical presentations of genetic maps were created in MapChart (Voorrips 2002).

RESULTS

Marker analysis:

We genotyped 384 previously identified SNPs in a pedigree of 322 collared flycatchers. After excluding SNPs found to be monomorphic in the pedigree (36 sites) or with a sample call rate <60% (23), segregation data for 321 SNPs from 170 genes became available. These genes are from 26 of the 28 chromosomes contained within the most recent (May 2006) version of the chicken genome assembly; it was not possible to develop conserved markers for Gga16 and Gga25 due to a lack of assigned genes to these small microchromosomes. SNPs from the same intron were combined into haplotypes to increase the informativeness of each gene in pedigree analysis. In addition, 71 polymorphic microsatellites were scored in the pedigree. We thereby had a total of 241 loci (“markers”) available for mapping. The average number of informative meioses for SNP haplotypes and microsatellites was 184 and 240, respectively (supplemental Table 2).

Linkage mapping:

Linkage analysis detected significant two-point linkage (lod score >3.0) to at least one other marker for 211 of the 241 loci. These 211 markers form a best-order genetic map consisting of 33 linkage groups (Figure 1), ranging in size from a genetic length of 325 cM (with 37 markers) to 0 cM (two groups with two markers showing no recombination). We refer to these linkage groups as Fal1-33 (F. albicollis linkage groups 1–33). The mean genetic distance between adjacent markers in the map is 10.0 cM (±6.7 SD). A framework map based on markers showing a multi-point lod score >3 is presented in supplemental Figure 1; generally, the framework map differs from the best-order map only by the inability to confidently place some markers on either side of adjacent loci.

Figure 1.—

A genetic linkage map of the collared flycatcher genome. Cumulative genetic distances in centimorgans are given to the right of each chromosome. Gene markers (genotyped by SNPs) are in regular text while anonymous microsatellites are in italics.

The total sex-average length of the best-order map is 1787 cM, with significantly more recombination in males (P = 0.01, Wilcoxon's test for paired data). Overall, recombination is 22% higher in males than in females (total distance 1982 vs. 1627 cM), although for individual intervals the female point estimate is sometimes higher than the male estimate. Sex-specific linkage maps are presented in supplemental Figure 2.

Thirty markers (22 genes and eight microsatellites) remain unlinked. It is clear that this is at least in part due to a lack of power to detect linkage, since unlinked markers are highly overrepresented among markers with a low number of informative meioses (supplemental Table 2). However, nine unlinked genic SNP haplotypes and six unlinked microsatellites appear as singletons despite >70 informative meioses. Because the microsatellites were isolated by random library screening (Leder  et al. 2008), it is possible that they correspond to regions of the chicken genome, which is not yet contained within the chicken genome assembly. For the gene-based SNPs, a possible explanation of the absence of linkage is that they are located in regions of high recombination within conserved linkage groups. Given the observation that recombination rates tend to be elevated toward telomeric ends of avian chromosomes (International  Chicken  Genome  Sequencing  Consortium 2004; Schmid  et al. 2005; Wahlberg  et al. 2007), this explanation is supported by the fact that 6 of 9 unlinked genes are the most distal marker on chicken chromosomes in our marker set (at 2p, 3p, 4q, 5q, 10p, and 10q, respectively). Alternatively, they may indicate chromosomal rearrangements (see supplemental data).

Comparative mapping:

A major advantage of this map is that genic markers allow the identification of homologous regions in the genomes of other species; this is particularly important for the ability to transfer genomic information from model organisms to nonmodel ones. The 33 collared flycatcher linkage groups correspond to 24 different chromosomes in chicken, with the 2 remaining chicken chromosomes from which we had markers (Gga18 and Gga22) each being represented by two to three unlinked singletons. By comparing the location of gene sequences in the chicken and collared flycatcher genomes (as well as of 20 flycatcher microsatellites for which a homologous sequence could be identified in chicken), we find a remarkable degree of chromosomal conservation, both at the level of shared synteny and at the level of conserved gene order (Figure 2). No fewer than 18 chicken chromosomes correspond to a single linkage group in the collared flycatcher, indicating completely conserved synteny.

Figure 2.—

Genome conservation revealed by the alignment of orthologous collared flycatcher linkage groups and chicken chromosomes. Chromosomes/linkage groups are drawn proportional to their genetic length (the same for both species) with the full length of chicken chromosomes displayed.

Seven chicken chromosomes are orthologous to two to three collared flycatcher linkage groups, suggestive of fusion/fission events. However, as discussed in detail in the supplemental data, several of these cases are likely to represent a lack of power to connect linkage groups that originate from the same collared flycatcher chromosome. The interval between SNP-based gene markers is generally <10 Mb in the chicken genome. As recombination rates are known to vary across the genome, particularly due to the presence of recombination hot spots, physical intervals of this size may correspond to genetic distances longer than that possible for detecting linkage. Of course, length expansions in the collared flycatcher genome would accentuate such problems. In the end, only two rearrangements that distinguish the karyotypes of the chicken and the collared flycatcher are strongly supported by our data (supplemental data) and are also independently confirmed in other species. These include a fission of the ancestral chromosome 1 in Passeriformes to yield the collared flycatcher linkage groups Fal3 and Fal8 (supported by data in Guttenbach  et al. 2003; Derjusheva  et al. 2004; Itoh and Arnold 2005) and the fusion of ancestral chromosomes 4 (corresponding to Fal5) and 10 (Fal18) in the chicken lineage to yield Gga4 (supported by Reed  et al. 2005). One or a few more rearrangements could be indicated by our data but would need a denser map for confirmation.

Generally, gene order within syntenic groups is completely conserved in the chicken–collared flycatcher comparison. There are 18 cases of intrachromosomal rearrangements in the best-order map. However, only 7 of these remain in the framework map [corresponding to Gga1-Fal4 (two cases), Gga1-Fal8, Gga3-Fal2, Gga4-Fal5, Gga15-Fal9, and Gga20-Fal15; supplemental Figure 1]; the other 11 cases are in the form of inversed order of markers that is not statistically supported (multi-point lod score <3). Six of the 7 well-supported cases are consistent with rather short inversions of ∼1.5–6 Mb according to the chicken genome sequence, while the seventh represents a large proportion of Gga4-Fal5 that spans at least 38 Mb.

DISCUSSION

This work reveals an evolutionary stasis of gene order and chromosome organization in a comparison of two highly diverged avian lineages, estimated to have separated 100 million years ago (MYA) ago. Our results confirm the stability of avian genomes previously indicated by results from comparative mapping in chicken and mammals (Burt  et al. 1999; Bourque  et al. 2005) and from cytogenetic (e.g., Griffin  et al. 2007) and genetic (e.g., Dawson  et al. 2007) analyses within birds. However, as previous work has been largely insensitive to intrachromosomal structures, and to fine-scale interchromosomal organization, our findings extend the observation of the genomic stability of birds to be valid also at the level of gene order and organization and across distantly related taxa.

Stasis of avian genome organization:

The karyotype of the collared flycatcher has not been characterized, but the great majority of passerine birds so far analyzed have a chromosome number between 78 and 80, i.e., quite similar to the 2n = 78 of chicken (Gregory  et al. 2006). The structure of the karyotype is also well conserved with a few large macrochromosomes and a large number of very small microchromosomes. Moreover, available data from measurements of DNA content indicate that genome size is more or less identical in chicken and birds from the order Passeriformes, at just ≈1 Gb (Gregory  et al. 2006). Assembled genome sequence has been assigned to 28 of the 36 chicken autosomes (Gga29-36 are not covered in the assembly and represent microchromosomes with <5–10 Mb DNA). Most of these chromosomes correspond to a single linkage group in the collared flycatcher map. We find strong support for two interchromosomal rearrangements that have occurred since the divergence of the lineages leading to the chicken and the collared flycatcher, rearrangements which are also supported by previous observations (International  Chicken  Genome  Sequencing  Consortium 2004; Griffin  et al. 2007). There are other gaps in the collared flycatcher linkage map aligned to chicken that might indicate the presence of one to three additional fissions or fusions (corresponding to Gga1, Gga3, and Gga12). However, it is possible that we lack the power to detect linkage in these cases because markers flanking the gaps might be too far apart, contain too little information, or are separated by a region of high recombination rate (see supplemental data).

There is also evidence for at least seven intrachromosomal rearrangements in the chicken–collared flycatcher comparison. Four of these have occurred in the vicinity of the sites for interchromosomal rearrangement, indicating that there are regions of avian chromosomes that are particularly fragile and prone to different types of rearrangement. The number of observed intrachromosomal rearrangements in the collared flycatcher–chicken comparison is roughly two to three times the number of interchromosomal rearrangements. A similar ratio is also found in mammals (Pevzner and Tesler 2003; Pontius  et al. 2007). This indicates that it is not just the inter- or the intrachromosomal rate of rearrangement that is low in birds; rather, it is the overall rate of rearrangements that is uniformly low.

The incidence of inter- and intrachromosomal rearrangements seen in this study can be used to roughly estimate the minimum rate of chromosomal rearrangement in birds. We have to take into account that our map does not cover the entire genome and that the resolution may be insufficient for detecting small rearrangements within mapped regions. With this caveat in mind and assuming a 66% genomic coverage of the map (see below) and 100 MY since the most recent common ancestor of Galliformes and Passeriformes (200 MY of evolution in total), there is an overall minimum rate of chromosomal exchange during avian evolution of approximately one event/15 (200/9 × 0.66) MY (0.045/MY). Separate estimates for inter- and intrachromosomal rearrangement give one fission/fusion event/66 MY (0.015/MY) and one large-scale inversion event/19 MY (0.05/MY). This is considerably lower than what has been estimated for mammalian lineages (≈0.6–2.0; Pontius  et al. 2007) and gives a quantitative idea of the relative stability of avian genomes.

The genomic integrity shown by the comparison of two distantly related avian lineages provides insight into vertebrate karyotype evolution. It has been shown that the rate of chromosomal diversification varies considerably on a temporal scale (Ferguson-Smith and Trifonov 2007). For example, while the rate of chromosomal diversification is thought to have been comparatively high in the lineage leading from an early vertebrate ancestor to the eutherian ancestor, by contrast it was considered to be low in the lineage from the eutherian ancestor to the primate ancestor (and continued to be so in the human lineage) (Kohn  et al. 2006). However, no such temporal heterogeneity is indicated in either the chicken or the collared flycatcher lineage. In fact, the ancestral vertebrate karyotype is highly conserved in the chicken so genomic stability must have been prevalent all along the lineage leading to modern birds since the split of synapsids and diapsids 310 MYA. The only clear exception is provided by birds of prey that have an atypical bird karyotype that lacks distinct macrochromosomes and microchromosomes (Deoliveira  et al. 2005).

Why does the degree of genomic integrity differ extensively between birds and mammals? One possible explanation relates to the role of repeat elements in governing chromosome fragility and the dearth of active families of interspersed repeat elements in avian genomes (International  Chicken  Genome  Sequencing  Consortium 2004). Breakpoints for chromosome rearrangements tend to be enriched with interspersed repetitive elements, low-copy repeats, and segmental duplications (Bailey  et al. 2004; Freudenreich 2007; Kehrer-Sawatzki and Cooper 2007), including in chicken (Gordon  et al. 2007). Mechanistically, unequal crossing over between repeated sequences within or between chromosomes is likely to contribute to this pattern (Lupski and Stankiewicz 2005). The bird genome has remained compact and repeat poor during avian evolution (Organ  et al. 2007); there is only one abundant class of interspersed repeats in the chicken genome: the long interspersed CR1 element, with a vanishingly small proportion representing anything other than short and heavily truncated copies (International  Chicken  Genome  Sequencing  Consortium 2004). In light of the potential link between a low-repeat content and chromosomal integrity, it is tempting to invoke a nonadaptive explanation to genomic stability of birds.

One interesting aspect of genomic stability of birds is the role of chromosomal rearrangements in speciation (Noor  et al. 2001; Rieseberg 2001; Navarro and Barton 2003). It is known that crosses between chromosomal variants can result in hybrid inviability or impaired fitness (Capanna and Castiglia 2004). Speciation rates differ considerably between birds and mammals with the evolution of post-zygotic incompatibility being ∼10 times slower in birds than in mammals (Price and Bouvier 2002; Fitzpatrick 2004). It is possible that the formation of post-zygotic barriers in birds is delayed due to the slow rate of chromosomal rearrangement.

A partial genetic map, based mainly on microsatellites and AFLP markers, has been developed for another passerine bird, the great reed warbler (Hansson  et al. 2005; kesson  et al. 2007; Dawson  et al. 2007). The seven collard flycatcher–chicken gene-order differences that we detected in this study are not evident in the comparison between the great reed warbler and the chicken (Dawson  et al. 2007). This could suggest that these inversions arose in the collared flycatcher lineage subsequent to the split of Muscicapoidea–Sylvoidea. However, the physical marker density and chromosomal coverage in the great reed warbler map is relatively low, especially for markers informative in comparative mapping, so it may be that the resolution is not sufficient for detection of some intrachromosomal rearrangements. Neither of these inversions is seen in the fairly dense map of the turkey genome (Reed  et al. 2005) so they may have arisen either early in the evolution of Galliformes or somewhere along the passerine lineage leading to the collared flycatcher. The great reed warbler map revealed two clear cases of inversions when compared to chicken chromosomes 1 and 2, respectively (Dawson  et al. 2007). However, they are not seen in the collared flycatcher–chicken comparison despite dense marker coverage in these regions. They are therefore likely to have arisen in the lineage leading to the great reed warbler subsequent to the split of Muscicapoidea–Sylvoidea.

Sex-specific recombination rates:

There is evidence for heterochiasmy in collared flycatchers and the direction (22% more recombination in males) is in agreement with the Haldane–Huxley rule, which states that, in species where the autosomal recombination rate differs quantitatively between sexes, it is usually the heterogametic sex that has a reduced recombination rate. However, as in several galliform birds (Groenen  et al. 2000; Kayang  et al. 2004; Reed  et al. 2005), the difference is not as pronounced as that seen in most mammals [in humans, for example, the female rate is ∼1.6 times higher than the male rate (Broman  et al. 1998)]. The great reed warbler shows a quite contrasting pattern, with a more than twofold excess of recombination in females (Hansson  et al. 2005; Dawson  et al. 2007), i.e., against the expectations of the Haldane–Huxley rule. This difference between two passerine birds is unexpected and not easily conceived in light of alternative hypotheses for the evolution of heterochiasmy (Lenormand 2003). For example, there is some support for the idea that haploid selection plays a role (Lenormand and Dutheil 2005). According to this model, and assuming epistasis, the sex experiencing the largest variance in reproductive success should recombine less to keep favorable gene combinations together. However, both collared flycatchers (Sheldon  et al. 1997; Sheldon and Ellegren 1999) and great reed warblers (Hasselquist  et al. 1998) are polygynous species and there is no obvious reason to believe that the intensity of gametic selection would differ between them. As it stands now, further work in additional bird species is needed to obtain a more broad-scale picture of avian recombination rates.

Genome coverage:

How large a proportion of the collared flycatcher genome is covered by this map? One way to approach this question is to make use of physical information from the chicken genome. The amount of chicken sequence contained within linkage groups shared between the chicken and the collared flycatcher is 663 Mb, or 66% of the total ≈1-Gb autosomal genome (the sequence assigned to chromosomes in the chicken genome assembly covers ∼90% of the genome). Obviously, additional sequence is covered in the flycatcher map if the 15 highly polymorphic unlinked singletons are included and when considering the fact that each end marker in all linkage groups covers some flanking distance. Assuming a similar genome size as in chicken (Gregory  et al. 2006), it may be estimated that our map covers 75–80% of the collared flycatcher genome. It is more difficult to assess the proportion of the total genetic length of the flycatcher genome covered by the map. First, we probably lack markers from a number of microchromosomes to which assembled sequence has not yet been assigned in the chicken. However small a microchromosome is, it contributes 50 cM to the total map length since there is an obligate crossing over per chromosome (Jones and Franklin 2006). Second, recombination rates tend to increase toward telomeres, so it can therefore be difficult to assess the amount of recombination outside linkage groups by extrapolation. When it comes to genetic coverage, we thus conclude that it must be less than the physical coverage estimated above.

Genomics of natural populations:

There is a slow but steady progress in applying genetic maps for quantitative trait locus (QTL) mapping in natural animal populations (Slate 2005), either directly in the wild or by using wild-caught individuals raised in the laboratory. Notable examples from ecologically important animal models include the analysis of the genetic basis of body armour in the stickleback Gasterosteus aculeatus (Peichel  et al. 2001; Colosimo  et al. 2005) and of body weight and morphology in the free-living Soay sheep Ovis aries (Beraldi  et al. 2007) and the red deer Cervus elaphus (Slate  et al. 2002). In the two latter systems, microsatellite markers developed in closely related domestic animals could be used across species. In sticklebacks, anonymous, species-specific microsatellites were used and random approaches for map development have also included the use of microsatellites, RAPD, or AFLP markers in a number of other species (Reid  et al. 2007; Troggio  et al. 2007).The development of the collared flycatcher map represents an application of a new approach to genetic mapping in natural populations. For several reasons, it benefited from an earlier systematic effort to develop a set of conserved reference markers evenly spread across the avian genome (Backström  et al. 2008).

First, through identification of particularly conserved sites for primer design, these markers had a high amplification success rate in collared flycatchers. Second, the design of intronic amplicons 500–1000 bp in size uncovered >900 polymorphic sites with just a moderate amount of screening (10 unrelated individuals; Backström  et al. 2008), from which we could choose the most informative polymorphisms for genotyping. SNP-based mapping is particularly attractive since large-scale analysis can be conducted using automatic procedures; this study generated 150,000 genotypes. Third, and importantly, since the reference set of markers was developed to represent a uniform coverage of all assembled chicken chromosomes, the markers also covered a significant part of the collared flycatcher genome. Clearly, using the same number of randomly selected markers would not have given the same degree of genome coverage. Indeed, the high degree of synteny and gene-order conservation in birds added to this benefit, although, in principle, the use of markers evenly distributed in a related species should always give better coverage than using random markers. Fourth, as the first map of a natural population based on protein-coding gene markers, it is straightforward to transfer genetic information from model species by means of anchoring of orthologous loci. These features should apply equally to any bird species and we therefore envision that the marker set will become important for future studies of the genetics of natural bird populations. The use of the same set of markers should also aid comparison of maps across many different species. More generally, the approach of designing evenly distributed, conserved gene markers from one or more model species could potentially be applied to many groups of organisms.

While SNPs offer a nearly inexhaustible source of genetic markers that are amenable to large-scale analysis, they come with the price of typically showing lower levels of polymorphism compared to microsatellites. For this reason, we also included a set of microsatellites in this study, as this was expected to facilitate anchoring of linkage groups. However, the difference in average information content between microsatellites and SNPs was not very large (mean number of informative meioses of 240 and 184, respectively). Moreover, we could not detect any significant difference in the percentage of unlinked markers from the different categories (8 of 71 for microsatellites vs. 22 of 170 for SNP haplotypes). This is likely due to the fact that for most genes we combined SNPs into haplotypes, thereby increasing their informativeness.

To conclude, we report here a gene-based genetic map of the collared flycatcher that, when compared to the chicken map, demonstrates extensive synteny and gene-order conservation during 100 MY of evolution. This high degree of genome stability of birds is likely to have important consequences for their general evolutionary patterns, including processes of speciation.

Footnotes

1

Present address: Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, P.O. Box 54, 124 Thessaloniki, Macedonia, Greece.

Footnotes

Communicating editor: N. A. Jenkins

Acknowledgement

Financial support was obtained from the Swedish Research Council. SNP genotyping was performed at the SNP Technology Platform at Uppsala University, which is gratefully acknowledged.

References

kesson, M., B. Hansson, D. Hasselquist and S. Bensch,

2007
Linkage mapping of AFLP markers in a wild population of great reed warblers: importance of heterozygosity and number of genotyped individuals.
Mol. Ecol.
 
16
:  
2189
–2202.

Backström, N., M. Brandstrom, L. Gustafsson, A. Qvarnstrom, H. Cheng  et al.,

2006
Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome.
Genetics
 
174
:  
377
–386.

Backström, N., S. Fagerberg and H. Ellegren,

2008
Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome.
Mol. Ecol.
 
17
:  
964
–980.

Bailey, J. A., R. Baertsch, W. J. Kent, D. Haussler and E. E. Eichler,

2004
Hotspots of mammalian chromosomal evolution.
Genome Biol.
 
5
:  
R23
.

Beraldi, D., A. F. McRae, J. Gratten, J. Slate, P. M. Visscher  et al.,

2007
Mapping quantitative trait loci underlying fitness-related traits in a free-living sheep population.
Evolution
 
61
:  
1403
–1416.

Borge, T., M. T. Webster, G. Andersson and G. P. Saetre,

2005
Contrasting patterns of polymorphism and divergence on the Z chromosome and autosomes in two Ficedula flycatcher species.
Genetics
 
171
:  
1861
–1873.

Bourque, G., E. M. Zdobnov, P. Bork, P. A. Pevzner and G. Tesler,

2005
Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages.
Genome Res.
 
15
:  
98
–110.

Broman, K. W., J. C. Murray, V. C Sheffield, R. L. White and J. L. Weber,

1998
Comprehensive human genetic maps: individual and sex-specific variation in recombination.
Am. J. Hum. Genet.
 
63
:  
861
–869.

Burt, D. W., C. Bruley, I. C. Dunn, C. T. Jones, A. Ramage  et al.,

1999
The dynamics of chromosome evolution in birds and mammals.
Nature
 
402
:  
411
–413.

Capanna, E., and R. Castiglia,

2004
Chromosomes and speciation in Mus musculus domesticus.
Cytogenet. Genome Res.
 
105
:  
375
–384.

Colosimo, P. F., K. E. Hosemann, S. Balabhadra, G. Villarreal, Jr., M. Dickson, et al.,

2005
Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.
Science
 
307
:  
1928
–1933.

Dawson, D. A., T. Burke, B. Hansson, J. Pandhal, M. C. Hale  et al.,

2006
A predicted microsatellite map of the passerine genome based on chicken-passerine sequence similarity.
Mol. Ecol.
 
15
:  
1299
–1320.

Dawson, D. A., M. Akesson, T. Burke, J. M. Pemberton, J. Slate  et al.,

2007
Gene order and recombination rate in homologous chromosome regions of the chicken and a passerine bird.
Mol. Biol. Evol.
 
24
:  
1537
–1552.

de  Oliveira, E. H., F. A. Habermann, O. Lacerda, I. J. Sbalqueiro, J. Wienberg  et al.,

2005
Chromosome reshuffling in birds of prey: the karyotype of the world's largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus).
Chromosoma
 
114
:  
338
–343.

Derjusheva, S., A. Kurganova, F. Habermann and E. Gaginskaya,

2004
High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds.
Chromosome Res.
 
12
:  
715
–723.

Ellegren, H., and B. C. Sheldon,

2008
Genetic basis of fitness differences in natural populations.
Nature
 
452
:  
169
–175.

Ellegren, H., L. Gustafsson and B. C. Sheldon,

1996
Sex ratio adjustment in relation to paternal attractiveness in a wild bird population.
Proc. Natl. Acad. Sci. USA
 
93
:  
11723
–11728.

Fan, J. B., A. Oliphant, R. Shen, B. G. Kermani, F. Garcia  et al.,

2003
Highly parallel SNP genotyping. Cold Spring Harbor Symp.
Quant. Biol.
 
68
:  
69
–78.

Ferguson-Smith, M. A., and V. Trifonov,

2007
Mammalian karyotype evolution.
Nat. Rev. Genet.
 
8
:  
950
–962.

Fillon, V., M. Vignoles, R. P. Crooijmans, M. A. Groenen, R. Zoorob  et al.,

2007
FISH mapping of 57 BAC clones reveals strong conservation of synteny between Galliformes and Anseriformes.
Anim. Genet.
 
38
:  
303
–307.

Fitzpatrick, B. M.,

2004
Rates of evolution of hybrid inviability in birds and mammals.
Evolution
 
58
:  
1865
–1870.

Freudenreich, C. H.,

2007
Chromosome fragility: molecular mechanisms and cellular consequences.
Front. Biosci.
 
12
:  
4911
–4924.

Gordon, L., S. Yang, M. Tran-Gyamfi, D. Baggott, M. Christensen  et al.,

2007
Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions.
Genome Res.
 
17
:  
1603
–1613.

Green, P., K. Falls and S. Crook,

1990
 Documentation for CRIMAP, Version 2.4. Washington University School of Medicine, St. Louis.

Gregory, T. R., J. A. Nicol, H. Tamm, B. Kullman, K. Kullman  et al.,

2006
Eukaryotic genome size databases.
Nucleic Acids Res.
 
35
:  
D332
–D338.

Griffin, D. K., L. B. Robertson, H. G. Tempest and B. M. Skinner,

2007
The evolution of the avian genome as revealed by comparative molecular cytogenetics.
Cytogenet. Genome Res.
 
117
:  
64
–77.

Groenen, M. A., H. H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles  et al.,

2000
A consensus linkage map of the chicken genome.
Genome Res.
 
10
:  
137
–147.

Gustafsson, L., and T. Pärt,

1990
Acceleration of senescence in the collared flycatcher Ficedula albicollis by reproductive costs.
Nature
 
347
:  
279
–281.

Gustafsson, L., and W. Sutherland,

1988
The costs of reproduction in the collared flycatcher Ficedula albicolis.
Nature
 
335
:  
813
–815.

Gustafsson, L., A. Qvarnström and B. C. Sheldon,

1995
Trade-offs between life-history traits and a secondary sexual character in male collared flycatchers.
Nature
 
375
:  
311
–313.

Guttenbach, M., I. Nanda, W. Feichtinger, J. S. Masabanda, D. K. Griffin  et al.,

2003
Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species.
Cytogenet. Genome Res.
 
103
:  
173
–184.

Hansson, B., M. Akesson, J. Slate and J. M. Pemberton,

2005
Linkage mapping reveals sex-dimorphic map distances in a passerine bird.
Proc. R. Soc. B Biol. Sci.
 
272
:  
2289
–2298.

Hasselquist, D., S. Bensch and T. von  Schantz,

1998
Low frequency of extrapair paternity and offspring survival in the great reed warbler.
Behav. Ecol.
 
6
:  
27
–38.

International  Chicken  Genome  Sequencing  Consortium,

2004
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.
Nature
 
432
:  
695
–716.

Itoh, Y., and A. P. Arnold,

2005
Chromosomal polymorphism and comparative painting analysis in the zebra finch.
Chromosome Res.
 
13
:  
47
–56.

Itoh, Y., K. Kampf and A.P. Arnold,

2006
Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements.
Chromosome Res.
 
14
:  
805
–815.

Jones, G. H., and C. Franklin,

2006
Meiotic crossing-over: obligation and interference.
Cell
 
126
:  
246
–248.

Karaiskou, N., and C. R. Primmer,

2007
PCR-multiplexing for maximising genetic analyses with limited DNA samples: an example in the collared flycatcher, Ficedula albicollis. Ann. Zool. Fenn. (in press).

Karaiskou, N., L. Buggiotti, E. Leder and C. R. Primmer,

2008
High degree of transferability of 86 newly developed zebra finch EST-linked microsatellite markers in 8 bird species. J. Hered. (in press).

Kasai, F., C. Garcia, M. V. Arruga and M. A. Ferguson-Smith,

2003
Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa): evidence of the occurrence of a neocentromere during evolution.
Cytogenet. Genome Res.
 
102
:  
326
–330.

Kayang, B. B., A. Vignal, M. Inoue-Murayama, M. Miwa, J. L. Monvoisin  et al.,

2004
A first-generation microsatellite linkage map of the Japanese quail.
Anim. Genet.
 
35
:  
195
–200.

Kayang, B. B., V. Fillon, M. Inoue-Murayama, M. Miwa, S. Leroux  et al.,

2006
Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence.
BMC Genomics
 
7
:  
101
.

Kehrer-Sawatzki, H., and D. N. Cooper,

2007
Structural divergence between the human and chimpanzee genomes.
Hum. Genet.
 
120
:  
759
–778.

Kohn, M., J. Hogel, W. Vogel, P. Minich, H. Kehrer-Sawatzki  et al.,

2006
Reconstruction of a 450-My-old ancestral vertebrate protokaryotype.
Trends Genet.
 
22
:  
203
–210.

Leder, E., N. Karaiskou and C. R. Primmer,

2008
70 new microsatellites for the pied flycatcher and amplification in other passerine birds. Mol. Ecol. Res. (in press).

Lenormand, T.,

2003
The evolution of sex dimorphism in recombination.
Genetics
 
163
:  
811
–822.

Lenormand, T., and J. Dutheil,

2005
Recombination difference between sexes: a role for haploid selection.
PLoS Biol.
 
3
:  
e63
.

Lupski, J. R., and P. Stankiewicz,

2005
Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes.
PLoS Genet.
 
1
:  
e49
.

Lyons, L. A., T. F. Laughlin, N. G. Copeland, N. A. Jenkins, J. E. Womack  et al.,

1997
Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes.
Nat. Genet.
 
15
:  
47
–56.

Navarro, A., and N. H. Barton,

2003
Chromosomal speciation and molecular divergence: accelerated evolution in rearranged chromosomes.
Science
 
300
:  
321
–324.

Nishida-Umehara, C., Y. Tsuda, J. Ishijima, J. Ando, A. Fujiwara  et al.,

2007
The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds.
Chromosome Res.
 
15
:  
721
–734.

Noor, M. A., K. L. Grams, L. A. Bertucci and J. Reiland,

2001
Chromosomal inversions and the reproductive isolation of species.
Proc. Natl. Acad. Sci. USA
 
98
:  
12084
–12088.

Organ, C. L., A. M. Shedlock, A. Meade, M. Pagel and S. V. Edwards,

2007
Origin of avian genome size and structure in non-avian dinosaurs.
Nature
 
446
:  
180
–184.

Peichel, C. L., K. S. Nereng, K. A. Ohgi, B. L. Cole, P. F. Colosimo  et al.,

2001
The genetic architecture of divergence between threespine stickleback species.
Nature
 
414
:  
901
–905.

Pevzner, P., and G. Tesler,

2003
Genome rearrangements in mammalian evolution: lessons from human and mouse genomes.
Genome Res.
 
13
:  
37
–45.

Pontius, J. U., J. C. Mullikin, D. R. Smith, K. Lindblad-Toh, S. Gnerre  et al.,

2007
Initial sequence and comparative analysis of the cat genome.
Genome Res.
 
17
:  
1675
–1689.

Price, T. D., and M. M. Bouvier,

2002
The evolution of F1 postzygotic incompatibilities in birds.
Evolution
 
56
:  
2083
–2089.

Qvarnström, A., T. Pärt and B.C. Sheldon,

2000
Adaptive plasticity in mate preference linked to differences in reproductive effort.
Nature
 
405
:  
344
–347.

Qvarnström, A., J. E. Brommer and L. Gustafsson,

2006
Testing the genetics underlying the co-evolution of mate choice and ornament in the wild.
Nature
 
441
:  
84
–86.

Raudsepp, T., M. L. Houck, P. C. O'Brien, M. A. Ferguson-Smith, O. A. Ryder  et al.,

2002
Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes.
Cytogenet. Genome Res.
 
98
:  
54
–60.

Reed, K. M., L. D. Chaves, M. K. Hall, T. P. Knutson and D. E. Harry,

2005
A comparative genetic map of the turkey genome.
Cytogenet. Genome Res.
 
111
:  
118
–127.

Reid, D. P., C. A. Smith, M. Rommens, B. Blanchard, D. Martin-Robichaud  et al.,

2007
A genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.).
Genetics
 
177
:  
1193
–1205.

Rieseberg, L.,

2001
Chromosomal rearrangements and speciation.
Trends Ecol. Evol.
 
16
:  
351
–358.

Saether, S. A., G.-P. Saetre, T. Borge, C. Wiley, N. Svedin  et al.,

2007
Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers.
Science
 
318
:  
95
–97.

Schmid, M., I. Nanda, H. Hoehn, M. Schartl, T. Haaf  et al.,

2005
Second report on chicken genes and chromosomes 2005.
Cytogenet. Genome Res.
 
109
:  
415
–479.

Sheldon, B. C., and H. Ellegren,

1999
Sexual selection resulting form extrapair paternity in collared flycatchers.
Anim. Behav.
 
57
:  
285
–298.

Sheldon, B. C., J. Merilä, A. Qvarnström and H. Ellegren,

1997
Female genetic benefit from extra-pair copulation predicted by relative size of male secondary sexual character.
Proc. R. Soc. Lond. Ser. B Biol. Sci.
 
264
:  
297
–302.

Shetty, S., D. K. Griffin and J. A. Graves,

1999
Comparative painting reveals strong chromosome homology over 80 million years of bird evolution.
Chromosome Res.
 
7
:  
289
–295.

Shibusawa, M., S. Minai, C. Nishida-Umehara, T. Suzuki, T. Mano, et al.,

2001
A comparative cytogenetic study of chromosome homology between chicken and Japanese quail.
Cytogenet. Cell Genet.
 
95
:  
103
–109.

Shibusawa, M., M. Nishibori, C. Nishida-Umehara, M. Tsudzuki, J. Masabanda  et al.,

2004
a Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.
Cytogenet. Genome Res.
 
106
:  
111
–119.

Shibusawa, M., C. Nishida-Umehara, M. Tsudzuki, J. Masabanda, D. K. Griffin  et al.,

2004
b A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica, Odontophoridae).
Cytogenet. Genome Res.
 
106
:  
82
–90.

Slate, J.,

2005
Quantitative trait locus mapping in natural populations: progress, caveats and future directions.
Mol. Ecol.
 
14
:  
363
–379.

Slate, J., P. M. Visscher, S. MacGregor, D. Stevens, M. L. Tate  et al.,

2002
A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus).
Genetics
 
162
:  
1863
–1873.

Troggio, M., G. Malacarne, G. Coppola, C. Segala, D. A. Cartwright  et al.,

2007
A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs.
Genetics
 
176
:  
2637
–2650.

van  Tuinen, M., C. G. Sibley and S. B. Hedges,

2000
The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes.
Mol. Biol. Evol.
 
17
:  
451
–457.

Veen, T., T. Borge, S. C. Griffith, G. P. Saetre, S. Bures  et al.,

2001
Hybridization and adaptive mate choice in flycatchers.
Nature
 
411
:  
45
–50.

Voorrips, R. E.,

2002
MapChart: software for the graphical presentation of linkage maps and QTLs.
J. Hered.
 
93
:  
77
–78.

Wahlberg, P., L. Stromstedt, X. Tordoir, M. Foglio, S. Heath  et al.,

2007
A high-resolution linkage map for the Z chromosome in chicken reveals hot spots for recombination.
Cytogenet. Genome Res.
 
117
:  
22
–29.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)