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Abstract

Background: Advances in biotechnology have created “big-data” situations in molecular and cellular biology.
Several sophisticated algorithms have been developed that process big data to generate hundreds of biomedical
hypotheses (or predictions). The bottleneck to translating this large number of biological hypotheses is that each of
them needs to be studied by experimentation for interpreting its functional significance. Even when the predictions
are estimated to be very accurate, from a biologist's perspective, the choice of which of these predictions is to be
studied further is made based on factors like availability of reagents and resources and the possibility of formulating
some reasonable hypothesis about its biological relevance. When viewed from a global perspective, say from that
of a federal funding agency, ideally the choice of which prediction should be studied would be made based on
which of them can make the most translational impact.

Results: We propose that algorithms be developed to identify which of the computationally generated hypotheses
have potential for high translational impact; this way, funding agencies and scientific community can invest
resources and drive the research based on a global view of biomedical impact without being deterred by local
view of feasibility. In short, data-analytic algorithms analyze big-data and generate hypotheses; in contrast, the
proposed inference-analytic algorithms analyze these hypotheses and rank them by predicted biological impact. We
demonstrate this through the development of an algorithm to predict biomedical impact of protein-protein
interactions (PPIs) which is estimated by the number of future publications that cite the paper which originally
reported the PPI.

Conclusions: This position paper describes a new computational problem that is relevant in the era of big-data
and discusses the challenges that exist in studying this problem, highlighting the need for the scientific community
to engage in this line of research. The proposed class of algorithms, namely inference-analytic algorithms, is
necessary to ensure that resources are invested in translating those computational outcomes that promise
maximum biological impact. Application of this concept to predict biomedical impact of PPIs illustrates not only
the concept, but also the challenges in designing these algorithms.
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Background
Big data is everywhere today, be it data from publications
(newspapers, journals, internet pages or tweets), or be it
cosmological, climatic, or ecological data. This trend is
facilitated primarily by the exponential increases in the
capabilities of computing, storage and communication
technologies. In biology, advances in biotechnology have
resulted in the creation of big data of many types: genomic,
proteomic, trascriptomic, epigenomic and metabolomic
characterizations of several species and their populations.

Large-scale data analytics can aid in discovering pat-
terns in these data to gain new scientific insights; how-
ever, the domain of biology is very different from most
other domains in this aspect. Validating a computa-
tional result is cheap in domains like language trans-
lation, and can be carried out by any average individual;
when the number of results is in hundreds or thou-
sands, it is possible to crowdsource the validations
using Amazon MechanicalTurk [1] or the like. Manual
validators can often correct mistakes of the algorithm,
and these corrections may in turn be used to improve
the algorithm in future. Secondly, the computational
results are often ready for direct use or interpretation.
For example, outcomes of algorithms for machine
translation from one language to another, information
retrieval, weather prediction, etc. may be directly de-
ployed for use in real life.

Compared to these domains, there are four fundamen-
tal differences in large-scale data analytics for molecular
and cellular biology:

(i) Conclusions drawn by algorithms cannot be
validated manually, and often require carrying out
experiments.

(ii) Even when the computational inferences are
accurate and do not require further validation,
converting the inferences to meaningful insights
requires experimentation.

(iii) Experimental methods require resources that are
expensive (material and financial resources) or even
unavailable (suitable antibodies).

(iv) Validation and interpretation of inferences requires
scientific expertise which may be scarce (for
example, there may not be any scientist with
expertise in studying some of the proteins).

For these reasons validating or interpreting all the hun-
dreds of computational inferences of data-analytic algo-
rithms is expensive and is not amenable to crowdsourcing.

In this position paper, we introduce the concept called
inference-analytics, and a specific inference-analytics
problem called impact prediction. We use the terms
predictions, computational inferences or hypotheses to
refer to the outcomes of data-analytic algorithms.
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Inference analytics for research prioritization

In domains such as biology where hypothesis verification
and interpretation are resource-intensive, the large num-
ber of inferences drawn by data-analytic algorithms would
have to be reanalyzed by various criteria such as availabil-
ity of resources (budget, reagents or scientific expertise).
We call such algorithms which re-analyze data analytic in-
ferences as inference analytic algorithms (Figure 1); an in-
ference analytic algorithm that is essential in the field of
biology is that of predicting the future impact of an infer-
ence on biomedicine.

Predicting future impact of inferences is necessary in
biology and biomedicine

Just as grant proposals are evaluated for their “difference
making capability” to determine priority of funding, the
inferences drawn at a large scale may be evaluated by their
potential for biomedical impact before investing resources
to experimentally study them (Figure 1). Impact predic-
tion, or ranking the computational inferences based on fu-
ture impact is distinct from other methods of re-ranking
computational outcomes, such as ranking by confidence
of prediction. Here, we assume that all computational out-
comes are equally accurate, and propose to re-rank them
by their predicted impact on future science. Impact pre-
diction is also distinct from task prioritization, a well-
studied area in computer science. Task prioritization
assumes that priorities and costs are known for the tasks,
and it optimizes allocation of resources to tasks to achieve
maximum yield. Here, our goal is to predict the biomed-
ical impact (a type of priority) so that resource allocation
(e.g., by a funding agency) can be carried out based on
these priorities.

Citation count can be used as a surrogate measure for
biomedical impact

The focus of this work is on estimating the biological
importance of a specific PPI (i.e., how central is a PPI to-
wards understanding other biological or disease related
factors). How do we measure this importance? Consider
the publications that report each of these PPIs; then
consider the publications that cite these original publica-
tions. In this narrow domain of publications reporting or
citing PPIs, we estimate that each article typically con-
tains one primary result; we measure the importance of
a PPI in terms of how many papers cite the original pub-
lication reporting that PPI. For example, the PPI of
EGFR with Actin was central in advancing our know-
ledge of several other biological concepts discovered
based on this PPI. For this reason, the paper reporting
this PPI [2] has been cited by 35 articles in PubMed.
The impact of EGFR-Actin is therefore estimated to be
at 35 “biomedical results”. Thus, we approximate impact
prediction with citation count prediction.
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Figure 1 Inference analytics. (A) Data analytics typically analyze large datasets to draw inferences; these inferences are usually used directly; the
inferences may be evaluated with relatively small investment of resources or through crowdsourcing. (B) In areas such as biology, it is desirable
that data analytics is followed by inference analytics; these algorithms would analyze the large number of data analytic inferences and re-ranking
them by various criteria to aid the users in selecting which inference to pursue. The work presented here corresponds to inference analytics for

Citation count prediction for scientific impact is different
from citation count prediction based on metadata

Several researchers have investigated predicting the ci-
tation counts for scientific papers [3-5]. However, in these
methods only metadata about the publication (number of
past articles and past citations of the first author), and con-
tent (article title, abstract and MeSH terms) have been
used. Our work differs from such work in that we do not
consider citation impact based on reputation of the journal
or that of the author, but we focus on the biomedical infor-
mation of the published scientific result that is receiving
the citations. Here, citation counts are used as a surrogate
measure of the impact of a scientific result. Of course,
many factors influence the citing behavior of a given paper:
year of its publication, the journal containing the publica-
tion, its availability and accessibility, and more [6]. We be-
lieve that the original publication would be published in
the journal it deserves (e.g., the fact that a paper reporting
an interaction was accepted to be published in a high im-
pact journal is in itself an indicator that the interaction
may be of high biomedical significance); therefore, the bias
introduced by the journal of publication is not an un-
wanted bias in calculating the biomedical impact. Other
factors influencing citation counts, namely the year of pub-
lication and years since publication are addressed to some
extent in this work. We employ citation counts as indica-
tors of “future impact” of a reported biological result.

Predicting impact of protein-protein interactions

We demonstrate the idea of inference analytics by deve-
loping an algorithm for impact prediction in the domain
of PPIs. We propose to predict the impact of each of the
PPIs, so that experiments may be prioritized to study
the most impactful PPIs.

Although PPIs form the basis of many biological phe-
nomena, 90% of the estimated number of PPIs are
currently unknown [7-9]. Extensive research is being
carried out both with high-throughput biotechnology
and computational methods to discover PPIs [10-14].
Both these approaches provide hundreds or thousands
of hypothesized PPIs. The PPI network incorporating
these thousands of newly discovered PPIs is useful to
directly carry out systems biology studies [15-19]. How-
ever, to advance the biology surrounding each PPI (i.e.,
to translate the inference into biomedical knowledge),
many detailed experiments need to be performed (simi-
lar to the experiments that reported the importance of
EGFR-Actin interaction). These experiments are expen-
sive and time-consuming and most importantly require
valuable time of scientists. Selecting a PPI for experi-
mental study is usually based on the feasibility (availabi-
lity of budget, reagents, time and technical manpower),
possibility of formulating a hypothesis of its functional
significance, and most importantly, the perceived impact
of its validation on advancement of science based on the
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domain knowledge of the scientist. With this in mind, it
is infeasible to study every hypothesized interaction me-
ticulously with detailed experiments due to the sheer
number of the inferred interactions.

When viewed from a global perspective, say by a
funding agency that has the capacity to drive the science
in a direction that is important, the selection of PPIs for
experimentation has to be made based on their relative
expected impact. There should be a mechanism of iden-
tifying what the top 100, say, PPIs are that are most ur-
gent because of their potential impact on biology and
biomedicine. Existing algorithms generate thousands of
predictions and possibly rank them by confidence, but
none currently rank them by the impact that they are
predicted to make in the future

Data description

Binary biophysical PPIs in human were collected from
HPRD [20] and BioGRID [21]. HPRD gives PPIs as a list
of “binary protein-protein interactions”, and BioGRID
gives them marked with the identifier “MI1:0407”. These
databases present PPIs that are curated from publications,
and for each PPI they also give links to the original publi-
cation(s) that reported the interaction. The Entrez Pro-
gramming Utilities [22] was used to retrieve citation
information. There were 129,227 references to the 7,581
papers that had one-to-one relationship with interactions.
17,985 of them were self-references (13.92%). We built the
interactome network from the PPIs, and computed the
centrality measures of PPIs (edges) and the participant
proteins (nodes). The resulting network consists of 10,492
nodes and 48,419 edges. A subset of PPIs that have a one-
to-one relation with PubMed articles (i.e., those PPIs that
are reported by only one publication and where that publi-
cation does not report any other PPI) is retrieved to be
considered as labeled data for training and test sets.

Analyses

We propose a computational approach to find the most
promising PPIs, and we measure the impact of a PPI in
terms of how many papers cite the publication that ori-
ginally reported the PPI.

Our focus is on estimating the biological importance
of a PPI; and we therefore base our predictions on the
topological features of the PPIs with respect to the entire
interactome. We frame the questions as follows: Is there
a detectable trend in the network topology of highly
cited interactions or are they placed randomly on the
interactome? Do interactions with high biomedical im-
pact have unique, quantifiable network characteristics
that distinguish them from other interactions? If we are
able to uncover these latent characteristics, naturally, we
have strong reason to believe that we should study inter-
actions in the order of their predicted importance. The
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results show that even by using only the topological fea-
tures of PPIs, some of the high-impact PPIs can be
identified.

Identifying the most important nodes in a large com-
plex network has been well-studied in various fields. In
the field of sociology, various centrality measures have
been proposed to rank the nodes in a complex network
[23]. In the field of biology, these centrality measures are
believed to determine characteristics of protein function
[24], such as the essentiality of the gene for the organ-
ism’s survival [25-28]. In this work, instead of identifying
the most important nodes in a network, we consider
identifying the most impactful edges in a network.

Figure 2 shows the flow diagram of this work which
includes dataset creation, construction of pair-wise fea-
tures of proteins, development and evaluation of the
proposed model, and the application of the model to
predict impact of all PPIs in the human interactome.

Methods

Feature representation

We computed network centrality measures shown in
Table 1 as features, and trained a random forest model to
predict high-impact PPIs. Calculation of the node centrali-
ties was carried out using the Stanford Network Analysis
Library [32], and of the edge centrality using the
NetworkX library [33]. As there are 8 node centrality fea-
tures and 1 edge centrality feature, each interaction is rep-
resented by a vector of 17 features, with the first 16
corresponding to the node centralities of the two proteins
and the 17th corresponding to the edge centrality. Let
D = [X1,X,...,X,] represent the n training samples and

X, = [xgi),xg), ...,x%), y;| represent the i-th sample with

features x” and class label y; As PPIs are undirected by na-
ture, and node centralities are features that pertain to nodes
(proteins), special care must be taken to treat each inter-
action as an unordered pair. That is, if we represent an
interaction between proteins a and b by an ordered pair
(a, b), we do not wish to discriminate between (a, b) and
@ (@)

(b, @). While constructing features x ), we let features X, to

xg) be the larger values of the two node centralities, and let

features xg) to xgg be the smaller value of the two, in order
to symmetrize the feature vectors for (a, ) and (b, a).

Models

Whether an interaction is labeled positive (high-impact)
or negative (non high-impact), is defined by a threshold
on the number of citations. For a given threshold ¢, a
positive label (y; = 1) means that the paper reporting the
i-th PPI received at least ¢ citations within the 5-year
window following the publication, while a negative label
(y;=0) denotes that it did not (for details on the choice
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1. Assemble human interactome

network (from HPRD and BioGRID)
with source publication(s) and their
citation counts from NCBI s

6. Predict impact of all PPIs in the

with the model that has been
developed

2. Compute network topological
features for each of the PPIs

"3 Choose interactions that - . ~
have 1-to-1 relationship
with a publication

: . 5. Develop new
interactome by evaluating them <:| classification model
using all this data

Figure 2 PPI data. From the human interactome, those PPIs (edges) are selected that have 1-1 relation with a publication; that is, the
publication reports only one interaction, and that interaction is not reported by any other publication. The classification model is trained and
evaluated using this 1-1 dataset. After evaluating the approach thus, all of the 1-1 dataset is used to train a new model which is then used to
classify each of all of the edges in the interactome to identify high-impact edges. PPl network diagram was created with Cytoscape [29-31].

4. Develop and evaluate
classification model with
training & testing data
created with these edges

of the 5-year window, see Results and Discussion). The
threshold was set to 5, 10, 30 and 50 in this study.
Table 2 lists the number of positive and negative in-
stances under the different threshold settings. Note that
we are unable to use interactions reported in papers
published less than 5 years prior to this study in the
training or test data because we are considering the
citation count of a paper within a 5-year window follo-
wing the publication.

Random Forest from the Scikit-Learn machine lear-
ning library was used for classification [37-39]. Random
Forest has a high prediction accuracy for many types of
data achieved by using bagging on samples, random sub-
sets of features, and a majority voting scheme, and has
been successfully applied to various problems in compu-
tational biology [40]. Random forest also allows the esti-
mation of feature importance [38].

Table 1 Calculated centrality measures

Feature type Feature

Degree centrality
Closeness centrality
Betweenness centrality [34]
) Eigenvector centrality

Node centralty Network constraint
Clustering coefficient
PageRank [35]
Hub centrality (authority centrality)

Edge centrality Brandes' betweeness-centrality [36]

Evaluation

Prior works in citation prediction have often used the
Receiver Operating Characteristic (ROC) [4] or accuracy
[5] to evaluate their methods. However, ROC curves can
present an overly optimistic view of an algorithm’s per-
formance if there is a large skew in the class distribution
[41]. The same holds for accuracy measure. For our task,
because there are much more negative instances than
positive instances, we use precision and recall, and the
area under the precision-recall curve (AUPR) to compare
methods. For our prediction task, we are mainly interested
in conditions where the false positive rate is low. Thus, we
also use R50, a partial AUPR score that measures the area
under the precision-recall curve until reaching 50 negative
predictions. We perform a 10-fold cross-validation in 20
randomly repeated runs to obtain average values. We re-
peat cross-validation runs since noise exists in both fea-
tures and labels; as we shall explain later, our features are
calculated from a sampled sub-network and thus inhe-
rently contain noise. The averaged performance scores are
used for comparison. We compare the random forest

Table 2 The number of positive/negative instances and
their ratio under the different threshold settings in our
dataset

Threshold Positive Negative Npositive / Ntotal
5 3,393 3474 0494
10 1,686 5,181 0.246
30 267 6,880 0.039
50 93 6,774 0014
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Figure 3 Distribution of the number of PPIs reported in a paper.

0 10 20

Number of PPIs

30 40 50

model against a random method, in which we assign ran-
dom probability sampled from a continuous uniform dis-
tribution from the interval (0, 1) to each interaction.

Application to all PPIs in the human interactome

After evaluation of the approach, a new model is trained
using all the PPIs with one-to-one relation (i.e., com-
bined training and testing datasets previously used for
evaluation). This model is employed to each PPI in the
human interactome to predict whether it is likely to have
high impact (Figure 2).

Discussion

Figures 3 and 4 show the distribution of how many PPIs
are reported in a paper, and the distribution of how
many papers report a PPI, respectively. Most papers re-
port a few interactions, but there are some cases where
a single paper reports multiple PPIs. This is due to the
fact that HPRD and BioGRID capture all interactions in
a paper, even if they are not the main focus of an experi-
ment. We excluded the manuscripts that report a large
number of PPIs from training and test data as we do not
know which PPIs contributed to the citation counts; the
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Figure 4 Distribution of the number of papers that report a PPI.
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publication may even have been cited for the method-
ology (such as yeast 2-hybrid or an algorithm). Similarly,
we excluded PPIs and corresponding manuscripts where
a specific PPI has been reported by multiple manu-
scripts. This leaves 7,581 interactions among 5,182
unique proteins for training and testing the model. Note
that the centrality measures are computed by consider-
ing the entire set of PPIs and not just this subset.

We studied the trends of citation of the papers that re-
port PPIs and investigated whether there is any inherent
pattern that underlies the citation behavior for papers
that report interactions. Figure 5 shows the temporal cit-
ation pattern for the 7,581 papers, separated by the pub-
lication year. Regardless of the publication year, most
papers tend to have a citation peak within the first
5 years after its publication. Interestingly, there is a sec-
ond peak after the 5-year window, which corresponds to
citations from 2010 to 2012. It is unclear what the rea-
son for this citation peak is. It may be due to the Open
Access policy adopted by many journals, authors and
funding agencies which started a couple of years prior to
2010, giving the time for other researchers to access the
papers and cite them in their work.

Table 3 shows the results of the model in comparison
to random baseline. The random forest model with node
and edge centrality features consistently outperforms
random assignment at all threshold levels with a signifi-
cance of P<0.01 by the Wilcoxon signed-rank test.
Figure 6 compares the average precision-recall curves of
the random forest model and random assignment for
the different threshold settings.

We see that node and edge centrality of an interaction do
indeed correlate with how much impact an interaction can
make on furthering biomedical science. We assess feature
importance based on the Gini index of the random forest
classifier. The result is shown in Figure 7. All of the top-
ology based features are moderately informative, but there
are no distinctively dominant features. Prior research has
often connected a node’s degree centrality with its essential-
ity; however, when considering future biomedical impact,
we see that degree centrality is the least indicative feature
out of all other topology based features.

High-impact edges in the human interactome

After carrying out the evaluations described earlier, the
method was applied to identify high impact edges from
amongst all the PPIs in the human interactome. A final

Table 3 Results on the dataset

Threshold Method AUPR R50
5 Random forest 05718 0.1450
Random 04975 0.0661
10 Random forest 0.3204 0.0762
Random 0.2510 0.0272
30 Random forest 0.0868 0.0426
Random 0.0600 0.0197
50 Random forest 0.1115 0.0792
Random 0.0734 0.0283

Table shows area under the precision recall curve (AUPR) and R50 that
measures the area under the precision-recall curve until reaching 50
negative predictions.
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model was trained with all available interactions that
have a one-to-one relationship with a paper (i.e., includ-
ing those that were originally left out for evaluation pur-
poses). The model was then applied to identify high-
impact PPIs from amongst all the PPIs in the
interactome. Note here, that the model was applied on
all the PPIs without restricting to those that have one-to
-one relationship with publications; such a dataset is re-
quired only for training the model accurately and to
evaluate the model reliably, whereas, the final prediction
of whether a PPI is of high impact is carried out based
on its network features alone without dependence on
the number of times it has been reported. Table 4 lists
the top 10 PPIs that are predicted to be of high impact.
As can be seen, most of them indeed resulted in high
impact on biomedical science, resulting in up to 413 ci-
tations. The top 100 most-impactful edges of human
interactome predicted by this model are given in Add-
itional file 1. While these PPIs are predicted to be of
high impact, the actual impact achieved by each of these
PPIs may be seen on Wiki-Pi web server, which shows

up-to-date information on the number of citations re-
ceived by the publication which reports the PPI [42].

Functional enrichment of high-impact interactions

We analyzed the statistical enrichment of annotations of
the interactions that are predicted to be high-impact. The
Gene Ontology term enrichment for proteins involved in
the top 50 high-impact interactions has been computed
using the BINGO plugin for Cytoscape [43]. This analysis
revealed enrichment in 80 biological processes, 16 molecu-
lar functions, and 25 cellular component terms at a statis-
tical significance of P < 0.05 (see Additional files 2, 3 and 4
respectively in text format, and Additional files 5, 6 and 7
respectively in Cytoscape format). For example, cell cycle,
negative regulation of biological process, and initiation of
DNA-dependent transcription are highly enriched bio-
logical process terms, while protein-binding transcription
factor activity and transcription-factor binding are the
highly represented molecular function terms, and nuclear
part, membrane-enclosed lumen, and macromolecular
complex are the top most significant cellular components.
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Figure 7 Random Forest Gini importance measures for each feature.
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Table 4 The top 10 interactions that are predicted to be of high impact

PPI information

Publication information

Rank by Gene symbols Protein A name Protein B name Pubmed Number of Year of
impact ID citations so far publication
1 ADIPOQ - ADIPOR2  adiponectin, C1Q and collagen adiponectin receptor 2 12802337 160 2003
domain containing
2 NMB - NMBR neuromedin B neuromedin B receptor 8392057 8 1993
3 NUP93 - TMEM48  nucleoporin 93 k Da transmembrane protein 48 12928435 37 2006
4 DAO - DACA D-amino-acid oxidase D-amino acid oxidase activator 12364586 72 2002
5 PCM1 - TIC8 pericentriolar material 1 tetratricopeptide repeat domain 8 14520415 99 2003
6 PCM1 - KIAAO368 pericentriolar material 1 KIAAO368 16189514 413 2005
7 BBS4 - PCM1 Bardet-Bied| syndrome 4 pericentriolar material 1 15107855 55 2004
8 SRC - YWHAG v-src sarcoma (Schmidt-Ruppin A-2)  tyrosine 3-monooxygenase/tryptophan 8702721 21 1996
viral oncogene homolog (avian) 5-monooxygenase activation protein,
gamma polypeptide
9 GRB2 - SRC growth factor receptor-bound v-src sarcoma (Schmidt-Ruppin A-2) 11964172 2 2002
protein 2 viral oncogene homolog (avian)
10 HCN2 - HCN4 hyperpolarization activated cyclic hyperpolarization activated cyclic 12928435 26 2003

nucleotide-gated potassium
channel 2

nucleotide-gated potassium channel 4

Note that for each interaction, we only show the publication that has the highest citation count among those that report the said interaction.

High impact interactions of GWAS genes

Genome-wide association studies (GWAS) provide a
mapping between genetic factors and diseases by draw-
ing comparisons in the genotype of variants between
disease cases and controls. These studies are unbiased
by current scientific knowledge about individual genes
(i.e., they do not have literature-bias), and identify gen-
ome regions with previously unknown biological rele-
vance and provide replicable results [44]. They often
uncover several genes of unknown functions possibly
participating in hitherto unknown biological pathways
[44]. We collected the catalog of GWAS studies which is
maintained by National Human Genome Research Insti-
tute (NHGRI) [45,46]. This catalog contains 1,309 publi-
cations reporting GWAS results on 674 traits or
diseases. We investigated whether any high-impact inter-
actions belong to those that are associated with diseases
(as identified by GWAS; henceforth referred to as
GWAS-genes) [46]. Retinal vascular caliber, type 2 dia-
betes, and glioma are some of the diseases associated
with the genes in the top 100 high-impact interactions.
Of the top 50 high-impact interactions, those in which
one or both proteins are among the GWAS-genes are
shown in Table 5 and a larger list is available in Add-
itional file 8.

Open challenges

Inferring biological conclusions from topology of a
partially-known network will be influenced by the sam-
pling biases that can alter the underlying structure of the
network in unpredictable ways [47]. As mentioned earlier,
only 10% of the human interactome is currently known.

The fact that we are dealing with a sub-network, rather
than a complete network presents an inherent challenge
to this study. The first issue concerns the accuracy of the
centrality measures: under-studied sub-regions of the net-
work may have superficially low centrality measures, while
well-studied sub-regions of the network may have seem-
ingly high centrality measures. The second issue involves
bias in the citation behavior: well-studied sub-regions, by
definition, are more avidly studied. Thus, it may be the
case that well-studied sub-regions will contain highly-
cited interactions due to study bias. In order to address
this inaccuracy in centrality measures and sociological bias
in the citation counts, constructing a network from sys-
tematic, unbiased high-throughput experiments (biotech-
nological or computational methods) is one area of future
research.

Impact prediction in any biological domain in general,
has unique challenges. Unlike in other computational do-
mains, such as human language translation, it is difficult to
estimate the translational impact in biology in a particular
study because it is time consuming and requires investment
of expensive resources and scientific skills making the de-
sign of such algorithms challenging. Despite its difficulties,
the proposed direction of research of developing inference-
analytic algorithms is necessary to make advances in the
most impactful direction.

Potential implications

High-throughput biotechnology and computational predic-
tion algorithms generate a plethora of hypothesized bio-
logical inferences. Meanwhile, high-resolution bench work
experiments in biology are often carried out by formulating
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the hypothesis with a local view of a molecule rather than a
systemic view. In this era of scalable data-analytic algo-
rithms which process large data, producing hundreds of in-
ferences, there needs to be a systematic way of determining
which of these hundreds of inferences are to be further
studied. In this position paper, we propose a new class of al-
gorithms called inference-analytic algorithms that carry out
such systematic analysis to prioritize the computational in-
ferences for further study; the concept has been demon-
strated in the context of protein-protein interactions (PPIs).
The algorithm is designed to provide a roadmap for the
order in which PPIs should be studied further, in the hope
that this will prioritize the investment of small-scale ex-
periments and reap maximum benefit for the field of bio-
medicine as a whole. It has the potential to identify both
existing PPIs with untapped impact and also newly pre-
dicted PPIs with potential for impact. Factors such as
disease-associations and drug-binding also determine
which proteins are to be studied further for biomedical
impact. On the other hand, factors such as unavailability
of reagents may restrict the study of some of these pro-
teins. Future algorithmic prediction of impactful PPIs
needs to incorporate these preferences and constraints.
Identifying high-impact PPIs brings the focus of the
scientific community onto these proteins and fuels the
development of necessary skills, reagents, and so forth.

Availability of supporting data
Supporting data are made available on BiomedCentral
website as described under Additional files section.

Additional files

Additional file 1: 100 most-impactful interactions as predicted by
the model, as well as predicted impact scores for all interactions
sorted in descending order by predicted impact.

Additional file 2: Enriched Gene Ontology terms (biological
process) for the top 50 high-impact interactions.
Additional file 3: Enriched Gene Ontology terms (molecular
function) for the top 50 high-impact interactions.

Additional file 4: Enriched Gene Ontology terms (cellular
component) for the top 50 high-impact interactions.

Additional file 5: Cytoscape session file showing enriched Gene
Ontology biological process terms, output by BiNGO.

Additional file 6: Cytoscape session file showing enriched Gene
Ontology molecular function terms, output by BiNGO.

Additional file 7: Cytoscape session file showing enriched Gene
Ontology cellular component terms, output by BiNGO.

Additional file 8: Of the top 50 high-impact interactions, those in
which one or both proteins are among the GWAS-genes are shown.
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PPI: Protein-protein interaction; MeSH: Medical subject heading;

ROC: Receiver operating characteristics; AUPR: Area under the precision-recall
curve; GWAS: Genome-wide association studies.
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