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Abstract

Background: While exome and targeted next-generation DNA sequencing are primarily used for detecting single nucleotide
changes and small indels, detection of copy number variants (CNVs) can provide highly valuable additional information
from the data. Although there are dozens of exome CNV detection methods available, these are often difficult to use, and
accuracy varies unpredictably between and within datasets. Findings: We present Ximmer, a tool that supports an
end-to-end process for evaluating, tuning, and running analysis methods for detection of CNVs in germline samples.
Ximmer includes a simulation framework, implementations of several commonly used CNV detection methods, and a
visualization and curation tool that together enable interactive exploration and quality control of CNV results. Using
Ximmer, we comprehensively evaluate CNV detection on four datasets using five different detection methods. We show
that application of Ximmer can improve accuracy and aid in quality control of CNV detection results. In addition, Ximmer
can be used to run analyses and explore CNV results in exome data. Conclusions: Ximmer offers a comprehensive tool and
method for applying and improving accuracy of CNV detection methods for exome data.

Keywords: Ximmer: a system for improving exome CNV calling

Background

In recent years, high-throughput sequencing (HTS) of DNA has
become an essential tool in biomedical science, with a vast range
of applications spanning both clinical and research investiga-
tions. In clinical settings, whole-exome sequencing (WES) and
custom targeted gene panels are especially important and have

enabled significant improvements in the rate of diagnosis for
rare, genetically heterogeneous disorders [1]. WES has also had
a profound impact on disease research by allowing researchers
to comprehensively search for protein-altering genetic varia-
tion. As a result of these advances, the rate of discovery of new
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2 Ximmer: a system for improving exome CNV calling

Mendelian disease genes has seen substantial improvements in
recent years [2].

While WES has proven highly effective, this success has been
based predominantly on the detection of single-nucleotide vari-
ants (SNVs) and small insertions and deletions (indels). Larger
variants, such as copy number variants (CNVs), are not routinely
ascertained from WES data. Nonetheless, CNVs are frequently
disease causing, both as the primary genetic lesion for disor-
ders such as α-thalassemia [3], Charcot-Marie-Tooth neuropa-
thy, and Smith-Magenis syndrome, as well as a rare cause for a
wide range of Mendelian diseases. In particular, single copy dele-
tions can be pathogenic for any disorder caused by haploinsuffi-
ciency. To detect CNVs, patients are often screened for CNVs us-
ing SNP or array comparative genomic hybridisation microarrays
prior to use of WES. However, affordable microarrays have lim-
ited resolution and add time, cost, and complexity to the overall
diagnostic workflow. There are consequently significant poten-
tial advantages if CNVs can be ascertained directly from WES.

CNVs can be detected from three primary signals in HTS data.
These are anomalous mapping of paired-end reads that span
CNV breakpoints (PE signals), the splitting of individual reads
by CNV breakpoints (split-read, or SR signals), and fluctuation
in the coverage of reads falling in the body of a CNV (the read
depth, or RD signal). While all of these signals are effective in
whole-genome sequencing (WGS) data, the breakpoints of CNVs
usually fall between the regions targeted by WES. Therefore, only
the RD signal is reliably observable in WES data. The RD signal
has been shown to be informative due to a strong correlation of
copy number with read coverage depth [4]. However, detection
of CNVs is confounded by a range of other factors that also influ-
ence read coverage depth. Therefore, these factors must be cor-
rected, and failure to do so can result in significantly degraded
accuracy.

Numerous methods have been developed to detect CNVs
based on the RD signal. Examples include ExomeDepth [5], Ex-
omeCopy 6, XHMM [7], cn.MOPS [8], ExomeCNV [4], CoNVEX [9],
EXCAVATOR [10], CoNIFER [11], CANOES [12], and CODEX [13].
The authors of these tools have often cited high sensitivity and
specificity for their methods. However, independent compar-
isons frequently fail to replicate their findings. For example, Guo
et al. reported ExomeDepth having sensitivity of only 19% [14],
while Ligt et al. observed a sensitivity of 35% [15]. In the same
studies, sensitivity of CoNIFER was cited as being 3% and 29% re-
spectively, compared to the original evaluation estimate of 76%.
In some contexts, high accuracy is reported. For example, Jo et
al. [16], Ellingford et al. [17], and Feng et al. [18] all cited 100%
sensitivity and high specificity for detection of larger CNVs en-
countered clinically, in each case using high coverage data. How-
ever, the circumstances in which high accuracy can be achieved
are currently not well understood.

Recent studies have compared performance across multiple
datasets [19-21], highlighting the problem of variability in the
performance of CNV calling as well as high false-positive rates
[22]. Some of the performance variability observed in these stud-
ies may be due to differences between the datasets and sequenc-
ing design, such as the number of samples, read length, insert
size, and mean RD. Also of critical importance is the size and
type of CNVs assessed. However, even when these known tech-
nical factors are controlled, significant variability is often still
observed between datasets.

In this work, we present Ximmer, a software tool that im-
proves CNV calling reliability by enabling users of CNV detec-
tion tools to efficiently assess and tune performance. Ximmer
contains three parts: a simulation method, an analysis pipeline,

and a graphical report. First, Ximmer simulates synthetic single-
copy deletions in existing WES data. Then, the analysis pipeline
automates detection of the deletions with up to five commonly
used CNV detection methods. Finally, the graphical report shows
the combined CNV calling results, including a suite of plots that
give insight into the accuracy achieved and strategies for im-
proving performance.

Here, we explain the implementation details of Ximmer and
demonstrate how using Ximmer improves CNV detection accu-
racy. We show results from five CNV callers on four datasets rep-
resenting different exome capture kits and different sequencing
depths. Our results concur with previous studies, finding that
CNV detection performance is highly variable both within and
between datasets. However, we show that using Ximmer to gain
insight into the variability enables optimization of the CNV call-
ing and improves detection of real CNVs. Ximmer offers an inte-
grated framework that is easy to use and freely accessible, from
[23]. An example of Ximmer output is available at [24].

Methods

The Ximmer process consists of a series of steps designed to op-
timize CNV detection performance. The steps consist of: (1) sim-
ulation of CNVs in the user’s data, (2) execution of CNV callers
to find both real and simulated CNVs, (3) quality and accuracy
assessment to discover optimal settings for CNV calling, and (4)
filtering of results to produce a curated CNV list. This process
can be time consuming if conducted manually; however, Xim-
mer automates all of the steps needed. The high level process is
depicted in Fig. 1.

Simulation

Simulation is the first and most important element of the Xim-
mer method. By simulating CNVs in the user’s own data, Xim-
mer generates both a prediction of the CNV calling performance
and also insights regarding how to improve performance. To
simulate CNVs, Ximmer takes advantage of the exclusive use
of the RD signal by WES-based CNV detection methods. Specif-
ically, Ximmer removes reads that overlap selected target re-
gions, such that the RD signal is reduced to match the predicted
level associated with a single copy deletion. Ximmer focuses on
deletions because depleting reads is significantly simpler than
realistically synthesizing and adding new reads. For example,
synthesized reads would need to accurately reflect the insert
size, base quality profile, and alignment characteristics of the
original reads. These properties are complex and challenging
to model in their own right, requiring intimate knowledge of
the specific sample, sequencing technology, and bioinformatic
methods applied to the reads. To avoid these difficulties, Xim-
mer focuses on simulating deletions, which can be simulated
purely by removing reads. However, the inferences derived are
still likely to apply to other CNV states because, in most CNV
calling tools, the same underlying statistical principles are ap-
plied regardless of the number of copies being searched for.

The simulation process begins by randomly selecting the ge-
nomic region to become the deletion “target.” The reads map-
ping to these locations can then be depleted using two alternate
methods, referred to as “downsampling” and “X-replacement.”
The downsampling method randomly removes each read over-
lapping the deletion target with probability of 0.5, based on an
assumption that the relationship between copy number and RD
is linear. By contrast, the X-replacement method avoids this as-
sumption. The X-replacement method replaces reads mapping
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Sadedin et al. 3

Figure 1: The Ximmer Process. Ximmer consists of three high-level steps. In the first step, simulated CNVs are added to a set of sequence alignments in binary alignment

map (BAM) or reference compressed CRAM format. This creates new BAM files containing simulated CNVs that are passed to the integrated analysis pipeline. The
analysis pipeline runs up to five different CNV detection methods and collates the results into a graphical report that generates insight into the performance of the
tools and possible avenues for improvement. Finally, when the analysis is optimized, it provides an interface to filter CNVs and review and interpret them using the
built-in CNV curation tool.

to X chromosome deletion target regions in a female sample
with a normalized number of reads from the same genomic re-
gions in a male sample. This method exploits the true differ-
ence in copy number between male and female X chromosomes
to avoid the assumption of linearity implied by downsampling.
The X-replacement method also ensures that other aspects of
the reads are preserved in a realistic manner, such as the zygos-
ity and phasing of overlapping SNVs and indels. Further details
of the simulation implementation are provided in the Supple-
mentary Methods (S-1). The result of the simulation step is a
new set of alignments (binary alignment map [BAM] files) for the
whole exome, but with deletions simulated in selected regions.

CNV analysis pipeline

The second step in the Ximmer process is to analyze the data
containing simulated CNVs to produce CNV calls. Ximmer pro-
vides a built-in analysis pipeline that automatically installs,
configures, and runs five commonly used CNV detection meth-
ods. These tools are ExomeDepth, XHMM, cn.MOPS, CoNIFER,
and CODEX (see Supplementary Table S1 for an overview of sta-
tistical components of these methods). These tools were se-
lected by surveying the literature to ascertain popular methods
that are applicable to germline CNV detection. The set was then
narrowed to those that were empirically found to be straight-
forward to install and run reliably within Ximmer’s automated
framework. We expect to add further tools over time as new
methods become available. The analysis pipeline is constructed
using Bpipe [25], a framework for creating and running bioinfor-
matic workflows. In addition to running the CNV detection tools,
Ximmer performs any necessary pre-processing required by the
tools and also post-processing of the results to merge and anno-
tate the resulting CNV calls. Additional CNV callers can be added
to Ximmer with only a small effort through the extensible Bpipe
framework.

The analysis produces a report in HTML format that contains
a full summary of all the simulated deletions, along with a range
of plots and tables to highlight CNV calling performance and po-
tential quality issues.

Results assessment

Once CNV analysis has been performed, the next step is to crit-
ically review the HTML report to assess performance of the CNV
callers for detecting the simulated deletions and to evaluate op-
tions for improving the results.

Quality assessment
Three plots are of particular relevance in understanding poten-
tial quality issues. These are the sample counts, genome distri-
bution, and quality score calibration plots.

The sample counts plot (Fig. 2A) shows the distribution of
the number of CNV calls among the samples, separately for each
CNV caller. In most studies, we expect the number of CNV calls
to be similar for each sample. If some samples contain a dispro-
portionate fraction of the total CNV calls, it is likely that there
is a problem with the sample quality. It may be desirable to re-
move the samples from the CNV calling altogether, adjust the
caller settings to compensate, or isolate poor-quality samples
from use in normalizing other samples.

The genome distribution plot (Fig. 2B) divides the genome
into 5 Mb bins and displays the number of CNVs overlapping
each bin. Clicking on a particular region displays an enlarged
plot encompassing that region for more detailed inspection. If
particular regions contain very large numbers of CNV calls, it
may be desirable to remove these from the target regions used
for calling, as their presence may distort quality statistics and
degrade overall calling accuracy.

The quality score calibration plot (Fig. 2C) assists in interpret-
ing the confidence measures (or quality scores) assigned to CNVs
by the CNV callers. For each caller, Ximmer groups the whole
CNV call set into approximately five quality score bins that col-
lectively span the full range of values assigned by the caller. Xim-
mer then calculates the fraction of calls categorized as true pos-
itives in each bin as an estimate of the precision. The estimates
are plotted as a line to illustrate the empirical relationship be-
tween precision and quality score for each CNV caller. When
quality scores are well behaved, it is expected that the precision
should increase monotonically as quality score increases. Fail-
ure to observe this relationship suggests the caller may produce
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4 Ximmer: a system for improving exome CNV calling

Figure 2: Screen shots of Ximmer quality and accuracy plots. (A) Sample counts plot showing the number of CNV calls for each sample, grouped by CNV caller. Calls

can be stacked to combine all samples together or split into individual samples using the grouped option. (B) Genome distribution plot showing frequency of CNV calls
along the genome. (C) Quality score calibration plot showing relationship of empirical precision to quality score. These plots may be viewed at full resolution via the
example web site [24].

high-confidence false positives, in which case filtering by quality
score alone may be insufficient to reduce the false-positive rate.
As with the sample counts plot, it may be appropriate to review

normalization settings for methods if quality scores assigned by
tools are not well behaved.
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Accuracy assessment
After reviewing the quality assessment, the next step in the Xim-
mer process is to review the accuracy estimate. This is presented
using a plot designed to mimic a traditional “receiver operator
characteristic (ROC)” curve but displayed using absolute mea-
sures to better accommodate the unknown positions of true neg-
atives in CNV calling. Instead, the ROC-style plots show how the
detection of simulated true positives (y-axis) changes with the
number of detections not part of the simulation (false positives,
x-axis) as results are progressively filtered to lower significance
levels. It should be noted that false positives are defined as re-
gions that are not simulated to be deletions, but they could ac-
tually be true positives from the sample itself. Unlike compar-
isons of absolute sensitivity and precision, this method primar-
ily compares the ranking of true and false positives and thus
takes into account the utility of confidence measures output by
tools for filtering the results. For the CNV calling tools included
in Ximmer, the confidence measure used for ranking results was
chosen in each case by consulting the documentation or by dis-
cussion with the tool author (Supplementary Methods, Supple-
mentary Table S2).

The initial display of the ROC-style curve shows the accu-
racy for the whole set of simulated deletions. As a first step, this
can suggest an appropriate level at which to filter results so that
the optimal level of sensitivity and specificity is achieved. How-
ever, it is frequently of interest to know how sensitivity varies
for CNVs of different sizes. The Ximmer accuracy plot can be in-
teractively adjusted to show performance of a subset of CNVs
within size ranges specified in base pairs or number of target re-
gions. Further, the accuracy plot can also show the performance
of combinations of results such as the intersection or union of
results from different CNV callers.

CNV discovery
Once the performance of the CNV callers is well understood, the
final step in the Ximmer process is to filter the CNV calls ac-
cording to the decided quality filtering thresholds. This, along
with review of the remaining CNVs, can be accomplished using
Ximmer’s CNV curation interface. The interface combines over-
lapping CNV calls from different callers into a single merged re-
sult. Each merged CNV is listed in an interactive table showing
which methods support the CNV call and a range of annotations.
The interface supports inspection and filtering by quality scores,
overlapping genes, population frequency of relevant CNVs from
the database of genomic variants [26], and overlapping SNVs or
indels. Additionally, a pictorial diagram is displayed showing the
RD deviation over the CNV region and its position relative to
overlapping genes.

If desired, the discovery of real CNVs can be determined from
the same analysis result set containing simulated CNVs. This
approach relies on an assumption that simulated and real CNVs
of interest are unlikely to overlap. Alternatively, Ximmer can be
re-executed on the original raw data with simulation disabled to
derive a stand-alone result set.

Datasets

To demonstrate the application of Ximmer, we applied it to four
datasets representing different Illumina sequencing platforms,
exome captures, read configurations, and sequencing depths
(Table 1).

The SureSelect dataset was produced as part of an unrelated
research program, the Nextera dataset was created as part of
the Melbourne Genomics Health Alliance demonstration project

[27], and the TruSeq dataset was created by the Broad Institute,
Center for Mendelian Genomics. The NimbleGen dataset was
downloaded from the Sequence Read Archive (SRA) from a pre-
vious study as part of the Simons Foundation Research Autism
Initiative [28].

The SureSelect, Nextera, and Nimblegen datasets were ana-
lyzed in-house to produce alignment files in BAM format using
Cpipe[29]. The TruSeq dataset was produced and analyzed at the
Broad Institute using the institute’s standard analysis pipeline,
also based on GATK.

Results
Ximmer simulations

In order to demonstrate Ximmer, we applied it to four differ-
ent exome datasets with a variety of different properties (Table
2). We configured Ximmer to simulate between 2 and 10 dele-
tions per sample using the X-replacement method in each of
the four datasets. As the X-replacement method was employed,
deletions were simulated only in the X chromosome of female
samples from each respective dataset. The number of simulated
CNVs ranged from 72 to 144 for each dataset (see Supplemen-
tary Materials). The simulated deletions spanned between 100
bp and 6.9 kbp of targeted bases, equating to genomic spans of
between 471 bp and 4.3 Mbp.

Comparison of CNV detection methods with default
settings

First, we used Ximmer to compare the accuracy of the five differ-
ent CNV detection methods. Parameters for each tool were set to
their defaults, except for cases where the tool setting was clearly
misaligned to the simulated data. Specifically, the cn.MOPs min-
imum CNV width is specified in the manual to be 3 but was low-
ered to 1 in our analyses. Similarly, the XHMM mean number
of targets was lowered to 3. These changes were made to bet-
ter match the generally smaller size of deletions included in the
simulation.

In the Nimblegen dataset, we observe that there were signif-
icant differences between the performance of the different CNV
callers (Fig. 3). ExomeDepth and CODEX achieved substantially
better absolute sensitivity than other tools, finding 88% and 93%
of all the simulated deletions, respectively. However, the preci-
sion of these tools was poor (54% and 72%) compared to XHMM
(93%). For ExomeDepth, a substantial difference in precision per-
sisted even when results were filtered to yield the same sensi-
tivity as XHMM. Therefore, in this case, CODEX appears to be
the optimal CNV caller. Both cn.MOPs and CoNIFER performed
poorly in terms of sensitivity, each finding less than 30% of simu-
lated deletions. cn.MOPs has very poor precision in this dataset
(0.5%) and appears to output many very high confidence calls
that are ranked higher than the true positives it detects.

Comparison between datasets

Next, we compared Ximmer results using the five CNV callers
with default settings on all four datasets. Our results (Fig. 4)
show that individual methods have marked differences in per-
formance on different datasets. For example, all callers exhib-
ited a low false-positive rate when applied to the SureSelect
data (fewer than 10 false-positive calls for any caller) but showed
much higher false-positive rates on Nextera data (ExomeDepth
and cn.MOPs both having more than 200 false-positive calls).
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6 Ximmer: a system for improving exome CNV calling

Table 1: Datasets analyzed with Ximmer

Capture Samples Capture size (Mb) Read length Mean read depth

SureSelect v5 16 Male, 14 Female 51.2 Mb 2 × 100 30
Nextera 1.2 24 Female, 28 Male 45.3 Mb 2 × 100 120
Nimblegen v2 19 Female, 19 Male 47 Mb 2 × 75 60
TruSeq/Custom Broad
Capture

19 Female 16 Male 37.5 Mb 2 × 150 90

Table 2: Predicted, actual, and improved sensitivity for validated CNVs from Krumm et al. [30]

Caller Predicted sensitivity, % Actual sensitivity, % Improved sensitivity, %

ExomeDepth 88 90 90 (0)
CODEX 86 96 N/A
XHMM 82 48 76 (+28)
CoNIFER 57 40 48 (+8)
cn.MOPS 24 16 12 (-3)

The predicted sensitivities show the Ximmer estimate of sensitivity based on simulation results. The actual sensitivity shows the empirical sensitivity calculated for

validated CNVs in the Nimblegen dataset. Improved sensitivity shows the change in actual sensitivity after adjusting parameters based on Ximmer simulations. The
predicted sensitivity is close to the actual sensitivity for all callers except XHMM.

Figure 3: Performance of CNV callers on Nimblegen data with default settings.
Performance differs greatly between callers. ExomeDepth and CODEX have sig-

nificantly higher sensitivity than the other callers, while CoNIFER and XHMM
have significantly better precision.

cn.MOPs performed poorly on the Nimblegen and Nextera data,
detecting very few true and many false CNVs. However, cn.MOPs
performed well with TruSeq data, having better sensitivity than
XHMM and CoNIFER and better precision than ExomeDepth.
These differences suggest that some datasets are better suited
to the algorithms or default settings of particular calling meth-
ods.

Despite the differences, some aspects of individual caller per-
formance were mostly consistent across datasets. XHMM and
CODEX were consistently more precise than other callers, and
ExomeDepth achieved higher total sensitivity than any other
caller in all datasets except the Nimblegen data.

In some respects, differences between datasets are consis-
tent between callers. With SureSelect data (30x mean coverage),
no caller could achieve more than 60% sensitivity. However, with
TruSeq data (90x mean coverage), all callers found more than
60% of the simulated deletions, and ExomeDepth found nearly
all deletions (96%).

It is likely that homogeneity of the data is an important factor
in determining these characteristics. Data sets having very low
intersample variation with few batch effects may work well with
callers that apply relatively little normalization or are flexible in
their normalization approach.

Overall, our results suggest that each dataset has individual
characteristics that affect the performance of each CNV caller
differently. Consequently, there is no single best CNV detection
tool for all datasets. Depending on the priorities of the investi-
gation and the particular dataset in question, a different tool or
combination of tools may be more appropriate. Therefore, users
should assess their own data and choose CNV detection meth-
ods using Ximmer.

CNV calling performance can be improved with
parameter optimization

Next, we configured Ximmer to re-analyze the Nimblegen data
using slightly larger simulated deletions (4–15 target regions),
while varying several configurable parameters for ExomeDepth,
XHMM, cn.MOPs, and CoNIFER. The parameters that were varied
were chosen by reviewing the documentation and experiment-
ing to find those with the largest direct effect on sensitivity (Sup-
plementary Table S3). We did not include CODEX in this analysis
because it automatically tunes its main parameter (K, number of
latent factors) using an iterative procedure.

We found that adjusting two parameters (the exome-wide
CNV rate to 10−4 and the normalization factor to 0.2) increased
XHMM sensitivity (Fig. 5B) by 21% (67% to 88%) with an accept-
able loss of precision (81% to 55%). Similarly, we evaluated alter-
native values for the singular value decomposition (SVD) num-
ber and calling threshold for CoNIFER (Fig. 5C) and found that by
adjusting the calling threshold parameter from 1.5 to 1.25, sensi-
tivity could be improved by 25% to 40% with only a small sacrifice
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Sadedin et al. 7

Figure 4: ROC-style curves with default parameters. Count of true positives vs false positives as ranked results are filtered by varying the quality score threshold, when
the five CNV calling methods are executed on four different datasets with their default parameters. Performance is highly variable both between different methods

on the same dataset and between the same method on different datasets.

in precision. cn.MOPs adjustments were able to improve sensi-
tivity from 19% to 36% by adjusting the prior impact parameter
from 5 to 2 and by adjusting the calling threshold upward from -
0.8 to -0.4. Although we tried varying two parameters (transition
probability and expected CNV length), ExomeDepth appeared to
have nearly optimal parameters as its defaults for this dataset.

This analysis demonstrates that tuning parameter settings
should be considered an important element of using CNV de-
tection tools and can lead to significantly improved accuracy.
Many previous comparison studies [19,20] have evaluated CNV
methods without rigorous optimization of parameters. Our re-
sults suggest that the discrepancies in the results from these
studies may have been reduced if calling parameters were opti-
mized.

Optimization of parameters across datasets

We applied the optimized settings derived from simulation per-
formance on Nimblegen data to the analysis of the other three
datasets. However, we observed that these settings are not op-

timal for every other dataset. For example, on the SureSelect
and TruSeq data (Fig. 6A and B), XHMM achieves sensitivity of
63% and precision of 80% with the default settings but produces
no calls at all with the optimized settings from the Nimblegen
dataset. The optimizations increase sensitivity in cn.MOPs; how-
ever, the marginal increase (69% to 77%) is much less significant
than for Nimblegen data and causes a substantially higher num-
ber of false-positive calls. Similarly, CoNIFER also shows a much
smaller proportional increase in sensitivity (64% to 73%) and ex-
periences a significant fall in precision (75% to 59%).

We conclude that optimization needs to be performed on
each dataset or data type separately. Ximmer supports this pro-
cess efficiently and easily through modification of simple con-
figuration settings.

Application of Ximmer to a set of validated CNVs

We extracted a set of validated CNVs for the samples that were
captured in the Nimblegen dataset from a previous study by N.
Krumm et al. [30]. After filtering to include only CNVs overlap-
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8 Ximmer: a system for improving exome CNV calling

Optimization Optimization

OptimizationOptimization

Figure 5: Results of adjusting CNV calling parameters on ROC-style curves. XHMM, CoNIFER, and cn.MOPs all have configurations where sensitivity or precision can be
substantially improved. Reducing CoNIFER calling threshold to 1.25 increases sensitivity from 25% to 40%. Increasing the exome-wide CNV rate to 10−4 and reducing
the normalization factor from 0.7 to 0.2 increases XHMM sensitivity from 67% to 88% Reducing the cn.MOPs prior impact factor to 2 and raising the calling threshold

to -0.4 allowed sensitivity to nearly double (from 24% to 36%); however, these settings caused a substantial reduction in precision.

Figure 6: Performance of other datasets (A: SureSelect, B: TruSeq, C: Nextera) when analyzed using parameters optimal for Nimblegen data (opt) compared to default

settings (default). Nimblegen-optimized parameters are frequently unsuitable on other datasets. XHMM is severely compromised by the Nimblegen settings on all
datasets. SureSelect and TruSeq data produce no XHMM CNV calls, while both sensitivity and precision are poorer in Nextera data. CoNIFER and cn.MOPs both gain
in sensitivity but by a much smaller proportion and with a larger inflation of false-positive calls than with Nimblegen data.
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ping autosomal target regions of the exome capture, 25 validated
CNVs remained. We then tested detection of these CNVs from
the exome data using Ximmer, first using default parameters as
described above for each of the five CNV callers. With the ex-
ception of XHMM, the sensitivity estimated by Ximmer using
simulation approximately reflected the sensitivity observed on
the validated CNVs (Table 2). In the case of XHMM, we suspect
that differences in the composition of the CNV sizes between the
simulation and the validated CNV set may partially account for
the discrepancy. Precision is harder to evaluate as predictions of
CNVs in regions not in our validated set could be true deletions,
and the false-negative rate in the validated results is uncertain.
However, the number of total detections varied greatly between
callers (CoNIFER and XHMM had fewer than 12 compared to Ex-
omeDepth and cn.MOPS, which had more than 200), as predicted
by Ximmer.

Next, we applied the optimized settings identified previously
through simulation to improve sensitivity for ExomeDepth,
XHMM, and ConNIFER. Due to the poor precision observed with
the default settings for cn.MOPS, we chose to improve preci-
sion rather than sensitivity. By reviewing the sample counts plot,
we determined that a significant fraction of the putative false-
positive calls were concentrated in just 3 of 20 samples (Supple-
mentary Fig. S7). Therefore, we excluded these samples from the
analysis for cn.MOPS.

Incorporation of parameter adjustments suggested by Xim-
mer resulted in substantially improved performance of sev-
eral methods. For example, sensitivity was improved in XHMM
(+28%) and CoNIFER (+8%). Conversely, removing the three poor-
quality samples from cn.MOPs slightly lowered sensitivity but
removed 90% (856) of the false-positive CNV calls.

Conclusion

While there is great utility in detecting CNVs from WES data,
adoption of CNV detection methods in practice has met with sig-
nificant challenges. These are primarily centered around highly
unpredictable performance and lack of reproducibility between
datasets. We have addressed these challenges by creating Xim-
mer, a tool that facilitates efficiently assessing and improv-
ing the accuracy of WES-based CNV detection methods. Our
comparison of four different datasets analyzed by five differ-
ent CNV calling methods represents one of the most compre-
hensive evaluations to date. Our results show, consistent with
previous studies, that there is significant variability in perfor-
mance of CNV detection between tools and between datasets.
We conclude that to effectively use these methods, attention
must be given to understand and optimize their behavior on
each individual dataset. Ximmer can be used to automate these
procedures, avoiding a significant burden. In addition, we have
demonstrated that Ximmer can produce valuable insights into
the quality of datasets for CNV calling and the behavior of CNV
detection tools. While Ximmer’s simulation framework focuses
on heterozygous deletions, the evaluation framework supports
all copy number states, which could be simulated using different
simulation methods, supplied using real true-positive samples,
or implemented as a future extension. We note, however, that
homozygous and hemizygous CNVs are generally significantly
easier to characterize than heterozygous states and thus are of
less interest as subjects of simulation. Another valuable exten-
sion would be simulation and evaluation of CNV calling in WGS
datasets. WGS, however, requires different simulation methods
because WGS methods typically harness breakpoint signals that

are not used in exome analysis. As the first tool offering com-
bined simulation, evaluation, tuning, and interpretation of re-
sults from CNV detection methods, we believe Ximmer will as-
sist with increasing practical adoption of CNV detection meth-
ods for exome data. Ximmer is open source and available at [23].
An example Ximmer report can be viewed online at [24].

Availability of source code and requirements

Project name: Ximmer
Project home page: http://ximmer.org
Operating system: Linux/Unix
Programming language: Groovy, R, Python
Other requirements: Java 1.8
License: LGPL
Research Resource Identifier (RRID): RRID:SCR 016427

Availability of supporting data

The SureSelect, Nimblegen, and Nextera datasets are available
from SRA under accession numbers SRP132744, SRP010920, and
SRP148622, respectively. The NimbleGen dataset is available
from dbGaP under accession number phs001272. Data further
supporting this work are also openly available in the GigaScience
repository, GigaDB [31].

Additional files

Additional File 1. A set of figures, tables and supplemen-
tary methods supporting the results. Details of the simulation
method. Description of methodology for optimising tuning pa-
rameters of data sets.
Supplementary Figure S1. Ximmer downsampling method. A
set of adjacent target regions is chosen, and reads aligning to
the chosen target regions are randomly removed with probabil-
ity 0.5. Although the read coverage is depleted similarly to a dele-
tion, the reads come from both alleles rather than a single allele.
Supplementary Figure S2. Ximmer X-replacement Method—A
set of adjacent X chromosome target regions are selected and
expanded to define a region having no overlapping reads at each
end as the deletion region. All reads overlapping the deletion
region are removed from a female sample, and a library-size
normalised number of reads from a male sample are added in
their place. By replacing female reads with those from a male,
Ximmer utilises the difference in ploidy of the X-chromosome
to simulation single copy deletion without arbitrarily down-
sampling reads. While downsampling is still applied in the X-
replacement method, it is only used to compensate for library
size differences between the two samples.
Supplementary Figure S3. Optimisation of calling parameters
for ExomeDepth. Transition probability (txpr) and expected CNV
length (len) were adjusted. Although significant variations were
applied to these parameters, ExomeDepth performance did not
change significantly.
Supplementary Figure S4. Optimisation of calling parameters
for XHMM. Exome-wide CNV rate (cnv rate) and normalisation
mean factor (mf) were adjusted. By adjusting the cnv rate to 10–4

and the normalisation mean factor to 0.2, sensitivity could be
improved without significant loss of precision.
Supplementary Figure S5. Optimisation of calling parameters
for Conifer. SVD number and calling threshold were adjusted
to non-default values (see legend). Changing SVD number to 4
and using threshold 1.25 slightly increased sensitivity, however
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greater increase was observed with the default SVD number (2)
and calling threshold of 1.25.
Supplementary Figure S6. Optimisation of calling parameters
for cn.MOPs. Three parameters were adjusted through a range of
values to find the optimal settings: minimum width (mw) from 1
to 4, prior impact (pi) from 2 to 10, and calling threshold (th) from
-0.2 to -0.8. The settings of minimum width=2, prior impact=2
and calling threshold=-0.2 offer nearly double the sensitivity (in-
crease from 24% to 40%), however these settings cause a sub-
stantial degradation in precision.
Supplementary Figure S7. Sample count QC plot showing dis-
proportionate numbers of CNV calls concentrated in 3 particular
samples across all parameter settings. Each separate configura-
tion of cn.MOPs is represented by a separate group of bars along
the x-axis. Within each group, three bars can be seen to signifi-
cantly exceed the height of other bars, representing poor quality
samples within the batch.
Supplementary Table S1. Comparison of implementation de-
tails for a selection of read-depth (RD) based CNV detection
methods.CNV detection methods. Most RD methods consist of
three stages: normalisation to remove unwanted variation, sta-
tistical modeling of the residual variation and segmentation of
the genome into regions of contiguous copy number.
Supplementary Table S2. Confidence measures chosen for each
tool for ranking and filtering CNVs in Ximmer’s accuracy assess-
ment
Supplementary Table S3. For each CNV caller various parame-
ters were chosen to vary for optimisation across a range of val-
ues on the Nimblegen data set.
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