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Abstract

Background: For both pediatric and adult patients, umbilical cord blood (UCB) transplant is a therapeutic option for a
variety of hematologic diseases, such as blood cancers, myeloproliferative disorders, genetic diseases, and metabolic
disorders. However, the level of cellular heterogeneity and diversity of nucleated cells in UCB has not yet been assessed in
an unbiased and systemic fashion. In the present study, nucleated cells from UCB were subjected to single-cell RNA
sequencing to simultaneously profile the gene expression signatures of thousands of cells, generating a rich resource for
further functional studies. Here, we report the transcriptomes of 17,637 UCB cells, covering 12 major cell types, many of
which can be further divided into distinct subpopulations. Results: Pseudotemporal ordering of nucleated red blood cells
identifies wave-like activation and suppression of transcription regulators, leading to a polarized cellular state, which may
reflect nucleated red blood cell maturation. Progenitor cells in UCB also comprise 2 subpopulations with activation of
divergent transcription programs, leading to specific cell fate commitment. Detailed profiling of cytotoxic cell populations
unveiled granzymes B and K signatures in natural killer and natural killer T-cell types in UCB. Conclusions: Taken together,
our data form a comprehensive single-cell transcriptomic landscape that reveals previously unrecognized cell types,
pathways, and mechanisms of gene expression regulation. These data may contribute to the efficacy and outcome of UCB
transplant, broadening the scope of research and clinical innovations.

Received: 27 November 2018; Revised: 30 January 2019; Accepted: 1 April 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/5/giz047/5484799 by guest on 23 April 2024

http://www.oxfordjournals.org
http://orcid.org/0000-0001-8527-4438
http://orcid.org/0000-0003-1703-3012
http://orcid.org/0000-0002-5338-5173
http://orcid.org/0000-0002-0420-0726
http://orcid.org/0000-0002-8073-0534
mailto:houyong@genomics.cn
http://orcid.org/0000-0002-0420-0726
http://orcid.org/0000-0002-0420-0726
mailto:liuxiao@genomics.cn
http://orcid.org/0000-0002-8073-0534
http://orcid.org/0000-0002-8073-0534
http://creativecommons.org/licenses/by/4.0/


2 Single-cell RNA sequencing in umbilical cord blood

Keywords: umbilical cord blood; single-cell RNA sequencing; transcriptomics; nucleated red blood cell; natural killer T cell

Introduction

Human umbilical cord blood (UCB) is an excellent source of
hematopoietic progenitor cells. It has been widely used for
bone marrow reconstitution since the 1980s [1, 2]. The progen-
itor cells contained in UCB can regenerate the entire lympho-
hematopoietic compartment in the host. The most notable ad-
vantage of UCB transplant is the low risk of developing graft-
versus-host disease, even when donor and recipient are partially
mismatched [3]. The immune cells in UCB are virtually free from
external stimulant and infection and thus are relatively more
naı̈ve. Such immunological immaturity is the key to alleviating
the severity of graft-versus-host disease by decreasing the al-
loreactive potential of lymphocytes [2, 4]. These advantages ex-
pand the clinical potential of UCB transplant in many cases, in-
cluding some fatal diseases. The major limitation of UCB trans-
plant, however, is the limited and inconsistent cell dose. It has
been shown that the success rate of engraftment was critically
dependent on the number of nucleated cells in the donor UCB
[4–6].

Although UCB is now widely used for important clinical ap-
plications, we know surprisingly little about its cellular and
molecular characteristics. Specifically, the composition of pro-
genitor, lymphocyte, and other nucleated cells that affect the
reconstitution potency after UCB engraftment is poorly under-
stood. Recent advances in single-cell transcriptomics technol-
ogy enable the exploration of cellular heterogeneity and de-
duction of functional relevance [7, 8]. Single-cell RNA sequenc-
ing (RNA-seq) studies of human peripheral blood (PB) cells
have revealed new insights into immune cell composition and
disease-related functional abnormalities [9–11]. Previous stud-
ies in mouse and human have focused on hematopoietic stem
cell (HSC), erythroblast, and certain T-cell subtypes, unveiling
novel biological properties at the single-cell level [12–17]. How-
ever, single-cell RNA-seq studies have not thoroughly character-
ized the major types of nucleated cells in UCB, especially ery-
throcytes and cytotoxic innate immune cells, despite their pro-
found clinical significance. Thus, the present study aimed to in-
vestigate the nucleated cells present in UCB to depict a land-
scape view of the cellular composition and their transcriptomes.
Such key information will undoubtedly facilitate clinical innova-
tion to develop more efficient and cost-effective UCB transplan-
tation.

Results
A single-cell transcription atlas of nucleated cells in
umbilical cord blood

To acquire a transcriptomic map of UCB cells at single-cell reso-
lution, we collected samples of UCB from 2 healthy donors and
isolated nucleated cells for single-cell RNA-seq using the 10 ×
Chromium platform. After stringent quality control and filter-
ing by multiple criteria (see Methods), transcriptomes of 7,852
and 9,785 single cells from the 2 UCB samples (UCB1 and UCB2)
were acquired, detecting a mean of 1,270 and 1,460 genes per
cell, respectively. To determine the unique cell subpopulations
and the specific state of gene expression in UCB, we used the
public single-cell transcriptomics dataset of PB cells for compar-
ison. This dataset includes 2 independently generated libraries
(PB1 and PB2), containing a total of 11,948 single-cell profiles

of peripheral blood mononuclear cells (PBMCs) measuring 1,069
genes per cell on average. These are at a comparable level with
those of the UCB data.

All 4 single-cell datasets were merged to enable a system-
atic comparison between UCB and PB cells. To identify cell pop-
ulations on the basis of their expression signatures, we ana-
lyzed the merged data using a typical pipeline in the Seurat soft-
ware, including dimensionality reduction and subsequent un-
supervised cell clustering [18]. However, when the data were vi-
sualized in a 2D space by t-distributed stochastic neighborhood
embedding (tSNE), we initially observed a strong segregation of
UCB cells from PB cells regardless of cell type—a typical man-
ifestation of batch effect. We also noticed that a group of UCB
cells (3.92% of all UCB cells) that express massive amounts of
hemoglobin genes, such as HBG1 and HBM (Supplementary Fig.
S1A and B), tend to significantly interfere with the merging of
UCB cells with PB cells and cell clustering, generating highly
sample-segregated cell embeddings in the tSNE space (data not
shown). Thus, prior to merging with the PB data, we excluded
these cell clusters, which were later identified as nucleated red
blood cells (NRBCs) and were further analyzed.

To isolate biological variance from the interfering technical
variances in the remaining data, we employed 3 independent
computational methods, canonical correlation analysis (CCA)
[19], surrogate variable analysis (SVA) [20], and mutual near-
est neighbors (MNN) [21], to systemically correct the poten-
tial technical variance (Supplementary Fig. S2A–D). We then
quantitatively evaluated the corrected data using an alignment
score−based method [19]. Results indicated that the MNN al-
gorithm most successfully eliminated the batch effect in the
current dataset (Supplementary Fig. S2E and F). Thus, we pro-
ceeded to use MNN-corrected expression matrices for the Seurat
pipeline and all subsequent analysis.

A global view was generated to illustrate the cell composition
landscape of UCB. Aside from the NRBCs, 11 distinct cell popula-
tions were clustered—based on their gene expression profiles—
in both UCB samples. A merged PB dataset was clustered in
parallel with UCB cells in the same tSNE space (Fig. 1A). All
of the clusters identified were shared by the 2 UCB samples,
demonstrating the robustness of our biological replicate (Sup-
plementary Fig. S2D). Clusters of cells expressing known mark-
ers of major immune cell types were assigned with their re-
spective identities (Fig. 1B, Supplementary Fig. S3A). The expres-
sion patterns of a few representative marker genes are shown
as examples (Supplementary Fig. S3B). To further validate the
cell type annotations, we calculated transcriptome-wide corre-
lations between cluster mean expression and previously char-
acterized bulk RNA-seq profiles of sorted immune cell types, as
reported in previous studies [22], which was in accordance with
the annotation yielded by canonical marker genes (Supplemen-
tary Fig. S4A). Nine major immune cell types and hematopoi-
etic lineages found in PB were identified in UCB, while neu-
trophils, eosinophils, and the bioinformatically excluded NR-
BCs were only present in the UCB data. The neutrophil and
eosinophil discrepancy was expected because of different cell
enrichment approaches used (see Methods) (Fig. 1C, Supplemen-
tary Fig. S4B). We focused the scope of the present study on a few
cell types with profound clinical applications. However, the cel-
lulome landscape of UCB data constitutes a rich resource that
can be used as a reference to complement transcriptomics anal-
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Figure 1: Cell types identified in the UCB. (A) Global tSNE plots of merged UCB and PB cells. Cell clusters are colored to indicate cell types by expressed known markers.

UCB cells are colorized in the left panel, and PB cells are colorized in the right panel. Cell types and their respective colors are labeled on the right. (B) Heat map of
scaled mean gene expression (exp.) of the major canonical markers (columns) detected in different cell types in merged cells of UCB and PB (rows). (C) Distribution of
the abundance of each cell in each cell type in the PB and UCB datasets.

ysis performed in bulk or single-cell settings, as well as a guide
to future functional studies.

Polarity of cord nucleated red blood cells

In mammalian hematopoiesis, NRBCs, or erythroblasts, undergo
several developmental stages in the bone marrow, progressively
decreasing cellular volume and RNA content, while accumulat-
ing specific functional proteins such as hemoglobin [23, 24]. It
has long been known that erythroblasts exist in relatively large
numbers in UCB [25–27]. However, little is known about whether
such developmental processes exist in the UCB, or whether
the erythroblast population is homogenous. In our dataset, we
found that NRBCs constitute a significant proportion of the total
nucleated cells in UCB (Supplementary Fig. S4B). Interestingly,
NRBCs in the UCB samples displayed pronounced polarity de-
fined by the divergent expression of a gene repertoire. We used
Monocle2 software to identify differential genes among NRBCs
and deduced a pseudotemporal ordering of the cells that sug-
gested a gradual change of cellular state [28] (see Methods). Ev-
idently, the NRBCs from both UCB samples formed a linear tra-
jectory along the pseudotime axis, with no significant branch-

ing, indicating that the cell polarity resulted from continuous
changes of gene expression (Fig. 2A). To further validate the
dual polarity of NRBCs in UCB, we employed an independent ap-
proach to construct a diffusion pseudotime map based on the
transitions between cells using diffusion-like random walks [29]
(Supplementary Fig. S5A). Cell ordering along the trajectories
deduced by the 2 algorithms showed remarkable concordance
(Supplementary Fig. S5B).

Next, we modeled gene expression along the Monocle2-
inferred trajectory to identify genes characterized by a wave-
like pattern. The most prominent were those genes encoding
surface markers and proteins that are critical to the function
of red blood cells, such as CD47, CD36, hemoglobin, and gly-
cophorins [30] (Fig. 2B). The CD47 molecule has long been con-
sidered to be a cell surface marker of primitive erythrocytes [31].
Hemoglobin genes, in contrast, are highly expressed in the rel-
atively mature form of NRBCs. Thus, the polarity observed here
most likely reflected the maturity state of the NRBCs. An in-
termediate cell state that bridges the naı̈ve state (CD47 high)
and the mature state (hemoglobin high) was also observed. This
intermediate stage was characterized by the elevated expres-
sion of a set of genes including those encoding glycophorins
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Figure 2: Polarity of nucleated red blood cells in the UCB samples. (A) The order of NRBCs along pseudotime in a 2D space determined by Monocle2. Each dot represents
a single NRBC. Color gradient represents the pseudotemporal order in the upper panel. Cells from the 2 UCB samples are labeled in the same topology in the bottom
panel. (B) Heat map of gene expression (exp.) in NRBCs ordered by pseudotime (x-axis). Three clusters of pseudotime-dependent genes are grouped into primitive

stage (top), intermediate stage (middle), and mature stage (bottom). (C) Heat map of key transcription factor (TF) expression, similar to (B). (D) Numbers of detected
unique molecular indices (UMIs) in each NRBC ordered by pseudotime. Each dot represents an NRBC, and the color represents the corresponding UCB sample of each
cell. Y-axis represents number of detected UMIs (thousands). Overall Spearman’s correlation coefficient and corresponding P values are shown at the top. (E) Numbers
of detected genes in each NRBC, ordered by pseudotime. Each dot represents an NRBC, and the color represents the corresponding UCB sample of each cell. Y-axis

represents the number of detected genes (thousands). Overall Spearman’s correlation coefficient and corresponding P values are shown at the top.

(GYPA and GYPB), suggesting that the cells in this stage exerted
a specific function, rather than being just transient intermedi-
ates. Strikingly, several key transcriptional regulators of erythro-
cyte homeostasis, including GATA1/2 and BCL11A [32–34], also
clearly exhibited divergent patterns along the pseudotime axis
(Fig. 2C). GATA1 is a well-characterized transcription factor (TF)
responsible for the activation of multiple hemoglobin-encoding
genes in erythroid ontogeny [35], while BCL11A is a TF that si-
lences hemoglobin-encoding genes [34]. Other examples were
CITED2 and SOX6, TFs that have recently been characterized as

signature molecules specifically expressed in mouse primitive
and definitive erythroblasts, respectively. These showed similar
specificity in the naı̈ve and intermediate cellular states, as de-
fined by the pseudotime axis [36]. To provide further evidence of
this model, a gradual decrease in the numbers of RNA molecules
(represented by unique molecular indices [UMIs]) (Fig. 2D) and
expressed genes (Fig. 2E) across the pseudotime axis was ob-
served, and permutation analyses demonstrated significant cor-
relation between the gradual decrease and the pseudotemporal
ordering of the cells (Supplementary Fig. S5C). This potentially
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reflects diminishing global gene expression activity caused by
NRBC enucleation. These lines of evidence further corroborated
the polarity identified in the NRBC population in UCB projected
maturation progress and strongly indicated that the differential
activation of transcriptional programs was one of the underlin-
ing mechanisms.

Molecular signatures of UCB progenitor cells

A distinct progenitor population was found in UCB, which
shared a similar transcriptome profile with the HSCs in the PB
dataset (Fig. 1A, Supplementary Fig. S4A). However, when tSNE
clustering was performed with the progenitor population at a
finer resolution, a secondary subpopulation emerged, demon-
strating the heterogeneity of the progenitor population in the
UCB (Fig. 3A). One subpopulation of UCB progenitor cells over-
lapped with HSCs in PB and specifically expressed canonical HSC
marker genes such as CD34, SOX4, and FLT3 (CD135) (Fig. 3B, tri-
angles), suggesting their identity as UCB HSCs. Interestingly, the
other subpopulation comprised cells only from the UCB (Fig. 3B,
dots) and did not express the HSC canonical markers (Fig. 3C
and D) despite the similarity in the overall spectrum of gene ex-
pression, which drove the clustered embeddings of these cells in
the tSNE space. Surprisingly, this CD34– UCB-specific progenitor
population highly expressed the myeloid lineage−specific gene
MS4A3 (Fig. 3D), a known signature of granulocytic-monocytic
progenitors (GMPs) [37]. GMPs give rise to mast cell progenitors
(MCP) and basophil progenitors, which are found in the bone
marrow, spleen, and gastrointestinal mucosa [38]. Furthermore,
FCER1A, the gene encoding the Fc fragment of the IgE receptor,
which is also a surface marker frequently used in cell sorting
for mast cells [39], was highly expressed in the CD34– cell pop-
ulation, while CCR3, a sorting marker for basophils [40, 41], was
co-expressed at a comparable level. Similarly, many genes with
regulatory roles in mast cell and basophil differentiation, exem-
plified by HDC and CSF2RB, respectively [16, 38, 42], were also
co-expressed at a high level (Fig. 3D). The concerted activation
of gene repertoires critical in GMP-MCP and GMP−basophil pro-
genitor ontogeny axes strongly suggested that these cells were
bi-potent progenitors or intermediate cells, similar to the ba-
sophil/mast cell progenitor (BMCP) first verified in spleens of
adult mice [43]. A high level of GATA2 and a low level of CEBPA
TFs was also consistent with the signatures of mouse BMCP [43–
45] (Fig. 3D). Such expression signatures are also reminiscent
of recently identified basophil/eosinophil/mast cell progenitors
(Ba/Eo/Ma) in human UCB and bone marrow [16, 46]. A criti-
cal difference between the UCB subpopulation and the mouse
BMCP or human Ba/Eo/Ma is that CD34 expression is turned off,
suggesting limited stemness and differentiation commitment in
these cells. We thus hypothesized that these cells represent in-
termediates before bifurcation during basophil and mast cell dif-
ferentiation; we termed them umbilical intermediate bi-potent
cells (uIBCs). To further explore this hypothesis, we sought to
use diffusion maps [29, 47] to characterize the trajectory of the
speculated transition from HSC to u

IBC. While a gradual shifting of identities from HSC to uIBC
was observed on the first diffusion component, the uIBC side
of the trajectory did not show a conclusive bifurcation towards
mast cell and basophil lineages; this is likely because of the lim-
ited cell number (Supplementary Fig. S5D).

Next, we asked whether the switch of cell identities resulted
from the alteration of transcriptional programming governing
the differentiation process. TF enrichment analysis utilizing the
Encode [48] and ChEA [49] databases was performed to detect

overrepresented combinations of conserved TF binding sites in
a given set of genes. The analysis revealed that TAF, YY1, and
MYC were mostly enriched for activating highly expressed genes
found in the HSCs compared with uIBC (Fig. 3E). These TFs are
well known for their roles in proliferation and cell cycle con-
trol [50–53]. Conversely, RUNX1, SPI1, and GATA2 were ranked
as the top-enriched TFs for activating highly expressed genes
in the uIBCs (Fig. 3E). These TFs are conventionally considered
to be master regulators of differentiation of the myeloid lin-
eage [44, 54, 55]. Such functional correlation was further corrob-
orated by the mutually exclusive expression pattern of the top-
enriched factors. For example, high expression levels of MYC,
MAX, and YY1, enriched for activating HSC feature genes, were
detected in the HSCs; and—vice versa—high expression levels of
SP1, GATA2, and RUNX1 were detected in the u

IBC (Fig. 3F). These lines of evidence supported the conclu-
sion that the 2 subtypes of cells we found in the progenitor pop-
ulation in UCB were divergent on the hematopoietic axis and
may have UCB-specific functions.

Heterogeneity of cytotoxic innate immune cells

Effective immune response to infection, allergy, and cancer gen-
erally requires coordinated activation of the innate and adap-
tive immune systems. Recent studies have shown that natu-
ral killer (NK) T cells emerge as a bridge between innate and
adaptive immunity to mediate immune responses [56]. In the
overall tSNE projection, NK cells were clustered as a contiguous
“peninsula” extending from the T-cell population (Fig. 1A). In-
terestingly, KLRB1, a lineage marker of NK cells, was expressed
in a gradient pattern across the 2 cell types, with no distinct
boundary (Supplementary Fig. S6A). Remarkably, the expression
of CD3D/E was in a reversed gradient with that of KLRB1 (Supple-
mentary Fig. S6B), as well as those of the cytotoxic genes NKG7,
PRF1, and GNLY (Supplementary Fig. S6C). This pattern of ex-
pression indicated the existence of a group of cells with a bridg-
ing identity across the interface, most likely NKT cells. Unlike
NK or T cells, NKT cells exhibit distinct tissue specificity under
homeostatic conditions, suggesting compartmentalized func-
tions [57–60]. To selectively investigate these cells, we used high-
resolution clustering results generated by Seurat (see Methods),
producing more detailed clusters of T and NK cells (Supplemen-
tary Fig. S6D), 2 of which corresponded to NK cells, the adjacent
T cells, and the bridging NKT cells that displayed gradient ex-
pression of CD3D/E and KLRB1 (Supplementary Fig. S6E). The T
cells in this cluster expressed CD8 but not CD4 and thus were
considered to be cytotoxic T cells (Supplementary Fig. S7A). We
next carried out subclustering with these cells to further reveal
heterogeneity. By relative expression levels of the lineage mark-
ers, and the fact that all of these cells express a spectrum of
cytotoxic marker genes, such as NKG7, PRF1, and GNLY, at high
levels (Supplementary Fig. S6A-C), we assigned the cell identity
as cytotoxic T lymphocytes (CTLs) (CD3+CD4−CD8+KLRB1–), NK
(CD3–KLRB1+), and NKT (CD3+KLRB1+) cells [58, 61, 62] (Fig. 4A).

Although CTL, NK, and NKT cells were all present in the
PB and UCB samples, the cell compositions were rather differ-
ent. Apparent heterogeneity was observed in all 3 cell lineages
and—remarkably—was represented by the mutually exclusive
expression of 2 granzyme genes, GZMB and GZMK (Fig. 4B). For
example, the NK and CTL cells in PB were each divided into
2 subgroups, specifically expressing GZMB and GZMK (Fig. 4C).
Similarly, NK and NKT cells in UCB were also subgrouped into
granzyme K-positive (GZMK+) and granzyme B-positive (GZMB+)
populations (Fig. 4D). Thus, based on the expression of lineage
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Figure 3: Heterogeneous molecular signatures of progenitor cells in UCB. (A) The re-clustered tSNE projection of progenitor cells from UCB and PB samples. The samples
are labeled with different colors for each cell. (B) The 2 cell clusters, HSCs and uIBCs, are represented by triangles and dots, respectively. The color gradient represents
the pseudotemporal order. (C) Heat map of differentially expressed signature genes in the progenitors. Cells along the x-axis were ordered in the same way as in tSNE
1 axis in (A). The color bar on top denotes the HSC and uIBC clusters as well as the corresponding samples. (D) Violin plots of exemplary feature gene expressions of

HSC (red) and uIBC (blue) cells. (E) Transcription factor enrichment analysis of HSC and uIBC cells using HSC signature genes (1,012 genes, top left) and uIBC signature
genes (106 genes, bottom left) revealed enriched transcription factors (TFs) in HSC (top middle) and uIBC (bottom middle). Bar graphs of corresponding enrichment
scores (−log false discovery rate [FDR]) are shown on the right. (F) Violin plots of exemplary enriched TF expression in HSC (red) and uIBC (blue) cells.
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Figure 4: Heterogeneity of cytotoxic cells in PB and UCB. (A) t-distributed stochastic neighbor embedding (tSNE) plots of re-clustered cytotoxic cells from PB (left)
and UCB (right) datasets. Each dot represents a single cytotoxic cell. Yellow color demonstrates high expression of CD3D; blue indicates KLRB1 highly expressed cell;

red indicates cells highly expressing both CD3D and KLRB1; gray indicates cells expressing neither gene. (B) The tSNE plots with the same topology as in (A), with
the gradient colors demonstrating the expression of GZMB and GZMK. (C) tSNE plots of cytotoxic cells from the PB datasets. Cell subtypes (GZMK+ CTL, granzyme
B-positive [GZMB+] CTL, granzyme K-positive [GZMK+] NKT, GZMB+ NK, GZMK+ NK) are labeled with different colors. (D) tSNE plots of cytotoxic cells from the UCB
datasets. Cell subtypes (GZMK+ CTL, GZMK+ NKT, GZMB+ NKT, GZMB+ NK, GZMK+ NK) are labeled with different colors. (E) Violin plots of signature gene expression

of the subtypes in UCB (right) and PB (left). Color labeling of cell subtypes is consistent with that in (C). (F) Heat map of exemplary differentially expressed signature
genes in the GZMB+ NKT and GZMK+ NKT subtypes. The color bar on top denotes the GZMB+ NKT and GZMK+ NKT subtypes. (G) Gene ontology (GO) analysis of
differentially expressed signature genes specific to GZMB+ NKT (upper panel), and to GZMK+ NKT (bottom panel) subtypes in UCB. The most enriched GO terms are

ordered on the y-axis. X-axis represents the gene percentage in enriched GO terms. Sizes of the dots represent the number of genes included in each GO term. The
color gradient of dots represents the adjusted P-values of each enriched GO term.
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markers and the 2 granzyme genes used for this classification
scheme (Fig. 4E), a total of 6 distinct cell subtypes were defined.
All subtypes found in UCB were consistent between donors (Sup-
plementary Fig. S7B); however, both UCB donors lacked GZMB+

CTL cells that were present in PB, possibly because of the lack
of specific antigen stimulation. It was noteworthy that GZMB+

NKT cells were abundantly detected in UCB but were missing
in PB, begging the question as to whether this particular sub-
type possessed specific functions. Collectively, the cell distribu-
tion of NKT cells and CTLs indicated that UCB has stronger in-
nate immunity and less adaptive immunity compared with PB.
NKT cells were previously reported to have tissue-specific gene
expression programs that lead to diverse functions and were
termed NKT1, NKT2, and NKT17, predominantly localized in the
liver, lung, and peripheral lymph nodes, respectively [58, 63–
66]. In our data, the expression profile of GZMB+ NKT cells was
mostly similar to that of the NKT1 type, highlighted by signature
expression of CD44, KLRB1, ZBTB16, IL2RB, and TBX21 (Supple-
mentary Fig. S7C). However, neither GZMB+ nor GZMK+ cells ex-
pressed GATA3, a crucial TF found in NKT2 and NKT17 cells [67,
68]. Together with the lack of KLRB1 expression, the GZMK+ NKT-
cell subtype is distinct from the known NKT2 or NKT17 subtypes
[67, 68]. The enriched GZMB+ NKT cells in UCB express a spec-
trum of chemokines and genes in cytotoxic pathways, which
may mediate recruitment with other immune cell types to coor-
dinate an innate immune response (Fig. 4F). Gene ontology (GO)
analysis further corroborated that the highly expressed genes
of the GZMB+ cells were enriched in innate cytotoxic immunity,
such as neutrophil-mediated immunity, cellular response to in-
fectious antigens, and necrosis factors, while GZMK+ cells were
enriched in lymphocyte activation, lymphocyte cell–cell adhe-
sion, and chemotaxis pathways (Fig. 4G). Thus, we concluded
that the cell composition of NKT and other cytotoxic cells varies
between PB and UCB.

Unlike NKT, GZMK+ and GZMB+ NK subtypes were both
present in PB and UCB (Fig. 4C and D). They may function dif-
ferently because of their respective granzyme gene activation
[69]. Recent studies have shown that the orchestrated expres-
sion of granzymes is part of the functional program that en-
ables cytotoxic cells to exert specific functions [70, 71]. As ex-
emplified by the NK subtypes, GZMB and GZMK expression rep-
resents such functional diversity and highlights their respective
cytotoxic gene expression programs. To reveal the elements of
these 2 programs, we systemically compared the GZMB+ sub-
types of NK, NKT, and CTL cells found in PB or UCB by testing
the co-occurrence of signature genes specific to each subtype
(see Methods). Among the 4 sets of signature genes—ranging
from 116 to 144 in number—31 signature genes were found to be
shared by all 4 subtypes (Fig. 5A). Similarly, 22 signature genes
were found to be common in the corresponding GZMK+ sub-
types (Fig. 5B). Permutation tests were performed to estimate
the significance of the 4-way intersection in both cases, and the
resulting P-values were both <3 × 10−16. These 2 sets of sig-
nature genes (31 and 22) that we found were defined as GZMB
and GZMK co-expressed genes, respectively, which were likely
to contribute to the elimination of specific antigens. To corrob-
orate these findings, we calculated the Pearson’s correlation of
cell-averaged expression of all 53 genes in GZMB+ and GZMK+

subtypes of NK and NKT cells in UCB, and CTL and NK cells in PB.
As expected, unsupervised clustering revealed 2 major modules,
corresponding to the GZMB and GZMK programs (Fig. 5C and D).
Interestingly, within each program a smaller core module was
discovered, highlighted by EEF1A1, TPT1, COTL1, and LTB in the
GZMK program and FGFBP2, PRF1, GZMA, FCGR3A, and CCL4 in

the GZMB program (Fig. 5C, red labeled genes). Similar analy-
sis was performed in the PB cells. Here, the core modules were
largely consistent with those of UCB, although the GZMK core
module was less prominent (Fig. 5D, red labeled genes). The en-
riched genes identified in the 2 programs represent common fea-
tures of the GZMB+ and GZMK+ subtypes of cytotoxic cells. They
may serve as specific selection markers and targets for pertur-
bation in further functional studies.

Discussion

Here, we present for the first time a single-cell−level transcrip-
tomic landscape of nucleated cells in UCB. By analyzing the ex-
pression patterns of known marker genes, we identified UCB
cells belonging to almost all of the major hematopoietic lin-
eages in PB, covering lymphoid, myeloid, and hematopoietic
progenitor cells. We also observed that certain cell populations
were highly enriched in UCB cells, such as NRBCs, uIBCs, and
GZMB+ NKT cells. The features of these cells that we discovered
were consistent in both UCB donors. However, it is important to
keep in mind that the UCB donors’ shared factors, such as ge-
netic background, may contribute to the enrichment of these
UCB-specific cell subtypes. A related technical challenge that
we encountered in the present study was the severe batch ef-
fect among sample types and donors. To minimize any techni-
cal variance that could lead to misinterpretation of the data, we
rigorously tested 3 widely used algorithms for batch effect cor-
rection, namely, CCA, SVA, and MNN. Based on a quantitative
evaluation of cell segregation in the tSNE space, MNN and CCA
appeared comparable and effective for our datasets, although
MNN scored marginally higher.

In adults, red blood cells are mainly generated in the bone
marrow from nucleated cells, which are identified as ery-
throid precursors. These cells undergo morphological changes
throughout cell divisions, gradually decreasing in cell size and
RNA species and increasing in chromatin condensation and
hemoglobin protein accumulation. Such changes have been as-
sociated with the early stages of maturation of red blood cells.
In our dataset, we also observed such a dynamic cellular state
in a linear polarity. While it is possible that the erythroid pre-
cursors at different stages in UCB may have migrated from the
bone marrow, our findings also suggested that erythroid precur-
sors might undergo a similar maturation process in the UCB.

Progenitor cell populations in UCB also appeared to be a mix-
ture of ≥2 distinct subpopulations. It is conceivable that the HSC
subpopulation (CD34+) that we identified is a mixture of HSCs
and various early multipotent progenitors committed to differ-
entiation; these were termed “primed progenitors” and were ex-
tensively discussed in a recent profiling study of UCB HSCs at
the single-cell level [16]. The lack of CD34 enrichment means
that the UCB data in the present study have too few HSCs to re-
capitulate the heterogeneity reported in this study. The uIBC, a
unique UCB subpopulation not seen in PB, was identified, with
characteristics of both basophil and mast cell signatures. A sim-
ilar bi-potent population (BMCP) exists in mouse spleen and is
capable of divergent development [43]. Signature gene expres-
sion, including TFs and surface markers, was remarkably similar
between BMCP and uIBC, except that u

IBCs lack expression of the conventional progenitor marker
CD34. Although u

IBCs and HSCs in UCB were globally similar in their tran-
scriptomic profiles, the lack of CD34 made it difficult to conclude
whether or not these u
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Figure 5: Enrichment of feature genes of granzyme B and K subtypes. (A) Four-way Venn diagrams reveal the enrichment of feature genes among granzyme B (GZMB)-
positive cell types. (B) Four-way Venn diagrams reveal the enrichment of feature genes among granzyme K (GZMK)-positive cell types. (C) Pearson’s correlation (cor.)
of expression of the 4-way−overlapped genes in (A) and (B) from UCB datasets. (D) Pearson’s correlation of expression of the 4-way−overlapped genes in (A) and (B) in

PB datasets.

IBCs were indeed progenitors, or transient intermediates
captured during UCB hematopoiesis. The functional implication
of their existence points to the developmental process down-
stream of the Ba/Eo/Ma primed branch detected in the previ-
ous study [16]—specifically, when the Ba/Eo/Ma primed cells
lose stemness markers (e.g., CD34) and further express lineage
genes. Functional validations are necessary to determine the po-
tential abilities of self-renewal and lineage regeneration of these
cells and to substantiate the similarity with mouse BMCP or
Ba/Eo/Ma primed cells at the functional level.

Next, we interrogated the UCB single-cell data at a finer
scale and discovered unreported heterogeneity among CTL, NK,
and NKT cells in UCB, which appeared in different composi-
tions and granzyme expression patterns to those in PB. It is
noteworthy that the mutually exclusive pattern between the
GZMA/B/perforin program versus the GZMK program was a com-
mon feature in cytotoxic cell lineages in UCB and PB. This finding
is consistent with previous studies performed in PB [69], demon-
strating that human granzymes are differentially expressed in
distinct subpopulations that may function outside of orches-
trating cytotoxicity. Multiple recent studies utilizing single-cell
technologies have found that diversified expression of granzyme
genes is indicative to T-cell states under disease conditions, such
as liver cancer, colorectal cancer, non−small cell lung cancer,

and HIV-1 infection. The consensus is that GZMB-expressing T
cells tend to recapitulate the transcriptome of effective mem-
ory T cells, and GMZK-expressing T cells seem to be a transi-
tional intermediate between the effective and exhausted states
[11, 71–73]. It is clear that such a pattern is not specific to disease
conditions because we now have shown that similar granzyme
programs exist in UCB CTL/NKT/NK cells as well. However, we
did not find significant expression of exhausted marker genes
in UCB GMZK+ CTLs, possibly because of the lack of constant
antigen stimulus. The specification of GZMK+ and GZMB+ cells
is likely to reflect different consecutive activation states, which
might be interchangeable upon changes of the tissue microenvi-
ronment. Interestingly, a previously unknown NKT population,
which may be unique to UCB, was identified as GZMB+ NKT cells
that do not express GZMK but highly express GZMA, GZMH, and
PRF1 genes instead, suggesting the activation of specific cytotox-
icity mediated by granzyme and perforin pathways. NKT cells
play an essential role in bridging innate and adaptive immunity
against infectious diseases and tumorigenesis; thus, they pos-
sess significant therapeutic value. UCB transplants have demon-
strated remarkable effectiveness in treating many types of blood
cancers. Adoptive transfer of NKT cells has been tested in ani-
mal models [74, 75], and several clinical trials are underway to
test the safety and efficiency of NKT-cell transfer to harness solid
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tumors in humans [76–79]. Enhanced understanding of NKT-cell
heterogeneity in UCB would benefit our selection of appropriate
sources, and activation of the cytotoxicity of NKT cells to tar-
get cancer and other diseases. Therefore, we speculated that a
targeted enrichment, modulation, or engineering of the exist-
ing NKT populations in UCB could lead to considerable improve-
ment in the efficacy of enhancing protective immune responses.

Potential implications

Taken together, our data provide the first single-cell transcrip-
tomic references for UCB, which could be used as a standard
dataset for comparative analysis. We expect that this dataset
will prove useful in uncovering the novel molecular signatures
that define the cellular heterogeneity of UCB and will provide
markers for targeted enrichment of certain cell types of interest
to researchers in multiple fields. Our dataset is a rich resource
to formulate hypotheses of signaling pathway activation, tran-
scription control, and other mechanistic studies in the field of
functional immunology at the single-cell level.

Methods
Sample collection

The project was reviewed and approved by the BGI institutional
review board and the ethics committee of Shenzhen Second
People’s Hospital (No. 18,120). Two UCB samples were collected
from healthy donors immediately after Cesarean delivery with
informed consent. Samples were stored in ethylenediaminete-
traacetic acid (EDTA) anticoagulant tubes and transported to
the laboratory within 1 hour. CD45+ and CD45– cells were iso-
lated from 1 mL UCB by positive and negative selection, respec-
tively, using Whole Blood CD45 MicroBeads (Miltenyi,130–090-
872, USA) and a Whole Blood Column Kit (Miltenyi, 130–093-
545, USA). Next, a hemocytometer was used to count CD45+ and
CD45– cells, and these were mixed in a ratio of 4:1. The cells were
gently pipetted into a single-cell suspension and diluted to a
concentration of 700 cells/μL. Public single-cell gene expression
datasets of PBMCs (PB1 and PB2) were generated from a sample
from a single donor. In the present study, PB1 and PB2 corre-
spond to Cell Ranger 2.0.1-processed “8k PBMCs from a healthy
donor” and “4k PBMCs from a healthy donor,” respectively [80].

UCB library construction and sequencing

Single-cell suspensions of UCB samples were loaded to chips
from the Single Cell 3′ Chip Kit (10x Genomics, CA, USA) and sub-
jected to the GemCode Single Cell Instrument (10x Genomics) to
generate single-cell gel beads in emulsion, as per the manufac-
turer’s instructions. Next, gel beads in emulsion were subjected
to library construction using ChromiumTM Single Cell 3′ Reagent
Kits v2 (10x Genomics), the steps of which included incubation
at room temperature, complementary DNA amplification, frag-
mentation, end repair, A-tailing, adaptor ligation, and sample
index polymerase chain reaction. Because this library was de-
signed to be sequenced by the Illumina sequencing platform,
we converted the libraries to be compatible with the BGISEQ-
500 sequencer. To do so, we performed a 12-cycle polymerase
chain reaction on the libraries using BGISEQ adaptor primers,
with subsequent DNA circularization and rolling-cycle amplifi-
cation to generate DNA nanoballs. Purified DNA nanoballs were
sequenced using the BGISEQ-500 sequencer, generating reads
containing 16 base pairs of 10xTM barcodes, 10 base pairs of

UMIs, and 100 base pairs of 3′ complementary DNA sequences.
Each library was sequenced in 3 lanes, yielding ∼1.9 billion reads
in total [81–83].

Alignment and initial processing of sequencing data

The CellRanger toolkit (10x Genomics, USA, version 2.0.0) was
used to align complementary DNA reads to the Genome Refer-
ence Consortium human build patch 38 (GRCh38) transcriptome.
Filtered UMI expression matrices of both samples were gener-
ated using default parameters, and an additional “–force-cells
= 4000” parameter [84]. The expression matrices of all samples
were first normalized using the “cellranger aggr” function in the
CellRanger toolkit, with the parameter “–normalize = mapped.”
As a result, raw expression data were generated for ∼32,000 sin-
gle cells of the UCB sample.

Quality filtration of cells

In accordance with published pipelines and quality control stan-
dards [18], abnormal cells in all datasets were uniformly filtered
out on the basis of their gene expression distribution. A cell was
considered to be abnormal if any of the following criteria were
met: (i) detected gene number <400; (ii) detected gene num-
ber >2,000, >2,000, >3,500, and >3,000 for PB1, PB2, UCB1, and
UCB2 datasets, respectively; and (iii) >8%, >8%, >6%, and >7%
of detected genes are mitochondria genes in PB1, PB2, UCB1, and
UCB2 datasets, respectively. A “detected gene” is defined as any
gene expressed in ≥30 individual cells at a level of UMI ≥1 in
any given dataset. After filtering the PB1, PB2, UCB1, and UCB2
datasets, 8,380, 3,977, 8,981, and 9,638 cells remained, respec-
tively.

Cell clustering in individual UCB samples

Next, the filtered expression matrices of UCB1 and UCB2 were
used for unsupervised cell clustering using Seurat (version 2.3.4),
adopting the typical pipeline recommended by the authors (Seu-
rat, RRID:SCR 016341) [18]. A total of 3,113 (UCB1) and 2,409
(UCB2) variable genes were used for the “RunPCA” function.
Subsequently, the top 10 principal components (PCs) were sub-
jected to the “FindClusters” and “RunTSNE” functions, with
high-resolution setting at 2.0 (Supplementary Fig. S1A). In the
dimensionally reduced tSNE space, clusters of NRBCs were iden-
tified on the basis of the concerted expression of hemoglobin
genes, such as HBG1 and HBM (Supplementary Fig. S1B). Then,
we bioinformatically isolated 672 NRBCs from UCB1 and UCB2
as a subdataset for further analyses. NRBC-excluded data were
then subjected to merging and batch effect removal. NRBCs were
excluded prior to data merging because we noticed that the mas-
sively expressed hemoglobin genes significantly interfered with
the merging of UCB cells with PB cells and cell clustering, yield-
ing highly sample-segregated cell embeddings in the tSNE space,
regardless of batch removal methods or parameters used.

Correction of batch effects

Strong technical bias introduced by sample preparation, library
construction, and/or sequencing was observed in the merged
data (Supplementary Fig. S2A). To evaluate the available strat-
egy for batch correction, we independently tested SVA, CCA,
and MNN analysis and compared their outcomes. For the SVA
method, we first log-transformed the expression values [as in
log(exp + 1)], then used the ComBat function in the SVA package
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to minimize batch effects, with default parameters [20]. CCA was
performed in Seurat to correct batch effects. Having tested dif-
ferent parameters, we observed the best performance when we
used 15 canonical vectors and 1,500 shared, high-variable genes.

For MNN, we first created a SingleCellExperiment object to
store the counts and metadata for each sample, using Single-
CellExperiment (version 1.3.10). These cells were pre-clustered
using the quickCluster function. Size factors were computed
for endogenous genes using the deconvolution method by
computeSumFactors [85]. We then acquired normalized log-
expression values and distinguished highly variable genes us-
ing the trendVar function, and decomposed the gene-specific
variance into biological and technical components using the
decomposeVar function. To obtain a single set of features for
batch correction, we computed the average biological compo-
nent across all 4 batches. All genes with positive biological com-
ponents were retained to ensure that biological variance was
preserved. All batches were rescaled to account for differences
in sequencing depth using the multiBatchNorm function. Last,
the fastMNN function was applied to each of the 4 samples, us-
ing retained genes with the parameters k = 50, d = 50, approxi-
mate = TRUE, and auto.order = TRUE. Finally, corrected expres-
sion values for 3,570 highly variable genes were generated using
the tcrossprod function, and these expression values were used
for downstream cell clustering and pseudotime analysis.

Evaluation of batch correction

Alignment scores of the aforementioned methods were calcu-
lated based on tSNE plots, according to the strategy used in a
previous study [19]. First, neutrophils and eosinophils that were
only present in UCB datasets were masked from the datasets.
Then, we randomly sampled cells from the 4 datasets with the
same number of cells, and constructed a nearest-neighbor graph
based on their relative positions in tSNE space. For each sampled
cell, we calculated the cell numbers from the dataset sample in
the k nearest neighbors and average with total cells to obtain x.
The alignment score was then calculated as alignment score =
1− [(x − k/N)/(k − k/N)]. Alignment scores were normalized by
dataset size and scaled to range from 0 to 1. For Supplementary
Figure S2E, the parameters used were k = 800, N = 4. As shown,
the MNN alignment score was marginally higher than that of
CCA. To rule out potential bias from the arbitrary selection of k,
we tested different values of k from 100 to 1,000 and observed
that the high scores generated by MNN were independent of k
selection (Supplementary Fig. S2F).

Cell type annotation

After batch correction by MNN, the merged expression matrix
was further filtered following the typical Seurat pipeline. Specif-
ically, ribosomal genes and cells with a mitochondrial gene UMI
percentage >10% were removed, as well as cells with a total
UMI count of >11,000. Then, the expression matrix was normal-
ized using the NormalizeData function. The corrected expres-
sion matrix was used for dimensionality reduction following the
typical Seurat pipeline. Next, 3,556 variable genes in the batch-
corrected expression matrix were used for RunPCA, ProjectPCA,
FindClusters, and RunTSNE functions with default parameters,
except dims.use = 1:13 and resolution = 2.

Subsequently, the feature genes for each cluster were identi-
fied using normalized data with the Seurat FindAllMarkers func-
tion, with parameters min.pct = 0.25, and thresh.use = 0.25. Four
minor clusters with ∼5% (same as estimated by 10x Genomics)

total cells, which were suspected to be doublets because they
shared feature genes from 2 adjacent large clusters, were re-
moved from the datasets. A total of 8,043, 3,905, 7,852, and 9,785
cells remained for annotation in the PB1, PB2, UCB1, and UCB2
datasets, respectively (Supplementary Fig. S4B). The identity of
each cell cluster was manually annotated by the specific expres-
sion of commonly known markers. Unsupervised annotation, by
comparing averaged single-cell expression levels with bulk RNA-
seq data of sorted immune cells, was also performed to validate
the results, as previously described [86]. Pearson’s correlation
was used to calculate the distance between the cell-averaged
feature gene expression and the corresponding levels in bulk
RNA-seq data (Supplementary Fig. S4A).

Pseudotime analysis of NRBCs

A total of 672 NRBCs, identified from the individually clustered
UCB datasets, were directly merged for the following analysis.
After removing 5 abnormal cells on account of their substan-
tially deviated mitochondrial gene expression level (>2.5%), 667
NRBCs were used to infer the developmental polarity of NRBCs.
NRBCs were ordered according to the pseudotime deduced by
1,859 ordering genes excluding ribosomal protein transcripts,
which were differentially expressed (FDR < 0.05), using the “clus-
terCells” function in Monocle2 (version 2.6.4). The genes that
changed as a function of pseudotime were further identified and
clustered to allow visualization of modules of genes co-varying
across pseudotime, according to the typical pipeline provided in
the Monocle2 manual. The cluster-representing red blood cell
effector, and known development-relevant genes for the heat
map plots, were further manually selected based on the liter-
ature. In parallel, a pseudotemporal trajectory was deduced us-
ing the diffusion map application programming interface (API)
in Scanpy (Python 3.6.6, Scanpy 1.3.2), using default parameters
(n neighbors = 20 and n pcs = 5 for the pre-processing.neighbors
function, and n comps = 15 for the tools.diffmap function).

Diffusion map algorithm-generated pseudotemporal order-
ing of cells was compared with that of Monocle2 using Spear-
man’s rank-order correlation (Supplementary Fig. S5B). Permu-
tation analysis was performed by randomly shuffling the pseu-
dotemporal ordering of cells 1,000 times and generating a dis-
tribution of Spearman’s rank-order correlation coefficient. Stu-
dent’s t-test was then applied to estimate the statistical signifi-
cance of deviation of the observed coefficient produced by Mon-
ocle pseudotime from the permutation distribution.

Clustering and pseudotime analysis of UCB progenitor
cells

UCB progenitor cells were re-clustered using Seurat, as de-
scribed for global clustering above. To visualize the potential
transition of cell identities from HSCs to uIBCs, we used the dif-
fusion map API in Scanpy to calculate the diffusion pseudotime
trajectory; as in NRBC analysis, default parameters were used,
with the exception of n pcs = 6. Then, we used the FindAllMark-
ers function in Seurat, with the parameter min.pct = 0.3, to find
feature genes within the 2 clusters. To identify the divergent TF
programs in the 2 groups of cells, the web-based tool “Enrichr”
[87] was used to analyze the enrichment of TF binding on the
signature genes set of each progenitor cell group [88].

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/5/giz047/5484799 by guest on 23 April 2024



12 Single-cell RNA sequencing in umbilical cord blood

Cytotoxic cell clustering and profiling

Cytotoxic cells of interest were selected by unsupervised clus-
tering at resolution = 2 using the FindClusters function in Seu-
rat (Supplementary Fig. S6D). The 2 clusters (highlighted in Sup-
plementary Fig. S6E) covering the gradient expression of mul-
tiple cytotoxic genes in Supplementary Fig. S6C were selected
to create 2 new subdatasets, according to their respective sam-
ple type. Then, the 2 sets of UMI matrices (2,271 cells in PB and
879 cells in UCB) were subjected to a typical Seurat pipeline. The
Seurat functions NormalizeData, RunPCA, ProjectPCA, FindClus-
ters, and RunTSNEfunctions, with the parameters dims.use =
1:3 and resolution = 1.5 for UCB, and dims.use = 1:8 and res-
olution = 1.5 for PB, were sequentially applied. Subsequently,
the cluster-specific genes used to annotate cell subtypes were
identified using normalized data and the Seurat FindAllMarkers
function, with the parameters min.pct = 0.25 and thresh.use =
0.25.

Signature gene selection in GZMK+ and GZMB+

subtypes

To identify common features of GZMK and GZMB (4-
way−overlapped genes) programs in the cytotoxic cells (Fig. 5),
GZMB/GZMK-expressing NK, NKT-cell, and CTL subtypes were
used to create a new Seurat object using the SubsetData
function. The function FindAllMarkers was used to identify cor-
responding feature genes of each cluster, with the parameters
min.pct = 0.25 and thresh.use = 0.25.

The 4-way Venn diagrams of feature genes shown in Fig. 5A
and B were generated using the R package VennDiagram. To
verify the statistical significance of the enrichment of the
4-way−overlapped genes (GZMB/GZMK program genes), a 1-
sample t-test was carried out by testing the mean number of
overlapping genes from randomly sampled pools of genes. The
sizes of these genes were kept the same as in the original fea-
ture genes in the 4 subtypes. The co-expression modules shown
in Fig. 5C and D were identified by unsupervised clustering of
Pearson’s correlation of cell-averaged expression values.

Gene ontology analysis of UCB GZMB+ NKT cells

To deduce the potential functions of the signature genes in UCB
GZMB+ NKT cells, GO enrichment analysis was performed using
clusterProfiler (version 3.8.1, RRID:SCR 016884) [89], with the top
100 feature genes of GZMK+ NKT cells in UCB identified by Seu-
rat. We then simplified the output from enrichGO by removing
redundancy of enriched GO terms with the “simplify” function.

Availability of supporting data and materials

The raw data reported in this study are deposited in the NCBI
Sequence Read Archive under bioproject No. PRJNA524398, and
in the CNGB Nucleotide Sequence Archive (CNSA) (CNSA: https:
//db.cngb.org/cnsa/) with accession No. CNP0000090. Aligned se-
quences in CRAM format, and the gene expression matrix for ev-
ery single cell, have also been uploaded to the GigaScience GigaDB
repository [90].

Additional files

Supplementary Figure 1: Pre-clustering of UCB samples and ex-
clusion of NRBCs. (A) Pre-clustering of cells in UCB dataset 1
(UCB1; left) and UCB2 (right). Each dot represents a single cell,

and cells are color-labeled by cluster in tSNE space. (B) tSNE plots
of the normalized expression of hemoglobin genes HBG1 (left)
and HBM (right) in UCB1 (top) and UCB2 (bottom). The color gra-
dient represents the relative expression level.
Supplementary Figure 2: Sample distribution and evaluation of
batch correction methods. (A) Sample distribution in tSNE space
before batch removal processing. Cells are color-labeled by sam-
ple. (B–D) Sample distribution in tSNE space after CCA (B), Com-
bat (C), and MNN (D) processes. Cells are color-labeled by sample
in the same way as in (A). (E) Bar plot of alignment scores pro-
duced by different methods as shown in (A–D). (F) Comparison
of alignment scores between CCA and MNN, with different pa-
rameters (from k = 100 to k = 1,000).
Supplementary Figure 3: Signature gene expression of each cell
type. (A) Heat map of the scaled average gene expression of sig-
nature genes (column) detected in different cell types in UCB and
PB (rows). (B) tSNE plots of the normalized expression of marker
genes in the same global topology as in Fig. 1A. Each dot repre-
sents a single cell, and the color gradient represents the normal-
ized gene expression.
Supplementary Figure 4: Cell type annotation composition. (A)
Pearson’s correlation between cell-averaged feature gene ex-
pression, with the corresponding levels in bulk RNA-seq data
generated in sorted cells. (B) Table of cell numbers and percent-
ages of different cell types in each sample.
Supplementary Figure 5: Pseudotime analysis in NRBCs and pro-
genitor cells. (A) The order of NRBCs along pseudotime in a 2D
space, as determined by diffusion map. Each dot represents a
single NRBC. Color gradient represents the pseudotemporal or-
der in the left panel. Cells from the 2 UCB samples are labeled
with the same topology as in the right panel. (B) Correlation
between the pseudotemporal ordering of cells using Monocle
and diffusion map. The correlation coefficient was calculated
by Spearman’s rank testing. (C) Permutation analysis of Spear-
man’s correlation coefficient, as generated by Monocle pseu-
dotemporal ordering (observed value) versus a distribution of co-
efficient generated by 1,000-time randomly shuffled pseudotem-
poral orderings. Red vertical lines represent the observed values.
P-values were calculated by Student’s t-test. (D) The order of pro-
genitor cells along pseudotime in a 2D space, as determined by
diffusion map. Each dot represents a single cell, and the color
gradient represents the order of pseudotime (left). The sample
distribution along the pseudotime, and the color, represents the
corresponding sample (right).
Supplementary Figure 6: Cytotoxic signature gene expression in
NK and NKT-cell populations. (A–C) Zoomed-in tSNE plots of the
normalized expression of cytotoxicity and related genes of the
cytotoxic cell. Each dot represents a single cell, and the color
gradient represents normalized gene expression. (D) Unsuper-
vised high-resolution clustering of merged PB and UCB cells, in
the same tSNE topology as in Fig. 1A. Clusters are labeled by dif-
ferent colors. (E) As for (D), cells with cytotoxic features that are
further analyzed are highlighted in blue color.
Supplementary Figure 7: Differential gene expression in NK and
NKT-cell subpopulations. (A) Global expression patterns of T-cell
subtype markers CD4, CD8A, and CD8B. Lower right panel illus-
trates the T-cell subtype distribution determined by the markers.
(B) Cells are color-labeled by samples in the same tSNE space as
in Fig. 4C and D. Each dot represents a single cell in PB (left) and
UCB (right). (C) Violin plots show the scaled expression of indi-
cated differential genes between granzyme B-positive (GZMB+)
NKT-cell and granzyme K-positive (GZMK+) NKT-cell subsets in
UCB.
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Abbreviations

API: application programming interface; Ba/Eo/Ma: ba-
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granulocytic-monocytic progenitor; GO: gene ontology; GZMB+:
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scription factor; tSNE: t-distributed stochastic neighborhood
embedding; UCB: umbilical cord blood; u

IBC: umbilical intermediate bi-potent cell; UMI: unique
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