Abstract

Background: The Antarctic intertidal zone is continuously subjected to extremely fluctuating biotic and abiotic stressors. The West Antarctic Peninsula is the most rapidly warming region on Earth. Organisms living in Antarctic intertidal pools are therefore interesting for research into evolutionary adaptation to extreme environments and the effects of climate change.

Findings: We report the whole genome sequence of the Antarctic-endemic harpacticoid copepod Tigriopus kingsejongensi. The 37 Gb raw DNA sequence was generated using the Illumina Miseq platform. Libraries were prepared with 65-fold coverage and a total length of 295 Mb. The final assembly consists of 48 368 contigs with an N50 contig length of 17.5 kb, and 27 823 scaffolds with an N50 contig length of 159.2 kb. A total of 12 772 coding genes were inferred using the MAKER annotation pipeline. Comparative genome analysis revealed that T. kingsejongensis-specific genes are enriched in transport and metabolism processes. Furthermore, rapidly evolving genes related to energy metabolism showed positive selection signatures.

Conclusions: The T. kingsejongensis genome provides an interesting example of an evolutionary strategy for Antarctic cold adaptation, and offers new genetic insights into Antarctic intertidal biota.

Data description

Approximately 12 000 species have been described in the diverse copepod subclass [1, 2]. These species dominate the zooplankton community, contributing about 70% of total zooplankton biomass [3], and are an important link between phytoplankton and higher trophic levels in the marine meiobenthic food web [4]. Harpacticoid copepods of the genus Tigriopus Norman 1868 are dominant members of shallow supratidal rock pools, distributed worldwide among habitats that vary widely in salinity, temperature, desiccation risk, and UV radiation. They are a model system in investigations of osmoregulation [5], temperature adaptation [6, 7] and environmental toxicology [8]. With publically available copepod genome resources (e.g., Tigriopus californicus [9], T. japonicus [10], Eurytemora affinis [11] and salmon louse Lepeophtheirus salmonis [12]), it is now possible to explore their fundamental biological processes and physiological responses to diverse environments.

Antarctica is not only an extreme habitat for extant organisms, but also a model for research on evolutionary adaptations to cold environments [13, 14]. The Antarctic intertidal zone, particularly in the Western Antarctic Peninsula region, is one of the most extreme, yet fastest warming environments on Earth. Thus, it is a potential barometer for global climate change [15]. Antarctic intertidal species that have evolved stenothermal phenotypes through adaptation to year-round extreme cold may now face extinction by global warming. The response of these species to further warming in Western Antarctica is of serious concern; however, to date, few studies have focused on Antarctic intertidal zone species.

First described in 2014, T. kingsejongensis was recognized as a new species endemic to a rock pool in the Antarctic Peninsula. It is extremely cold-tolerant and can survive in frozen sea water [16]. Compared to the congener T. japonicus, which is found in coastal areas of the Yellow Sea, morphological differences of this species include increased numbers of caudal setae in nauplii, an optimal growth temperature of approximately 8 °C, and differing developmental characteristics. Tigriopus kingsejongensis has evolved to overcome the unique environmental constraints of Antarctica, therefore providing an ideal experimental model for extreme habitat research. This species may represent a case of rapid speciation, since the intertidal zone on King George Island and the surrounding areas did not exist 10 000 years ago [17]. Tigriopus kingsejongensis likely evolved as a distinct species within this relatively short time period. Thus, interspecies and intraspecies comparative analyses of Antarctic Tigriopus species will help to define the trajectory of adaptation to the Antarctic environment, and also provide insights into the genetic basis of Tigriopus divergence and evolution.

Library construction and sequencing

Tigriopus kingsejongensis specimens were collected using hand-nets from tidal pools in Potter Cove, near King Sejong Station, on the northern Antarctic Peninsula (62°14΄S, 58°47΄W) (Fig. 1 and Fig. S1) in January 2013. The water temperature was 1.6 ± 0.8 °C during this month. High molecular weight genomic DNA from pooled T. kingsejongensis was extracted using the DNeasy Blood and Tissue Kit (Qiagen, Venlo, The Netherlands). For Illumina Miseq sequencing, four library types were constructed with 350, 400, 450, and 500 bp for paired-end libraries, and 3 kb and 8 kb for mate-pair libraries, prepared using the standard Illumina sample preparation methods (Table 1). All sequencing processes were performed according to the manufacturer's instructions (Illumina, Carlsbad, USA).

Figure 1.

Photograph of an adult Tigriopus kingsejongensis specimen (scale bar = 200 μm)

Figure 1.

Photograph of an adult Tigriopus kingsejongensis specimen (scale bar = 200 μm)

Table 1

DNA library statistics

Library  Reads (n) Average Sequences Reads Average Sequences 
   length (bp) (n) (trimmed) (n) length (trimmed) (n) 
Paired-end Sum 99 710 266  29 271 916 613 65 644 374  14 668 956 871 
 350S1 6 661 392 300 2 005 078 992 4 446 394 233 1 034 231 244 
 350S2 4 933 058 265 1 311 700 122 4 618 711 211 975 471 763 
 400S1 65 668 598 300 19 766 247 998 36 863 154 228 8 397 426 481 
 450S1 3 418 988 300 1 029 115 388 2 812 455 230 646 302 159 
 450S2 8 009 162 245 1 968 652 020 7 660 814 199 1 527 566 312 
 500S1 11 019 068 289 3 191 122 093 9 242 846 226 2 087 958 911 
Mate-Paired Sum 103 373 998  7 753 049 850 73 515 391  5 169 006 268 
 3KS1 8 374 238 75 628 067 850 6 745 546 73 493 099 413 
 3KS2 9 250 994 75 693 824 550 5 281 513 65 344 618 723 
 3KS3 51 349 594 75 3 851 219 550 39 147 167 72 2 816 638 666 
 3KS4 3 063 232 75 229 742 400 1 740 986 65 112 554 745 
 8KS1 9 847 636 75 738 572 700 7 887 612 73 572 246 251 
 8KS2 16 322 038 75 1 224 152 850 9 653 293 65 630 842 698 
 8KS3 5 166 266 75 387 469 950 3 059 274 65 199 005 774 
Total  203 084 264  37 024 966 463 139 159 765  19 837 963 139 
Coverage (folds)    120.7   64.7 
Library  Reads (n) Average Sequences Reads Average Sequences 
   length (bp) (n) (trimmed) (n) length (trimmed) (n) 
Paired-end Sum 99 710 266  29 271 916 613 65 644 374  14 668 956 871 
 350S1 6 661 392 300 2 005 078 992 4 446 394 233 1 034 231 244 
 350S2 4 933 058 265 1 311 700 122 4 618 711 211 975 471 763 
 400S1 65 668 598 300 19 766 247 998 36 863 154 228 8 397 426 481 
 450S1 3 418 988 300 1 029 115 388 2 812 455 230 646 302 159 
 450S2 8 009 162 245 1 968 652 020 7 660 814 199 1 527 566 312 
 500S1 11 019 068 289 3 191 122 093 9 242 846 226 2 087 958 911 
Mate-Paired Sum 103 373 998  7 753 049 850 73 515 391  5 169 006 268 
 3KS1 8 374 238 75 628 067 850 6 745 546 73 493 099 413 
 3KS2 9 250 994 75 693 824 550 5 281 513 65 344 618 723 
 3KS3 51 349 594 75 3 851 219 550 39 147 167 72 2 816 638 666 
 3KS4 3 063 232 75 229 742 400 1 740 986 65 112 554 745 
 8KS1 9 847 636 75 738 572 700 7 887 612 73 572 246 251 
 8KS2 16 322 038 75 1 224 152 850 9 653 293 65 630 842 698 
 8KS3 5 166 266 75 387 469 950 3 059 274 65 199 005 774 
Total  203 084 264  37 024 966 463 139 159 765  19 837 963 139 
Coverage (folds)    120.7   64.7 

RNA was prepared from pooled T. kingsejongensis and T. japonicus specimens from two different temperature experiments (4 °C and 15 °C) using the RNeasy Mini Kit (Qiagen). For Illumina Miseq sequencing, subsequent experiments were carried out according to the manufacturer's instructions (Illumina). The de novo transcriptome assembly was performed with CLC Genomics Workbench (Qiagen), setting the minimum allowed contig length to 200 nucleotides. The assembly process generated 40 172 contigs with a maximum length of 23 942 bp and an N50 value of 1093 bp. Generated contigs were used as reference sequences to map trimmed reads, and fold-changes in expression for each gene were calculated with a significance threshold of P ≤ 0.05 using the CLC Genomics Workbench (Tables 2 and 3).

Table 2

Transcriptome sequencing and assembly analysis for Tigriopus japonicus

Sequencing 
Total reads (n) 37 956 160 
Total bases (n) 7 714 415 316 
Trimmed reads (n) 35 577 636 
Trimmed bases (n) 5 989 188 343 
Assembly 
Contigs (n) 40 172 
Total contig length (bases) 28 850 726 
N50 contig length (bases) 1093 
Max scaffold length (bases) 23 942 
Annotation 
With BLAST results 20 392 
Without BLAST hits 7090 
With mapping results 8172 
Annotated sequences 4518 
Sequencing 
Total reads (n) 37 956 160 
Total bases (n) 7 714 415 316 
Trimmed reads (n) 35 577 636 
Trimmed bases (n) 5 989 188 343 
Assembly 
Contigs (n) 40 172 
Total contig length (bases) 28 850 726 
N50 contig length (bases) 1093 
Max scaffold length (bases) 23 942 
Annotation 
With BLAST results 20 392 
Without BLAST hits 7090 
With mapping results 8172 
Annotated sequences 4518 
Table 3

RNA-seq statistics analysis for Tigriopus kingsejongensis

 Temperature 
 4 °C 15 °C 
Total reads (n) 15 786 118 16 417 072 
Total bases (n) 3 567 662 668 3 763 295 032 
Trimmed reads (n) 14 845 103 15 388 513 
Trimmed bases (n) 2 761 189 158 2 833 805 442 
 Temperature 
 4 °C 15 °C 
Total reads (n) 15 786 118 16 417 072 
Total bases (n) 3 567 662 668 3 763 295 032 
Trimmed reads (n) 14 845 103 15 388 513 
Trimmed bases (n) 2 761 189 158 2 833 805 442 

Genome assembly

First, k-mer analysis was conducted using jellyfish 2.2.5 [18] to estimate the genome size from DNA paired-end libraries. The estimated genome size was 298 Mb, with the main peak at a depth of ∼39× (Fig. 2). Then, assemblies were performed using a Celera Assembler with Illumina short reads [19]. Prior to assembly, Illumina reads were trimmed using the FASTX-Toolkit [20] with parameters −t 20, −l 70 and −Q 33, after which a paired sequence from trimmed Illumina reads was selected. Finally, trimmed Illumina reads with 65-fold coverage (insert sizes 350, 400, 450, and 500 bp) were obtained and converted to the FRG file format (required by the Celera Assembler) using FastqToCA. Assembly was performed on a 96-processor workstation with Intel Xeon X7460 2.66 GHz processors and 1 Tb random access memory (RAM) with the following parameters: overlapper = ovl, unitigger = bogart, utgGraphErrorRate = 0.03, utgGraphErrorLimit = 2.5, utgMergeErrorRate = 0.030, utgMergeErrorLimit = 3.25, ovlErrorRate = 0.1, cnsErrorRate = 0.1, cgwErrorRate = 0.1, merSize  =  22, and doOverlapBasedTrimming = 1. The initial Celera assembly was 305 Mb, had an N50 contig size of 17 566 bp, and a maximum contig size of 349.5 kb. Scaffolding was completed using the SSPACE 2.0 scaffolder using mate-paired data [21]. Subsequently, we closed gaps using Gapfiller version 1.9 with 65× trimmed Illumina reads with default settings [22]. De novo assembly of 203 million reads from paired-end and mate-paired libraries yielded a draft assembly (65-fold coverage) with a total length of 295 Mb, and contig and scaffold N50 sizes of 17.6 kb and 159.2 kb, respectively (Table 4 and Fig. 3).

Figure 2.

Estimation of the Tigriopus kingsejongensis genome size based on 33-mer analysis. X-axis represents the depth (peak at 39×) and the y-axis represents the proportion. Genome size was estimated to be 298 Mb (total k-mer number/volume peak)

Figure 2.

Estimation of the Tigriopus kingsejongensis genome size based on 33-mer analysis. X-axis represents the depth (peak at 39×) and the y-axis represents the proportion. Genome size was estimated to be 298 Mb (total k-mer number/volume peak)

Figure 3.

Scaffold and contig size distributions of Tigriopus kingsejongensis. The percentage of the assembly included (y-axis) in contigs or scaffolds of a minimum size (x-axis, log scale) is shown for the contig (red) and scaffold (blue)

Figure 3.

Scaffold and contig size distributions of Tigriopus kingsejongensis. The percentage of the assembly included (y-axis) in contigs or scaffolds of a minimum size (x-axis, log scale) is shown for the contig (red) and scaffold (blue)

Table 4

Genome assembly statistics

Type Parameter Assembly size according to Celera Assembler 
Scaffold Total scaffold length (bases) 295 233 602 
 Gap size (bases) 10 474 460 
 Scaffolds (n) 11 558 
 N50 scaffold length (bases) 159 218 
 Max scaffold length (bases) 3 401 446 
Contig Total contig length (bases) 305 712 242 
 Contigs (n) 48 368 
 N50 contig length (bases) 17 566 
 Max contig length (bases) 349 507 
Type Parameter Assembly size according to Celera Assembler 
Scaffold Total scaffold length (bases) 295 233 602 
 Gap size (bases) 10 474 460 
 Scaffolds (n) 11 558 
 N50 scaffold length (bases) 159 218 
 Max scaffold length (bases) 3 401 446 
Contig Total contig length (bases) 305 712 242 
 Contigs (n) 48 368 
 N50 contig length (bases) 17 566 
 Max contig length (bases) 349 507 

Annotation

MAKER, a portable and easily configurable genome annotation pipeline, was used to annotate the genome [23]. Repetitive elements were identified using RepeatMasker [24]. This masked genome sequence was used with SNAP software [25] for ab initio gene prediction, after which alignment of expressed sequence tags (ESTs) with BLASTn [26] and protein information from tBLASTx [26] were included. The de novo repeat library of T. kingsejongensis from RepeatModeler was used for RepeatMasker; proteins from five species with data from Drosophila melanogaster, Daphnia pulex, T. japonicus, and T. californicus were included in the analysis. RNA-seq-based gene prediction, data were aligned against the assembled genome using TopHat [27], and Cufflinks [28] was used to predict cDNAs from the resultant data. Next, MAKER polished the alignments using the program Exonerate [29], which provided integrated information to synthesize SNAP annotation. Considering all information, MAKER then selected and revised the final gene model. A total of 12 772 genes were predicted in T. kingsejongensis using MAKER. Annotated genes contained an average of 4.6 exons, with an average mRNA length of 1090 bp. Additionally, 12 562 of 12 772 genes were assigned preliminary functions based on automated annotation using Blast2GO (Ver. 2.6.0) [30] (

) with homology sequences from the SwissProt [31], TrEMBL, National Center for Biotechnology Information (NCBI) non-redudant protein databases [32] and REVIGO software was used to cluster related GO terms according to P-value [33]. Infernal version 1.1 [34] and covariance models (CMs) from the Rfam database [35] were used to identify other non-coding RNAs in the T. kingsejongensis scaffold. Putative tRNA genes were identified using tRNAscan-SE [36] (Table S1), which uses a CM that scores candidates based on their sequence and predicted secondary structures.

Non-gap sequences occupied 284.8 Mb (96.5%), and simple sequence repeats (SSRs) amounted to 1.2 Mb (0.4%) (Table S2). Transposable elements (TEs) comprised 6.5 Mb; roughly 2.3% of the assembled genome (

). On the basis of homology and ab initio gene prediction, the T. kingsejongensis genome contained 12 772 protein-coding genes (Table 5). By assessing the quality of the 12 772 annotated gene models, 11 686 protein-coding genes (91.5%) were supported by RNA-seq data, of which 7325 (63%) were similar to proteins from other species. To estimate genome assembly and annotation completeness, Core Eukaryotic Genes Mapping Approach (CEGMA) [37] and Benchmarking Universal Single-Copy Orthologs (BUSCO) [38] analysis was used (Table 6). The CEGMA report revealed that 193 of 248 CEGMA score genes were fully annotated (77.8% completeness), and 206 of 248 genes were partially annotated (83% completeness). BUSCO, a similar approach used for lineage-specific profile libraries such as eukaryotes, metazoans, and arthropods, revealed 71% complete and 6% partial Metazoan orthologous gene sets in our assembly; using an arthropod gene set, only 61.1% complete and 10.7% partial genes were assigned. CEGMA and BUSCO gene sets largely comprised insects; other non-insect arthropod genomes obtained similarly low assignment scores. Overall, the T. kingsejongenesis genome was moderately complete in non-dipteran arthropod genomes.

Table 5

Tigriopus kingsejongensis genes: general statistics

Genes (n) 12 772 
Gene length sum (bp) 82 293 116 
Exons per genes (n) 4.6 
mRNA length sum (bp) 43 306 342 
Average mRNA length (bp) 1090 
Number of tRNA 1393 
Number of rRNA 215 
Genes (n) 12 772 
Gene length sum (bp) 82 293 116 
Exons per genes (n) 4.6 
mRNA length sum (bp) 43 306 342 
Average mRNA length (bp) 1090 
Number of tRNA 1393 
Number of rRNA 215 
Table 6

Tigriopus kingsejongensis genome completeness reports with the other arthropod genomes

 Tigriopus Daphnia Ixodes Mesobuthus Strigamia Tetranychus Drosophila Aedes 
Species kingsejongensis pulex scapularis martensii maritima urticae melanogaster aegypti 
Assembly This study GCA_000187875.1 GCA_000208615.1 GCA_000484575.1 Smar1.22 GCA_000239435.1 Dmel_r5.55 AaegL3 
Sample type genome genome genome genome genome genome genome genome 
CEGMAa 83/77.8 99.2/98.8 79.8/41.9g 57.3/24.2g 95.1f 98.0/95.2g 100/100 99.2/83.5 
BUSCOb 61.1 [10.5], 10.7, 28.1 83 [3.9], 11, 5.1e 68.9 [2.4], 21.0, 10.1g 34.4 [4.0], 23.0, 42.7g 84 [5.9], 12, 3.2e 68.8 [5.8], 9.9, 21.3g 98 [6.4], 0.6, 0.3e 86 [13], 10, 3.2 e 
BUSCOc 70.9 [13.6], 6.0, 23.0        
BUSCOd 67.1 [16.8], 5.1, 27.7        
 Tigriopus Daphnia Ixodes Mesobuthus Strigamia Tetranychus Drosophila Aedes 
Species kingsejongensis pulex scapularis martensii maritima urticae melanogaster aegypti 
Assembly This study GCA_000187875.1 GCA_000208615.1 GCA_000484575.1 Smar1.22 GCA_000239435.1 Dmel_r5.55 AaegL3 
Sample type genome genome genome genome genome genome genome genome 
CEGMAa 83/77.8 99.2/98.8 79.8/41.9g 57.3/24.2g 95.1f 98.0/95.2g 100/100 99.2/83.5 
BUSCOb 61.1 [10.5], 10.7, 28.1 83 [3.9], 11, 5.1e 68.9 [2.4], 21.0, 10.1g 34.4 [4.0], 23.0, 42.7g 84 [5.9], 12, 3.2e 68.8 [5.8], 9.9, 21.3g 98 [6.4], 0.6, 0.3e 86 [13], 10, 3.2 e 
BUSCOc 70.9 [13.6], 6.0, 23.0        
BUSCOd 67.1 [16.8], 5.1, 27.7        

a248 CEGMA genes found/complete

bBUSCO Arthropods complete [duplicated], fragmented, missing

cBUSCO Metazoa complete [duplicated], fragmented, missing

dBUSCO Eukaryotes complete [duplicated], fragmented, missing

e[38]

f[39]

g[47]

Gene families

Orthologous groups were identified from 11 species (T. kingsejongensis, Aedes aegypti, D. melanogaster, Ixodes scapularis, Mesobuthus martensii, Strigamia martima, Tetranychus urticae, D. pulex, Homo sapiens, Ciona intestinalis, and Caenorhabditis elegans) (Table 7) using OrthoMCL [40] with standard parameters and options; transcript variants other than the longest translation forms were removed. For T. kingsejongensis, the coding sequence from the MAKER annotation pipeline was used. The 1:1:1 single-copy orthologous genes were subjected to phylogenetic construction and divergence time estimation. Protein-coding genes were aligned using the Probabilistic Alignment Kit (PRANK) with the codon alignment option [41], and poorly aligned sequences with gaps were removed using Gblock under the codon model [42]. A maximum likelihood phylogenetic tree was constructed using RAxML with 1000 bootstrap values [43] and calibrated the divergence time between species with TimeTree [44]. Finally, the average gene gain/loss rate along the given phylogeny was identified using CAFÉ 3.1 [45].

Table 7

Summary of orthologous gene clusters in 11 representative species

Species Source of data No. of coding genes No. of gene families No. of genes in gene families No. of orphan genes No. of unique gene families Average No. of genes in gene families 
Aedes aegypti Ensembl genome 25 15 797 7958 12 792 7839 854 1.61 
Caenorhabditis elegans Ensembl gene 78 20 447 6536 13 737 13 911 1528 2.10 
Ciona intestinalis Ensembl gene 78 16 671 7017 9058 9654 503 1.29 
Daphnia pulex Ensembl genome 25 30 590 6710 8362 7208 368 1.25 
Drosophila melanogaster Ensembl gene 78 13 918 9673 21 917 20 917 2408 2.27 
Homo sapiens Ensembl gene 78 20 300 8696 17 186 11 604 1065 1.98 
Ixodes scapularis Ensembl genome 25 20 486 8097 11 277 12 389 873 1.39 
Mesobuthus martensii http://lifecenter.sgst.cn/main/en/scorpion.jsp 32 016 8389 19 961 23 627 2276 2.38 
Strigamia maritima Ensembl genome 25 14 992 7727 11 012 7265 583 1.43 
Tetranychus urticae Ensembl genome 25 18 224 6602 11 788 11 622 939 1.79 
Tigriopus kingsejongensis this study 12 772 6205 8813 6567 649 1.42 
Species Source of data No. of coding genes No. of gene families No. of genes in gene families No. of orphan genes No. of unique gene families Average No. of genes in gene families 
Aedes aegypti Ensembl genome 25 15 797 7958 12 792 7839 854 1.61 
Caenorhabditis elegans Ensembl gene 78 20 447 6536 13 737 13 911 1528 2.10 
Ciona intestinalis Ensembl gene 78 16 671 7017 9058 9654 503 1.29 
Daphnia pulex Ensembl genome 25 30 590 6710 8362 7208 368 1.25 
Drosophila melanogaster Ensembl gene 78 13 918 9673 21 917 20 917 2408 2.27 
Homo sapiens Ensembl gene 78 20 300 8696 17 186 11 604 1065 1.98 
Ixodes scapularis Ensembl genome 25 20 486 8097 11 277 12 389 873 1.39 
Mesobuthus martensii http://lifecenter.sgst.cn/main/en/scorpion.jsp 32 016 8389 19 961 23 627 2276 2.38 
Strigamia maritima Ensembl genome 25 14 992 7727 11 012 7265 583 1.43 
Tetranychus urticae Ensembl genome 25 18 224 6602 11 788 11 622 939 1.79 
Tigriopus kingsejongensis this study 12 772 6205 8813 6567 649 1.42 

Orthologous gene clusters were constructed using four arthropod species (Antarctic copepod, T. kingsejongensis; scorpion, M. martensii; fruit fly, D. melanogaster, and water flea, D. pulex) to compare genomic features and adaptive divergence. In total, 2063 gene families are shared by all four species, and 1028 genes are T. kingsejongensis-specific. T. kingsejongensis shares 4559 (73.5%) gene families with D. pulex, which belongs to the same crustacean lineage, Vericrustacea; 3531 (56.9%) with D. melanogaster; and 3231 (52.1%) with M. martensii (Fig. 4A). Gene Ontology (GO) analysis revealed the 1028 T. kingsejongensis-specific genes are enriched in transport (single-organism transport, GO:0044765; transmembrane transport, GO:0055085; ion transport, GO:0006811; cation transport, GO:0006812) and single-organism metabolic processes (GO:0044710) (

).

Figure 4.

Comparative genome analyses of the T. kingsejongensis genome. A. Venn diagram of orthologous gene clusters between four arthropod lineages. B. Gene family gain-and-loss analysis. The number of gained gene families (red), lost gene families (blue) and orphan gene families (black) are indicated for each species. Time lines specify divergence times between the lineages.

Figure 4.

Comparative genome analyses of the T. kingsejongensis genome. A. Venn diagram of orthologous gene clusters between four arthropod lineages. B. Gene family gain-and-loss analysis. The number of gained gene families (red), lost gene families (blue) and orphan gene families (black) are indicated for each species. Time lines specify divergence times between the lineages.

Subsequently, gene gain-and-loss was analyzed in 11 representative species: T. kingsejongensis gained 735 and lost 4401 gene families (Fig. 4B). This species exhibits a gene family turnover of 5136, the largest value among the eight arthropods. The second largest value was obtained from T. uticae and the third from M. martensii. Non-insect arthropod genomes were relatively poorly assigned with CEGMA or BUSCO sets (Table 6). The assignment reports of these largely insect-based gene sets tend to have low assignment scores in non-insect or non-dipteran genomes [38, 46, 47]. This implies that careful examination of gene family turnover is needed in non-insect arthropod genomes, as well as globally approved arthropod orthologous gene sets.

Analysis of gene family expansion and contraction in T. kingsejongensis (

) revealed 232 significantly expanded gene families, which are significantly overrepresented in amino acid and carbohydrate metabolism pathways, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [48].

Genome evolution

Adaptive functional divergence caused by natural selection is commonly estimated based on the ratio of nonsynonymous (dN) to synonymous (dS) mutations. To estimate dN, dS, the average dN/dS ratio (w), and lineage-specific positively selected genes (PSGs) in T. kingsejongensis and T. japonicus, protein-coding genes from T. japonicus were added to define orthologous gene families among four species (T. kingsejongensis, T. japonicus, D. pulex, and D. melanogaster) using the program OrthoMCL with the same conditions previously described. We identified 2937 orthologous groups shared by all four species; single-copy gene families were used to construct a phylogenetic tree and estimate the time since divergence using the methods described above. Each of the identified orthologous genes was aligned using PRANK, and poorly aligned sequences with gaps were removed using Gblock. Alignments with less than 40% identity and genes shorter than 150 bp were eliminated in subsequent procedures. The values of dN, dS and w were estimated from each gene using the Codeml program implemented in the Phylogenetic Analysis by Maximum Likelihood (PAML) package with the free-ratio model [49] under F3×4 codon frequencies; orthologs with w ≤ 5 and dS ≤ 3 were retained [50]. To examine the accelerated nonsynonymous divergence in either the T. kingsejongensis or T. japonicus lineages, a binomial test [51] was used to determine GO categories with at least 20 orthologous genes. To define PSGs in T. kingsejongensis and T. japonicus, basic and branch-site models were applied, and Likelihood Ratio Tests (LRTs) were used to remove genes under relaxation of selective pressure. To investigate the functional categories and pathways enriched in PSGs, the Database for Annotation, Visualization and Integrated Discovery (DAVID) Functional Annotation [52] was used with Fisher's exact test (cutoff: P ≤ 0.05).

The average w value from 2937 co-orthologous genes of T. kingsejongensis (0.0027) is higher than that of T. japonicus (0.0022). GO categories that show evidence of accelerated evolution in T. kingsejongensis are: energy metabolism (generation of precursor metabolites and energy, GO:0006091; cellular respiration, GO:0045333) and carbohydrate metabolism (monosaccharide metabolic process, GO:0005996; hexose metabolic process, GO:0019318) (Fig. 5A, Table S10). Branch-site model analysis showed that genes belonging to these functional categories have undergone a significant positive selection process by putative functional divergence in certain lineages. There are 74 and 79 PSGs in T. kingsejongensis (Table S11) and T. japonicus (Table S12), respectively.

Figure 5.

Tigriopus kingsejongensis-specific adaptive evolution. A. Global mean w (ratio of nonsynonymous (dN) to synonymous mutations (dS)) distribution by GO categories of T. kingsejongensis and T. japonicus. GO categories showing supposedly accelerated nonsynonymous divergence (binomial test, test statistic <0.05) in T. kingsejongensis and T. japonicus are colored in red and blue, respectively. B. A total of seven enzyme-coding genes were positively selected genes (PSGs) involved in the four metabolic pathways (oval frame) of T. kingsejongensis: energy (purple), nucleotide (red), lipid (green), and carbohydrate (blue) metabolic pathways. The three genes belonging to the oxidative phosphorylation pathway (KEGG pathway map00190) (rectangular frame) are presented below the enzymes involved. Solid lines indicate direct processes and dashed lines indicate that more than one step is involved in a process.

Figure 5.

Tigriopus kingsejongensis-specific adaptive evolution. A. Global mean w (ratio of nonsynonymous (dN) to synonymous mutations (dS)) distribution by GO categories of T. kingsejongensis and T. japonicus. GO categories showing supposedly accelerated nonsynonymous divergence (binomial test, test statistic <0.05) in T. kingsejongensis and T. japonicus are colored in red and blue, respectively. B. A total of seven enzyme-coding genes were positively selected genes (PSGs) involved in the four metabolic pathways (oval frame) of T. kingsejongensis: energy (purple), nucleotide (red), lipid (green), and carbohydrate (blue) metabolic pathways. The three genes belonging to the oxidative phosphorylation pathway (KEGG pathway map00190) (rectangular frame) are presented below the enzymes involved. Solid lines indicate direct processes and dashed lines indicate that more than one step is involved in a process.

The functional categories enriched in T. kingsejongensis, when compared to T. japonicus, support the idea that functional divergence in T. kingsejongensis is strongly related to energy metabolism (oxidative phosphorylation, GO:0006119; energy-coupled proton transport down electrochemical gradient, GO:0015985; ATP synthesis-coupled proton transport, GO 0015986; generation of precursor metabolites and energy, GO:0006091) (Fig. 5B,

). In particular, three of the identified genes are involved in the oxidative phosphorylation (OxPhos) pathway, which provides the primary cellular energy source in the form of adenosine triphosphate (ATP). These three genes are nuclear-encoded mitochondrial genes: the catalytic F1 ATP synthase subunit alpha (ATP5A) (Fig. S4), a regulatory subunit acting as an electron transport chain such as ubiquinol-cytochrome c reductase core protein (UQCRC1) (Fig. S5), and an electron transfer flavoprotein alpha subunit (ETFA) (Fig. S6).

Availability of supporting data

T. kingsejongensis genome and transcriptome data are deposited in the Sequence Read Archive (SRA) as BioProjects PRJNA307207 and PRJNA307513, respectively. Other supporting data is available in the GigaScience repository, GigaDB [53].

Additional file

Supplementary data are available at GIGSCI online.

Figure S1. Map showing location of the Tigriopus kingsejongensis sampling site.

Figure S2. BLAST top-hit species distribution of Tigriopus kingsejongensis. Data obtained using BLASTx against the National Center for Biotechnology Information's (NCBI) non-redundant protein database with an E value cutoff of 1e−5.

Figure S3. Gene Ontology distribution of annotated genes. Gene Ontology (GO) annotation of predicted Tigriopus kingsejongensis genes was conducted using the GO annotation. The figure illustrates the number of genes from major GO modules of molecular function (MF), biological process (BP), and cellular component (CC).

Figure S4. Tigriopus kingsejongensis-specific amino acid changes in ATP synthase subunit alpha. A. Clustal X alignment of the amino acid sequences between four species. Tigriopus kingsejongensis-specific amino acid changes representing positive selections are presented with red boxes. B. Cartoon of the protein crystal structure of the ATP synthase (PDB ID: 1BMF). C. The specific amino acid change Ala166 is colored in red (in stick form) and positioned within the external loop region of nucleotide-binding domain. The three domains of the ATP synthase subunit alpha illustrated in cartoon form are colored accordingly (blue, beta-barrel domain; green, nucleotide-binding domain; purple: C terminal domain).

Figure S5. Tigriopus kingsejongensis-specific amino acid changes in ubiquinol-cytochrome c reductase core protein I. A. Clustal X alignment of the amino acid sequences between four species. Tigriopus kingsejongensis-specific amino acid changes representing positive selections are presented with red boxes. B. Cartoon of the protein crystal structure of ubiquinol-cytochrome c reductase (PDB ID: 1QCR). C. Positions of the specific amino acid changes in ubiquinol-cytochrome c reductase core protein I are colored red (stick form). The insulinase domain is yellow and the peptidase M16 domain is green.

Figure S6. Tigriopus kingsejongensis-specific amino acid changes in electron-transferring flavoprotein. A. Clustal X alignment of the amino acid sequences between four species. Tigriopus kingsejongensis-specific amino acid changes representing positive selections are presented with red boxes. Among the ten amino acid changes, the five sites are located within the N-terminal domain and the other five are positioned within the FAD binding domain. B. Cartoon of the protein crystal structure of the electron-transferring flavoprotein (PDB ID: 1EFV). The five amino acid sites within the FAD binding domain are colored in red (stick form). Electron-transferring flavoprotein alpha subunit is green; FAD-binding domain is represented by color-coded electrostatic surface (blue, positive charge; red, negative charge; grey, neutral charge); FAD is orange (stick form). Notably, the Asp463 residue makes a salt bridge with Arg437 in the homology model structure of electron-transferring flavoprotein from T. kingsejongensis. In addition, Gln454 is located near the bound FAD co-factor and may form a hydrogen bond with the N7A atom of FAD in the model structure of electron-transferring flavoprotein from T. kingsejongensis.

Table S1. Number of tRNA in the Tigriopus kingsejongensis genome.

Table S2. Known repetitive and transposable elements in the Tigropus kingsejongensis genome.

Table S3. Transposable elements in the Tigriopus kingsejongensis genome.

Table S4. Gene Ontology (GO) of lineage-specific gene families in the Tigriopus kingsejongensis genome. REVIGO software was used to cluster related GO terms (in bold letters) according to P-value.

Table S5. Annotated domains of lineage-specific gene families in the Tigriopus kingsejongensis genome.

Table S6. Gene Ontology (GO) of expanded gene families in the Tigriopus kingsejongensis genome. REVIGO software was used to cluster related GO terms (in bold letters) according to p-value.

Table S7. Gene annotation of the expanded genes in the Tigriopus kingsejongensis genome.

Table S8. Gene Ontology (GO) of contracted genes in the Tigriopus kingsejongensis genome. REVIGO software was used to cluster related GO terms (in bold letters) according to P-value.

Table S9. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of expanded genes in the Tigriopus kingsejongensis genome.

Table S10. Gene Ontology (GO) categories displaying w (ratio of nonsynonymous (dN) to synonymous mutations (dS)) in the genomes of Tigriopus kingsejongensis and T. japonicus.

Table S11. Lists and annotations of positively selected genes in the Tigriopus kingsejongensis genome.

Table S12. Lists and annotations of positively selected genes in the Tigriopus japonicus genome.

Table S13. Enriched Gene Ontology (GO) categories identified by positively selected genes from the Tigriopus kingsejongensis genome. REVIGO software was used to cluster related GO terms (in bold letters) according to P-value.

Table S14. Enriched Gene Ontology (GO) categories identified by positively selected genes from the Tigriopus japonicus genome. REVIGO software was used to cluster related GO terms (in bold letters) according to P-value.

List of abbreviations

ATP: Adenosine triphosphate; BUSCO: Benchmarking Universal Single-Copy Orthologs; CEGMA: Core Eukaryotic Genes Mapping Approach; CM: Covariance model; DAVID: Database for Annotation, Visualization and Integrated Discovery; dN: Nonsynonymous mutations; dS: Synonymous mutations; EST: Expressed sequence tag; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; LRT: Likelihood Ratio Test; OxPhos: Oxidative phosphorylation; PAML: Phylogenetic Analysis by Maximum Likelihood; PRANK: Probabilistic Alignment Kit; PSG: Positively selected gene; RAM: Random access memory; SRA: Sequence Read Archive; SSR: Simple sequence repeat; TE: Transposable element; w: dN/dS ratio

Competing interests

The authors declare no competing interests.

Funding

This work was supported by the Korea Polar Research Institute-funded the grant ‘Antarctic organisms: cold-adaptation mechanism and its application’ (PE16070), and basic research program (PE14260).

Authors’ contributions

HP, S Kim and HWK conceived and designed experiments and analyses; S Kang, DHA, SGL, SCS, JL, GSM and HL performed experiments and conducted bioinformatics. Seunghyun Kang, HWK, S Kim and HP. wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Joseph A. Covi for comments and discussion.

References

1.
Huys
R
,
Boxshall
GA
.
Copepod evolution
 .
Ray Society
;
1991
.
2.
Humes
AG.
How many copepods?
Hydrobiologia
 
1994
;
292
:
1
7
.
3.
Wells
P
,
Persoone
G
,
Jaspers
ECC
.
Marine ecotoxicological tests with zooplankton
. In:
Persoone
G
,
Jaspers
E
,
Claus
C
. (Eds.),
Ecotoxicological Testing for the Marine Environment
 .
Bredene
:
Inst. Mar. Sci. Res.
;
1984
.
4.
Ruppert
E
,
Fox
R
,
Barnes
R
.
Invertebrate Zoology, A Functional Evolutionary Approach
 .
Belmont, CA
:
Brooks/Cole-Thomson Learning
;
2003
.
5.
Goolish
E
,
Burton
R
.
Energetics of osmoregulation in an intertidal copepod: Effects of anoxia and lipid reserves on the pattern of free amino accumulation
.
Funct Ecol
 
1989
:
81
9
.
6.
Lazzaretto
I
,
Libertini
A
.
Karyological comparison among different Mediterranean populations of the genus Tigriopus (Copepoda Harpacticoida)
.
Boll Zool
 
2009
;
53
:
197
201
.
7.
Davenport
J
,
Barnett
P
,
McAllen
R
.
Environmental tolerances of three species of the harpacticoid copepod genus Tigriopus
.
J Mar Biol Assoc UK
 
1997
;
77
:
3
16
.
8.
Raisuddin
S
,
Kwok
KW
,
Leung
KM
,
Schlenk
D
,
Lee
J-S
.
The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics
.
Aquat Toxicol
 
2007
;
83
:
161
73
.
9.
Whole Genome Assembly of Tigriopus californicus provided by the Weizhong Li lab, UCSD Calit2 [http://i5k.nal.usda.gov/Tigriopus_californicus]
10.
Lee
J-S
,
Rhee
J-S
,
Kim
R-O
,
Hwang
D-S
,
Han
J
,
Choi
B-S
,
Park
GS
,
Kim
I-C
,
Park
HG
,
Lee
Y-M
.
The copepod Tigriopus japonicus genomic DNA information (574Mb) and molecular anatomy
.
Mar Environ Res
 
2010
;
69
:
S21
3
.
11.
Whole genome assembly of Eurytemora affinis [http://i5k.nal.usda.gov/Eurytemora_affinis]
12.
The Salmon Louse Genome Project [http://sealouse.imr.no/]
13.
Thorne
MAS
,
Kagoshima
H
,
Clark
MS
,
Marshall
CJ
,
Wharton
DA
.
Molecular analysis of the cold tolerant Antarctic Nematode, Panagrolaimus davidi
.
PLOS one
 
2014
;
9
:
e104526
.
14.
Everatta
MJ
,
Worlandb
MR
,
Balea
JS
,
Conveyb
P
,
Hayward
SAL
.
Pre-adapted to the maritime Antarctic? – Rapid cold hardening of the midge, Eretmoptera murphyi
.
J Insect Physiol
 
2012
;
58
:
1104–11
.
15.
Bromwich
DH
,
Nicolas
JP
,
Monaghan
AJ
,
Lazzara
MA
,
Keller
LM
,
Weidner
GA
,
Wilson
AB
.
Central West Antarctica among the most rapidly warming regions on Earth
.
Nature Geoscience
 
2013
;
6
:
139
45
.
16.
Park
E-O
,
Lee
S
,
Cho
M
,
Yoon
SH
,
Lee
Y
,
Lee
W
.
A new species of the genus Tigriopus (Copepoda: Harpacticoida: Harpacticidae) from Antarctica
.
Proc Biol Soc Wash
 
2014
;
127
:
138
54
.
17.
Birkenmajer
K
.
Geology of Admiralty Bay, King George Island (South Shetland Islands). An outline
.
Pol Polar Res
 
1980
;
1
:
29
54
.
18.
Marçais
G
,
Kingsford
C
.
A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
.
Bioinformatics
 
2011
;
27
:
764
70
.
19.
Myers
EW
,
Sutton
GG
,
Delcher
AL
,
Dew
IM
,
Fasulo
DP
,
Flanigan
MJ
,
Kravitz
SA
,
Mobarry
CM
,
Reinert
KH
,
Remington
KA
et al
A whole-genome assembly of Drosophila
.
Science
 
2000
;
287
:
2196
2204
.
20.
Gordon
A
,
Hannon
G
.
Fastx-toolkit
.
FASTQ/A short-reads preprocessing tools
  ;
2010
.
21.
Boetzer
M
,
Henkel
CV
,
Jansen
HJ
,
Butler
D
,
Pirovano
W
.
Scaffolding pre-assembled contigs using SSPACE
.
Bioinformatics
 
2011
;
27
:
578
9
.
22.
Nadalin
F
,
Vezzi
F
,
Policriti
A
.
GapFiller: a de novo assembly approach to fill the gap within paired reads
.
BMC Bioinformatics
 
2012
;
13
:
S8
.
23.
Holt
C
,
Yandell
M
.
MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects
.
BMC Bioinformatics
 
2011
;
12
:
491
.
24.
Smit
AFA HR
,
Green
P
.
RepeatMasker Open-3.0. 1996-2004
  .
25.
Korf
I.
Gene finding in novel genomes
.
BMC Bioinformatics
 
2004
;
5
:
59.26
.
26.
Altschul
SF
,
Madden
TL
,
Schäffer
AA
,
Zhang
J
,
Zhang
Z
,
Miller
W
,
Lipman
DJ
.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
.
Nucleic Acids Res
 
1997
;
25
:
3389
3402
.
27.
Trapnell
C
,
Pachter
L
,
Salzberg
SL
.
TopHat: discovering splice junctions with RNA-Seq
.
Bioinformatics
 
2009
;
25
:
1105
11
.
28.
Trapnell
C
,
Williams
BA
,
Pertea
G
,
Mortazavi
A
,
Kwan
G
,
van Baren
MJ
,
Salzberg
SL
,
Wold
BJ
,
Pachter
L
.
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
.
Nat Biotech
 
2010
;
28
:
511
5
.
29.
Slater
GS
,
Birney
E
.
Automated generation of heuristics for biological sequence comparison
.
BMC Bioinformatics
 
2005
;
6
:
31
.
30.
Conesa
A
,
Gotz
S
,
Garcia-Gomez
JM
,
Terol
J
,
Talon
M
,
Robles
M
.
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
.
Bioinformatics
 
2005
;
21
:
3674
6
.
31.
Boeckmann
B
,
Bairoch
A
,
Apweiler
R
,
Blatter
M-C
,
Estreicher
A
,
Gasteiger
E
,
Martin
MJ
,
Michoud
K
,
O’Donovan
C
,
Phan
I
.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003
.
Nucleic Acids Res
 
2003
;
31
:
365
70
.
32.
Acland
A
,
Agarwala
R
,
Barrett
T
,
Beck
J
,
Benson
DA
,
Bollin
C
,
Bolton
E
,
Bryant
SH
,
Canese
K
,
Church
DM
.
Database resources of the national center for biotechnology information
.
Nucleic Acids Res
 
2014
;
42
:
D7
.
33
Supek
F
,
Bošnjak
M
,
Škunca
N
,
Šmuc
T
.
REVIGO summarizes and visualizes long lists of gene ontology terms
.
PloS one
 
2011
;
6
:
e21800
.
34.
Nawrocki
EP
,
Kolbe
DL
,
Eddy
SR
.
Infernal 1.0: inference of RNA alignments
.
Bioinformatics
 
2009
;
25
:
1335
37
.
35.
Gardner
PP
,
Daub
J
,
Tate
J
,
Moore
BL
,
Osuch
IH
,
Griffiths-Jones
S
,
Finn
RD
,
Nawrocki
EP
,
Kolbe
DL
,
Eddy
SR
,
Bateman
A
.
Rfam: Wikipedia, clans and the “decimal” release
.
Nucleic Acids Res
 
2011
;
39
:
D141
5
.
36.
Lowe
TM
,
Eddy
SR
.
tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence
.
Nucleic Acids Res
 
1997
;
25
:
955
64
.
37.
Parra
G
,
Bradnam
K
,
Korf
I
.
CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes
.
Bioinformatics
 
2007
;
23
:
1061
7
.
38.
Simão
FA
,
Waterhouse
RM
,
Ioannidis
P
,
Kriventseva
EV
,
Zdobnov
EM
.
BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
.
Bioinformatics
 
2015
:
btv351
.
39.
Chipman
AD
,
Ferrier
DE
,
Brena
C
,
Qu
J
,
Hughes
DS
,
Schröder
R
,
Torres-Oliva
M
,
Znassi
N
,
Jiang
H
,
Almeida
FC
.
The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima
.
PLoS Biol
 
2014
;
12
:
e1002005
.
40.
Li
L
,
Stoeckert
CJ
,
Roos
DS
.
OrthoMCL: identification of ortholog groups for eukaryotic genomes
.
Genome Res
 
2003
;
13
:
2178
89
.
41.
Löytynoja
A
,
Goldman
N
.
An algorithm for progressive multiple alignment of sequences with insertions
.
Proc Natl Acad Sci U S A
 
2005
;
102
:
10557
62
.
42.
Castresana
J.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis
.
Mol Biol Evol
 
2000
;
17
:
540
52
.
43.
Stamatakis
A.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
.
Bioinformatics
 
2014
;
30
:
1312
3
.
44.
Hedges
SB
,
Dudley
J
,
Kumar
S
.
TimeTree: a public knowledge-base of divergence times among organisms
.
Bioinformatics
 
2006
;
22
:
2971
2
.
45.
Han
MV
,
Thomas
GW
,
Lugo-Martinez
J
,
Hahn
MW
.
Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3
.
Mol Biol Evol
 
2013
;
30
:
1987
97
.
46.
Rider
SD
,
Morgan
MS
,
Arlian
LG
.
Draft genome of the scabies mite
.
Parasites & Vectors
 
2015
;
8
:
585
.
47.
Hoy
M
,
Waterhouse
R
,
Wu
K
,
Estep
A
,
Ioannidis
P
,
Palmer
W
,
Pomerantz
A
,
Simão
F
,
Thomas
J
,
Jiggins
F
.
Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomised Hox genes and super-dynamic intron evolution
.
Genome biology and evolution
 
2016
;
8
:
1762
75
.
48.
Kanehisa
M
,
Sato
Y
,
Kawashima
M
,
Furumichi
M
,
Tanabe
M
.
KEGG as a reference resource for gene and protein annotation
.
Nucleic Acids Res
 
2015
:
D457–62
.
49.
Yang
Z.
PAML 4: phylogenetic analysis by maximum likelihood
.
Mol Biol Evol
 
2007
;
24
:
1586
91
.
50.
Zhang
G
,
Li
C
,
Li
Q
,
Li
B
,
Larkin
DM
,
Lee
C
,
Storz
JF
,
Antunes
A
,
Greenwold
MJ
,
Meredith
RW
.
Comparative genomics reveals insights into avian genome evolution and adaptation
.
Science
 
2014
;
346
:
1311
20
.
51.
Consortium TCSaA
.
Initial sequence of the chimpanzee genome and comparison with the human genome
.
Nature
 
2005
;
437
:
69
87
.
52.
Huang
DW
,
Sherman
BT
,
Lempicki
RA
.
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
.
Nature protocols
 
2008
;
4
:
44
57
.
53.
Kang
S
,
Ahn
D
,
Lee
JH
,
Lee
SG
,
Shin
SC
,
Lee
J
,
Min
G
,
Lee
H
,
Kim
H
,
Kim
S
,
Park
H
.
Supporting data for “The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis
.
GigaScience Database
 .
2016
. .
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.