Summary

In this paper we describe a practical method for determining crustal structure by comparing observations of teleseismic body waves with synthetics constructed using generalized ray theory. Layered crustal structure beneath a seismic station strongly influences teleseismic body waves arriving in the 50 s or so after the initial P; however, the effect of crustal structure differs significantly for vertical-component and radial-component records. For any proposed crustal structure, we develop an approximate theoretical formulation to predict the radial-component seismogram as a function of the vertical-component observations. Then, we compare the observed and predicted radial-component seismograms in the time domain, and vary the proposed crustal structure using a grid-search scheme until we obtain an optimum match. The theoretical approximation is complete to second order in the reflection and transmission coefficients, and is accurate to within a few per cent for modelling teleseismic waveforms. We demonstrate the feasibility of this second-order, radial-vertical comparison (SORVEC) method by testing it on synthetically generated waveforms having complicated source properties and significant levels of background noise. We illustrate the application to real data by determining the crustal structure beneath two seismic stations in Tibet, LZH and AMDO. Beneath station LZH, the crustal thickness is about 65 km. Beneath station AMDO, the crustal thickness is about 75 km, and there is a low-velocity layer in the lower crust.

References

Ammon
C.J.
,
1991
.
The isolation of receiver effects from teleseismic P waveforms
,
Bull. seism. Soc. Am.
 .
81
,
2504
2510
.
Ammon
C.J.
Randall
G.E.
Zandt
G.
,
1990
.
On the nonuniqueness of receiver function inversion
,
J. geophys. Res.
 .
95
,
15 303
15 318
.
Bäth
M.
,
1974
.
Spectral Analysis in Geophysics
 ,
Elsevier Scientific Publishing Company
, New York, NY.
Bäth
M.
Slefánsson
,
1966
.
S-P conversion at the base of the crust
,
Ann Geafis.
 .
19
,
119
130
.
Burdick
L.J.
Langston
C.A.
,
1977
.
Modeling crustal structure through the use of converted phases in teleseismic body-wave forms
,
Bull. seism. Soc. Am.
 .
67
,
677
691
.
Cassidy
J.F.
,
1992
.
Numerical experiments in broadband receiver function analysis
.
Bull seism. Soc. Am.
 ,
82
,
1453
1474
.
Dziewonski
A.M.
Anderson
D.L.
,
1980
.
Preliminary reference Earth model
,
Phys. Earth planet. Inter.
 .
25
,
297
356
.
Fuchs
K.
Müller
G.
,
1976
.
Comparison of synthetic seismograms with the reflectivity method and comparison of observations
.
Geophys. J. R. astr. Soc.
 ,
23
,
417
433
.
Gurrola
H.
Minster
J.B.
,
1993
.
Resolution of velocity structure determined by velocity spectrum stacking of receiver functions
, Proc. 15th Annual Seism. Res. Symp.,
125
131
.
Haskell
N.A.
,
1962
.
Crustal reflection of plane P and SV waves
,
J. geophys. Res.
 .
67
,
4751
4767
.
Helmberger
D.V.
,
1968
.
The crust-mantle transition in the Bering Sea
,
Bull. seism. Soc. Am.
 .
58
,
179
214
.
Helmberger
D.V.
,
1980
.
Theory and applications of synthetic seismograms
, in
Proc. bit. Sch. Phys. ‘Enrico Fermi’, Course LXXXV, Earthquakes: Observation and Interpretation
 , pp.
174
222
, eds
Kanamori
H.
Boshi
E.
,
North-Holland
.
Hron
F.
Kanasewich
L.R.
Alpaslan
T.
,
1974
.
Partial ray expansion required to suitably approximate the exact wave solution
,
Geophys. J. R. astr. Soc.
 .
36
,
607
625
.
Langston
C.A.
,
1977
.
The effect of planar dipping structure on source and receiver responses for constant ray parameter
,
Bull. seism. Soc. Am.
 .
67
,
1029
1050
.
Langston
C.A.
,
1979
.
Structure under Mount Rainier, Washington, inferred from teleseismic body waves
,
J. geophys. Res.
 .
84
,
4749
4762
.
Langston
C.A.
,
1989
.
Scattering of teleseismic body waves under Pasadena, California
,
J. geophys. Res.
 .
94
,
1935
1951
.
Ludwig
W.J.
Nafe
J.E.
Drake
C.L.
, (
1973
).
Seismic refraction
, in
The Sea
 ,
Vol.4
, Pt. I, pp.
53
84
, ed.
Maxwell
A.E.
,
Wiley-Interscience
, New York, NY.
Mangino
S.
Ebel
J.
,
1992
.
The receiver structure beneath the Chinese digital seismograph station network (CDSN) stations: Preliminary results
, Phillips Lab. Tech. Rept. PL-TR-92-2149.
Owens
T.J.
Zandt
G.
Taylor
S.R.
,
1984
.
Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms
,
J. geophys. Res.
 .
89
,
7783
7795
.
Owens
T.J
Crosson
R.S.
Hendrickson
M.A.
,
1988
.
Constraints on the subduction geometry beneath western Washington from broadband teleseismic waveform modeling
,
Bull. seism. Soc. Am.
 .
78
,
1319
1334
.
Owens
T.J.
Randal
G.E.
Wu
F.T.
Zheng
R.
,
1993
.
PASSCAL instrument performance during the Tibetan Plateau passive seismic experiment
.
Bull seism. Soc. Am.
 ,
83
,
1959
1970
.
Phinney
R.A.
,
1964
.
Structure of the Earth's crust from spectral behaviour of long-period body waves
,
J. geophys. Res.
 .
69
,
2997
3017
.
Priestley
K.
Brune
J.
,
1978
.
Surface waves and the structure of the great basin of Nevada and western Utah
,
J. geophys. Res.
 .
83
,
2265
2272
.
Zhao
L.-S.
Helmberger
D.V.
,
1991
.
Broadband modelling along a regional shield path, Harvard recording of the Saguenay earthquake
.
Geophys. J. Int.
 ,
105
,
301
312
.
Zhao
L.-S.
Helmberger
D.V.
,
1993
.
Source retrieval from broadband regional seismograms: Hindu Kush region
,
Phys. Earth planet. Inter.
 .
78
,
69
95
.
Zhao
L.-S.
Xie
J.
,
1993
.
Lateral variations of the compressional velocity structure beneath the Tibetan Plateau from Pn travel time inversion
,
Geophys, J. Int.
 .
115
,
1070
1084
.
Zhao
L.-S.
Helmberger
D.V.
Harkrider
D.G.
,
1991
.
Shear-velocity structure of the crust and upper mantle beneath the Tibetan Plateau and Southeastern China
,
Geophys. J. int.
 .
105
,
713
730
.
Zhu
L.P.
Zeng
R.
Wu
F.T.
Owens
T.J.
Randall
G.E.
,
1993
.
Preliminary study of crust-upper mantle structure of the Tibetan Plateau by using broadband teleseismic body waveforms
,
Acta Seism. Sinica
 .
6
,
305
316
.