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SUMMARY 
An observation model for earth tide displacements in application to Very Long 
Baseline Interferometry and similar precise geodetic techniques is developed. It 
incorporates effects from anelasticity, ellipsoidal figure, and fluid core resonance. 
Based on a harmonic development of the external potential, the model follows the 
familiar Love number concept. The transfer function of the earth to each harmonic 
is formulated in terms of coupled harmonics in the space domain and fulfils the 
causality condition in the time domain. Solve-for parameters can be chosen flexibly. 
The guideline, however, has been to provide a minimum set of well-defined and 
well-resolvable tide response parameters for analysis of observations. The aim of 
accuracy for tide displacements prediction is below 1 mm. 

Being the major perturbation of the solid earth tide, ocean tide loading effects are 
computed, and the accuracy of the models involved is discussed. It appears that the 
major error source relates to those ocean tide frequencies for which global models 
are not available. These frequencies form a continuum with a power spectrum being 
largely a result of non-linear tide interaction. The associated loading effects cannot 
be reliably interpolated from global tide models, which are available only for a few 
distinct frequencies and which disregard tidal intermodulation. Thus, an accuracy of 
1 mm for computed loading tide displacements cannot always be achieved. 

Key words: earth and ocean tides, precise geodetic measurements, surface 
displacements. 

1 INTRODUCTION 

Very Long Baseline Interferometry (VLBI) and Satellite 
Laser Ranging (SLR) techniques have demonstrated their 
capability to determine a number of geodynamic parameters 
of the earth. Besides the monitoring of changes of baselines 
within global networks, the quantities which relate to 
precession, nutation, polar motion, Universal Time 
variations, and tidal deformation can be resolved. This 
report will focus on the tide displacement problem and 
discuss it in application to VLBI, but can easily be 
interpreted also from the SLR point of view. 

What makes VLBI an attractive measurement technique 
in geophysics and geodesy is its tie to fundamental physical 
constants and the quasi-inertial reference frame to which it 
relates (Coates et al. 1985; Carter & Robertson 1985; 
Dickey & Eubanks 1985). VLBI data analysis compares 
observations of radio wave delays with those predicted on 
the basis of an earth model that comprises many individual 
contributions to baseline vector changes due to earth 
dynamics (Herring 1986). The solid earth, the liquid core 

and the oceans are represented by six submodels, two of 
which compute and solve station displacements related to 
tides: solid earth and ocean loading tides. 

This report gives an account of the tide displacement 
problem. Its aim is to summarize the results of mainly the 
recent decade’s efforts in studies of the earth’s response to 
the tide potential and to the surface loads exerted by the 
ocean tides. The results are compiled in a comprehensive 
and conveniently formulated displacement model for 
application in VLBI analysis software. Most tide effects 
involved are discussed in detail. Especially where con- 
troversies exist in the literature, this paper attempts to sort 
out the arguments and conclude a feasible approach. 

Demands for a revision of the surface displacements 
model arise, recognizing the increase of precision of VLBI 
as a product of ongoing development of the techniques and 
analysis procedures involved. Apart from the application of 
a tide model for the determination of tide related quantities 
within VLBI, propagation of errors from a tide predicting 
model into other solved-for parameters must be avoided. 

Recent work using recording gravimeters shows that solid 
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earth tide predictions can be verified at the one part per 
thousand level-ocean tide loading being the largest 
perturbation-provided the instruments have been carefully 
calibrated (Baker, Edge & Jeffries 1989). In this respect, 
calibration presents no problem in VLBI. However, the 
earth’s response to the tidal potential constitutes the entire 
tide variation seen by the (geometric) method VLBI, 
whereas gravity effects consist of 85 per cent direct effect 
from the tide raising bodies and only 15 per cent earth 
response. It is the earth’s response which involves more 
complicated and therefore more uncertain models. The 
signal-to-noise ratios of both techniques are on the other 
hand 80 dB (gravity) respectively 50 dB (VLBI). Thus, a 
l m m  accuracy demand on a solid earth tide displacement 
model appears reasonable, and 1 mm error is acceptable as a 
single-source contribution to the total error budget. 

The currently used tide model aims at an accuracy of 
5mm. Apart from being dissatisfied with this figure in 
comparison with current standards, the formulation is found 
to be too simplistic to be improvable by a few amendments. 
A more rigorous approach will be presented, which at the 
same time is flexible to successively incorporate or support 
additional geodynamic processes relevant for VLBI. 

Solutions of tide parameters have been presented 
by-among others-carter, Robertson & MacKay (1985), 
Herring et al. (1983), and Sovers et af. (1981). Fully 
three-component ocean tide loading effects have only 
recently been incorporated (Schuh 1987). The ocean loading 
effects are on the order of centimetres, horizontal 
components being roughly one third of the vertical 
displacement (Scherneck 1983, 1987). In order to avoid that 
ocean loading perturbations are absorbed in (station- 
dependent) solid earth tide parameters, their effect needs to 
be subtracted from the radio wave delays subjected to 
analysis. Recently, Schuh & Mohlmann (1989) dem- 
onstrated that this indeed lowers the post-fit residual. 

It is hoped that the tide model presented leads to tide 
parameters solutions with a greater degree of global 
consistency, so that regional anomalies of tidal movements 
can be assessed and results be used more safely in 
investigations of lateral heterogeneities of the earth. 

Two terms frequently used in this report require 
introduction: the term ‘tide component’ characterizes the 
type of observation, which are surface displacements, 
gravity perturbations, etc. The terms ‘tide constituent’ and 
‘partial tide’ are applied to a single tide wave, i.e. the single 
sinusoid with which a particular spherical harmonic 
component of the tide raising potential in space varies in 
time. Frequently used abbreviations and some symbols are 
given in Table 1. 

Table 1. Abbreviations and symbols. 
Abbreviations and symbols 
SH - Spherical harmonics 

2 SOLID EARTH T I D E  DISPLACEMENTS 

2.1 Objectives for a parametrized model 

The guidelines for the formulation of observation equations 
for solid earth tide displacements were set by the following 
demands. 

(a) The response parameters have a straight-forward and 
consistent relationship with the physics of the problem. 

(b) The set of parameters resolvable in experiments is 
flexible and able to reduce to a small set of key parameters. 

(c) The parametrization is independent of the time and 
frequency domain properties of the observation method. 

(d) As many parameters as possible provide cross- 
reference, i.e. they are relevant to other submodels of the 
full set of observation equations. 

The resolving power of the method shall determine which 
parameters are suitable for analysis; thus, different 
instrument and analysis configurations can contribute to the 
same basic model. The main objective of this report is to 
point out the important earth tide parameters and make 
them available for estimation in dedicated experiments. The 
two geophysically most relevant phenomena are the 
viscoelastic response of the earth and the nearly diurnal 
resonance of the liquid core. Perturbation of the tide 
response due to the flattening of the earth is carefully 
considered. 

In addition, tide predictions from a set of standard 
parameters have to achieve submillimetre accuracies in 
order to improve currently used methods (IERS-Standards, 
McCarthy 1989; MASTERFIT VLBI-software, Fanselow & 
Sovers 1985; CALC/SOLV, Ma 1978). 

The formulation emphasizes the following basic prin- 
ciples: compatibility with the principle of causality; proper 
separation of space and time related effects; definition and 
use of base-function and reference systems as simply and 
clearly as possible. Parametrized, continuous formulations 
are the preferred means to characterize the tidal earth 
rather than numerical tables. 

The proposed tide model is based on harmonic tide 
potential development. This provides from the start the 
proper expansion in terms of spherical harmonics (SH) 
required to compute tides of an elliptical body along the 
mainstream of theories. 

Utilization of harmonic tide development in application to 
VLBI has originally been suggested by Biillesfeld & Schuh 
(1986), emphasizing the improvements in accuracy achieved 
by Biillesfeld (1985) as compared to the standard potential 
by Cartwright & Tayler (1971) and Cartwright & Edden 
(1973). Adoption of a new standard is under progress at the 

NDR - NLarly Diurnal Resonance 
e ( x )  

p,k 

- conventional associated Legendre polynomials, 
- exclusively denoting geocentric colatitude and longitude 

- Darwin’s tide symbols, c.f. Melchior (1978, pp.10-34) 

s(e)’dx = 2(n+m)I/(n-m)l/(2n+l) 

L - (greek iota) a Love number from the set {h, 1 ( ,  k)) 
Ss,, h n t  bn KI, 01, PI, Q l r  4, S z ,  Nz, K z r  L z r  &SO - 

Subscripts: 
bt - body tide (= solid earth tide) 
ot - ocean (loading) tide 
LL - associated with Load Love number ~~ 

cal - associated with calibration 
j - exclusively used to numerate tidal constituents 
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Commission on Earth Tides under the International Union 
of Geodesy and Geophysics (IUGG) (Friedrich & 
Zimmermann 1989), considering recent work by Tamura 
(1987) and Xi (1987). 

Basing the tide response model on a frequency spectrum 
of the tide potential has the main advantage that the models 
for core resonance and the viscoelastic response can be 
parametrized in the frequency domain. Constraints of the 
model as to comply with causality can then be derived with 
the Hilbert transform (cf. Dehant & Zschau 1989). 

2.1.1 Reference system 

The adopted coordinate system for tide potential and 
displacement is the spherical equatorial system used by 
Wahr (1981). Dimensionless response parameters, the 
generalized Love numbers, are derived using suitable scaling 
constants like earth radius and normal gravity, the role of 
which is conventional rather than physical. 

The response of the ellipsoidal earth is characterized in 
this system as a coupled set of base functions (spherical 
harmonics), excited by a single base function; the amplitude 
coefficients of the displacements harmonics relate to the 
amplitude of the external tide harmonic. This system is in 
some sense contrary to that of Dehant (1987) that sets the 
local values of excitation and response into proportion, with 
the consequence that latitudinally dependent response 
functions result, some of which obtain singularities. This is 
avoided here. 

Moreover, the geocentric coordinate system used in this 
report is compatible with the reference system of the 
IERS-Standards. However, care must be taken as regards 
the global scaling constants (normal gravity and radius) 
implicit in the theoretical results. 

2.2 The observation equations 

The following properties of the earth relevant to tides are 
considered decoupled from each other at the level of 0.1 mm 
of displacement: mantle rheology and the Nearly Diurnal 
Resonance (NDR) of the core; mantle rheology and 
coupling of the spherical harmonics of the displacement 
field. Before the parametrized factorization of the earth 
response is presented, the model Wahr (1981) is reviewed in 
order to emphasize an important aspect concerning space 
and time domain separability. 

The lunisolar tide potential is given in the following 
harmonic expansion: 

v(r, t )  = g, a C ~ l ( r I r e ) n ’ ~ ~  
I 

x (cos rp) exp [i(xl + wlt + mlA)l, (2.1) 

where re is the equatorial radius and g, normal gravity at the 
equator (see also Appendix A). Displacements u at a site on 
the earth surface, at geocentric colatitude rp and longitude 
I, are accordingly described by the coupled set of spheroidal 
base functions Sr(rp, A) 

Sr(q, A) = Pr(cos rp)r + d,Pr [ 
1 im 

sin rp 
x (COS rp)cp + - P:(cos rp)A exp ( i d )  (2.2) 

in the form 
u(rp, A, t) = u,r + uvcp + u A A  

= 9% U,(wj, rp, A) exp ( h i t ) ,  wj > 0, (2.3a) 
i 

with the displacement spectrum -~ 
u,(@, rpj A) = [ znrn(w)sr(V> A) + 2 k l  Znmk/(w)si(rp> A)]rj 

(2.3b) 
where ri = Yj  exp (ixj) are the coefficients of a harmonic 
tide development (spectrum) in metres, w = w .  I ’  x = 2. I’ 
n = ni and m = mi. The static tide must be eliminated to 
comply with IERS-Standards. The harmonic response is 
represented by a diagonal matrix of frequency dependent 
Love numbers Znrn representing the spherical case. The 
remaining terms are ellipsoidal perturbations, 3 x 3 coupling 
matrices Znmkl with non-zero elements according to the 
selection rules of Wigner’s 3j-symbols. Wahr found short 
expressions for (2.3b) when he preserved the product P2P7 
rather than using the expansion in terms of a series of Pp. 
With only a few non-zero coupling coefficients, 

U , ( ~ P  A) = [ Zne,,(w)Sr(rp, A) + gnrn(w)sr(rpj A) 

+ c kt  %nmk/(w)Si(rp,  A)]rj> 

mrp, A) = P,(COS rp)S?(rp, A). 

To first order in perturbation (in Wahr’s system of unit 
normalized SH) these are 

zn, = diag (k,, L, In,), 

g,,, = 0 Vn # 2, $, = diag (h,,~,,,, I,,z,,,, 12,z,), 

%,,,kl 0 Vn z 2, Z2-4, = diag (0,12rnl+m, 12ml+rn), 

4,nrn = 0 Vn, m, @z79m = i12rn~+m(63p62q - 6,6,,), 

- 

m > O ,  

$mZI = 0 Vl # m, with gnrnkl = ( C ; y k l ) ,  1 s p  5 3, 
11q13.  

So far, the scheme separates time- (frequency) and space- 
(SH degree and order) dependent properties in a system of 
harmonic base functions. 

The coupling coefficients y, z ,  1, and w+ are of the order 
of the flattening of the earth when compared to the Love 
numbers h and 1. This enables the elimination of common 
factors for the NDR of the core and for the viscoelastic 
relaxation of the mantle. The NDR appears only in the case 
of diurnal tides, (n, m )  = (2, l), and is confined to a narrow 
band of frequencies. Thus, effects of mantle rheology on the 
resonance are practically frequency independent. Possible 
dependence of viscoelastic relaxation on SH order m can be 
neglected (Wang 1990, personal communication). 

Instead of scaling the resonant coefficients zl, and w , ~  
with respect to the resonant l , , ,  the NDR effect as well as 
the other response terms scaled with respect to two real 
valued, frequency-independent basic Love numbers H and 
L. The following observation equation results: 

U, = H/3r iVc’ (w) [ l+  6n2umlC~~R(m)] 
x (1 + ym6n2Prj)PrrjeimA, 
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P' + i+ a, P: + G + + - ] ] r j e i m ~ ,  sin cp 

sin cp 

sin q 

(2.4) 

to be inserted into (2.3). The NDR spectrum is contained in 
CNDR, the viscoelastic relaxation spectrum in V,. The p ' s  
denote Love number ratios for different order and degree of 
SH. Setting /?I$;) = @$ = 1, H = ~h2,(O1)~ and L = ~I2,(O,)[  
pivots the model on the 0, tide. First-order deviations of 
&, and p2, from unity are proportional to the flattening 
parameter. The higher degree are uncritical and can be 
adopted from e.g. Farrell (1972), neglecting their depend- 
ence on rn. Table A2 (Appendix A) specifies numerical 
values for use with conventional associated Legendre 
polynomials P?(cos cp). Form (2.4) is free from singularities 
and builds a hierarchy of leading and perturbing terms 
which might prove practical in future extensions or 
refinements. 

2.2.1 Nearly diurnal resonance 
The spectrum of the liquid core response has a resonance 
pole at the nearly diurnal frequency wNDR. It factors into 
the Love numbers as well as the coupling coefficients, i.e. 
the tilded symbols of (2.4), and is conveniently written 

(2.5) 
Again, the off-resonance tide 0, serves as a pivot. Here, 8 
is the sidereal rotation rate, and S,, denotes body tide 
resonance strength. So, is an oceanic interaction term; more 
details are given below. The results for an anelastic mantle 
(Wahr & Bergen 1986, equation 6.6) are accommodated in 
(2.5) after a few algebraic operations. Numerical values for 
(2.5) from the literature, transformed to comply with the 
factorisation scheme above, are given in Table A2. 

The products of So, with f, i' and @+ are small with 
respect to all other terms, so that the placement of the 
oceanic part of CNDR in front of the parenthesis in (2.4) 
does not cause accuracy problems. 

The relations between the parameters of (2.5) and the 
dynamic properties of the core-mantle system are discussed 
in Wahr & de Vries (1989), Neuberg, Hinderer & Zurn 
(1987), Hinderer & Legros (1989), and Hinderer (1986). 

The resonance frequency uNDR and its quality factor 
QNDR are preferably adopted from observations (Neuberg, 
Hinderer & Zurn 1987, gravity; Gwinn, Herring & Shapiro 

1986 and Herring, Gwinn & Shapiro 1986a, b, VLBI). 
Currently available constraints on frequency shift due to the 
flattening of the Core Mantle Boundary (CMB) and the 
structure of the core near the CMB (Wahr & de Vries 1989) 
from theory or seismic tomography are rather weak. 
Anelasticity of the mantle and ocean tides appear unable to 
explain the observed frequency shift (Wahr & Bergen 1986). 
The inference of 5-6 per cent excess flattening of the core is 
based on the observations. The adoption of the gravity 
result for QNDR avoids a possible bias in the VLBI results 
due to the use of a tide module in the analysis software, the 
upgrade of which is the motive of the present study. The 
VLBI nutation result for wNDR is very close to the gravity 
result and is considered to be more accurate. 

However, resonance strength results from tidal gravity are 
both weak and inappropriate for displacements. Probably 
Wahr & Bergen provide the currently best estimates. There 
is presently no tie between the anelasticity model advocated 
below and the viscoelastic parts of the NDR-strength 
parameters. They are-in contrast to perturbations in 
nutation-anly weakly affected by excess core flattening and 
depend in the first case on mantle properties and tidal 
loading at the CMB. The results adopted in Table A2 from 
Wahr & Bergen refer to the upper limit of their rheological 
model; values between this and the elastic case are more 
likely, with reservation for yet unknown contributions from 
the inner core. 

Ocean tides are capable to excite the core resonance by 
means of surface mass loading (Wahr & Sasao 1981). The 
effects pertain to westward rotating spherical harmonics of 
(n, m )  = (1, l ) ,  the response being found in the (2 , l )  load 
Love numbers resonant at mNDR. This co-oscillation is 
therefore accountable in the body tide model, and I 
attribute the term 'interaction' (of ocean loading tides with 
the NDR) to it. The relevant spherical harmonic modes of 
the ocean tide elevation are represented by the coefficients 
C:, and (notation according to e.g. Cazenave 1982). In 
response to a partial ocean tide k with a frequency wk the 
interaction strength parameters result according to 

x exp [ 4 1 ( ~ k ) I .  1 E {h, I } ,  (2.6) 

where SPL is the resonance strength of load Love number 1 

(Wahr & Sasao 1981) and y = 1 + k,, - h,, is the resonant 
ocean tide generating factor. Numerical values are given in 
Tables A2 and A3 (Appendix A), including solutions from 
the numerical tide models of Seiler (1989) and Schwiderski 
(1981a, b, c), combined with the North Atlantic model of 
Flather (1981) and adjusted for the resonant ocean tide 
effective potential in the case of Seiler's model. Although 
the interaction term is small, in fact less than the current 
accuracy of the body tide NDR-parameters, it is given here 
as a future option. 

2.2.2 
Thermally activated viscoelastic creep in the mantle causes 
additional, time-delayed deformation of the earth. Tidal 
forcing-sinusoidal in time-suggests the Fourier transform 
concept for the formulation of the response. Since the 
response is small and linear the Love number concept can 
be maintained by virtue of the correspondence principle, 

Viscoelastic relaxation of the earth S mantle 
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now leading to frequency-dependent complex values. 
Qualitatively, amplitudes increase towards low frequencies, 
and phases lag with respect to the astronomical potential. 
Relaxation function V:) (w)  in (2.4) models this property; it 
is the transfer function of the viscoelastic, self-gravitating 
earth, speaking in terms of system theory. 

In the following we concentrate on the case n = 2 since 
viscoelastic effects on the small tides at higher degrees 
appear negligible. Love number k, for the secondary 
potential perturbation is included in the analysis. It 
parametrizes also tidal variations of the earth’s moments of 
inertia. 

Since we are dealing with a causal system, the real and 
imaginary parts-alternatively the phase and the 
amplitude-f Vn(w) are not independent. Instead, they 
constitute Hilbert transform pairs (cf. Dehant & Zschau 
1989). 

If a simple parametrization can be found for phase versus 
frequency, the Hilbert transformation to amplitude might be 
done analytically. To describe the complete spectrum only 
one additional amplitude coefficient is needed, conception- 
ally equivalent to the elastic (instantaneous) response. In 
application to (2.4) this constant has the task of 
‘calibration’: the relaxation model is adjusted against a 
partial tide solution of an elliptic, viscoelastic earth. The 
case of a spherical earth is simpler: calibration would 
demand Vn(w)+ 1 as w + 00. 

Relaxation spectra of body tide Love numbers have been 
presented by Wang (1986), based on a generalized Maxwell 
rheology of the earth’s mantle capable to explain transient 
creep phenomena (anelasticity) over a wide range of 
frequencies (Zschau & Wang 1986). The same rheology was 
used by Dehant (1987) to extend the elastic model of Wahr 
(1981). Wang’s results will be used in the following. 
Implausibly, Dehant’s results show near-constant imaginary 
parts of the Love numbers below fortnightly periods. 

Dehant’s result for 9 m h 2  at the fortnightly tide (Mf) 
agrees with Wang’s data. This provides an opportunity to 
calibrate Vih)  (cf. Appendix A, Section A2). Love number 
I , ,  unspecified by Dehant, is seen to relax roughly three 
times more than h,, giving a less strong calibration 
condition for V y ) .  

A Hilbert transform pair for attenuation (Y and phase @, 

W w )  = exp [do) + W0)l 
will now be derived. In the present application the very 
long-period part is uninteresting. A log-log plot of Wang’s 
Love numbers versus frequency (Fig. 1, crosses) suggests an 
empirical description of the phase spectrum 

(2.8a) 
with only two parameters Q0 and p for each Love number 
(cf. Table A4). For the present purpose the phase spectrum 
is artificially augmented by a linear characteristic 

(2.8b) 

(wI < wb<2n/18.6radyr-’, 

in order to preserve phase antisymmetry. The two branches 

Love number hz frequency dependence 

100 

1000 

2T//wb 

0 . U O l  D u1 0.1 10 
Period [yearsf 

3 

4 
n 

0 001 0 01 0 1  1 10 100 
Period [years] 

Figure 1. Comparison of the anelasticity model, equation (2.10), 
solid lines, with Wang’s (1986) results, crosses. The attenuation 
spectrum is determined except for a constant, which has to be 
obtained from a calibration condition. The curvature of the model 
spectra depends slightly on the breakpoint frequency ob at which 
the two branches of the phase model join. 

meet at the breakpoint frequency wb. This rather unrealistic 
phase law below w,, has only limited impact in the frequency 
domain of concern. 

The Hilbert transform from phase @ to attenuation a is 

Substituting (2.8), (2.9) is evaluated at w > wb using the 
principal value theorem and power series expansion of the 
integrand with (2.8a). The resulting attenuation spectrum is 

Only a few sum terms are needed in the case of most tide 
frequencies. The constant A(p) results from the limit E + O  

of the integral near the poles fw, la f wI < E ,  

and is given in Table A4. 

(2.11) 
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SO 

40 
0 TI 

The right diagram of Fig. 1 shows computed attenuation 
( ~ ( w )  with wb as a parameter; the constant (Y, is yet 
undetermined. The breakpoint frequency affects the 
curvature of the attenuation function only slightly. A 
satisfactory fit to Wang's data is obtained at wb= 
n/100 rad yr-'. 

Calibration finally determines a", or-going from 
attenuation to amplitudes-the real constant ucal, 

v ~ ) ( w )  = &,{ exp [ (u("(w) - cd1)(wca1) + i@(*)(w)] .  (2.12) 

The relaxation spectrum yields a simple expression for the 
partial derivative with respect to phase parameter @,, 

North -- -.. r ~ _ .  - - .  
- 

East 

d V p  
acpy 

(u'')(w) - (Y'"(wref) + i@'"(o) 
-- - V$) (w)  (2.13) 

Time series of the displacement u and its partials with 
respect to a0 show sufficient dissimilarity (Fig. 2) to suggest 
mih) and @:) and the basic Love numbers H and L as the 
primary solve-for parameters in observation analysis. The 
assumption of an a priori fixed ratio of @?)/@!), which 
would reduce the set to three parameters, is not advisable. 
It would oversimplify the different impact of stress 
relaxation on the two displacement components. The phase 
dispersion exponents p ( ' )  are less suitable solve-for 
parameters unless very long-duration experiments are 
capable of discriminating long-period tides from aperiodic 
site offsets. 

Provided that long-period UT variations are properly 
described through an effective Love number keH, 

2 ke, r-  
dAUT/d t=  -%--(l+e)Jexp(iwjt) 

mj = 0, 

3 c  a 

where (1 + e) denotes the correction term for secondary 
volume change (Yoder, Williams & Parke 1981, equation 

Solid Earth Tide Displacements 
u and du/d+o a t  Kashima 

120 [ I 

- = . o  
E 

-40 

-80 

-1 20 

-160 1 - 

-0 C 

5 

\ du/d+o 

-200 L .  " " ' .  " " " " " " " " " " " ' " " ' ' 
-13 1 2  36 60 84 108 132 156 180 204 228 252 276 

Time (h) af ter  1990-Jan-01 Oh 

'i Figure 2. Time series of solid earth tide displacements (dashed 
curves) and their partial derivatives with respect to the phase lag 
parameter @,, (solid curves). The quadrature phase relation 
between the two sets of time series favours the use of the phase lag 
parameter together with the wide band response amplitude as the 
first-priority parameters of the solid earth tide model to be resolved 
from observations. Enhanced importance of long-period tides for 
phase lag determination in the case of the north displacement 
partial is indicated by the offset of the signal. 

24), C the dimensionless polar moment of inertia and 

k,, = k, - kf(rf/rJ5 +oceanic contributions, 

the relaxation function V ( k )  for k, and the tide harmonic 
expansion might be used in the earth rotation model. Wahr 
& Bergen (1986) approached the problem from perturbation 
theory applied to the rotational eigenmodes which are part 
of their normal mode equations. This is an alternative to the 
detour via Love number k,. Their results, however, might 
suffer from uncertainties in the extrapolation of their 
rheological parameters from seismic to tidal periods. On the 
other hand, the present model underestimates the relaxation 
of the 18.6 yr tide, which is important for UT variations. 

The parameters of the relaxation spectra, p and @", are 
empirical in that sense that they summarize observations of 
the behaviour of a model. So far they are formally unrelated 
to each other and call for an anchoring to rheological 
parameters such as an effective mantle quality factor Q, 
mean temperature or mean activation energy. 

2.3 Implementation into data analysis software 

Computation starts with the compilation of the global arrays 
in (2.1), Yj, xi, mi, nj and mi, from a harmonic tide 
development, xj evaluated e.g. at the central time of an 
experiment. Recent accuracy tests (Wenzel & Zurn 1990) 
favour the developments of Tamura (1987) and Xi (1987) 
which are based on refined ephemerides in the 52000 
system. The developments are sufficiently stationary to be 
valid during the coming 20 years provided accuracy demands 
do not exceed one part in 10000 of the total tide 
displacement. Care has to be taken to relate the 
conventional Legendre polynomials used here to the 
normalization used in the potential developments (cf. 
Appendix A, Section Al).  

Predicted displacements, their rates and their partials are 
computed from the site-specific spectrum U and its partials 
using (2.3) and (2.4) into which (2.5), (2.12) and (2.13) are 
inserted. This requires storage of long arrays if the entire 
expansion of the tide spectrum is used. The limited duration 
of experiments motivates the search for a suitable truncation 
or condensation of the spectra. 

Let each spectrum of the three displacement components 
be ordered by decreasing amplitude. Subscript 'c' denotes 
the component. Simply truncating the spectrum at line 
Jc,  \Ucjl < E for j > J c ,  causes an error e of the synthesized 
time series u(J; t). Defining 

it turns out that more than 200 spectral terms are required 
for sites at almost all latitudes [cf. Table 2, based on the 
Biillesfeld (1985) expansion] to maintain millimetre 
accuracy. 

In a second strategy a small set containing the frequencies 
of the J most significant tides forms a skeleton which 
reproduces the displacements of the total set of N terms at 
the central time of the experiment window. From there the 
spectrum is extrapolated forward and backward in time 
using only the skeleton frequencies: 

iic(t) = z OC1 exp (iw,t), (2.14) 
J 

j = 1  
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0.8 

0.6 

0.4-  

Table 2. Sorted by decreasing amplitude, the 
first J tide constituents with amplitude greater 
than E yield truncation error e of the synthes- 
ized tide displacements. Degree four tides are 
significant in the first column. 
.$ tmml 0.01 0.03 0.1 0.3 

N 550 400 230 140 
e tmmi  0.09 0.26 0.9 2.5 

- 

- 

where subscript ‘c’ numerates components as well as 
optionally computed parameter partials, and 

(2.15) 

The sets S, are defined by the nearest skeleton frequency: 

scj = {J < k 5 N 1 I uckl > 0 A Iwk - wjI 5 (wk - wlI vl S J } ,  

j = 1, . . . , J. (2.16) 

Zero tides (e.g. long-period east displacements) are thereby 
rejected. The number J depends on the duration of the 
experiment and an accuracy threshold E,, demanding that 

(2.17) 

at the end of the time window T. if the parameter partials 
were derived from the condensed spectra instead, important 
information, e.g. the frequency characteristic of the nearly 
diurnal resonance, might become lost. 

As an example for (2.17) the a prosteriori error 

e,(t) = max I$(t) - u,(t)l 
5<1 

is evaluated for a site at 30” latitude (cf, Fig. 3) to determine 
a relation between J and cC, It turns out that J = 50 skeleton 
constituents achieve an internal accuracy of 0.2 mm during a 
36 hr experiment. The values of .sC for each component are 
given in the legend of Fig. 3. A skeleton is to be stored for 
every site, component, and parameter partial, together with 
pointer arrays, i.e. the sets SCj. 

The scheme above retains the essential information in 
much shorter data arrays. Automated determination of J for 
each individual component and parameter partial accom- 
plishes this task at the expense of computational effort at the 
preprocessing stage, but spent only once for each 
participating site. Since the sensitivity of VLBI to 
displacement velocities (appearing in the adjustment 
equations for delay rate) is limited, the associated 
expressions are preferably computed from the condensed 
spectra. 

A development version of a tide subroutine package for 
the pre-processing stage (computation of thereoreticals) has 
been constructed such that model parameters can be flexibly 
redefined; spectra of parameter partials are then easily 
obtained by divided differences. 

2.4 Discussion: achieved improvements 

The demands listed at the beginning of the previous chapter 
could be widely fulfilled. Studies are suggested to provide 
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Figure 3. A skeleton spectrum comprising only the frequencies of 
the J most important tides (equations 2.14, 2.15) allows Fourier 
extrapolation of tide displacements within a certain time window 
from a given central epoch with an internal accuracy e (displayed 
against the ordinate). The a priori error threshold E (equation 2.17) 
and the associated skeleton length J are indicated in the legend. 
J = 5 0  suffices to achieve an accuracy of 0.2rnm during a 36hr 
experiment. The example shown is for a site at 30” latitude centred 
on the spring tide period of 1990 April 25 0:O. 

more stringent physical ties of some of the model 
parameters to actual physical parameters, mainly for the 
part of rheology. The relation of the spherical harmonic 
order coefficients BZm to the flattening parameter might also 
need further substantiation. 

Comparing with the currently used method as described in 
IERS-Standards (McCarthy 1989) and applied in various 
software packages, the following improvements are noted 
(‘OM’ and ‘NM’ denote the ‘old’ and the ‘new’ model, 
respectively). 

OM is based on planetary ephemeris data-time series of 
distance vectors for moon and sun with respect to the earth. 
They have to be acquired for each observation campaign. 
OM avoids formulations in the frequency domain. 

The use of harmonic development of the tide potential 
makes NM independent of this supply, and-more 
important-has provided the basis for frequency domain 
formulations, which are essential in the case of the NDR 
and viscoelastic relaxation. 

Here, OM had to apply shortcuts in order to achieve its 
5mm accuracy. For instance, a single correction term for 
the tide K ,  was introduced to account for the NDR. The 
CALC/SOLV package for VLBI uses a ‘lag angle of the 
tidal bulge’, a small rigid rotation of the displacement field 
around the ecliptic pole. The same lag angle is applied to 
both radial and tangential displacements. 

NM formulates explicitly the perturbations due to earth 
ellipticity. OM achieved some degree of compensation for 
these effects by computing the external tide potential at the 
geocentric distance of the site and dividing by ellipsoidal 
gravity in order to obtain units of displacement. 
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As regards implementation into data analysis software, 
NM is more voluminous. However, storage requirements 
and computational effort can be reduced according to 
suggestions in Section 2.3. 

2.5 Discussion: application 

Four key parameters for the observation equations are 
suggested: H ,  L, and @!I. The dependence on almost 
all parameters in equation (2.4) is linear, so that parameter 
partials are most easily obtained by lowest order divided 
differences. Although this costs twice the computation 
effort, it pays back in terms of flexibility and formula 
coding. 

Access to the NDR parameters-frequency, quality and 
strength is provided. Resonance frequency and quality enter 
non-linearly. However, iterative adjustment methods are 
unrealistic to suggest; qualified initial values exist. 

A set of parameters of the proposed model may be 
determined from carefully selected observation campaigns. 
Presently, the observation schedule and data analysis 
routines of the regularly repeated but disjointedly analysed 
VLBI campaigns IRIS or POLARIS (Herring ef al. 1983; 
Carter et al. 1985; Schuh 1989) are not ideal from the tidal 
point of view. 

The capability to resolve model parameters and to 
discriminate perturbations depends greatly on source and 
site geometry (Schuh 1987; Dermanis & Grafarend 1981). 
An example is ocean tide perturbations of pole position and 
UTl from IRIS experiments (Brosche et al. 1989) where 
contamination from the nutation model was a problem. The 
limited time coverage of observations or disjoint analysis of 
repeated experiments cause a reduction of resolving power 
when dealing with periodic processes. In the case of earth 
tides one clearly needs both spatial and frequency coverage. 
Particularly, long north-south baselines must be included. 

In the regular campaigns, however, gain is expected in 
terms of validity, consistency, and accuracy of the new tide 
module, even if its parameters are kept fixed. 

The tide model presented so far is still incomplete. Effects 
which are inseparable from the body tides have not been 
discussed yet. 

The presence of ocean loading perturbations-which show 
a high degree of variability with respect to frequency and 
position-has traditionally favoured the use of narrow-band 
observation models for the analysis of long duration tide 
recordings (e.g. Schuller 1976, 1986). These estimate the 
sum admittance of the body tide and cotidal perturbations. 
This sum may randomly vary on small frequency scales. 
Predicted perturbations are subtracted after the fit 
(operation in the frequency domain). Constraints that would 
utilize the spectrally smooth behaviour of the Love numbers 
are usually not applied. 

The model presented here dwells on the wide-band 
systematic character of the solid earth response. Predicted 
ocean tide loading effects and other perturbations (e.g. 
climatic effects) are to be subtracted from the primary 
observables as a part of the site-specific information. Since 
this is a time domain operation, one is not restricted to 
purely harmonic cotidal signals. The harmonic part, 
however, computes conveniently on the basis of the 
lunisolar tide spectrum. 

Although also earth orientation perturbations at tidal 
frequencies can be described on a subset of the harmonic 
development above, the response of the earth depends on 
sufficiently many other parameters (low harmonic degree 
ocean tide response coefficients, decoupling of the core in 
rotational modes, effective Love number k,) that the 
parameter overlap with the model above is rather small. The 
following VLBI analysis session is therefore still 
hypothetical. 

(i) Observations from 5 day experiments, involving sites 
on all tectonic plates, covering one to several years. 

(ii) Parametrizing ocean tide effects on AUT and the 
orientation angles with respect to frequency. Parametrizing 
the effect of core decoupling on the rotational response with 
respect to frequency. 

(iii) Applying the corrections for ocean loading tides. 
(iv) Solving with emphasis on the consistency of the 

viscoelasticity parameters and the frequency offset of the 
Chandlerian motion (Zschau 1986). Also test the consis- 
tency between the departure of long-period ocean tides from 
equilibrium and the lengthening of the wobble period. 

(v) Solving simultaneously for the frequency of the NDR 
of the core from tides and nutations. 

Recently developed analysis methods applying Kalman 
filtering techniques (Herring, Davis & Shapiro 1990) bear 
the power to extend the effective observation duration of 
VLBI experiments if applied to all model parameters. This 
provides the prerequisite for the resolution of long-period 
phenomena, among others the low-frequency tides. 

3 OCEAN LOADING EFFECTS 

The amplitude and phase relations of ocean loading effects 
versus the solid earth tides are strongly site and frequency 
dependent. A parametric model would have to consist of a 
speherical harmonic development of hydrodynamic eigen- 
modes, augmented with corrections for non-linearities in the 
ocean response. Such an approach is not feasible, partly 
because of the tremendous amount of parameters involved 
and partly because of convergence problems (Groten & 
Brennecke 1973). 

Probably the best choice is instead to treat ocean loading 
effects as a site specific perturbation. The phase angles of 
these displacements show systematic alignment with the 
body tides (Scherneck 1987). Ignoring the perturbation can 
introduce a bias in the estimated body tide parameters. A 
bias of the body tide parameters, however, might still occur 
if ocean loading errors are not randomly distributed with 
respect to geographic location or frequency. 

Ocean loading effects are mediated by the response of the 
earth to surface stress and mass potential. The Green's 
function of the point load involves an infinite sequence of 
load Love numbers for all SH degrees (Farrell 1972). The 
displacements induced by the point load are 

m 

du,= @')(6)dm= tGp,asin6dBdA hLP"(cos6) 
g n =o 

(3. la)  
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in the radial component, and 

du,, = @( 6) drn 
m 

(3. lb) 

in the horizontal component along the direction (Y from the 
load to the field point. The arc distance between the load 
and the field point is denoted by 6. The projection of the 
unit vector e, on the local north and east directions yields 
the horizontal displacement components at the observing 
site 

G P d  . = 5-sin 6 d 6 d A  1; d,P,(cos 6) 
g n=O 

du, = -cos a' du,, du ,  = -sin (Y' du,, (3. lc) 

where a' is the azimuth of the load at the site, counted 
clockwise from north. 

The Green's functions %(6) are evaluated on a set of 
distance angles and stored in tables. They are interpolated 
to actual distances at the stage of intergration of (3.1). The 
tide elevation is taken from global tide maps which 
represent amplitudes Z and phases 6 for specific partial tides 
i 

Green's Functions, anisotropy 

The tide charts of Schwiderski (1980a, b, c) have found wide 
acceptance. Methods to approximate the integral of (3.1) 
are reviewed in Baker (1985). Neglecting small-scale 
features like improved coastline resolution or lateral 
heterogeneities of crust and mantle, loading results can be 
produced in the form of global maps (Francis & Mazzega 
1990). Additional discussion follows below. 

3.1. Loading Green's functions 

3.1.1 Point load approach and lateral heterogeneities 

The point load character of the loading problem and its 
Green's function solution suggests that relatively small-scale 
lateral heterogeneities of earth structure are able to perturb 
spherical symmetry. These effects are expected to be more 
important than in the body tide case, where ellipticity-the 
dominant lateral heterogeneity of the earth-produces 
perturbations of degree two Love numbers of the order of 
the flattening parameter, and where the generating potential 
is confined to low SH degrees. In particular, the Green's 
functions have a singularity at the origin with 6-' as an 
asymptote. Near the point load the deformation field is 
predominantly local, a consequence of the principle of 
Saint-Venant . 

Farrell (1972) computed Green's functions for continental 
and oceanic structure; he found that a change of structural 
parameters down to a depth of 200 km affected the Green's 
function within a spherical cap of approximately 200km 
radius. This one-to-one depth-distance relation was 
systematically studied by Rabbel (1982), confirming its 
validity for thin, anomalous layers from the surface down to 
about 400 km. Hence, the loading effects at the coast of a 
200 km wide continental shelf are sensitive to the 
continental structure. For increasingly narrower shelves, the 
response character changes successively to the oceanic crust 
type. 

The classical results of Farrell have been refined in recent 

I Radial displacement ~ - Farrell 
e---d Scherneck 
t - + F.+ Fagiatakis 

+ 
0.01 0.1 1 10 100 ' . , . I L P  1000 

Distance ["I 

-4 

0.01 0.1 1 10 100 ' . . m l L i  iooo 
Dis tance  p] 

Figure 4. The loading Green's functions of Farrell (1972), 
Scherneck (1990) and Pagiatakis (1990), the latter of which includes 
effects from anisotropy of mantle material. Also shown are their 
percentage differences with respect to Farrell's functions. The radial 
Green's functions (top diagram) as well as the tangential ones 
(bottom) are normalized with respect to the level-surface 
perturbation due to the gravitational attraction of a unit point mass. 

studies on the tidal loading problem, incorporating more 
realistic constitutive laws for the reheology of the earth. 
Wang (1986) has computed loading Green's functions using 
the rheological model of Zschau (Zschau & Wang 1986). 
The most prominent property is a frequency-dependent 
increase of the deformation in a distance interval between 
0.3" and 3" as an effect of anelastic relaxation in the 
asthenosphere; at the Chandler Wobble frequency, @ is 
about 50 per cent larger than in the case of short-period 
tides. 

Recently, Pagiatakis (1990) added effects from earth 
rotation, Maxwell rheology , and anisotropy of the elastic 
moduli as specified by the PREM earth model of 
Dziewonski & Anderson (1981). As regards the effects of 
earth rotation mediated by the Coriolis virtual force, the 
work is not convincing: the displacement field was only 
analysed for its spheroidal part (cf. Aki & Richards 1980, 
chapter 8). The neglect of the toroidal part leads to the 
implausible result that the loading Green's functions 
maintain their spherical symmetry. The model further mixes 
parameters for a (steady state) Maxwell rheology based on 
results from studies on very slow deformations-the fastest 
being post-glacial rebound-with those of a (transient) 
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anelastic rheology. In particular, the dash-pot elements of 
the corresponding model bodies (Maxwell and Kelvin- 
Voigt) are given identical roles, which appears doubtful. 
Zschau (1986) concluded that steady state rehology cannot 
provide an explanation for dissipation in the frequency 
domain between seismic waves and Chandlerian motion. A 
broad absorption band model, using e.g. a distribution of 
strain retardation times by means of chaining Kelvin-Voigt 
bodies appears more realistic. 

Most interesting are the results of Pagiatakis as regards 
anisotropy. Since anisotropy between vertical and horizontal 
seismic wave velocities is compatible with decoupling of 
transverse horizontal shear from normal surface stress, the 
displacement field can be fully represented by spheroidal 
components. Pagiatakis obtains relative changes of load 
Love numbers of less than 2.5 per cent for 1; and 1.9 per 
cent for h;. A comparison of the associated Green's 
functions with Farrell's (using Pagiatakis 1990, fig. 1) is 
shown in Fig. 4. The maximum anisotropy effect occurs as 
expected at the 'asthenospheric distance' of 2". 

In order to compare the effect from loads within zonal 
rings at different distances, the order of magnitude of radial 
displacement can be estimated from 

sin 6 d 6  dA. 
@)( 6) dm = (CgCh)( 6) 

2sin 612 ' 

the mean va luedenoted  by (.)--of which is 

(3.3) 

Here, C contains the physical constants; E denotes an 
effective tide coverage and consists of two factors, A and I, 
for the azimuthal extent of the zone and the interference of 
tide phases within the zone respectively. Distance Om is the 
effective distance of the ring area, 8, < 8, < 8,. Equation 
(3.3) is used for the evaluation of some of the error 
estimates of Table 4. 

Straining (3.3) to the global case for an inland station that 
typically experiences 1 cm or radial displacement from 0.5 m 
global ocean tides, one obtains a plausible value for the 
product g l  of 0.05. The interference factor approaches unity 
as the outer radius of the zone shrinks to zero; g approaches 
roughly a value of six on continental crust or four on oceanic 
crust respectively. 

3.1.2 Disc loads and integrated Green 's functions 

Approximation of (3.1) by summation over a gridded ocean 
model is referred to as the point load convolution method. 

The point load position is the centre-of-mass of the finite 
surface element (Jentzsch 1985). 

Distributed loads instead of point masses are more 
suitable for the discrete convolution method. A circular disc 
attenuates the short-wavelength response and its effect can 
be accounted for inside the inflinite sums of the Green's 
functions (3.la and b), speeding up convergence. Kummer's 
transformation provides a second method to facilitate the 
computation of these sums. 

Francis & Dehant (1987) have pointed out problems with 
the use of Kummer transforms for the point load case-for 
which analytical expressions exist-while the remaining 
explicit summation treats the disc load case. However, valid 
Kummer transforms for the disc case can be obtained from 
numerical integration of the point load Kummer transform 
over the disc. The resulting improvement is not more than 
one per thousand (Scherneck 1990). 

As an alternative to a circular disc Goad (1980) integrated 
the loading Green's function over surface ring sectors. 
These sectors form a template centred on the observing site. 
The P,'s in (3.1) are replaced by their integrals over a 
template element, in which the tide heights are assumed to 
be piecewise constant. Goad developed his method mainly 
in application to gravity. 

The advantage of faster convergence of the Integrated 
Green's Function (IGF) is counterbalanced by the need to 
project the global ocean grid onto the template. In the case 
of the displacement components, point loads or circular 
discs present no serious convergence problems. 

The effect of the topographic height of the observing site 
upon the Newtonian attraction term, which appears in the 
gravity and tilt components, can be computed in closed form 
using the IGF. Goad extended this concept to the 
deformational terms as well. As a result, a factor of 
[ a / ( a  + h)]" multiplies the response to forcing at a particular 
degree n. It appears doubtful whether this would hold in the 
case of sharply confined topographic features. 

3.1.3 Transverse stress response 
Transverse surface stresses result at bathymetric slopes 
under tidal loads. Merriam (1986) has devised a Green's 
function approach for transverse stress boundary conditions. 
The displacement effect is expected to be largest at coasts 
near a steep continental slope, e.g. in the case of sites in 
eastern Japan. 

The three-component displacements u due to a horizontal 
force acting upon a surface element ds are given by 

Table 3. Site displacements in the radial, north-south and east-west directions due 
to tangential stress induced by ocean tide loading on topographic slopes. Site 
location is given in degrees longitude and latitude. The Green's functions of Merriam 
(1986) have been used. 
Site Displacement amplitude [mm] and phase 
Lon. I r t .  Tide Radial North-South East-West 

Onsala M, 5. 0.14 -89" 0.14 158O 
11.9, 57.3 K, 0.01 -29O 0.03 174" 0.03 86O 

Vandenberg M, 0.03 -14" 0.22 -30" 0.48 167O 
-120.6, 34.6 K, 0.03 54O 0.16 25" 0.35 -149O 

Ka s hima M, 0.05 31O 0.14 44" 0.30 25O 
140.7, 36.0 K, 0.04 -149O 0.11 -137" 0.19 -140O 
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where f is the horizontal loading force, b is bathymetry, and 
9 is a 3 x 2 matrix of transverse stress Green's functions 
(MTGF) multiplied with projection matrices of the force 
and displacement field at load and field points respectively 
on the azimuth LY. 

A continental slope lVbl is rarely greater than 0.1, and the 
MTGF in the near field behaves asymptotically similar to 
the normal stress Green's functions; both have similar 
amplitudes. Thus, one can expect at least one order of 
magnitude smaller effects from transverse loading. The 
limited area covered with slopes and their unsystematic 
orientations on the global scale attenuate net displacement 
effects further. Computed effects amount to one tenth of a 
millimetre or less (cf. Table 3). 

3.2 Ocean tide models 

The accuracy of ocean tide models is crucial for the 
computation of loading effects. The problems encountered 
in this context can be classified into (a) model errors on the 
global scale; (b) model errors near the observing site; (c) 
mass conservation. Distinction between the first two items 
refers to the importance of tides near an observing site: 
roughly one half of the loading effect results from tides 
within a distance of 2000 km. Model errors within this zone 
might be highly correlated. Remote zones, on the other 
hand, contribute with approximately equal weight, allowing 
assessment of random errors on the global scale. 

Assuming stationarity , global random errors can be 
characterized by variance and correlation of errors between 
neighbouring points: 

ur = var (Az,)  
(3.4a) 

Schwiderski estimates his model to be accurate at the 5 cm 
level, i.e. 3 q  = 0.05 m with some optimism. Previous 
studies (Hsu 1987; Woodworth 1985) did not consider 
correlation of errors and therefore tend to underestimate 
error propagation into the loading effects. Preliminary 
results (Scherneck 1989) indicate an increase by a factor of 
four to five of the loading effect error with respect to the 
uncorrelated case, assuming a correlation model 

f( 0 )  = exp (- a+). (3.4b) 

A value of f(1") = 0.4 was found in a comparison of the 
Schwiderski and Flather (1981) models of the North 
Atlantic. 

Mass conservation is violated if tide mass cyclically 
disappears and reappears in the model. Schwiderki's models 
are driven by tide gauge data, i.e. the hydrodynamical 
solution of ( is replaced by observed tides at mareographic 
sites. This interpolation scheme cannot easily conserve mass 
since many tide gauges are mounted at the coast where tide 
mass and tide elevation are related via the water-covered 
fraction of a grid element. Regardless whether the 1" 
resolution of the ocean model grid or high resolution of 
coasts obtained from a 5' topography file is used, the mass 
budget 

cov [AZj(rl), Az,(rJ] =f( 4 r2, rl)ac. 

turns out to be significant for the loading effects at the 10 
per cent level. In (3.5a), k numerates the model grid, and 
As is the water-covered area of a grid element. Mass 
conservation can be forced a posteriori, and its loading 
effect can be estimated to first order (Agnew 1983). The 
procedure of subtracting a homogeneous co-oscillating 
ocean layer for obtaining a mass conserving model 2, 

- 1  

(3.5b) 

has proven successful in application to tidal gravity 
(Ducarme, personal communication). An uncertainty of 20 
to 50 per cent of the correction might have to be accepted, 
however. 

The dominating impact of loading tides in the vicinity of 
an observing site requires ocean tide models to be accurate 
on the regional scale. In the region close to an observing 
site, the following improvement is suggested. Since 
Schwiderski's models are driven by tide elevation data, and 
ocean loading is an effect of tide mass, refined coastlines can 
be used to compute the effective loading mass of coastal grid 
cells. Where on the one hand a tide gauge has pinned the 
model, the actual tide mass is reduced according to the 
land-ocean distribution within that grid cell. Those grid 
cells where the solution fulfils the continuity equation on the 
other hand conserve mass, and this mass can be 
redistributed over the corresponding high-resolution grid 
cells. 

Specific regional tide models are suggested for ocean 
areas not or inaccurately represented in the global set 
(Scherneck 1990a). A general estimate of their impact on 
the computed loading effects cannot be given; in extreme 
cases they might exceed 1 cm after all tide constituents have 
been collected. Regional models are particularly needed for 
sites on Mediterranean islands and peninsulas, around the 
Irish sea, and near the Sea of Japan. These regions are 
blanked out in Schwiderski's models. 

Combining a regional model with the global model 
changes the total mass balance. Mass flow discontinuities 
occur at the boundary between the models. The mass 
budget of a regional model with open, driving boundaries, 
impermeable coastlines, and negligible numerical mass loss 
depends on the currents at the open boundary. The decision 
as to whether the regional model improves the global mass 
budget (i.e. whether the co-oscillating layer also should 
cover the regional model's area) has to be based on the 
reality of the currents prescribed along the open boundaries. 

Estimates of the uncertainty of the computed loading 
effects due to the uncertainties of the ocean tide and solid 
earth models are given in Table 4. Only the radial 
component is shown; tangential displacements are usually of 
the order of one third. Ocean tide models cover only a 
limited set of tide constituents. This truncation problem 
requires careful consideration. It is in principle related to 
the convergence problem of the harmonic development of 
the astronomical tide. Tide spectra can be understood as a 
product of modulation of a finite set of frequencies, where 
mixing occurs along a non-linear system characteristic. The 
cascase of intermodulation products forms a countably 
infinite set of background frequencies, on which the set of 
principal, declinational, and first-order elliptical tide waves 
stand out as a foreground line spectrum. The background 
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0.020 

Table 4. Catalogue of error sources in ocean loading computations. 

Error of the computed loading effects ... A ~ I  Qu [ml 

North 
1 

( A )  ... due to loading Green's function (Eq.3.3) 
0.01 I 4 I 2 O  (oceanic VS. continental crust, 

site near coast) 
A = 0 . 5 ,  I = 1, g = 4, Ag = 50 %, C = 1 m 
Relative uncertainty AAg = 10 % 

0.3 I 4  I 3 O  (asthenosphere; anelastic relaxation 
short period tides; anisotropy) 

A = 0.6, I = 0.8, g = 3, Ag 9 10 %, C = 0.5 m 

(A.a) ... due to neglect of transverse stress 

10 
2 

9 1  

I 0.5 

(B) ... due to ocean model, ... 
(B.a) ... global, random errors (Eq.3.4) 
uz = 50 mm, ci = 0.4 
uy Europe, near coast 0.5 

North America, east coast 0.7 
, west coast 0.6 

inland 9 0.3 

(B.b) ... failure of mass conservation 
Mz tide (Schwiderski) 

site on continent, near coast 0.3 
inland (2 300 km from coast) 9 0.15 
on Pacific island 0.6 

K, and 0, tides, site on Pacific island I 0.1 

contributes at least one tenth of the tide signal. In the ocean 
tide case the problem is enlarged due to additional 
non-linearity of the ocean response and due to meteorologi- 
cal forcing. Improved ocean tide models require therefore 
the simultaneous presence of a number of major tides in 
addition to the solved-for wave. As a consequence of the 
irrational spacing of the basic (astronomical) frequencies the 
solution becomes explicitly time dependent. 

The following illustrative example is given. There are two 
small companions to the tide M2,  separated by plus and 
minus one cycle per year (Darwin symbols cu, and &). In 
addition to the linear response to these three tides, the 
ocean tide is modulated due to non-linearity. Annual 
variations of the water level are seen to perturb the M2 
especially on shallow shelves (Baker & Alcock 1983). This 
gives rise to spectral power at a, and p2 being much greater 
than the linear response to these small tides. Power in the 
interval enclosing a2, M2 and 8, results from the fact that 
the long-period sea level variation is not purely sinusoidal. 
Hence, extrapolation or interpolation of loading tide using 
linear dependence on the amplitudes and phases of the 
astronomical tide alone cannot account for the modulation 
effect. 

A preliminary estimate of the loading effect due to the 
neglected ocean tides is 5 mm for sites up to 200 km inland. 
A similar figure was obtained in Scherneck (1983), where 
only linear interpolation and extrapolation were considered. 
Since non-linearity is effective in shallow waters only, an 
admittance of 0.001 to 0.005 for radial displacement versus 
height of the non-linear tide might serve as a rule-of-thumb. 

A lower bound is obtained by linear superposition of the 
unrnodelled tides, using interpolation and extrapolation of 
the tide spectrum (cf. Section 3.3). Fig. 5 illustrates the 
situation for the Kashima site, which is situated near the 
Pacific coast of Japan. There, displacements amount to 4 cm 
due to the 11 modelled constituents whereas the 
interpolated constituents contribute roughly 5 mm. Non- 
linear ocean tide interaction would increase this figure. 

Ocean Tide Loading Displacements 
Site: Kashima 

n 3 1  
V . !  L 

North 

0.08 - 
East - 

F 

Radial 
-0.04 ' I  ' I  ' I  ' I  ' I  " ' I  ' " " 

-200 0 200 400 600 800 1000 1200 1400 1600 11 

Time (h) after 90-01 -01 0O:OO:OO 

Ocean loading interpolation error 
Site: Kashima 

0.01 5 1  

0.010 
v 
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3.3. Providing ocean loading coefficients 

Fully time-dependent modelling of tides can solve the 
non-linear tide problem (Malone & Kuo 1981; Kuo, Chu & 
Chen 1986); however, ocean loading parameters for distinct 
tide waves are then no longer applicable. Instead, station 
displacements would have to be communicated in the form 
of time series for each particular experimental campaign. 
The costs and work intensity of this kind of procedure are 
not very favourable. On the other hand, a fully 
time-dependent ocean tide model could simultaneously 
include the response to air pressure and wind stress. The 
total atmosphere and ocean loading problem could then be 
solved in one stroke, modelling displacements of maximum 
50 mm (Van Dam & Wahr 1987) at probably 1 mm accuracy 
or even better. 

Appendix B specifies ocean loading coefficients A, in the 
traditional form, i.e. amplitudes and phases for the major 
partial tides independent of time. Results for many more 
stations are available from the author. They are the result of 
the point-load approximation to 

(3.6) 

with above-mentioned refinements, k numerating the 11 
partial tides of Schwiderski's model, G = [@'"), @"), @ " ) I T ,  
P = diag (1 ,  sin, cos). The displacements (3.6) and Table B1 
are in a (vertical, west, south)-oriented system. The total 
tide displacement is then 

(I, = ~ i (b f )  + exp (ix,) ( '  o 0" :)A: (3.7) 
0 -1  0 

in the (r, S, a) system. The astronomical argument x, in 
(2.1) is compatible with Schwiderski's phase definitiont. 
Complex conjugation (asterisk) of the loading coefficients is 
due to oceanographic phase convention. 

Preliminarily, the following linear scheme is used in order 
to obtain at least a first account of unmodelled tides: 

where k refers to the modelled ocean tide constituents and 
the J's specify the begin and end (subscripts 'b' and 'e') of 
the associated tide band. A natural band structure is defined 
by the increments of the integer argument numbers qri 
(=mi) and qsj pertaining to the astronomical arguments t 
and s (mean lunar time and mean tropical lunar longitude) 
of tide j :  the fundamental bands due to mi (long-period, 
diurnal etc.) are structured into sub-bands due to qsj. The 
limits of these sub-bands are indicated by Jb and J, in (3.8). 
Some sub-bands will be lost, however, if no ocean tide 
model representative for that band exists (e.g. L,; the 
species below N2 and above K 2 ) .  

t The comment in the IERS-Standards document on this phase 
problem is ambiguous. There is no phase disagreement of fx/2 in 
the case of the diurnal waves if equation (13) in Cartwright & 
Tayler (1971, pp. 52-53) is properly applied. They use cosines and 
sines if n + rn is even or odd respectively, whereas Schwiderski (and 
most harmonic tide developments) uses a cosine argument shift of 
n/2 if n + rn is odd. 

The loading effect of bands dropped because of qs might 
be interpolated, 

- W k ) ) *  
Bk+l - Bk 

( w k + l  - wk 
A j = V j  Bk + 

and even be extrapolated to the corners of the principal 
bands. Loading effects from (not modelled) degree three 
tides are thereby excluded. It might be suggested to 
compute the error of the above approximations from 
world-wide observations of tide heights, for each location 
solving for the (11) modelled constituents by least-squares, 
filling in the interpolated constituents, investigating the 
residual spectrum with emphasis on coherence relations 
between tide gauge sites, and from this estimating the 
loading effects. 

5 CONCLUSIONS 

The earth tide model presented is feasible to be 
incorporated into data analysis procedures in VLBI and 
laser ranging. It contains four basic parameters which can be 
adjusted from observations, and additional resolvable 
parameters can easily be obtained if desired. Emphasis was 
given to relate the model parameters to quantities which are 
typically given in solutions of the problem of (in-)elastic 
deformation of an ocean-covered, self-gravitating, rotating 
planet with a liquid core. Recent results were quoted from 
the literature. 

The model is principally capable to supply displacement 
information with millimetre accuracy. Attention was given 
to maintain physical consistency with respect to the causality 
condition and the geometry of the problem. The crucially 
limiting factor on accuracy is ocean loading, where in 
extreme cases-sites on complicated crustal structures and 
situated near coasts with large amplitude tides-the 
accuracy aim might not be fulfilled. 

A harmonic tide development forms the basis of the 
(frequency domain) response model. In application to VLBI 
and laser ranging, the same tide potential can be used for 
the earth rotation and polar motion perturbation model. It 
is suggested to revise the presently used software, to identify 
the group of processes to be modelled which relate to the 
tide potential and to restructure the code accordingly. 
Fourier interpolation using a skeleton spectrum with roughly 
50 constituents per component and parameter-partial 
suffices to compute tides for a typical 36 hr experiment, 
maintaining submillimetre internal accuracy. 

About 20 global parameters, of which four are the major 
candidates for estimation, control the solid earth tide model; 
33 coefficients per site are required for the ocean loading 
part, which at this stage offer only limited access for 
adjustment from observations. Further studies are required 
to strengthen the ties between suggested rheological 
parameters in the observation equations and models of the 
anelastic behaviour of the earth's mantle. 

Perturbations not taken up above concern atmospheric, 
solar radiation tides; their effect is accompanied by 
perturbations of the radio wave or light path through the 
atmosphere, and by much greater thermal effects on the 
receivers. 
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Refinement of the parameters used in the model can be 
expected from continued studies of tidal gravity, but also 
using the space techniques of VLBI and laser ranging. 

The model covers only the stationary displacements 
related to tides and loading. Non-stationary perturbations 
(e.g. atmospheric loading and its mediation by the oceans) 
or non-linear effects in ocean tides that imply crustal loading 
require an explicitly time-dependent approach, connected 
with a substantially heavier work load in the prediction 
stage. Independent observations, preferably with supercon- 
ducting gravimeters installed at the sites, of these 
perturbations will become more and more important as the 
precision limits of space techniques for geodynamics are 
pushed forward. 
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APPENDIX A 

A1 Harmonic tide potential developments 

Given is a set of coefficients for partial tide j ,  1 5 j 5 N: 

n1 -spherical harmonic degree, 

41 = (41,j . . . f 471)T 
m/ = 411 

H, -amplitude coefficient. 

The amplitude coefficients are usually scaled with respect to 
Doodson’s constant and the ‘geodetic coefficients’ which are 
Doodson’s version of spherical harmonics. 

Given also is a scheme to compute the astronomical 
arguments (t, s, h, p ,  N ,  p, )  (cf. Melchior 1978) using a 
polynomial in Dynamical Time ( D T )  counted from a given 
initial epoch: 

-argument numbers, 
-spherical harmonic order, 

Universal time (UT = UTC with sufficient accuracy) is 
required for the argument t of the mean Lunar day 

Z =  UTPMsD + h - S, 

PMsD = 2n/86400 rad sC1 (mean solar day). 

Table Al .  The coefficients to be used with the Biillesfeld (1985) 
development of the tide potential (coefficients Hi) to conform with 
the conventions used in this report (amplitudes Yj). Normal 
gravity at the equator as given by Wahr (1981, g,= 
9.798529 N kg-’) is compulsory in order to remain consistent with 
the solid earth tide model. The wn,,,’s renormalize Doodson’s 
geodetic coefficients. The pn’s are due to Bullesfeld as well as 
adopted parameters on the right-hand side of: 
g,*j = D (rp/ro)n Hj/(gPnwnm)r n=nj, m=mj 
ro - equatorial radius 
ro - mean earth radius 
D 
no - lunar equatorial parallax 

- Doodson’s constant = (3/4) GMc(rE/rz) sinenp 

n m  Wn m Pn 
2 0  -1 
2 1  3/2 
2 2  3 

;’ 1.001117 
3 0  -1 
3 1 - 8 / m  
3 2  10 /lG 
3 3  15 
4 0  1 -l 

2.1.002235 i 4 1 1.656026 ... 
4 2 -135/14 
4 3 3 1 5 , G / 1 6  
4 4  10 5 

Table A2. The parameter for use with equations (2.4,2.5,2.6) associated with the 
effects of ellipticity and core resonance. All values are based on the Wahr (1981) 
theory, except Farrell (1972); ’ Neuberg et al. (1987); Dehant (1987); Herring et 
al. (1986a); ’Seiler (1989); 6Wahr & Bergen (1986); ’Wahr & Sasao (1981); 

Schwiderski (1980a, b, c). 
Coupling and scaling 
coefficients 

Y H L 
0.0841 0.6030 0.001 

2 0  0.0140 -0.0027 0.0 1.005 1.012 
2 1 .\. 0.0139 -0.0014 0.0 1 1 
2 1 z:-0.0720 ~+:0.0110 >:-0.0044 
2 2  0.0140 -0.00035 0.00053 1.010 0.998 
3 m  - - - 0.471 I )  0.167 I) 

4 m  - - - 0.285 ’ )  0.118 * )  

Core resonance strength coefficients 

S;;’ S;: ) 

4.1. lo-’ -0.9.10:: 

( 12.8+8 . o i  ) .  10:: 5) - (  2.9+1.8i) . lo:] 5) 

(3.9+0.07i),10-’ ‘) (-0.93+0. O l i )  .lo ‘) 

1 h) ( 1 )  
SIY t s o t  

(10.6+10.61).10 ’ )  -(2.4+2.41).10 ’ )  

i h )  
SLL 

-2.88.10-4 7 ,  

Core resonance frequency coefficients 

434.2 ’ )  434.6 4 ,  observation n WNDR-n 460.5 459 a )  461.6...467.3 6 ,  theory 

Q m n  2 760 ’ )  
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Parametrized tide observation model 693 

Table A3. Ocean tides spherical harmonic coefficients, significant for liquid core 
resonance excitation. The leftmost column specifies the potential coefficient of the 
astronomical tide. Phases are with respect to the associated solid earth tide at zero 
meridian. North Atlantic model of Flather (1981) included. ' Amplitude adjusted for 
liquid core effect on tide generating potential. 

Ocean tide model 
Tide Schwiderski (1981) Seiler (1989) 

g\yj [mZs-'l cI1 [ml cTl ["I c I ~  [ml ["I 

0 1  0.0242 -46.3 
0.661504 0.0245 -45.8 

Pl 0.0090 -46.1 
0.307778 

0.930445 0.0284 -45.7 
Kl 0.0281 -44.9 

Table A4. Parameters of the spectral model for attenuation due to 
anelasticity, adopted or derived from Wang (1986). 
Phase exponent for 

u r uo / 18.6 
p'h'= -0.2218 
p"'= -0.2945 

Love numbers at the hz(wo) = 0.628.exp{ -4 0.733" } 

lz(uo) = 0.094.expI -4 3.303" } scaling frequency 
uo = 1 cyc/a 

at u = M I  
h z ( M f )  = 0.616 - 3.73.10-'4 
l Z ( M f )  = 0.089 - 1.70.lO-'i 

Attenuation factors at A; = 2.753 
Ai = 2.005 

Calibration V..I = 1.025 
V(~)=VC,IV(O; u r . f = M t )  vC.l = 1.075 

spectral pole 

c h) 

1 1 1  

Usually, tables of prk specify degrees per (Julian 
century)'-'. Tide phase xj at epoch To is computed from 

Xj  = qjf"DT(T0)I 
and frequency wj from 

- wj, dDT 
dX. 

dUTC dDT = qi kpkDTk-' + mj[ Q,,, 

oj t  wi[TAI(t) - TAI( To)] 
o j [UTC( t ) -  UTC(T0) + DUT(t, To)], 

with sufficient accuracy. 

A2 Calibration of the viscoelastic relaxation model 

Transformation of Dehant's value for Ih(Mf)I to the 
equatorial reference system and adjusting for the factoriza- 
tion of (2.4) yields an effective relaxation of 1.025 for lhzll 
with respect to the 0, frequency. The calibration condition 

-51.6 0.0296 
l) 

0.0101 -61.8 " )  

0.0283 -57.8 " )  
l )  

for relaxation function v?) is 

H [ V Y ) ( M f l  pG)(l-y) = Ih:+ih:-($h;+2hL)/f iI  at Mf, 

(2.7) 

where the notation on the right-hand side refers to Dehant 
(1987). The internal relations of the elastic response are 
maintained by and H scales the response within the 
total bandwidth. 

APPENDIX B 

Ocean loading coefficients are given in Table B1. The 
computations adopted in the case of: 

(1) stations closer than 200km to a coast: refined 
coastlines and reduced surface elements (typically 0.2" 
width) in a region around the site (typically 500 km radius); 

(2) stations on massive shields: the Green's functions of 
Scherneck (1990); 

(3) stations in Europe: Flather's (1981) models for 
M2,  S,, K ,  and 0,; 

(4) stations near a narrow continental margin or on 
oceanic islands: oceanic Green's functions from Farrell 
(1972). 

In all other cases, Schwiderski's ocean tides and Farrell's 
Green's functions for continental structure have been used. 

Tide mass conservation was imposed in all cases, using a 
homogeneous co-oscillating layer. However, transformation 
of tide height into tide mass at coasts was not carried out 
because of the lack of location data for the tide gauges 
employed in Schwiderski's models (the most frequent case is 
that tide values at coasts are from tide gauges, so that the 
correction would actually make sense). 

Table B1. Ocean loading coefficients. 
COLUMN ORDER: HZ Sz Nz KZ Kl 4 Pi QI Mf Mf S.. 

ROW ORDER: 
site: name, longitude, latitude 
Amplitudes (lo-' m) 

Phases ( O )  

RADIAL / TANGENTIAL EW f TANGENTIAL NS 

RADIAL / TANGENTIAL EW / TANGENTIAL NS 

Tangential displacements are positive towards west and south. 

ONSALA 11. 9263 57. 3947 
3 84 63 17 

9 42 41 15 6 18 10 18 
1 18 

-56.0 -46.1 -90.7 -34.4 -44.5 -123.2 -49.6 178.4 14.9 37.3 3.4 
75.4 97.6 40.8 94.8 119.0 25.4 98.7 -14.1 -177.0 -126.7 -177.0 
84.2 131.3 77.7 103.9 17.2 -55.0 25.2 -165.0 173.3 121.8 106.4 

384 91 84 19 224 120 71 
124 34 31 
58 27 21 8 32 17 9 4 7 
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694 Table B1. (continued) 
WETTZELL 12. 8774 49. 1437 

494 143 104 34 182 77 56 4 35 20 5 
182 49 41 15 31 21 12 4 7 4 10 
46 17 8 6 31 7 8 2 7 4 12 

-69.0 -38.1 -86.9 -35.9 -58.3 -101.1 -59.7 -112.2 5.8 0.7 -61.4 
65.0 100.3 42.2 96.3 105.3 20.5 87.9 -7.6 161.2 70.2 157.6 

-27.6 23.2 -7.7 37.5 24.9 -64.8 23.6 164.8 -151.5 134.3 121.4 

MADRID -4. 2480 40. 4300 
1357 452 288 120 230 31 70 21 34 21 21 
311 114 83 39 23 12 13 7 7 12 16 
307 113 60 30 31 26 9 9 9 5 8 

-87.4 -61.7 106.8 -65.3 -70.9 -147.4 -72.9 58.0 -30.6 -110.0 -24.5 
-50.2 -20.0 38.6 82.9 -85.3 -165.1 59.6 -78.3 114.7 53.5 118.7 
-56.5 -18.1 -77.4 -19.2 -28.9 -156.3 -39.2 155.1 -98.6 -177.0 174.9 

RICHMOND -80. 3847 25. 6128 
871 250 144 62 192 135 63 34 47 23 133 
401 70 91 20 72 75 25 16 2 2 18 
234 40 61 12 30 31 11 6 5 3 10 

167.2 -162.4 147.0 -168.8 17.2 26.4 14.9 36.7 148.0 144.7 -144.6 
-179.0 -163.9 160.7 -166.7 43.2 40.6 44.9 36.4 1.2 -140.6 -99.1 
-155.1 -88.0 176.1 -90.0 -16.8 -65.2 -3.9 -98.7 -94.5 144.1 80.2 

BRAS085 -103. 9472 30. 6356 
105 153 45 44 473 320 149 64 15 11 25 
117 27 26 10 200 132 62 23 5 2 24 
114 5 0  28 15 58 32 19 9 5 4 6 

-177.9 -128.1 -63.7 -111.9 32.7 18.2 30.6 11.1 -171.6 -173.1 166-3 
149.9 159.8 119.8 141.1 -141.7 -158.4 -143.5 -168.1 114.2 127.9 -147.4 
96.8 96.3 93.3 95.6 140.3 147.9 136.8 151.3 -146.4 -175.9 -136.4 

WESTFORD -71. 4881 142. 6163 
1024 278 221 78 400 269 129 57 37 21 27 
421 96 95 26 36 22 10 4 9 4 23 
225 62 48 17 30 37 9 11 10 8 5 

-175.0 -151.1 168.0 -157.8 -5.0 -3.9 -3.6 -1.8 13.7 66.6 -176.3 
-144.8 -123.1 -169.4 -129.7 -11.4 23.6 -16.5 31.8 0.7 165.0 -76.2 
-17.6 21.3 -26.6 16.0 -177.5 -147.7 -173.2 -165.0 -151.4 -144.7 -6.4 

ALASKA NO -147. 4975 64. 9775 
779 324 112 82 501 348 161 64 72 44 12 
63 25 17 9 95 71 30 17 4 0 17 

332 133 58 36 202 127 64 23 13 12 21 
101.4 139.7 87.1 135.6 96.5 88.2 95.9 81.7 17.8 20.6 -117.6 
103.0 -81.6 56.1 -63.5 -1.6 -36.2 -3.6 -41.0 -179.4 131.4 147.3 
-90.1 -49.3 104.5 -50.5 -101.1 -112.1 -101.3 -116.6 147.0 -136.7 -132.0 

OVR0130 -118. 2827 37. 2303 
276 102 97 31 1000 629 310 118 12 3 25 
238 79 41 20 295 188 89 32 7 4 25 
319 127 71 39 156 94 48 20 6 4 14 

38.5 -143.5 -33.2 -97.2 47.1 32.7 46.5 24.4 -45.0 99.2 105.6 
-125.7 -75.0 -153.8 -78.8 -126-1 -139.4 -125.9 -143.3 141.2 113.5 -169.2 

97.7 111.2 79.6 108.1 179.6 167.4 178.1 158.1 -162.1 177.3 -119.8 

KASHIMA 140. 6627 35. 9529 
948 486 137 136 1180 926 364 188 20 54 108 

6 10 33 289 146 36 38 215 176 70 38 
167 68 30 22 188 141 57 26 4 13 10 

50.7 75.1 63.1 77.9 -138.7 -157.9 -138.9 -163.2 -11.2 42.5 103.5 
5.6 41.0 5.8 46.9 -166.5 172.3 -165.3 169.5 -7.1 10.3 48.6 

-70.4 -56.5 -74.4 -51.2 93.6 70.4 95.5 54.9 169.6 -158.8 -117.9 

MOJAVE -116. 8876 35. 3305 
202 146 112 54 986 623 307 117 11 6 45 
181 50 31 11 297 187 91 32 8 3 27 
341 138 75 43 159 97 50 21 5 2 11 

-8.7 -110.7 -53.3 -86.9 44.0 29.3 43.1 20.9 -78.0 171.0 45.4 
-141.7 -81.5 -176.7 -90.1 -130.1 -144.0 -130.1 -149.3 135.8 157.3 -138.7 

97.1 111.5 80.0 108.4 179.5 168.0 177.8 159.2 12.3 36.3 -117.5 

MARPOINT -77. 2306 38. 3730 
919 244 169 69 330 226 108 49 15 8 37 
414 90 93 26 22 15 6 4 6 3 19 
85 28 11 8 16 24 5 8 8 6 6 

158.0 -170.1 140.1 -173.8 -2.0 -0.6 - 0 . 5  3.6 24.8 81.2 -179.1 
-176.0 -150.1 163.9 -155.0 -27.0 43.8 -31.9 51.8 -2.6 -170.9 -87.3 
-42.7 9.4 -52.6 5.0 -168.8 -132.9 -164.0 -156.8 -135.5 -161.0 6.0 

GREENBANK -79. 8358 38. 4366 
720 205 124 57 293 200 96 43 10 3 36 
354 77 79 23 14 8 4 3 4 4 17 
50 22 4 6 9 17 2 6 8 6 5 

153.0 -172.4 132.4 -175.4 0.2 0.4 1.7 4.5 29.0 96.5 -178.3 
-174.2 -149.0 164.5 -154.1 -80.9 108.7 -90.8 90.5 -5.0 -154.7 -92.4 
-58.8 14.5 -94.9 9.5 164.5 -125.1 169.3 -156.9 -135.4 -163.0 5.2 

TIDHINBILLA 
951 128 204 31 276 278 103 83 14 5 48 
515 182 91 49 125 73 40 14 3 15 10 
116 37 19 12 147 129 50 29 6 5 17 

125.7 173.0 96.0 161.2 118.6 67.0 111.9 53.9 -18.9 -73.9 -96.9 
93.0 126.4 82.3 128.8 -168.6 169.1 -170.4 148.2 -105.3 73.1 134.8 
7.9 70.2 -31.5 79.8 -117.0 -143.6 -117.5 -160.6 -144.8 92.7 116.0 
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