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SUMMARY 
Techniques for modelling the geomagnetic field at the surface of Earth's core often 
penalize contributions at high spherical harmonic degrees to reduce the effect of 
mapping crustal fields into the resulting field model at the core-mantle boundary 
(CMB). Ambiguity in separating the observed field into crustal and core contribu- 
tions makes it difficult to assign error bounds to core field models, and this makes it 
hard to test hypotheses that involve pointwise values of the core field. The 
frozen-flux hypothesis, namely that convective terms dominate diffusive terms in the 
magnetic-induction equation, requires that the magnetic flux through every patch on 
the core surrounded by a zero contour of the radial magnetic field remains constant, 
although the shapes, areas and locations (but not the topology) of these patches may 
change with time. Field models exactly satisfying the conditions necessary for the 
hypothesis have not yet been constructed for the early part of this century. We show 
that such models must exist, so testing the frozen-flux hypothesis becomes the 
question of whether the models satisfying it are geophysically unsatisfactory on 
other grounds, for example because they are implausibly rough or complicated. We 
introduce an algorithm to construct plausible fleld models satisfying the hypothesis, 
and present such models for epochs 1945.5 and 1980. 

Our algorithm is based on a new parametrization of the field in terms of its radial 
component B, at the CMB. The model consists of yalues of B, at a finite set of 
points on the CMB, together with a rule for interpolating the values to other points. 
The interpolation rule takes the specified points to be the vertices of a spherical 
triangle tessellation of the CMB, with B, varying linearly in the gnomonic 
projections of the spherical triangles onto planar triangles in the planes tangent to 
the centroids of the spherical triangles. This parametrization of B, provides a direct 
means of constraining the integral invariants required by the frozen-flux hypothesis. 

Using this parametrization, we have constructed field models satisfying the 
frozen-flux hypothesis for epochs 1945.5 and 1980, while fitting observatory and 
survey data for 1945.5 and Magsat data for 1980. We use the better constrained 1980 
CMB field model as a reference for 1945.5: we minimize the departure of the 1945.5 
CMB field model from a regularized 1980 CMB field model, while constraining the 
1945.5 model to have the same null-flux curves and flux through those curves as the 
1980 model. The locations, areas and shapes of the curves are allowed to change. 
The resulting 1945.5 CMB field model is nearly as smooth as that for 1980, fits the 
data adequately, and satisfies the conditions necessary for the frozen-flux hypothesis. 

Key words: frozen-flux model, geomagnetic field, Magsat data. 

have been introduced. Their development has been spurred 
by the availability of new satellite data with excellent spatial 1 INTRODUCTION 

During the past decade several new techniques for coverage (Langell989); the best data are those from Magsat 
modelling the Earth's magnetic field and its secular variation in 1980. In attempts to understand the temporal evolution of 
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the field, the newer modelling techniques have been applied 
to satellite, survey and observatory data extending back to 
the middle of the seventheenth century (Bloxham, Gubbins 
& Jackson 1989; Hutcheson & Gubbins 1990). Geomagnetic 
field models at the core-mantle boundary (CMB) are 
usually constructed by downward continuation of the surface 
potential field under the assumption that the mantle is a 
non-magnetic insulator. Constructing CMB field models is 
the first step in the more complicated problem of modelling 
the fluid motion in Earth’s core. The geomagnetic models 
are treated as data for the fluid-flow problem. Flow models 
are intrinsically non-unique, and it has become customary to 
restrict the model space by making assumptions about the 
nature of the flow. Many flow models are constructed under 
the frozen-flux hypothesis (Roberts & Scott 1965), which 
supposes that on short time intervals diffusion can be 
neglected. The model space may be reduced further by 
seeking steady flows (Voorhies & Backus 1985), geostrophic 
flows (Backus & Le Moue1 1986) or toroidal flows (Lloyd & 
Gubbins 1990). Bloxham & Jackson (1991) provide a review 
of core-flow models. 

Here we test whether a set of observatory and survey data 
for 1945.5 and Magsat data for 1980 are compatible with the 
frozen-flux hypothesis. It is to  be expected that at sufficiently 
small spatial scales there will be diffusive effects; the 
question is whether surface and satellite geomagnetic 
observations have the resolution to detect such effects. 
Booker (1969) argued that there was little evidence for 
diffusion in 1965 secular variation models, and Benton, 
Estes & Langel (1987) have constructed models satisfying 
the frozen-flux hypothesis for 1980. However, Bloxham & 
Gubbins (1985, 1986) have asserted that there is evidence 
for flux diffusion over as short a time span as the last two 
decades. Their result depends on uncertainty estimates for 
the radial core field, which are used to assess the significance 
of differences in flux through null-flux curves (contours on 
which the radial magnetic field is zero) at different epochs. 
Models have since been constructed that satisfy a subset of 
the frozen-flux constraints for all but the early part of this 
century (Bloxham et al. 1989). The conditions not satisfied 
concern null flux-curve topology, which is not generally 
believed to engender a strong violation of the frozen-flux 
hypothesis. Radial core fields that are consistent with the 
available data for the first quarter of this century, and at the 
same time satisfy even the restricted subset of frozen-flux 
constraints not involving topology, have yet to be 
constructed. We show here that for any pair of epochs field 
models exist that satisfy arbitrary sets of data and the 
necessary conditions for the frozen-flux hypothesis; the 
question is whether any such pairs of models are plausible, 
or whether they are all unreasonably complicated. 

Procedures to model the geomagnetic field at the CMB 
usually penalize high spatial frequencies (see for examples, 
Shure, Parker & Backus 1982; Shure, Parker & Langel 1985; 
Gubbins 1983; Gubbins & Bloxham 1985; Bloxham & 
Gubbins 1985, 1986). This penalty, often known as 
regularization, gives models that minimize a quantitative 
measure of roughness while fitting data to an appropriate 
tolerance. The justifications for regularization and the 
particular measures of roughness vary, but all tend to reduce 
artefacts due to the crustal field in the CMB field models. 
Ambiguity in separating the crustal field from the core field 

makes it impossible to put useful pointwise error bounds on 
CMB field models without making what some regard as 
excessively restrictive presumptions about the statistical 
structure of the core field (see Backus 1987, 1988, 1989). 
Error bounds can be determined for certain averages of the 
field, such as individual spherical harmonic coefficients, 
using Backus’ (1989) confidence set inference and Stark’s 
(1992) minimax procedures, under the simplifying assump- 
tion that noise in the measurements (including any crustal 
and external fields) is not spatially correlated. Crustal fields 
are better understood now than they used to be (Langel et 
al. 1988; Jackson 1990), but there remains a fundamental 
ambiguity in separating crustal and core contributions to the 
measured field. 

There are infinitely many CMB field models compatible 
with the available data; the fact that some features may be 
shared by many models [in particular, regularized models of 
the type reviewed by Bloxham et al. (1989)l makes it 
tempting to conclude that those features are required by the 
data, and hence likely to be shared by the true field. 
However, the similarities might be caused by common 
aspects of the modelling algorithms, rather than the physics 
and the measurements. Similarly, it is probably unwise to 
conclude from such models that changes from one epoch to 
the next are necessary properties of the field, particularly 
when data of very variable types and quality are used at 
different epochs. It is necessary to distinguish between 
identifying interesting, unusual or persistent features in 
CMB field models, and testing whether those features are 
necessary to explain the observations. The first activity 
involves constructing plausible models of the field; the 
second concerns making inferences about the field from the 
data, often by testing hypotheses suggested by the plausible 
models. 

Here we address an inference problem, developing 
another solution to the construction problem along the way. 
We show that the frozenLflux hypothesis cannot be rejected 
on the basis of an extensive set of observatory and survey 
data for 1945.5 and 1980 Magsat data; we do this by 
constructing models that both satisfy the frozen-flux 
conditions and adequately fit the data. If, on the other hand, 
we h id  proved that no reasonable models exist that satisfy 
the necessary conditions and fit the data, we could have 
rejected the frozen-flux hypothesis. 

We present an algorithm to construct of pairs of field 
models at  different epochs consistent with the frozen-flux 
hypothesis. We impose constraints on core field models 
using a new parametrization of the radial field at the CMB. 
We use the better constrained 1980 field model as a 
reference for 1945.5, and require null-flux curves in the 1980 
model to appear in the 1945.5 model with the same 
integrated flux, but allow their shapes, areas and positions to 
differ in the two epochs. We analysed the available magnetic 
data statistically to determine appropriate misfit levels for 
the observatory and survey data. The resulting 1945.5 
model is almost as smooth as the 1980 model based on 
Magsat data, fits the data adequately, and is compatible with 
the frozen-flux hypothesis. Thus while Bloxham & Gubbins 
(1985) have suggested that there are indications of 
significant diffusion during this time period, the 1945.5 and 
1980 data do  not require the frozen-flux hypothesis to be 
violated. 
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2 A NEW PARAMETRIZATION FOR T H E  
GEOMAGNETIC FIELD ON THE CORE: 
SPHERICAL TRIANGLE TESSELATION 

We parametrize the geomagnetic field in terms of the radial 
magnetic field, B,, at the CMB. The radial field over the 
sphere defining the core surface specifies (up to a constant) 
the potential from which the field components can be 
computed anywhere outside the core (see Appendix). The 
justification for this is the uniqueness theorem for the 
solution of the exterior Neumann boundary value problem 
for Laplace’s equation (see e.g. Mikhlin 1970, p. 270). The 
individual surface field components are given in terms of 
B,(s^),the radial field on the core surface, S, by 

1 B,(s^) 1 + 2R - p2 
B&) = - - d2f - 

4wIs R3 [ T 

4 a  T (3) 

where 

H = Ih- 2pp + pz, T = 1 + R - pp. (5) 
Here i is the unit vector in the direction of the 
measurement location, s  ̂ is a unit vector ranging over the 
core surface, and c is the core radius. 6 and 3 are local 
directions at the measurement site, pointing southward and 
eastward. Our models for the field on the CMB are specified 
in terms of the radial field at the vertices of spherical 
triangles forming a tessellation covering the surface of the 
core. At intermediate points the field is defined by a linear 
interpolation for B, within the gnomonic projection of each 
spherical triangle onto a plane tangent at its centroid. This 
interpolation scheme replaces the one implied by the basis 
of spherical harmonics usually used to represent B,. The 
major advantage of this representation is that it provides a 

simple framework within which to impose direct constraints 
on such things as integral invariants of frozen flux. 

A triangular tessellation of 360 points is shown in Fig. 1 in 
Hammer-Aitoff equal-area projection, often incorrectly 
called Aitoffs projection; see Snyder & Voxland (1989). The 
model points are chosen to be approximately evenly 
distributed over the core surface. In Fig. 1 they have an 
average angular separation of 10”. Most of the models 
described in this paper were constructed using a set of 788 
model points, with average angular separation of 7”. An 
advantage of this parametrization is that in areas of 
particular interest we can place a much denser array of 
model points without the computational expense of 
providing additional points in other regions. It should be 
obvious that the tessellation of spherical triangles connecting 
the model points is not unique. We have chosen the 
Delaunay tesselation on the spherical surface (see Rogers 
1964); this has the property that the resulting triangles are as 
nearly equi-angular as possible. The tessellation on the 
sphere is constructed using our modification of an algorithm 
by Watson (1982) for finding Delaunay tessellations from 
points distributed over a plane. Each point in the model is 
assigned an index, the tessellation is then specified by a list 
of the triplets forming the vertices of each triangle. For a 
tessellation of N points there are 2N - 4  triangles. The 
integrals specified in eqs (1)-(3) are thus reduced to 

1 2 N - 4  B ( i )  1 + 2 R - p 2  
[ T  

B,(r) = -- d 2 i L  
4 1 ~  i = l  bj R3 

1 B,(s^) 1 + 2R - p2 2N-4 

[ T  41t i -1  R3 
B,(r) = -- dS- 

The integral over each spherical triangle is performed 
numerically. The triangle is first projected onto the plane 
tangent at its circumcentre using a gnomonic projection. 
Great circles are projected as straight lines, and so the 
spherical triangles become planar triangles in the map 
plane. The integral over the planar triangle is then 
approximated by a weighted sum of samples of the 

Figure 1. Hammer-Aitoff equal-area projection showing the 360-point spherical triangle tessellation on the core surface. 
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appropriate function is the expected value of x2, i.e. 

d f ( f ) d z f  = 2 wjf(fJ). 
J 

(9) 

We use Stroud’s (1971, p. 314) optimal degree-5 cubature 
rule for triangular regions to supply the wi. It uses seven 
sample points inside the triangle and is exact for all 
polynomial functions in the plane with degree less than or 
equal to 5. The field, B, ( f ) ,  is specified at the vertices of our 
spherical triangle tessellation (STT). We define its value at 
points within and along the boundaries of the triangles using 
the following linear interpolation scheme. Suppose 

ij = a , f ,  + azx12 + a3x13 (10) 

where x I l ,  xIz, 2,  are model points forming the vertices of the 
spherical triangle containing the point f,, and 
a, + az + a3 = 1, with ai 20. Then B,( f j )  is derived in 
precisely the same way from the function values at those 
vertices. i.e. 

B,( f j )  = alB,(x^,) + azBr(xIz) + aZB,(xI3). (11) 

Because linear interpolation on the common edge of 
neighbouring triangles yields the same field in either 
triangle, the interpolated function is continuous everywhere. 

Using this relationship in eq. (9), eqs (1)-(3) can be 
written in the form 

d = G b  (12) 
where b is now a vector of radial magnetic field values at the 
tessellation points on the CMB, d is a vector of observations 
of geomagnetic elements at various observation sites, and G 
is the matrix representing eqs of the type (1)-(3). Since the 
interpolation rule is linear, the cubature rule is exact for flux 
integrals of S?T models. 

3 FINDING SMOOTH SPHERICAL 
TRIANGLE TESSELLATION MODELS 

In constructing core field models we follow the philosophy 
of Shure et al. (1982) and find the unique model that 
minimizes some property of the field measuring roughness 
or complexity, subject to satisfying the data at an 
appropriate misfit level. The solution of the downward 
continuation problem then reduces to finding the minimum 
over b of the functional 

where %i is the forward functional relating the field model b 
to the surface or satellite field at the position of di ,  the ith 
measurement, a, is the uncertainty (one standard deviation) 
associated with measurement d i ,  T is the desired misfit level, 
and 4 ( b )  is a function measuring size or roughness of b. For 
the orthogonal field components, B,, B ,  and B,, the 
forward function gi is linear and corresponds to the ith row 
of the matrix G defined implicitly in (12). However, if 
inclination or intensity measurements are used directly, Yii 
will be non-linear. The size of the Lagrange multiplier A 
adjusts the trade off between smoothness of the model and 
misfit to the data. We choose it so that the rms misfit level 

A variety of functions 4 may be used, such as the integrated 
squared radial field over the CMB, the integrated 
squared-horizontal gradient of the radial field, or ap- 
proximations to heat-flow constraints. The effect of 
minimizing these functions (while fitting the data to the 
required tolerance) is predominantly to provide models for 
B, that have little power at small spatial scales and so they 
are smooth solutions; we think of such models as possessing 
minimal complexity in the sense defined by the particular 
form of 9. Evaluating 4 involves integrals over the surface 
of the core of functionals of the radial core field model; 
thus, the constraint term can be readily evaluated using a 
numerical scheme of the kind described above. The value of 
A required to satisfy (14) is not known a priori so (13) must 
be minimized a number of times, with a succession of trial 
values. The correct value of A is the one achieving the target 
misfit level and we apply a numerical scheme to refine the 
values and home in on the proper solution. When gi is linear 
the treatment of eq. (13) for a field model b follows closely 
that described by Constable & Parker (1988) for a similar 
type of problem. 

For two special forms of 9 we have been able to speed 
the algorithm considerably by making an approximation to 
the relevant integrals. Instead of summing the integrals over 
spherical triangles (which involves the gnomonic projection), 
we approximate them by integrals over planar triangles. 
Suppose we are interested in finding the model that 
minimizes the ,FZ norm of Shure et al. (1982). 

gZ= B5dzf. I, 
If f(r) varies linearly over the plane triangle T and takes the 
values fi, f2, and f 3  at the vertices of T, then 

where A = area of T. 
Similarly, the s4 norm of Shure et al. is 

s4 = I, lVsB,12 d2 f .  

If the gradient off is constant on T, then 

We have applied the penalty using the interpolation scheme 
on a polyhedral core; the numerical result is essentially 
identical to doing the full interpolation on spherical 
triangles. This might be expected, since we don’t really care 
about the exact values of B, or VB, in this situation, but only 
about the integral of their squares. 

In order to assess our new parametrization technique, we 
repeated work carried out earlier by Shure et al. (1985). 
They used selected Magsat data to generate a preliminary 
harmonic spline model (PHS) for 1980; their model found 
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the field, B,, at the CMB that minimized the integrated 
squared radial field on the core surface, subject to fitting the 
data to within 10nT rms. We used the same data set and 
constraints to find a model for B,. The positions of null-flux 
curves (lines on which B, = 0) on the CMB are readily found 
by looking for changes in the sign of B, between 
neighbouring points. The PHS model is compared with our 
spherical triangle tessellation model, STT 80, in Fig. 2, and 
the two appear remarkably similar. Both are plotted at a 
core radius c=3485 km, as are the other CMB models 
discussed later. One extremely small null-flux curve seen in 
PHS 80 is absent in the tessellation model; we attribute this 
to our use of planar triangles in the regularization of the 
SlT modelling, resulting in a slightly stronger roughness 
penalty than Is B:d2f, because the core radius is effectively 
underestimated in most places. The flux through the 
remaining curves is similar, as is the total unsigned flux 
(37380MWb for PHS and 37082MWb for STT 80; see 
Table 2). Although the linear interpolation used in STT 80 
results in a model that appears a little less smooth spatially 
than PHS, the STT model has slightly smaller roughness 
when the norm is calculated exactly for a spherical core 
surface rather than the polyhedral core. The difference in B, 
at model points for PHS 80 and STT 80 ranged between 
-18.4 and 20.0 pT,  with an rms deviation of 6.5 p T  (about 2 
per cent of the rms model values of 300pT). This is much 
smaller than the differences we found between models 
constructed with alternative regularization constraints; e.g. 
there was a 28.5pT rms difference between models 
constructed using the 5F2 and 5F4 norms. We infer that the 
differences are due to the small difference in roughness 
measure used in the two modelling procedures. This is 
supported by the fact that when a smaller number of 
parameters (360 model points) is used in the STT model, 
resulting in a stronger roughness penalty, the rms difference 
increases to 26.4 LLT. 
STT 80 and PHS 80 fit the data equally well, and we 

have no reason for regarding one kind of representation as 
superior to the other, except that, as we shall see, the STT 
representation helps us to construct models consistent with 
the frozen-flux hypothesis. The spherical harmonic 
representation of the STT model can easily be computed 
by integration of the field against the spherical harmonics. In 
common with the harmonic spline field representation, STT 
models can have infinite degree spherical harmonic 
representations. However, the imposition of a regulariza- 
tion constraint (such as the integrated squared field used 
here) forces the higher order terms to decrease in size 
rapidly, and an extremely accurate spherical harmonic 
representation can be obtained by degree 20. Although S' IT  
models are not strictly speaking continuously differentiable 
at the triangle boundaries, the degree 20 spherical harmonic 
expansion of the STT model is infinitely differentiable and 
satisfies both the data and constraints. The results shown in 
Fig. 2 give us confidence that the spherical triangle 
tessellation of radial field points on the surface of the core 
provides a useful framework for modelling the geomagnetic 
field on the CMB. 

4 DATA SETS FOR 1945 AND 1980 
A case that we have studied extensively is a comparison of 
the field in 1945 with 1980. The data available for these two 

epochs are substantially different in type. The 1980 field is 
modelled using the subset of Magsat data described above, 
while the available measurements for 1945 consist of 
permanent magnetic observatory data and survey measure- 
ments (and are the same data discussed by Langel et al. 1988 
in finding the DGIW for 1945). The satellite measurements 
are influenced much less by the crustal component to 
Earth's magnetic field and are more accurate and more 
uniform in spatial distribution than the 1945 measurements. 
The rms misfit to the data of 10 nT used in the PHS model is 
probably reasonable; the measurement uncertainties are 
around 6 nT according to Langel & Estes (1985) and crustal 
contribution is probably 5-10 nT rms at Magsat altitudes, 
thus it would certainly be extremely optimistic to require a 
misfit of much less than 10nT. 

In contrast to the recent satellite measurements, the 
observatory and survey data from 1945 are strongly 
influenced by crustal magnetization. At permanent obser- 
vatories we corrected for this effect by applying the bias 
corrections discussed and tabulated by Langel et al. (1988), 
but uncertainties in these corrections and the generally 
lower precision of the measurements make the resulting 
data less accurate than those collected by Magsat. The bias 
corrections used for observatories cannot be obtained for 
survey data as the corrections rely on continuous 
measurement of the field over long periods of time. 

The survey data set, fully described by Langel et al. 
(1988), comprises scattered observations of all the 
conventional geomagnetic elements measured with a variety 
of portable instruments. For the purposes of this paper we 
selected a five-year time interval from the middle of 1942 to 
the middle of 1947 from which to construct a data set 
focusing on 1945.5. This interval contained 16,261 
observations. While it would not be inconceivable with 
today's computer resources to treat every one of these 
measurements as a separate datum for our magnetic model, 
there are good reasons. for not doing this. The most 
important one is that the observations are extremely 
concentrated into a few locations (such as Scandinavia and 
Central Europe). When crustal signals are considered to be 
noise sources, as they are in our analysis, observations made 
even hundreds of kilometers apart must not be treated as 
possessing statistically independent noise components but 
this is what happens if the data are entered separately in the 
misfit term of (13); then sites of very high observation 
density would attract unrealistically good agreement from 
the model. Our solution, the same one adopted by other 
investigators, is to make estimates of representative values 
within zones large enough that correlation of the crustal 
perturbations is negligible. Before such local values can be 
formed, however, the observations must be adjusted and 
edited in several ways. 

We are fortunate in having the excellent geomagnetic field 
models of earlier workers (especially, Langel et al. 1988) 
from which to begin our work; our flux-conserving solution 
cannot deviate far from these standards or it could not be in 
accord with observation. First the effects of secular variation 
were corrected for by applying a linear time correction 
based on models of Langel et al. (1988). The deviation of 
each element from its 1945.5 value was found by linear 
interpolation in the 1945 and 1950 models; this deviation 
was then subtracted from the observed element, correcting it 
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back to 1945.5. The effects of this correction are 
comparatively slight in terms of the overall misfit level, but 
at the small number of survey sites where repeated 
observations had been made in the interval, there was 
usually a reduction in scatter. 

The kinds of observations made at an individual site 
varied considerably. For example, there were 9267 
observation sites at which only declination D was recorded, 
but the data set contained no measurements of the 
magnetic elements X ,  Y or F. Rather than fitting the actual 
elements recorded at the various sites, we decided to  
construct whenever possible the elements X ,  Y and Z from 
the observations of H ,  I and D; we also accepted D when i t  
appeared alone and 2 was also observed at some sites. The 
fitted elements X,  Y and Z can all be written in terms of 
linear functionals of the radial magnetic field at the CMB 
[eqs (6), (7) and (S)]; misfit to D can also be transformed 
into a linear condition through the variable 

C = X ,  sin D - Y, cos D = O  (15) 

where X,,, and Y, are model predictions of the magnetic 
elements X and Y. If the model matches the observed value 
of D, then C is zero; this condition can be included in (13) 
by adding C2 suitably weighted into the quadratic misfit 
functional. In this way we completely avoid the need to 
solve a non-linear fitting problem, at the expense of 
reducing the measurement pool from 16261 numbers to 
15097. 

Having formed the basic data set, we next carried out a 
screening process to  remove aberrant values. Using the 
DGRF1945 model as the standard, we plotted histograms 
and QQ plots of the residuals of the magnetic elements and 
the quantity C, defined in (15). QQ plots (Barnett & Lewis 
1984) give a graphical representation of the distribution of 
the noise and indicate the deviation from a Gaussian 
distribution. The quadratic misfit measure used in (13) may 
be badly biased if the noise statistics deviate far from the 
ideal Gaussian pattern, particularly if the deviations take the 
form of large outliers. A simple resolution of the problem is 
to delete data that fall many standard deviations away from 
the standard, since their presence distorts the solution, and 
is almost certainly due to  processes other than crustal fields, 
which appear roughly Gaussian in distribution (Jackson 
1990). We note that C in (15) is much more nearly Gaussian 
in its behaviour than D, which has a heavy-tailed 
distribution produced by large swings in the neighbourhood 
of the magnetic poles; thus C is a superior variable 
statistically as well as being simpler to fit because of its 
linear relation to the field model. A total of 21 outlying data 
were removed from the set by this screening. That this 
number is so small is an indication of the careful editing the 
data had already received during the compilation of the data 
set. 

The next task is to generate representative values of the 
field in regions about five degrees in diameter. Having 
captured a number of observations of a particular magnetic 
element in a region, it would not be correct simply to 
average the values, since a bias is introduced by the 
curvature of the main field. This is easily seen at a local 
maximum (say the maximum for 2 near the north magnetic 
pole); averaging the values in a zone centred on the local 
maximum would give a downward bias since all observations 

Table 1. Data used for 1945.5 field modelling. 

Data Type No. of points standard deviation 
(nT) 

Obrtrvatory 
X 
Y 
Z 

59 
59 
58 

50 
45 
65 

S w e y  
X 
Y 
z observed 
z calculated 
D 

4% 
495 
172 
404 
322 

110 
107 

124 

would fall below the peak value. The solution to the 
difficulty again involves the standard model DGRF1945. 
Deviations from the standard were averaged, and the mean 
deviation was added to the predicted value at the 
representative location for the region. The representative 
location was the centre of mass of the observations in the 
region, treating each measurement site as a unit point mass. 

Table 1 lists the type and number of data used in our 
modelling, along with their assigned uncertainties. Those for 
the observatory measurements include a contribution due to 
uncertainty in the bias corrections given by Langel et al. 
(1988). The data distribution is illustrated in the maps in 
Figs 3, 4 and 5. 

Fig. 6(a) and (b) show regularized models for B, at the 
CMB for the Magsat data (S’IT 80) and the 1945.5 
geomagnetic survey and observatory data (S’IT 45). The 
same inversion procedure and regularization penalty have 
been applied to each, i.e. minimize 

with A chosen so that the rms misfit level is the expected 
value of x2, i.e. to satisfy (14). 

The integrated squared radial field over the surface of the 
core is similar for the two models (1.10 X 10” nT2 for 1980 
and 1.02 X 10”nT2 for 1945.5) as is the total unsigned flux. 
There are, however, some apparently large differences in B, 
on the CMB; SIT 80 has eight null flux curves, while STT 45 
field has only six. The flux through each patch surrounded 
by a null flux curve is listed in Table 2, where we have 
named the patches according to the conventions used by 
Bloxham el al. (1989). The large bone-shaped patch in 1980 
appears to have been formed by the joining of two patches 
from the earlier epoch. An obvious question to ask is 
whether the changing null-flux curves represent a necessary 
violation of the frozen-flux condition, or whether they reflect 
our inability to resolve the core field variations because of 
differences in the type, distribution and quality of the data. 
Note that we have achieved a unique model by placing 
stringent penalties on the kind of model that is acceptable. If 
lack of resolution is the cause of the differences from the 
1980 solution then it should be possible to find models at 
each epoch satisfying the data to within the desired misfit 
level but with the same integral invariants of frozen flux. In 
the next section we describe an algorithm for constructing 
such a model. 
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STT 1980 rms=l  .OO 
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PHS 1980 rrns=l .OO 

Figure 2. Comparison of the preliminary harmonic spline model for 1980 with the spherical triangle tessellation model for the same epoch. All 
models are  plotted at core radius c = 348.5 km. 
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(a) STT 1980 rms=.998 

(b)  STT 1945 rrns=l.O23 

(c) STT 1945 FF rms=l.O29 
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Figure 6.  Spherical triangle tessellation models for 1945.5 and 1980. S7T 80 and STT 45 were constructed using a penalty on  the integrated 
squared radial field. STT 45 FF is constrained to have the same number of null-flux patches as S?T 80 and the same integrated flux through 
equivalent patches. 
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Sites of Observatories 

Sites o f  D data 

FFgure 3. (a) Sites of the geomagnetic observatories used in this work; each observatory contributes X, Y and Z magnetic elements to the data 
pool. (b) Sites of magnetic survey declination data used in this work; an open circle denotes the site of a single observation of D, a solid dot a 
site at which several measurements were combined as described in the text. Only those D values not used in the calculation of X and Y are 
shown here. 

1 
- magnetic diffusivity. The magnetic Reynolds number, 
PO'+ 

R, = -, with U and L representing typical velocity and 

length scales, is a measure of the relative importance of field 
changes due to convection and diffusion. R, >> 1 implies the 
dominance of convective field changes. Roberts & Scott 
(1965) noted that the time scales for diffusion, z,= 

5 FROZEN FLUX MODELS 

by the magnetic induction equation 

dB 
-= 7VZB + v x (u X B )  (17) at 

with B the magnetic field, t time, u fluid velocity, q = 

The magnetic field variations in Earth's core are described UL 
77 
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Sites of X data 

Sites o f  Y data 

Figure 4. (a) Sites of X data used in this work; X was computed by combining the elements D and H measured in magnetic surveys. An open 
circle denotes the site of a single survey station; a solid dot a site at which several results were combined. (b) As in (a) but for the magnetic 
element Y. 

L2 by -, can be expected to be much longer than those for 
17 dB 

-= V X ( u  XB).  
advection, Z, = - given the high electrical conductivity in di 

L 
U’ 

the core. They suggested that diffusion has a negligible effect 
on secular variation over time scales shorter than l d y r  so 
that the magnetic induction equation can be approximated 

The importance of the frozen-flux hypothesis is that it allows 
the construction of models of certain kinds of fluid flow in 
the core from surface field measurements. Making the core 
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Sites of Zc data 

Sites o f  Zo data 

Figure 5. (a) Sites of 2 data computed from elements H and Z measured in magnetic surveys; open and solid dots have the same meaning as in 
Fig. 4. (b) Sites of Z data directly measured in magnetic surveys. 

surface radial component of velocity zero yields were derived by Backus (1968) 

(19) &Pti = 0 (20) B, + v, - (UB,) = 0. 

The differential eq. (19) does not have a unique solution, so 
additional constraints are often imposed on u. Nonetheless, 
it remains an important problem to determine over what 
time scales the frozen-flux approximation holds. 

Necessary conditions on the radial magnetic field for the 
observed secular variation to be consistent with frozen flux 

where Si is the ith region on the CMB surrounded by a 
contour of zero-radial magnetic field. Lines on which B, = 0 
are known as null-flux curves. The topology of null-flux 
curves must also be preserved, although it is generally 
conceded that very small amounts of diffusion would be 
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'Tahle 2. Patch llux integrals for PHSBO, S7T80, STr4.5 and 
S17'45FF. 

Flux (Mwb) 
PHSSO STT80 m 4 5  m 4 m  

Patch 
North Pole 34.5 39.4 5.8 39.4 
North Atlantic 3.2 - - - 
N. Hemisphere -17.400 -17.361 -17,175 -17,362 
East Pacific 3.7 0.6 - 0.6 

West Pacific 17.4 14.1 9.6 14.1 
Easter Island -17.4 -8.1 - -8.2 
St Helena -53 -34.1 - -34.1 
Bow. -1170 -1124 465. -293 -1124 
S. Hemisphere 18,630 18501 17.946 18501 

Total Unsigned Flux 37.380 37.082 35,894 37.084 

required for the splitting of a single null-flux curve into two 
closed curves. 

In common with others (see e.g. Bloxham & Jackson 
1991) we interpret (20) as the requirement that 

5.1 Existence of frozen-flux models 

Suppose we have two core fields at two distinct epochs t ,  
and I,, where t ,  is the earlier epoch. Then we will believe 
the second field may have evolved from the first through flux 
conserving processes if (i) the number of null-flux curves is 
identical at t,, (ii) the flux integrals through the null-flux 
curves, matched together in pairs, is the same for the 
members o f  the pairs. We show now that it is always 
possible to construct field models from magnetic data a t  two 
epochs with these properties, provided that we permit 
arbitrary roughness, that is, very small scale features. The  
idea is illustrated with a simple example, which can easily be 
generalized. Consider the two radial field models shown in 
Fig. 7(a) and (b); negative radial flux is shown shaded. 
These two models have been constructed to  fit the magnetic 
observations at their epochs. Evidently there are three 
distinct null-flux curves in model (b), but only one in (a). 
We may, however, modify (b)  by introducing two narrow 
zones o f  radial field to connect the formerly isolated 
minor-flux patches to the appropriate hemispheres as shown 
in (c). With these narrow bridges in place, model (c) has 
only onc null-flux curve and is topologically equivalent t o  
( a ) .  The introduction of a sufficiently narrow strip of field at 
the core will have a negligible effect on the values measured 
at the surface because upward continuation [through 
(1)-(3)] attenuates the small scale features. Thus as far as 
observation is concerned, (b) and (c) are indistinguishable. 
Model (c) satisfies condition (i) above but there is no reason 
why it should satisfy (ii), the flux integral constraint. Again, 
the condition can be satisfied by modifying (c) a t  very small 
scales as follows. If the flux through the northern 
hemisphere o f  (c) is too small compared with the value in 
(a)  we may increase i t  by introducing a small positive patch 
with a high normal field just inside the positive boundary, 
and at the same time placing a small patch with equal and 
opposite flux just on the other side of the boundary. By 
employing a pair of patches, we retain the constraint that 

Figure 7. Radial magnetic fields on the surface o f  thc cow with 
regions of negative B, shaded. (a )  and (h)  modcl liclds 
corresponding to two sets of data at different epochs, t ,  and 12.  (c) a 
slightly modified version o f  (b)  with same numhcr of null-flux 
curves as in model (a). 

the integral o f  the normal field over the whole core must 
remain zero. If the flux emerging from the positive patch is 
made equal to  the flux deficit, the new model must now 
satisfy (ii). It may appear that the observations will no 
longer be matched by the model, hut again, i f  the patches 
are made small enough and close enough together, the net 
field at the surface can be made as small as we please: the 
key is to keep the moment defined by the product of the 
separation distance and the flux small, for otherwise a 
sensible magnetic dipole would develop. 

These small-scale perturbations may increase the misfit of 
the model (c) to its parent data set, making i t  slightly too 
large. One  way to counter this problem is to  build the initial 
model (b) with a misfit that is slightly too small so that the 
perturbations raise the level to  the proper value. This is 
always possible if a perfect match to the observation is not 
demanded, which is invariably the case. Finding a sequence 
of main field models obeying the conditions of the 
frozen-flux approximation has been shown to be possible in 
principle, whatever the data set. Therefore it is incorrect to 
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claim that magnetic measurements require violation of the 
approximation. Nonc-the-less if the only solutions in accord 
with the hypothesis exhibited the kind of intricate and 
artificial features described here, one would be justified in 
declaring it implausible. Therefore our approach is to 
discover by means of regularization, the smoothest solutions 
obeying the conditions; if these are well behaved, we can 
say with some force that there is no reason to reject the 
frozen-flux hypothesis. 

5.2 Construction of frozen-flux models 

Fig. 6(a) and (b) and Table 2 show that unconstrained 
models for the field at the CMB do not necessarily have the 
same number of null-flux patches on the core surface at the 
epochs 1945.5 and 1980, in violation of the constraint (21) 
requiring the flux through each patch to remain constant as 
the field evolves. However, we can construct models that 
satisfy (21). For our parametrization of the geomagnetic 
field we can easily find which points in the model are 
associated with a given patch simply by identifying the sign 
of B, at each model point. By virtue of our linear 
interpolation scheme for B, on the CMB the integrated flux, 
4. through each patch, Si, may be written as a vector dot 
product 

with Di the gradient vector showing how the flux through 
patch i changes with respect to changes in the model 
parameters. We must know the field model in order to find 
which points in the model contribute to a given patch, thus 
the problem is non-linear. One way to construct a model at 
an epoch, t , ,  that satisfies a given set of p-flux constraints 
4(tl) = Ni(t2), i = 1, . . . p ,  in force at epoch t, would be to 
minimize the functional 

- "r - T ]  + A 2 [Ni(tl) - Jlri(t2)I2. (23) 
,=1 i=l  

We chose the 1980 field model as a reference to provide the 
frozen-flux constraints, Ni(t2), that must be matched by the 
1945.5 field. The 1980 field model is more detailed and we 
presume that the greater accuracy and more uniform 
distribution of the data from which it is constructed make it 
a closer approximation to the true core field. We then 
require that every patch present in 1980 must also be found 
in the constrained 1945.5 field with the same flux through it, 
and try to construct such a model for 1945.5 consistent with 
the data. The frozen-flux constraint is non-linear so (23) 
must be solved iteratively; in practice we found that we 
needed additional regularization of the model to find a 
stable solution. The functional we used was to  minimize the 
two norm of the difference between the 1945 and 1980 fields. 
Thus the objective functional to be minimized is 

Each term in (24) is a quadratic form of the kind minimized 
in a least-squares problem, since the Ni(t2) and b(t,) may 

be regarded as data supplied by our reference model at 
epoch t,. We begin by finding a smooth model for t,, using 
the standard regularization scheme described by eq. (16). 
This model, denoted bo(tl), should ideally fit the data 
slightly better than the constraint (x' = N) expressed in 
(14), allowing some flexibility for the imposition of the flux 
constraints. The null-flux curves in this model are identified 
and the flux gradient vector Dp calculated for each patch. 
Where possible each patch at epoch t, is identified with a 
corresponding patch at 1,. Two patches from one epoch may 
be combined at the other; in such cases we used the 
topology found in the reference field. If two patches, Sk and 
S,,, at t, corresponded to one at t, then the gradient 
vectors Dk and Dktl were added together to provide a 
single constraint. Similarly, if one patch at t ,  had split into 
two at t, the patch was split to provide two separate 
constraints. When patch S, at time t ,  is not evident at t, the 
corresponding constraint is N k ( t 2 )  = 0. When a patch is 
found at t,, but not at t,, then a patch is created at t ,  by 
applying the flux constraint from t, to the opposite sign 
subpatch at r1 involving the same model points. When this 
identification system is implemented and the computed flux 
gradient substituted in (24) we have 

v =  [ c { q[b(tl)l - d j r  - T ]  + A 2 [Dyb(t,) - 4( t2 ) I2  
j = 1  5 i = l  

providing an obvious basis for an iterative scheme; i.e. V 
given by (25) is minimized, yielding bl(tl), the new patch 
configuration and flux gradient vectors are obtained, etc. 
until a satisfactory model satisfying the flux constraints has 
been constructed. 

The issue of minimizing V is no longer so straightforward 
as it was for (13); there are now two Lagrange multipliers, 
yielding more complicated trade offs among misfit to the 
data, satisfymg the flux consraints, and smoothness in the 
resulting model. One approach is to choose Y so that 
b(tl) - b(t,) is about the size expected from the secular 
variation difference between the reference model and the 
starting model bo(t,). This works because any reasonable 
model satisfying the frozen-flux constraints will do for our 
purposes, and eliminates the need for an extensive and 
time-consuming search for the optimal trade off between Y 
and p .  

Using this algorithm it is possible to find models that 
satisfy the frozen-flux conditions and fit the data to the 
required tolerance. Such a model is shown in Fig. 6(c), 
where we compare our constrained model STT 45 FF with 
the reference model STT 80 and the unconstrained S'IT 45. 
The rms misfit (normalized by the data uncertainties) for 
S I T  45 is 1.023 and for SIT 45 FF is 1.029, both close to  the 
expected value for x2 which corresponds to an rms misfit of 
1.ooO. Table 2 gives the flux through the various patches for 
all three models. In testing whether the frozen-flux 
hypothesis is violated, the critical issue is determining 
reasonable uncertainty estimates for the data. For the 1945 
epoch the major contributor is the crustal contribution to 
the field in the survey data, with standard deviations ranging 
from 100 to 200 nT depending on which magnetic element is 
considered (Table 1). The normalized rms misfit achieved by 
STT 45 and STT 45 FF is comparable to that of Langel et 
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af.’s (1988) definitive IGRF models, which are designed for 
evaluating the field at Earth’s surface and may contain 
significant crustal contributions. Thus it is likely that our 
models overfit rather than underfit the data, and a more 
realistic estimate of data uncertainties might be as much as 
several times the values we have used. To provide grounds 
for rejecting the frozen-flux hypothesis we would have to 
show that for a reasonable misfit level to the data, there is 
no 1945 model that satisfies the constraints. We have shown 
that even for conservatively small uncertainty estimates the 
frozen flux constraints are satisfied. Larger uncertainties 
would only strengthen our case. 

We have not had to pay a high cost in terms of increased 
roughness of the field in order to  satisfy the flux constraints. 
The spatial power spectra at Earth’s surface of the resulting 
models are shown in Fig. 8, where the dashed line is an 
approximate measure of the crustal contribution to the 
spectrum, taken from crustal field models by Hahn et al. 
(1984). We use Lowes’ (1974) definition of the spectrum, 

where the g;“’s and h;“’s are the usual Schmidt partially 
normalized Gauss coefficients in the spherical harmonic 
expansion for the geomagnetic field. Crustal terms do not 
begin to  dominate the spectrum until beyond about degree 
12, and it is clear from the figure that for f > 12 the increase 
in norm resulting from the flux constraints is very small in 
comparison with the crustal contribution. The rms difference 
between core model points for STT 80 and STT 45 FF is 
69.6pT, ranging from -253 to 284pT. For the uncon- 
strained STT 45 the rms difference from STT 80 is 108pT 
(range -438 to 365 pT).  Thus the variations required at the 
CMB to provide us with the secular variation observed at 
Earth’s surface are only between two and four times as large 
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Figure 8. Power spectra of the geomagnetic field at Earth’s surface 
for the models STT 80, STT 45 and STT 45 FF. Dashed line 
approximates the power in the crustal field. 

as the differences found between models constructed under 
different regularization constraints, such as the 92 and P4 
norms. It is therefore hardly surprising that by using a 
different kind of penalty in our modelling algorithm we have 
been able to show that there is no intrinsic requirement in 
the 1945.5 and 1980 geomagnetic data sets for the secular 
variation to violate the frozen-flux hypothesis. This does not 
necessarily make it valid, but other evidence is needed to 
infer the existence of detectable diffusive effects. 

The success of our hypothesis testing approach on the 
frozen-flux hypothesis for the 1945.5 and 1980 fields merits 
its application to  other epochs. We chose 1945.5 as a test 
case because it seemed from the core-field maps previously 
computed that the time interval was sufficiently long for 
there to be significant diffusion. In fact the ease with which 
we were able to construct a frozen-flux model suggests that 
to resolve diffusion unambiguously we require either a 
larger effect or a better quality data set. 

In the 1950’s and 60’s there are higher quality, better 
distributed data available (from satellites, surveys and 
observatories); prior to 1940 there are extensive survey and 
observatory measurements, that have been used in obtaining 
the currently available models (e.g. Bloxham et af. 1989). It 
is unclear which will present the more stringent test to the 
frozen-flux hypothesis; the older data are less accurate 
allowing greater tolerance in the misfit level, but the effects 
of diffusion should be greater the larger the time span 
covered in comparing models. 

Most work on the construction of core field models has 
involved only the radial field at the core surface. This is 
because the downward continuation of the horizontal 
components of magnetization is complicated by the 
possibility of a discontinuity across the boundary layer 
between the free stream and the (presumed solid and 
electrically insulating) mantle. However, theoretical studies 
show that such a jump should be small (Roberts & Scott 
1965; Hide & Stewartson 1972; Braginsky 1984), and 
Barraclough, Gubbins & Kerridge (1989) estimated that the 
jump was undetectable using recent frozen-flux models for 
the field. This would allow the computation of horizontal 
field components. Backus (1968) derived extended frozen- 
flux conditions, and if these hold then the horizontal field 
components may be used to determine the core flow around 
as well as normal to null-flux curves. The conditions are 

where 

Q = ( r  x B)B * V(r .B) .  (28) 

Barraclough et af. found no evidence for violation of these 
constraints when applied to recent models satisfying the 
restricted frozen-flux conditions. Lloyd & Gubbins (19%) 
use the assumption that these extended flux constraints hold 
in computing toroidal flows at the CMB. These extended 
frozen-flux constraints can only be computed if there is no 
surface current in the boundary layer at the top of the core. 
However, if we accept this, then we can use the hypothesis 
testing approach to see how far back in time it is possible to 
construct models satisfying the extended frozen-flux 
hypothesis. 
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The key to this work is that the necessary conditions for 
the frozen-flux hypothesis can be written as integral 
constraints on the field models satisfying the data. The same 
is also true for some kinds of flows at the CMB, in 
particular geostrophic or toroidal flows. We can therefore 
use the same kind of approach to test whether the 
geomagnetic data are compatible with these kinds of flows. 
A major advantage of working with the integral constraints 
in this case will be that we can really test the hypothesis 
against the geomagnetic data; algorithms that actually 
construct flows at the core surface and then assess their 
properties have been almost exclusively derived from 
geomagnetic field models (not directly from field 
measurements), and may be biased by the modelling 
procedure towards or away from the hypotheses we wish to 
test. 
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7 APPENDIX: GREEN’S FUNCTION FOR 
SURFACE MAGNETIC FIELD FROM 
RADIAL CORE FIELD 

The radial magnetic field at a point s  ̂ on the core surface 
may be represented by a radial source field, B,(s^), 

B,(s^) = c Cyibi(f). 
i 

We use Green’s function to find the radial magnetic field at 
the point r outside Earth’s core 

B,(r) = I G(r I f)B,(f)d2f. 
S 
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The justification for this is the uniqueness theorem for the 
solution of the exterior form of the Neumann boundary 
value problem for Laplace’s equation (Mikhlin 1970, p. 270). 

7.1 Green’s function for B, 

Outside the core we assume 

B = -Vn, 
V2Q = 0, 

and 

n = O ( r P ) ,  r+ w. 

Then there is a spherical harmonic expansion for 51 starting 
a t1=1 ;  

= 2 2 (I + 1)(  C)’+’b;”Yy(e, r +), 
I r n  

where r, 8, and 4 are the familiar spherical coordinates 
referred to Earth’s centre and spin axis. Multiplying by Yy’*  
and integrating over the core surface S, on which r = c ,  we 
get 

= x 2 J ( I  + l )byYy(O’ ,  4’)yy‘*(et ,  +’)d2if, 
I m S  

and by the orthogonality of the Y y :  

(I + i ) b y  = J B,(C, w, +’)yy*(ef ,  4y2 i r .  (31) 
S 

Substituting expression (31) into (30) and then using the 
spherical harmonic addition theorem (Jackson 1963, p. 67) 
yields 

(32) 
Now we make use of the generating function of Legendre 
polynomials 

and 
m 

x’(2xdxf  +f) = 2 (21 + 1)x”2P1(p). 
I=O 

The 1 = 0 term is subtracted yielding 
m x (21 + 1)xI+’P1(p) 

I= 1 

-(2r2-2xp) 1 + x 2 - 2 x p  
= x’ + 

- x2. 
x2(1  - x’) 

( l+x2-2xp)3Q 
- - 

C 
Now letting p = -, p = cos 8 = P P ’ ,  and R = dl -- 2pp t p i  

in (32) we get the required expression for B,(r) in terms of 
r 

B,(s), 

7.2 Beand B,  

The horizontal components of the field are most easily 
obtained from the gradient of the potential function with 
respect to r. We make use of the following identities, in 
which all gradients are with respect to r. 

V(c - r )  = c 

V ( r  * r )  = v lrI2 = 2r 

V[f(c * r)]  =f’(c - r)c 

Using (29) and (31) again we have 

B =  -Vi2 = -V - d2r’B,(c, O’, 4’) 
4 3  

21 + 1 
x?(:) 1+1 PI(? f P’ ) .  

C 

r 
Now with p = -, and p = P ~ 3 ‘  as before, let 

We want 
1+1 21 + 1 

VQ(P,  P )  = 7 1+1 V[ (:) PI(? +)] 

2 1 + l  1 + 1  c 
= 7 1+1[ - 7 (;) PPl(P . P ‘ )  

+ ( ;)l+lvPl(i  * 4 
=x-[ I 1 + 1  -+) PP,(i- i ’ )  

1 .  + (4) F ’ )  - 

21+l  1 + 1  c 

i’ - p i  1+1 

r 
The first part of the sum is exactly what we had before for 
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the radial component of the field. For the second term we 
need to evaluate 

i’ - p i  p2(1 + 2 R  - p’) -~ - 
r R3T ’ 

where once again R = ql - 2 p p  + pz and T = 1 + R - p p .  
Making the appropriate substitutions yields the complete 
expression for the vector field in terms of the radial field on 

the core-mantle boundary: 
1 

B = - d2i‘B,(c, 8’, 4’) 
47r I, 

Taking dot products with the relevant unit vectors yields 

Be(‘, e, 4) = - - d’i’B,(c, o‘, 4’) 
and 

1 
47r I, R3 T 

q r ,  e,4) = - - 1 j d z i q . ( c ,  e’, 4’) 
R3T 47r s 
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