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SUMMARY 
Differential seismograms, the sensitivity of the seismogram to perturbations of 
parameters of the earth model, are essential for waveform modelling with iterative 
non-linear optimization techniques. The growing number of broad-band high- 
dynamic-range fixed and portable stations provide a rich data set of regional 
distance events with accurate locations and source mechanisms that are ideal for 
modelling lithospheric structure. An efficient technique for calculating differential 
seismograms for complete synthetic seismograms in laterally homogeneous earth 
models will significantly decrease the computational burden of seismic-waveform 
inverse modelling. The technique we present here is equivalent to computing three 
synthetic seismograms in multilayered models, contrasted with N + 1 seismograms 
for a typical brute-force approach, which reduces the work to 3 / ( N  + 1) or about a 
90 per cent saving for 30 layers. The lateral-homogeneity requirement will yield 
path-averaged structures which may form the basis for later tomographic studies to 
resolve lateral variations. 
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1 INTRODUCTION 

Two important developments in seismology in the late 
1960’s and early 1970’s were the development of 
linear-inverse theory (e.g. Backus & Gilbert 1967, 1968; 
Franklin 1970; Jackson 1972) and the development of 
techniques for computing accurate synthetic seismograms 
for detailed, plane-layered earth models (e.g. Helmberger 
1968; Fuchs & Muller 1971; Kennett 1974). Since then, the 
application of systematic waveform matching using inverse 
theory has led to a significant advancement of our 
knowledge of gross earth structure and our ability to 
estimate earthquake mechanisms. Of particular interest in 
this work are seismic methods that utilize waveforms to 
estimate the gross properties of the earth either jointly with 
the seismic source or independently of the earthquake 
mechanism. Specifically, we address problems for which the 
earth is parametrized as a laterally homogeneous medium. 
Although recent trends in earth modelling are aimed at 
delineating lateral-velocity variations, robust first-order 
estimates of the structure are often critical to these efforts, 
since most approaches solve for small perturbations to a 
simpler, and often 1-D, starting model. 

A key step in the application of inverse theory to 
waveform modelling is the computation of linearized 
sensitivities of the seismogram to the model parameters. For 

specific cases, approximate partial derivatives of the 
seismogram with respect to the model parameters can be 
computed quickly (Mellman 1980; Shaw & Orcutt 1985) but 
for general, complete responses, the numerical demands 
remain significant. A technique for computing differential 
seismograms using locked modes (Gomberg & Masters 
1988) shows promise for fundamental and higher modes, but 
for complete synthetics in regions where attenuation varies 
strongly with depth, locked modes synthetics with 
perturbations for attenuation (Day et al. 1989) can 
significantly misrepresent portions of the complete wave- 
form. In this paper we present a method to rapidly compute 
differential seismograms for point-source seismograms in 
laterally homogeneous earth structures. This approach 
significantly decreases the time necessary to estimate the 
gross characteristics of earth structure using seismic 
waveforms. The increased efficiency of inverse modelling 
will make it practical to investigate problems such as the 
dependence of the inversion results on the initial model by 
performing numerous inversions using a suite of initial 
models. 

Our technique is based on the reflection-matrix method 
developed by Kennett (1974), Kennett & Kerry (1979), and 
Kennett (1980) and summarized in Kennett (1983). In 
Kennett’s approach, the wave equation for a general, 
point-moment tensor or point-force source in a laterally 
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homogeneous media is solved in the frequency-slowness 
domain for a range of frequencies and slownesses. To 
compute the time-domain response an integration is 
performed over slowness, and the resulting spectrum is 
transformed to the time domain. In the interest of space, we 
omit a general review of the computation of synthetic 
seismograms using this approach and refer the reader to 
Kennett (1983) for a detailed background, and Chapman & 
Orcutt (1985) for a general perspective on Kennett's 
method. Information on efficient numerical algorithms 
(Phinney, Odom & Fryer 1987) and guidelines for choosing 
sensible values for the parameters affecting the accuracy of 
the synthetics (Mallick & Frazer 1987) exist in the literature. 
The purpose of this note is to present an efficient algorithm 
for the computation of differential seismograms. Our 
description of the algorithm relies on some details of 
Kennett's approach and we review them in the next section. 
We follow with the description of the algorithm for 
computing the differential seismograms. Our approach is 
quite efficient and can compute the sensitivities for a model 
with N layers in roughly the time it takes to compute three 
complete responses. 

2 F O R M U L A T I O N  

We consider the seismic response of azimuthally variable 
sources such as moment tensors and point forces in a 
plane-layered earth model and so adopt a cylindrical 
coordinate system as a natural-reference frame. The top of 
the model is the free surface and the bottom is a uniform 
half-space. In the model, stress and displacement are 
continuous at the interfaces between layers, and the source 
is characterized by a discontinuity in stress and displace- 
ment. Anelastic attenuation is simulated by employing 
complex compressional and shear-wave velocities. The 
equations of motion are Hankel transformed over the range, 
r, and Fourier transformed over time, t. The result is a set 
of coupled, second-order ordinary differential equations in 
depth, z .  Vanishing traction at the free surface and 
radiation boundary conditions at the bottom of the layered 
velocity model complete the system. The transformed 
equations are solved for a range of temporal frequencies and 
horizontal slownesses, and then inverse transformed back to 
the time and space domain. The inverse transform over 
slowness is performed using numerical integration and an 
inverse Fourier transform is used to calculate the 
time-domain synthetic seismograms. The synthesis integrals 
over frequency and slowness (the inverse Fourier and 
Hankel transforms) described in Kennett (1983) eqs 7.57P 
and 7.57H are presented here in expanded form, neglecting 
near-field. terms and higher order angular terms, as 

u,(r, 4, t )  = do 
2n -a 

r m  +2 

m 

ur(r, 4, t )  =' I do 
2Jd -m 

+ 2  

x exp(-iwt)w2 dpp -u , (p ,  m, w)J,-,(wpr 

(11 x exp(im+) 
m=-2 I 

u,, u, and u, are the vertical, radial and tangentia 
components of displacement. The azimuth of the receiver i 
4 and m is the angular order of the source. The radial 
frequency is w and the slowness, or reciprocal of phasi 
velocity is p .  

The transformed displacements, uz,  u,, and u,, are thc 
solution of a second-order ordinary differential equation ir 
the depth with the boundary conditions and excitation 
Using the method of Kennett (1983), the P-SI. 
displacement in the vertical and radial directions at the free 
surface of a half-space of N layers with a source at depth z, 
are obtained using Kennett (7.36) 

= WII - R~sR]-''ZO,S(I - R&NRE]-'vU(~s, w ,  p ,  m). (2) 

The excitation vector, vu(zs, w, p ,  m )  and displacement 
vector, w,,(w,p,  m )  vectors are of order 2. Terms 
represented by boldface upper case characters are the 
two-by-two reflection R, transmission T and displacement W 
matrices. The tangential motions are described by an 
equivalent scalar equation. 

Expression (2) can be analysed by studying major groups 
of terms working from right to left. The excitation vector, 
vu(zs, w, p ,  m )  contains the net upward radiation, the direct 
upward radiation from the source, plus the reflected waves 
initially radiated downward from the source 

where the source terms Zu(zs, w, p ,  m),  ZD(zs, w ,  p ,  m )  are 
vectors of compressional and shear-wave amplitudes, 
generated by a discontinuity in stress and displacement. We 
can compute the discontinuity in stress and displacement for 
the desired moment tensor or point-force source using the 
representation theorem and the velocity and density 
parameters of the medium at the source depth. Although 
the medium is isotropic, the source terms are not, and they 
require a periodic, azimuthal expansion. Fortunately, 
moment tensors and point forces only require simple 
azimuthal expansion with terms of orders 0, f l ,  and f 2 ,  
depending on the particular source-moment-tensor term or 
point-force term. The key results are described in Kennett 
(1983) eqs 4.59,4.60 and 4.63. The azimuthal terms are only 
a function of the source and not the medium response, and 
not all sources excite all the azimuthal terms. Careful coding 
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for the source excitation that exploits the source azimuthal 
dependence can minimize the computation load. 

The next major term in the response (2) (reading from 
right to  left) is the reverberation operator for the entire 
structure. 

(4) 

Here this operator has been expressed using waves which 
start propagating upward at  the source level z,, and finish 
complete reverberations through the entire structure as 
waves, again propagating upward at the source level. The  
reflection matrices R;'' and RE represent the reflection of 
downward travelling waves from the layering or  beneath 2, 

bounded below by the half-space and the reflection of 
upward travelling waves for the layering above z, bounded 
above by the free surface. The matrix inversion will fail if 
the expression inside the brackets is singular, but for 
attenuating media the singularities will not lie on the real p 
axis, and so will not adversely affect the integrand. 

The next and final operator contributes the response of 
the region between the source depth and the free surface, 

to upward-travelling waves at  the source depth z,. The 
synthesis of this operator has been studied (Randall 1989) 
for the analysis of teleseismic waveforms and receiver- 
function modelling. This term represents, from right to  left, 
the transmission of waves from the source depth t o  the free 
surface, reverberations within the structure between the 
source depth and the free surface, and finally transformation 
from P and SV waves to  vertical and radial displacements a t  
the free surface using the operator W. 

If the complete expression for the displacements is 
reformulated by associating the reflection matrix in the 
source term for downward-radiated energy with the other 
medium response terms, the response of the medium t o  
either upgoing 

(7) 

can be simply calculated. With this minor revision, it is 
possible to  calculate the response to  several different sources 
rapidly, using a single medium-response calculation. 

A11 of the reflection and transmission matrices are 
calculated recursively using simple reflection and transmis- 
sion matrices for each individual interface and recursion 
relation which define the reverberation within layers. The 
interface reflection and transmission matrices are treated as 
being independent of frequency since they only depend 
weakly on the frequency through the frequency dependence 
of complex velocity parameters used to describe the 
attenuation. For teleseismic distances, accurate modelling of 
turning rays will require a frequency-dependent calculation 
for the interface matrices. This will require additional 
computation and storage, but will not substantially 
complicate the code. 

3 EFFICIENT METHODS FOR 
DIFFERENTIAL SEISMOGRAMS 

Differential seismograms are  most commonly used in inverse 
problems in which a set of seismograms are inverted to 
estimate the properties of the earth. The relationship 
between the model and the seismogram is non-linear and a 
solution is often obtained using an iterative sequence of 
linearizations. The non-linear relationship between the 
model parameters and the seismograms is approximated 
using a first-order Taylor series 

In this expansion, Sohs(t) is the vector of time samples of the 
observed seismogram, and S,yn[f, a ( z ) ]  is the vector of time 
samples of the synthetic seismogram for a reference velocity 
model, a ( z ) .  The left-hand side of (8) is a residual vector, 
the difference between the observed seismogram and the 
computed seismogram. The differential seismograms, 

(9) 

form a matrix which represents the differential change in the 
vector of seismogram time samples for a differential change 
of each model parameter, o r  the sensitivity of the 
seismogram to the parameters in the velocity model. The 
desired quantity in the inverse problem, the vector A a ( z ) ,  
contains a set of corrections to  the current model that will 
reduce the size of the residual vector. 

In a typical inverse modelling study, the computation of 
differential seismograms is the major burden, equivalent to 
the computation of a perturbed synthetic for each layer of 
the velocity model to  be estimated, and one synthetic for the 
original unperturbed velocity model. When differential 
seismograms are computed, only a single layer at a time is 
perturbed, and a difference approximation for the derivative 
is used, such as 

where 6 a ( z )  represents the perturbed parameter in the 
velocity model. 

Differential seismograms can be efficiently computed by 
carefully considering which parts of the computation are 
changed by the perturbation of any particular layer. In the 
synthesis integrals, eqs ( lz ) ,  (lr), and ( I t ) ,  the dependence 
of the velocity model is completely contained in the 
functions u,(p,  m, w ) ,  u,(p, m. w ) ,  and u , ( p ,  m, w )  de- 
scribing the response of the model as a function of 
frequency and slowness. Eq.  (2) , defining uz (p ,  m, w )  and 
u,(p,  m, w ) ,  and the equivalent scalar equation for 
ut(p, m, w ) ,  depend on the velocity model for the reflection 
and transmission coefficients at the interface between the 
layers of the model and the traveltime through the layers in 
the model. The interface coefficients and the propagation 
delays are used to  recursively calculate the reflection and 
transmission matrices in eq. (2) which represent the 
response of portions of the layered region. In addition, the 
source terms in eq. (2) also depend on the velocity-model 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/118/1/245/583828 by guest on 25 April 2024



248 G. E.  Randall 

parameters of the source layer which are used to transform 
the moment-tensor amplitudes into the compressional and 
shear-wave amplitudes. Eq. ( 2 )  makes a division of the 
model at the source depth with some terms representing the 
interaction of waves with the model below the source depth 
and other terms representing the interaction with the model 
above the source depth. 

To calculate a differential seismogram we subdivide the 
model into regions above or below the perturbed layer. If 
the perturbed layer is above the source layer, the source 
term in eq. (2) v&,, m , p ,  m ) ,  and the reflectivity of the 
region below the source layer, R&N will be unchanged. If the 
perturbed layer is below the source layer, the source term 
will again be unchanged and the reflectivity of the region 
above the source, RE and the receiver function term, 
WII - RzR]-'T't will be unchanged. If the perturbed layer 
is the source layer, all these terms will be perturbed. Using 
generalizations of the techniques described in Randall 
(1989) the perturbations of the terms in eq. (2) can be 
efficiently computed. 

The efficient generation of differential seismograms 
requires that two direct computations for each of the terms 
RLN,R: and WII-RFR]p'T': be performed, in effect 
computing the forward problem twice. One of the direct 
recursions (called top down) for each term starts at the top 
layer of the model and computes recursively toward the 
bottom layer, while saving the intermediate result at each 
layer which i s  the response above that layer. For example, 
for the top down recursion for RE the intermediate results 
RL', RY,  through Rf;;r-' are saved. The second direct 
recursion for each term (called bottom up) starts at the 
bottom layer and computes recursively toward the top layer, 
saving the intermediate result at each layer which is the 
response below that layer. For example, the bottom-up 
recursion computes R k N  while saving intermediate results 
from through RLp'.N while progressing up through 
the model. The third required computation is an indirect 
formulation, centred about an arbitrary layer, which 
computes the response for each term using the intermediate 
response above and below that layer. These intermediate 
responses are saved as partial results of the direct top-down 
and bottom-up recursions, and are combined with a 
reverberation in that layer. The indirect formulation makes 
it efficient to compute a differential seismogram for a 
perturbed layer by re-using the computations for the 
response above and below that perturbed layer, and 
computing only the terms actually changed by perturbing 
the layer. 

The two direct calculations are merely two different ways 
to compute the terms of eq. (2) and each have a cost 
equivalent to a single calculation of the displacement in the 
( w , p )  domain, with a modest overhead to save the results 
at each layer. The indirect calculation requires a 
computation nearly equivalent to adding a single layer in 
either of the first two algorithms, but the third algorithm is 
executed once for each layer perturbed, and so is roughly 
equivalent to the computation required for a single 
calculation of either of the two forward problems. 

Thus, in the time it takes to compute the integrand for 
three seismograms, the synthetic seismogram and a 
differential seismogram for each layer can be computed in the 
( m ,  p )  domain. The integrals in eq. (1) must be performed 

! 

for the each of the differential seismograms as well as the 
synthetic seismogram. For typical inverse-modelling studies, 
the velocity model is over-parametrized by many thin layers 
which are adjusted by the inversion process to match 
observed data. The over-parametrization allows incorrect 
initial placement of major structural features, such as the 
Moho, to be corrected by the inversion. Furthermore, the 
over-parametrization allows simulation of gradients in the 
velocity structure. With many layers, the computation of the 
terms in eq. (2) can form a large part of the total 
computation required for calculating the synthetic and 
differential seismograms, dominating the computations 
required for the integrations in eq. (1). In this case the 
efficient computation of the synthetic and differential 
seismograms will be nearly equivalent to the time required 
to compute three synthetic seismograms. The simple 
brute-force approach would require a time proportional to 
the computation of N + 1 synthetic seismograms for an 
N-layered model. For N = 30, the ratio of efficient to brute 
force will be 3/31 so approximately 90 per cent savings can 
be realized. Larger numbers of layers will result in larger 
saving. Since the cost of synthetic seismograms for complete 
waveforms in layered media is substantial, this saving can 
make waveform modelling with inverse methods substan- 
tially more attractive. 

4 A L G O R I T H M S  F O R  EFFICIENT 
D I F F E R E N T I A L  S E I S M O G R A M S  

The general discussion of the technique above divides the 
computation of differential seismograms into three distinct 
cases. In the first case, the perturbed layer is above the 
source layer, in the second case the perturbed layer is below 
the source layer, and in the third case the perturbed layer is 
the source layer. Although the three cases are different 
there is actually a great deal of similarity in the solution 
methods. For the discussion below, we define interface 0 as 
the free surface, interface L-1 as the top layer L ,  and 
interface L as the bottom of layer L. The reflection and 
transmission matrices have superscripts which correspond to 
the top and bottom Layers of the region the matrices 
represent. If the superscripts differ by exactly one, the 
matrix corresponds to an interface, and if this difference is 
greater than one, the matrix represents the response of a 
layered region. Interface matrices are functions of the earth 
model and the slowness, but are independent of frequency. 

4.1 Perturbation to a layer above the source 

If the perturbed layer is above the source layer, both the 
receiver function, WII - RzR]-'T'g, and the reflectivity of 
the region above the source, RE, must be efficiently 
computed. Both of these terms share the same interface 
matrices and propagation delays, similar iternal reverbera- 
tion operators and can be synthesized jointly to avoid 
duplicate computations. The details of the efficient 
computation of the receiver function for perturbations is 
contained in (Randall 1989) and will not be reviewed here. 

The top-down recursion for RE is initialized by setting the 
reflectivity to the free-surface reflection operator R and then 
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The top-down recursions are initialized with Rks+I, 
pPS+l, D and R;'+' and the recursions add layer L with 
RSL = RS.L-1 + F ~ L - l p L - 1 R L - I . L p L - l  

D D 

(16) 

(17) 

(18) 

[I - R S ; L - ~ ~ L - I R L - I . L  L-1 - 1 p . L - I  

TS.L - TL.L-1pL-1  [I - R S L - ~ ~ L - I R L - ~ . L  D P I D  L - I  --ITS,L-I 

D p l D  

D - D  

RS,L = L - 1 . L  + T ~ L - I ~ L - I R S . L - I ~ L - I  u Ru U 

x [I - R b  L- IpL-IRs L- IpL-  11 - 1Tb- 1, L 

again exploiting the transpose relationship for the 
transmission matrices for efficiency in both computation and 
storage of intermediate results. 

Again the final assembly of the seismogram for a 
perturbation of layer L begins with updates to both the 
top-down and bottom-up recursions to include the interfaces 
at the top and bottom boundaries of the perturbed layer. 
Then these partial results are combined with the 
reverberation for the perturbed layer to form R&N by 
R&N = R;L + TfiLpLRL.NpL[I - R;LpLRkNpL]--TkS 

D 

(19) 
completing the calculation for the perturbed model. 

successively adding deeper layers with the recursion 

which adds layer L to RbL-', the reflectivity for the region 
from layer L - 1 to the free surface. This corrects an error 
in eq. (7) of Randall (1989) by including the term RG-'." 
which is the reflection from the interface between layers L 
and L - 1. The vertical propagation delay matrix, PL-', is a 
diagonal matrix containing the phase delays in terms of the 
vertical slowness 

for the compressional (a) and shear (p )  wave velocities and 
thickness (h) in layer L - 1 for horizontal slowness p .  After 
recursion, layer L now forms the new 'bottom' layer. The 
calculation is continued downward until the source layer is 
added ( L = S )  yielding RE. For each layer, the value of 
p L - 1  f . L - I  L R, P is saved for use in efficiently generating the 
response for a perturbation in layer L. 

For the bottom-up recursion, three separate recursions 
are initialized with RL",'', RE-'*S and TC-'.S, the interface 
matrices for the top of the source layer. The bottom-up 
recursion for RkS and T$S for the region bounded above 
the layer L and below by layer S are presented in Randall 
(1989). The bottom recursion for RG*" is 
R$S = R G + I . S  + T ~ + ~ . S ~ L + I R L . L + I  

LJ 

x [I - pL+lR;+1.S L+1 L . L + 1 ] - l p L + I T L + 1 . S  p Ru u . (13) 

The partial results for Rh+l.', PL+I RD L + l s  p L + l  and 
PL+lTG+l*S are saved for the efficient solution. The 
symmetry relations (Kennett 1983) and the results for 
transposing matrix products provide a relationship 

( 14) [ p L +  ITG+ 1 ,S] T = Tk+ 1 .SpL + 1 

that can be exploited to simplify the computation and 
reduce storage requirements. The symmetry relations do not 
hold in general, and depend on the particular normalization 
schemed used in Kennett (1983) and implemented in this 
code. 

For the final assembly of the seismogram for a 
perturbation of layer L we first update both the top-down 
and bottom-up recursions by adding the perturbed interfaces 
at the top and bottom boundaries of the perturbed layer. 
Then we combine the partial results with the reverberation 
for the perturbed layer to form RE by 

- R$S+ T ~ S ~ L R ~ ~ L [ I -  RL,S L D R U P  1- TU (15) fL L 1 L . S  RfS - 

using the perturbed phase delay matrix, PL, for layer L. 

4.2 Perturbation to a layer below the source 

Perturbations to a layer below the source layer will only 
alter RkN where layer N is the half-space at the bottom of 
the model. The technique for finding bottom-up and 
top-down recursions for R;N is analogous to the problem 
just discussed for RE and the equations are very similar. 
The bottom-up recursion is initialized by Rg-',N and has 
been described in Randall (1989). 

4.3 Perturbation in the source layer 

A perturbation of the source layer is easily handled by first 
using the top-down recursion for RE and the receiver 
function, and the bottom-up recursion for RLN to add the 
perturbed interfaces at the top and bottom of the source 
layer respectively. Then a set of modified source terms, 
Zu(zs, w, p ,  m )  and ZD(zs, w, p, m )  must be calculated 
based on the perturbed velocity model using the eqs 4.59, 
4.60 and 4.63 in Kennett (1983), which transform the 
moment-tensor amplitudes into compressional and shear- 
wave amplitudes. 

At this point all the terms for a perturbation of any layer 
in the model are available, and eq. (2) may be rapidly 
evaluated for every layer and integrated using eq. (1) to 
produce a synthetic and N differential seismograms. 

5 DISCUSSION A N D  CONCLUSIONS 

The code which computes the synthetic seismograms was 
developed and results compared with a standard reflectivity 
code (Muller 1985) to validate the code for a variety of earth 
models and source mechanisms. After establishing that the 
synthetic seismogram code was performing correctly, we 
made the modifications described here to efficiently 
calculate differential seismograms in layered media. 
Differential seismograms were computed first by brute force 
using the synthetic code for a velocity structure, and then 
for perturbed velocity structures, with a single perturbation 
in a layer, computing N + 1 synthetic seismograms and 
forming the finite-difference approximation to the 
differential seismogram as described in eq. (10) above. The 
efficient-differential-seismogram technique was then used to 
generate differential seismograms for the same set of model 
perturbations. 
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- 

Comparison of the differential seismograms produced by 
the efficient and brute-force techniques showed no 
significant differences. The differences between the results 
of the two techniques were sufficiently small that they are 
doubtless due to the finite-precision floating-point arithmetic 
and the difference between the brute-force and efficient- 
differential-seismogram algorithms. 

For demonstration purposes we have calculated the 
differential seismograms for model M45 (Romanowicz 1982) 
for Tibet shown in Fig. 1. This is a model appropriate for 
surface-wave studies with thick layers which would be 
subdivided into thinner layers for inverse modelling regional 
seismograms. Here we present the results for the original 
model with thick layers. The source is a simple, but 
unrealistic, moment tensor M Z Z  of lo2" dyne cm at 10 km 
depth with a Heaviside-step source-time function. The 
synthetic-displacement seismogram vertical component is 
displayed in Fig. 2 for a distance of 300 km from the source. 
The differential seismograms for perturbations of the shear 
and compressional velocities are displayed in Fig. 3(a) and 

slowness. This permits a single computation of the interface 
coefficients at a given slowness to be used in the recursive 

- 
E 
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I perturbed layer. In a non-vectorized code the storage is 
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- 
matrix calculations for all frequencies. Since each slowness 
calculation is independent, a logical division for massively 
parallel processors is to assign a portion of the total slowness 
integral to each available processor. Each processor solves 
eq. (2) and integrates eq. (1) over its assigned slowness 
range for all frequencies. Next, the results from all the 
processors are combined to complete the slowness 
integration. Finally, the remaining function is inverse 
Fourier transformed to produce the temporal response. The 
additional consideration of whether the matrix recursions 
are done for a single frequency over all the layers, or over 
all frequencies before adding the next layer will depend on 
the availability of vector processing hardware and compiler 
support. 

Storage of the unperturbed, frequency-independent 
interface transmission and reflection coefficients for a single 
slowness is required for the synthetic. An additional 
quantity of storage is required for the perturbed interface 
coefficients. For each interface, a 2 by 2 complex matrix 
requires 32 bytes of storage. At each interface, two 
reflection and one transmission matrices must be stored as 
well as the same number of perturbed matrices for 
perturbations both above and below the interface. For N 
layers this is 576N bytes or 28800 bytes for 50 layers. 

Additional storage is required to hold the intermediate 
results from the top-down and bottom-up recursions which 
must be saved for the efficient reassemblv for each 

I- 

- 
Figure 1. Velocity model M45 for Tibet (Romanowicz 1982) with comparable to the storage required for the interface 
compressional velocities derived from shear velocities using coefficients. 
Poisson's ratio of 0.25. In most cases the number of frequency values computed 
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Figure 2. Vertical component of a synthetic displacement seismogram at 300 km from a source at  10 k depth. 

(a) Differential Seismograms with respect to Shear wave velocity 
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Figure 3. Differential seismograms (vertical components) showing the sensitivities for each layer to shear waves in part (a) and compressional 
waves in part (b). Each trace is displayed at full scale to show the details of the waveform. 
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Figure 3. (Continued.) 

(a) Differential Seismograms with respect to Shear wave velocity 
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Figure 4. The same differential seismograms as in Fig. 2, but plotted on common scales for shear and compressional waves showing the relat 
importance of the layers. 
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(b) Differential Seismograms with respect to P wave velocity 
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Figure 4. (Continued.) 

will be larger than the number of layers in the velocity 
model. The storage required for an N-layer model will be 
dominated by the arrays for the spectra of the synthetic and 
N differential seismograms at Nf frequency points. For 
example, Nf of 1024 and N for 50 layers would require 51 
waveforms of 8* 1024 bytes of complex storage, or nearly 
0.5 megabytes for every distance modelled. 

Computation of complete synthetic seismograms have 
previously required large mainframe or supercomputers. 
The rapid growth of both processing speed and available 
random-access high-speed semi-conductor memory in 
workstations has made it possible to compute complete 
synthetic seismograms for many problems with modest 
hardware. The development of an efficient algorithm for 
computation of differential seismograms will permit the 
techniques of inverse theory to be applied to modelling of 
complete seismograms. As workstation power and size 
continue to grow, algorithms such as those described here 
will be required to fully utilize the wealth of broad-band 
digital data available from the growing number of 
permanent digital stations and the temporary deployments 
of portable broad-band seismometers with digital recorders. 
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