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SUMMARY 
Modern wide-angle surveys are often multi-fold and multi-channel, with densely 
sampled source and receiver spacings. Such closely spaced data are potentially amenable 
to multi-channel techniques involving wavefield propagation methods, such as those 
commonly used in reflection data processing. However, the wide-angle configuration 
requires techniques capable of handling very general wave types, including those not 
commonly used in reflection seismology. This is a situation analogous to that faced in 
cross-borehole seismics, where similar wave types are also recorded. In a real cross- 
borehole example, we compare pre-stack migration, traveltime tomography and wave- 
field inversion. We find that wavefield inversion produces images that are quantitative 
in velocity (as are the tomograms) but are of significantly higher resolution; the 
wavefield inversion results have a resolution comparable to that of the (qualitative) 
pre-stack migration images. We seek to extend this novel development to the larger- 
scale problem of crustal imaging. 

An essential element of the approach we adopt is its formulation entirely within the 
temporal frequency domain. This has three principal advantages: (1) we can choose to 
‘decimate’ the data, by selecting only a limited number of frequency components to 
invert, thus making inversion of data from large numbers of source positions feasible; 
(2) we can mitigate the notorious non-linearity of the seismic inverse problem by 
progressing from low-frequency components in the data to high-frequency components; 
and (3)  we can include in the model any arbitrary frequency dependence of inelastic 
attenugtion factors, Q(w), and indeed solve for the spatial distribution of Q. 

An initial synthetic test with an anomaly located within the middle crust yields a 
velocity image with the correct structural features of the anomaly and the correct 
magnitude of velocity anomaly. This is related to the fact that the reconstruction is 
obtained from forward-scattered waves. Under these conditions, the method thus 
behaves much like tomography. A second test with a deeper, more extensive anomaly 
yields an image with the correct velocity polarity and the correct location, but with a 
deficiency in low and high wavenumbers. In this case, this is because the reconstruction 
is obtained from backscattered waves; under these conditions the method behaves not 
like tomography, but like migration. 

A more extensive test, based on a large wide-angle survey in south-eastern California 
and western Arizona, demonstrates a real potential for high-resolution imaging of 
crustal structures. Although our results are limited by the acoustic approximation and 
by the relatively low frequencies that we can model today, the images are sufficiently 
encouraging to warrant future research. The problem of local minima in the objective 
function is the most significant practical problem with our method, but we propose 
that appropriate ‘layer’ stripping methods can handle this problem. 

Key words: crustal structure, finite-difference methods, refraction seismology, seismic 
tomography. 
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INTRODUCTION 

Conventional surface-seismic reflection geometries are opti- 
mally designed to image sub-horizontal structure in a stratified 
earth. With this geometry, traveltimes, raypaths, waveforms 
and amplitudes are minimally distorted by macro-velocity 
variations. By the same token, conventional reflection geo- 
metries are not optimal if velocity determination is the primary 
aim. In this case a geometry is required for which traveltimes, 
raypaths and waveforms are maximally distorted by velocity 
variations. Geometries that include wide-angle reflections and 
post-critical turning rays provide such an opportunity. 

Wide-angle seismic surveys, often referred to as refraction 
surveys, are common in scientific projects designed to investi- 
gate the middle and lower crust. Such surveys use continuously 
refracted energy, as well as supercritical reflected energy 
recorded at up to several hundered kilometres offset, to meas- 
ure crustal velocities down to many tens of kilometres. 
Conventionally, wide-angle data are interpreted using ray 
tracing to fit traveltimes, amplitudes and waveforms subjec- 
tively (e.g. McCarthy et al. 1991), by inversion of traveltimes 
only (e.g. Hole, Clowes & Ellis 1992), or by full waveform 
inversion assuming a 1-D layered earth (e.g. Cary & Chapman 
1988). None of these techniques appears sufficient, since all 
traveltime methods have fundamental resolution limitations, 
whereas 1-D methods are inadequate in the presence of signifi- 
cant crustal structure. Sun & McMechan (1991,1992) proposed 
a full wavefield inversion method for wide-aperture data. While 
promising, their approach requires significant supercomputing 
resources. The approach we shall describe in this paper is 
similar, but is implemented in the frequency domain, and the 
examples that we show, both real and synthetic, can be 
computed on ordinary workstations. 

Modern crustal wide-angle data are often multi-fold and 
multi-channel, with densely sampled source and receiver arrays. 
Such closely spaced data are potentially amenable to multi- 
channel wavefield techniques, for example migration, and 
reverse-time propagation. In this paper, we will advocate a 
‘2 112-D wavefield inversion technique that has many features 
in common with seismic migration. Our method is based on 
finite-difference modelling of the wave equation, thus allowing 
very general wave types to be incorporated and enhancing the 
resolution when compared to traveltime methods. The method 
operates in the frequency domain, which is efficient when 
inverting data from a multiplicity of sources, and allows us to 
model and invert velocity structure as well as near-constant Q 
inelastic attenuation factors. The inversion can be iterated to 
improve the data fit and to take account of some non-linearity. 
To make the method tractable we invert only single frequency 
components of the data at a time. We mitigate some of the 
non-linearity by always using starting models that have been 
developed using more primitive methods (i.e. traveltime analy- 
sis), and by initiating inversions using the lowest signal frequen- 
cies available. 

Our method was developed originally for use with cross- 
borehole seismic data, and has recently been used successfully 
on real, but small-scale data (Song, Williamson & Pratt 1994). 
We now propose to use this method to invert deep refraction 
arrivals from the middle and lower crust. Unfortunately we 
are still limited in our synthetic experiments to quite low 
frequencies. However, several recent advances in finite differ- 
encing will allow us to use coarser grids. With the arrival of 

massively parallel computers we hope soon to solve real 2-D 
deep-crustal problems. 

This paper is organized into three principal sections. We 
begin by briefly reviewing our results with real cross-borehole 
data, in order to demonstrate clearly that the methods are 
feasible and can indeed lead to a significant improvement in 
resolution of velocity models, when compared with traveltime 
inversions. We then proceed to review the fundamental forward 
modelling and inverse theory results that we use to implement 
the method. We present two simple studies using synthetic 
data in a wide-angle configuration that demonstrate the imag- 
ing principles involved. Finally, we present a more extensive 
synthetic study based on a real crustal data set collected 
over the Basin and Range province in south-western USA in 
order to illustrate the potential of the method for providing 
velocity models of high accuracy and resolution in a realistic 
environment. 

INVERSION OF REAL CROSS-BOREHOLE 
DATA 

During the previous decade, many explorationists became 
interested in the potential benefits of seismic tomography using 
source and receiver arrays deployed in boreholes (e.g. Dines 
& Lytle 1979; Bregman, Bailey & Chapman 1989a; Pratt & 
Chapman 1992; Pratt & Sams 1996). This has lead to a 
number of developments in a field generally referred to as 
cross-borehole tomography. While logistical problems may 
prevent the technique from becoming a routine imaging 
method, much has been learned about the physics and math- 
ematics of imaging with data from experiments with limited 
tomographic apertures. This experience is relevant to the 
tomographic reconstruction of velocities from wide-angle 
crustal data. 

Fig. 1 illustrates and compares the primary features of the 
two different wide-angle surveys we deal with in this paper: 
the cross-borehole survey and the wide-angle crustal survey. 
Both surveys interrogate the subsurface using source and 
receiver spreads that are finite in length and constrained to lie 
along straight lines at the edges of the target. Both surveys 
lead to wave propagation that is primarily parallel to the 
layering of the geological section, and hence contain ‘difficult’ 
seismic phases, such as supercritical reflections and refractions, 
turning rays, and interference head waves. In spite of these 
similarities, there are significant differences in scale. The cross- 
borehole survey that we will discuss in this section was carried 
out across L = 30 m of section, using sources with frequencies 
of the order of 500 Hz. This implies that wavelengths, A, were 
of the order of 4 m in the 2 km s - l  sediments, and that the 
width of the first Fresnel zone, given as T L  (e.g. Williamson 
1991), is of the order of 10 m. The crustal experiment that we 
use as an example measures seismic arrivals that have propa- 
gated more than 250km, at much lower frequencies (of the 
order of 5 to lOHz). Given an average crustal velocity of 
6 km s-l, this implies wavelengths of the order of 0.5 to 1.0 km, 
and a width of the Fresnel zone as large as 20km. The 
discrepancy between the wavelength and the width of the 
Fresnel zone is a critical factor in deciding whether or not 
wavefield inversion, as compared to traveltime inversion, is 
worth the additional computational cost. 

Fig. 2 depicts three images, derived in three different manners 
from a single set of cross-borehole seismic data. The data were 
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(b) Deep crustal survey 

Frequency: 500 Hz 

Wavelength: 4 m 
Frequency: 5-10 Hz 

Wavelength: .5-1 .O km 

5 L S 7  - 22 km KL~IO m 
Figure 1. A comparison of survey configurations and characteristic scale lengths for (a) a cross-borehole survey and (b) a deep-crustal survey. 

originally acquired by researchers at the University of Durham 
for the purposes of mapping the continuity of subsurface coal 
seams; a detailed description of the survey is contained in 
Findlay, Goulty & Kragh (1991). Each panel is annotated 
with arrows showing the location within each borehole at 
which coal seams were encountered. These seams are of 
anomalously low seismic velocity, with thickness of the order 
of several metres. It can be seen from Fig. 2 that the seams are 
offset between the boreholes. From the hct that seam ‘z’ 
(containing older sediments) is offset by less than seam ‘y’, we 
may infer that either a system of faults must be present, or 
that, if there is only a single fault, this must be a growth fault. 

Panel (a) in Fig. 2 is a pre-stack migration of the data. The 
particular algorithm used to compute this image is known as 
the ‘Inverse Generalized Radon Transform’ (inverse GRT; 
Miller, Oristaglio & Beylkin 1987); however, the image shares 
many features in common with a pre-stack image shown in 
Findlay et al. (1991) using a different pre-stack migration 
algorithm. The image is of s cient resolution to allow a 

made. Reflections from seams ‘y’ and ‘z’ appear continuous in 
the image and are associated with their intersections with the 
right-hand edge of the survey, but both reflectors appear to be 
truncated near the left-hand edge. Seam ‘z’ extends almost to 
the left-hand borehole, whereas seams ‘y’ and ‘x’ are truncated 
near the centre of the section. Although an effort was made to 
respect true amplitudes in the migration, this result is essentially 
a qualitative, rather than a quantitative, image of the reflectors. 

Fig. 2(b) is a tomographic reconstruction of the velocity 
field using first arrival times and ray-trace techniques (see 
Williamson 1993a, b). This tomogram is typical of many other 
cross-borehole tomography results reported in the literature, 
in that the image is of low resolution. None the less, there are 
hints of low-velocity zones that are correlated with the reflec- 
tors that appear in the pre-stack migration in panel (a). In 
contrast to the migration of the data, the image can be 
interpreted quantitatively: the velocities represent smoothed 

tentative interpretation of the T ocation of the faulting to be 

averages of the true rock velocities, where the averaging kernels 
have approximately the width of the first Fresnel zone. 

The final panel, Fig. 2(c), is the result that was recently 
obtained by Song et al. (1994) using the wavefield inversion 
technique that we are advocating in this paper. When compared 
with the traveltime tomography in panel (b), there is a dramatic 
improvement in the resolution. The low-velocity coal seams 
stand out clearly in the image, with resolutions that are 
comparable to the pre-stack migration in panel (a). In contrast 
to the migration, the image is quantitative in terms of velocity. 
[The wavefield inversion of the real data in Fig. 2(c) required 
several additional factors to be taken into account: tube waves 
needed to be removed from the input data; the source amplitude 
and phase needed to be included separately as variables in the 
inversion scheme; and anisotropy known to be present needed 
to be accounted for. These, and other, issues are dealt with 
further by Song et al. (1994).] 

We maintain that the significant improvement in resolution 
that is observed between Figs 2( b) and (c) was achieved because 
we abandoned the simple concepts of traveltimes and rays, 
and turned instead to a method that can account for more 
general wave propagation effects. The tomography result is 
compatible with the theoretical prediction that the resolution 
will be of the order of the first Fresnel zone width (10m in 
this case). The wavefield inversion is compatible with the 
prediction (Wu & Toksoz 1987) that this result should have a 
resolution of the order of half the wavelength (2 m in this case). 

The significance of these results with real cross-hole data to 
the crustal problem may be appreciated with reference to 
Fig. l(b). In wide-angle crustal surveys, because some phases 
are transmitted over very long path lengths, the width of the 
first Fresnel zone can be surprisingly large (up to 20 km in this 
example). Without resort to additional (a priori) information, 
reconstructions from transmission traveltimes alone will be of 
exceedingly poor resolution. Wavefield inversion offers a way 
in which the resolution of the reconstructions can be dramati- 
cally improved to the more acceptable scale lengths of half the 
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wavelength (of the order of 0.5 km in this example). There is a 
practical consideration here: the size of wide-angle surveys, in 
terms of wavelengths, is much greater than the real cross- 
borehole survey described above (see Fig. 1). This leads to 
difficulties in fitting these larger models into core memory on 
computer workstations. Either the methods must be made 
more efficient, or we must turn to large-scale computing 
platforms. For this reason, a later section of this paper will use 
a low-frequency numerical simulation of a wide-angle crustal 
survey in order to demonstrate the potential benefits. But 
before proceeding to this demonstration, the next section will 
elaborate on the mathematics that underlie the method, and 
graphically demonstrate some of the imaging principles that 
are involved. 

METHOD 

At the core of the imaging method that was used to construct 
Fig. 2(c) lies a numerical solution to the acoustic wave equation 
by the method of finite differences. The finite-difference method 
generates all possible wave types within a given model, and 
can be used to simulate very complex seismic wavefields. By 
the same token, the complexity of the wavefields makes these 
almost as difficult to interpret as real seismic data, although 
tools such as ray tracing and time slicing can be used to 
supplement the simulations. However, we shall not be con- 
cerned with interpreting the wavefields, only with using them 
in an automatic inversion scheme. 

All work presented in this paper is based on the acoustic 
approximation, rather than on the more complete elastic wave 
equation. This makes the mathematics simpler, the computer 
software is then less complex, and larger models may be 
run. The approximation appears sufficient for the real cross- 
borehole data presented earlier, in part due to the large 
Poisson’s ratio of the sediments involved. However, we recog- 
nize the importance of using an elastic wave equation, and we 
are currently concentrating our research efforts towards 
developing the equivalent algorithms for the elastic (and poss- 
ibly anisotropic) wave equation. Indeed, some work on the 
elastic wave equation already exists (see Pratt 1990a,b for 
examples). 

We choose to implement the method entirely in the frequency 
domain. This has the following implications. 

(1) The successive solution of the forward problem for large 
numbers of source locations is computationally efficient. We 
elaborate on this point in the section that follows. 

(2) By operating on the discrete frequency components of 
the data we have a very effective way of ‘decimating’ the data. 
Instead of inverting for many time samples of traces from 
many source-receiver pairs, we utilize only a limited number 
of frequency components from the same number of source- 
receiver pairs. In the real data example shown earlier, the 
image in Fig. 2(c) was computed by inverting sequentially only 
four frequency components of the data. 

(3) Wavefield inversion is a notoriously non-linear problem. 
By concentrating on lower frequencies initially, this difficulty 
is mitigated. However, the problem often remains strongly 
non-linear, and in practice good starting models, usually based 
on traveltime inversions, are essential. 

(4) Frequency-domain simulations allow arbitrary fre- 
quency dependence of seismic attenuation factors to be incor- 

porated trivially, and at no extra computational cost. More 
significantly, the attenuation behaviour of the medium may 
also be inverted for. However, in order to estimate accurately 
these inelastic effects it is necessary to use a version of the 2-D 
finite-difference method that accurately models geometrical 
effects. This is accomplished using a ‘2 1/2-D method, as 
described below. For the real cross-borehole example, images 
of the distribution of the attenuation factor, Q, were also 
computed (these are not shown here, but they are presented 
in Song et ul. 1994). While several authors have attempted to 
use amplitude information to recover attenuation tomograms 
(e.g. Bregman, Chapman & Bailey 1989b), wavefield inversion 
yields much more accurate and better resolved images than 
any ray-based method (for comparisons on synthetic data we 
refer the reader to Pratt, Song & Williamson 1994). 

The forward problem 

We begin with the 3-D, constant-density acoustic wave equa- 
tion, for a single frequency, 0, given a point source at Cartesian 
coordinates (xs, y,, 2,): 

where P ( x ,  y, z; w )  is the (complex valued) pressure field to 
be found, S(w) is the Fovier transform of the source-time 
behaviour and V3 is the 3-D Laplacian operator. 

In order to proceed without resorting to full 3-D modelling, 
which is expensive and unnecessary, we invoke the ‘2 112-D 
assumption that all sources and receivers are coplanar at 
y ,  = 0 and that the velocity field is constant perpendicular to 
this sagital plane, so that c(x, y ,  z )  = c(x, 2) .  This allows a 
spatial Fourier transformation to be applied to eq. (1) in the 
y direction, yielding the following 2-D equation: 

where P(x, z; w; k y )  is the k,  wavenumber component of the 
pressure field, V2 is the 2-D Laplacian operator, and Q is 
related to the frequency and the wavenumber by 

Q’ = W’ - c’(x, z)k; .  (3) 
A discrete approximation to the continuous wave eq. (2) 

can be generated by the method of finite differences (or, 
alternatively, the method of finite elements; see Marfurt 1984 
for a comparison). This leads to the matrix equation 

(4) 
in which the large, sparse matrices K and M replace the 
Laplacian and Qz/c2 terms in the continuous equation, and 
the vectors f5 and s replace the continuous field and source 
terms. Once this equation has been solved for a sufficient 
number of wavenumbers, the desired field quantity at y = O  
can be constructed using the wavenumber summation 

1 
p ( ~ ,  y = 0) = - 1 ~ ( o J ;  ky)Aky  

27c k ,  

There are various issues involved with the selection of an 
appropriate range of k ,  values in order to obtain accurate 
amplitudes and phases. These have been discussed by Song & 
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Williamson (1994). For the real-data example given earlier, 40 
separate wavenumber solutions contributed to each frequency 
component. 

The matrix equation ( 5 )  can be solved using a variety of 
techniques. Iterative methods conserve memory but require 
new solutions to be generated separately for each right-hand 
side (i.e. for each new source in the survey). Direct methods 
are expensive in terms of memory requirements, but have the 
advantage of allowing additional sources to be incorporated 
at marginal extra costs. We utilize the direct method of LU 
decomposition. In order to conserve memory it is critical to 
use an optimal ordering of the nodal points and to retain the 
sparsity of the resultant factored matrices. We reorder the 
nodal points using the nested dissection method of George & 
Lui (1981). 

Born-approximation ‘wavepaths’ 

Woodward (1992) introduced the term ‘wavepath’ to the 
seismic imaging problem as a useful concept for understanding 
the physical meaning of both Born and Rytov approximations. 
Here we use this concept to provide a link between the forward 
modelling problem and the inverse problem, and also to 
elucidate the imaging limitations of the wide-angle problem. 
Woodward expressed the Born approximation for acoustic 
waves as 

bP(gls; w )  = -Yo(r, gls; w )  dr. S4:i:I 
Eq. (6) predicts perturbations to the wavefield for a given 
source-receiver pair (at locations s and g) for small pertur- 
bations 6c(r) in the ‘background’ velocity field, co(r). When the 
incident waves originate from point sources, 5?,(r, g/s; w )  is an 
averaging kernel given by 

w2 
Yo(r, gls; w )  dr = 2-G0(gJr; w)G,(slr; w )  

c m  
(7) 

(i.e. the product of two Green’s functions in the background 
medium, one centred on the source location, and one centred 
on the receiver location). Woodward compared this formalism 
to a similar formalism in which the integrating kernel for 
traveltime perturbations is given by the ray path linking the 
source-receiver pair, and hence she termed z0(r, gJs; w )  the 
‘Born-approximation wavepath. 

In Fig. 3 we depict the real parts of the terms G,(gJr), G,(sJr) 
and T0(r, sir) for a representative wide-angle seismic problem. 
In Fig. 3 the background velocity field co(r) is a 1-D linear 
increase in velocity from 6 km s-’ at the surface to 6.7 km sK1 
at 40 km depth. This velocity gradient is just sufficient to cause 
seismic rays for the maximum offset of 250 km to turn at the 
40 km base of the model. The single frequency used to compute 
these functions was 0.5 Hz. The wavepath contains character- 
istic distorted elliptical lobes. Woodward showed, by examining 
similar wavepaths for the Rytov linearization, that the first 
lobe (the one centred on the equivalent ray path) yields 
contributions to the perturbed wavefield that reach the receiver 
within half a wavelength of the source wavefield. Hence, this 
lobe can be considered to be roughly equivalent to the first 
Fresnel zone. Using similar wavepaths constructed for the time 
domain problem, Woodward showed that the outer lobes 
sample parts of the model that contribute arrivals at ever 

increasing times. These outer lobes have shapes that corre- 
sponds to seismic ‘isochrons’, as defined by Miller et ul. (1987). 

Just as in ray-based tomography, in which we backproject 
traveltime errors along ray paths, we can reconstruct velocity 
anomalies by projecting the complex-valued frequency compo- 
nents of the wavefield errors for the current model over these 
wavepaths. The wavenumber content of a given reconstruction 
will depend on which part of the source-receiver wavepaths 
for the experiment illuminate the anomaly. Clearly, if the 
anomaly falls outside all such first Fresnel zones, the recon- 
struction will contain little in the way of low wavenumbers. 
From the arguments of the previous paragraph, errors in the 
phase at the receiver array due to small differences in the 
transmitted field will sum coherently within the first Fresnel 
zone when backpropagated, leading to tomography-like recon- 
structions. In contrast, we expect that errors in the later part 
of the wavefield will be responsible for a coherent summation 
of the isochronal outer lobes of the wavepaths, and hence 
provide migration-like reconstructions. We shall return to this 
dual behaviour of the reconstruction algorithm when we 
interpret the synthetic results in later sections. [It is also 
possible for Fresnel zones to be associated with reflection 
events. If this is the case, the reflections will illuminate shallower 
velocity anomalies and provide additional constraints on the 
lower wavenumbers. In order for this to occur, the current 
velocity model must generate these reflections, and the ampli- 
tudes must be large enough to contribute to the inversions. 
Schemes for forcing similar inversion methods to use reflection 
energy were the subject of much study by Mora (1987b) 
and others.] 

Inverse method 

The previous section summarized our approach to solving the 
forward problem: given a velocity model, predict a synthetic 
wavefield that can be compared to the observed wavefield. In 
this section we summarize how these wavefield predictions 
may be used to update the velocity model iteratively, in order 
to reduce the differences between the synthetic and observed 
wavefields. 

The general approach we use is similar to that used by 
many other authors, including Lailly (1984), Tarantola (1984, 
1987), Mora (1987a, 1988) and Beydoun & Mendes (1989). 
For a velocity model specified by a vector c, consisting of 
velocities at the nodal points of a finite-difference grid, we may 
define the least-squares objective function, or cost function (i.e. 
a measure of the misfit of the data), in the current model as 

where Pobs and Pmod are the discrete observed and modelled 
wavefields arranged as vectors, and 1 1  1 1  represents an appro- 
priate Euclidean norm. If the data space is also discrete, and 
we choose to define the Euclidean norm using the covariance 
matrix of the data, C,, we may write 

1 
2 

S(c) = - GP+ C, SP , (9) 

(the symbol + is used to denote the Hermitian transpose). In 
solving inverse problems one would like to minimize this 
objective function. For general wavefield inverse problems such 
an objective function is likely to be exceedingly complex and 
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to contain many local minima, due to the highly non-linear 
dependence of the data residuals on the velocity parameters. 
Rather than simply minimizing such a function, ideally one 
would like to characterize its global behaviour. Unfortunately, 
due to the size of the velocity-parameter space and due to the 
computational cost of the forward problem, we have little 
choice but to resort to the use of local information to descend 
to the nearest local minimum. This implies a strong dependence 
on initial, less rigorous and more robust methods (such as 
traveltime inversion) to define starting models that lie in the 
region of the global minimum. The final solution may then be 
sought by computing the gradient of S(c) with respect to  the 
independent variables c: 

g = V,S(C) = -L'C,'GP (10) 

(Tarantola 1987), where Lt is the adjoint of the FrechCt 
derivative matrix, L, for the linearized forward problem, 

dP = LGC , (11) 
which corresponds to a discrete version of the Born approxi- 
mation. The matrix L contains the collective behaviour of the 
Born approximation wavepaths for all source-receiver pairs in 
the data set. 

The steps by which the action of the adjoint of the FrechCt 
derivative matrix on the data residuals [i.e. eq. (lo)] may be 
established through use of the linearized forward problem 
[eq. ( l l ) ]  are well known (see the various papers cited at  the 
beginning of this section). For the specific forward problem of 
2 1/2-D modelling in the frequency domain, the gradient may 
be computed from the data residuals using 

(Song, Williamson & Pratt 1994a), in which the forward 
propagated field is given by 

P,(rls, k y )  = %4G2 1,2(rls, ky)r (13) 

the 'backpropagated field' Pb(rls, k,) is given by 

g 

and the weighted data residuals are given by 

GP(gls) = C,'GP(gls) 

In eqs (13) and (14), G21,2(rIs, k,), is the '2 1/2-D' Green's 
function, dependent on both frequency and wavenumber, 
defined as the solution to  eq. (2), with a unit source term on 
the right-hand side. 

The operations implied by eqs (12), (13), (14) and (15) may 
be summarized in the following manner. 

( 1 )  Compute data residuals for each source-receiver pair 
by computing the synthetic data in the current model using 
eqs (4) and (5)  and subtracting the resultant wavefields from 
the corresponding frequency component of the observed data. 
Because of the use of a direct solution method for solving 
eq. (4), additional source locations are incorporated at  mar- 
ginal extra cost. and we are thus able to  carry out these 
computations for a large number of source-receiver pairs. 

(2) For each wavenumber and each source form a back- 
propagated field by multiplying the weighted data residuals 
[eq. ( 15)] for each source-receiver pair with the corresponding 
conjugated 2 1/2-D Green's function, summing the results over 

all receivers [as in eq. (14)]. Due to the linearity of the 
operation, it is not actually necessary to compute individual 
2 1/2-D Green's functions-significant savings may be realized 
by combining all conjugated receiver residuals for each source 
into a single distributed source term and computing the 
resultant wavefield. 

(3) Combine each backpropagated wavefield with the 
corresponding conjugated modelled field by multiplication 

(4) Carry out computations 2 and 3 for each source (inner 
loop) and for each wavenumber (outer loop), summing the 
results as they are obtained. These backward and forward 
propagations may be carried out for each wavenumber using 
the same direct solution to  eq. (4), and thus have the same 
marginal cost of the additional forward propagations of 
step 1 above. 

Ces. (1211. 

Finally, the gradient vector is scaled appropriately, using a 
covariance matrix C, for the model parameters, and used to 
update the model using the standard iterative formula 

where CI is a step length that may be computed using the well- 
known (linear) formula (Tarantola 1987). The simple gradient 
need not be used; conjugate gradients may also be computed 
(e.g. after Polak & RibiCre 1969) and used instead, to increase 
the rate of convergence. A line search may be required to 
ensure that the correct step length is used in such non-linear 
problems. Once a new model is obtained using eq. (161, the 
entire process may be repeated until some convergence 
criterion is satisfied. 

SYNTHETIC EXAMPLES 

It is useful to illustrate the principles of the previous section 
with examples that make the imaging scheme clear. In this 
section we choose two models that will highlight, respectively, 
the tomography-like and the migration-like aspects of the 
method. Both models use the same background velocity model 
used to generate the wavepath shown in Fig. 3, i.e. a 1-D linear 
gradient starting at  6 k m s - I  at the surface and rising to 
6.7 km s-' at  40 km depth. In  all cases we use a surface array 
of 240 receivers with a 1 km interval. We begin by studying 
the single-source inverse problem for both experiments, which 
is instructive, but yields poorly resolved reconstructions. We 
then proceed to using 12 surface sources with a 20 km shot 
interval, which yields much better resolved reconstructions. 
The experiments were carried out a t  0.5 Hz, so that the 
wavepath from Fig. 3 is directly relevant to the examples. 
Rather than use full 2 1/2-D modelling and inversion, we have 
saved computer time by carrying out all simulations only in 
2-D, since Song et ul. (1995) have shown that comparative 
tests using both methods yield similar results (however, note 
that in the case of real data, it is essential to use 2 1/2-D 
met hods). 

The first model (Fig 4) consisted of a rectangular anomaly 
10 km deep and 40 km wide at  mid-crustal depths, in which 
the velocity was held constant. As the background velocity 
increases linearly with depth, the top half of the perturbation 
is positive, while the bottom half is negative. Maximum 
perturbations were 65 m s-'. Since this anomaly is well illumi- 
nated by the first Fresnel zone in the wavepath shown in 
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Wavefield inversion of wide-angle data 33 1 

Figure 4. A graphical illustration of the imaging/inversion method employed. A single source and 240 receivers spread evenly across the surface 
are used. (a) The forward propagated term in eq. (12), P,(rls) ( top panel), is combined with the backpropagated residuals, P&(r l s )  (bottom panel), 
to form an image for each source position (see Fig. 5). The central panel is the ‘difference wavefield, due to the presence of the rectangular 
anomaly. Although the difference wavefield is not measured in practice, Pl (rls) is an estimate of the wavefield, obtained by backpropagating the 
data residuals (from all 240 surface receivers simultaneously) into the model. (b) Images of the rectangular anomaly using all 240 receivers, but 
only a single source and a single frequency component. The top panel is the true anomaly, the central panel is the initial iteration (gradient image) 
and the bottom panel is the reconstruction after 10 iterations. (c) Images of the rectangular anomaly using 12 surface sources (spread evenly at 
20 km intervals along the top of the model), 240 surface receivers and three frequency components (0.5 Hz, 1.0 Hz and 2.0 Hz). 
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Fig. 3, we may expect a tomography-like reconstruction of the 
anomaly. The second model (Fig. 5 )  consisted of a high- 
velocity slab anomaly with an increase of 3 km s-’ in the 
bottom 10 km of the model. As the slab is illuminated essen- 
tially by the outer lobes of the wavepath in Fig. 3, we may 
expect a migration-like reconstruction of this anomaly. The 
following paragraphs will make this distinction between the 
reconstructions clear by showing some of the intermediate 
steps in the reconstruction process. 

Fig. 4(a) shows the real components of three wavefields in 
the rectangular anomaly model the top panel is the forward- 
propagated wavefield in the background model, the central 
panel is the difference wavefield computed by subtracting the 
wavefield in the top panel from the wavefield computed when 
the perturbation was introduced, and the bottom panel is the 
backpropagated wavefield, summed over all receivers for the 
given source. The top panel thus represents P,(rls) in eq. (12) 
and the bottom panel represents Pl (rls), both of which may 
be computed for real inversion problems. The difference wave- 
field in the central panel cannot be computed without a 
knowledge of the true perturbation, but it is instructive to 
compare this with the backpropagated field. 

Arrows are plotted in the region of the anomaly for the 
three wavefields in Fig. 4(a). The arrows represent the gradient 
direction of the phase of the forward-propagated field, the 
difference field and the conjugate of the backpropagated field. 
The significance of this is that, for this configuration, both 
P,(rJs) and Pl (rls) have essentially the same phase gradient 
at this location. Thus the two phases cancel when multiplied 
using eq. (12) (i.e. the peaks and troughs of the two wavefields 
are aligned), and there is a large region of the model in which 
the phase of the product field varies only slowly. Thus, an 
image is formed that is similar to a tomographic backprojection 
of the residuals. We can observe this on the actual images for 
the single source involved, shown in Fig. 4(b), after just one 
iteration and after 10 iterations. The image of the anomaly is 
a ‘smeared’ version of the true anomaly, where the smear 
corresponds to the region over which the forward- and back- 
propagated wavefields are in phase. After 10 iterations the 
magnitude of the velocity perturbation on the image has grown 
to approximately 7 m s-’, which is but a fraction of the true 
velocity anomaly, due to the redistribution of the anomaly 
over the larger region. The true velocity anomaly may be 
recovered by using additional source locations to obtain the 
necessary angular coverage of the anomaly. Fig. 4(c) depicts 
the reconstruction using 12 sources evenly distributed along 
the surface. This reconstruction shows the resolution that may 
be expected from such multi-source data; the anomaly (which 
has a characteristic size of the order of a half-wavelength) is 
well resolved. In the computation of the image in Fig.4(c) 
three frequencies were used in succession: 0.5 Hz, 1 Hz and 
2 Hz. 

The experiment is repeated in Fig. 5 for the high-velocity 
slab amomaly. Fig. 5(a) shows that, in this case, the forward- 
and backpropagated fields do not propagate in the same 
direction at the anomaly. This is because the wavefield pertur- 
bation that is recorded at the receiver array is essentially a 
backscattered (mainly reflected) field, rather than a forward- 
scattered, transmitted field. Because the two fields propagate 
in different directions, the fields are only in phase at the 
interface, and hence the resultant reconstruction will only be 
significant at this location. This is evident in Figs 5(b) and (c), 

in which the reconstructions for a single source and for 
multiple-source locations are shown. The final reconstruction 
using 12 source locations and three frequencies in Fig. 5(c) 
fails to reconstruct the 3 km s - l  magnitude of the perturbation, 
but the location of the interface and the polarity of the 
discontinuity are correctly recovered. Just as in seismic 
migration, the discontinuity is imaged, but the low- 
wavenumber components are missing. This may be traced 
back to the central panel of Fig. 5(a), in which the forward- 
scattered component of the difference field is seen to propagate 
to the right-hand edge of the model, beyond the range of the 
receivers. Without this forward-scattered component, the 
reconstructions cannot be tomography-like. 

In this section we have compared situations in which the 
reconstructions are tomography-like with situations in which 
the reconstructions are migration-like. The key concept was a 
comparison of the phase gradients of the forward-propagated 
wavefield and the conjugate of the backpropagated wavefield. 
This concept is not ours-it was pointed out much earlier by 
Mora (1987b). We have shown that the two aspects of inversion, 
which Mora showed separately for the two cases of surface 
reflection data and crosshole data, can both be found in the 
case of a single wide-angle surface survey. Mora’s demon- 
stration was given for time-domain inversion (in which the 
relevant concept is not the phase gradient but the local 
propagation direction), whereas we showed an equivalent 
demonstration for frequency-domain inversion. 

Computational considerations 

In the simulations used in this section, we have used a 
maximum frequency of 2 Hz. This upper limit reflects the 
maximum size of the finite-difference grids that we can cur- 
rently fit into core memory on the workstation we are using. 
Using nested dissection and sparse storage algorithms, we 
require close to 100 Mbytes of core memory for a grid contain- 
ing 1000 x 160 = 160 000 node points, which is used to rep- 
resent the 250 km x 40 km model. We used a five-point finite- 
difference scheme which requires of the order of 10 grid points 
per wavelength. Therefore we can fit at most 100 wavelengths 
into the grid, hence the smallest wavelength we can model is 
2.5 km. In 6 km s-’ rocks this corresponds to 2.4 Hz. We note, 
however, that recently Jo, Shin & Suh (1994) have given a 
nine-point per wavelength for the same degree of accuracy and 
at essentially the same computational cost. Initial tests that 
we have carried out indicate that we may be able to increase 
this frequency to 5 Hz using this new scheme. Using additional 
core memory would allow us to increase this upper limit 
further. 

Our method is memory bound. We can factor eq.(4) for 
this model size in a few minutes, provided the result is stored 
in core. As soon as we are required to segment the matrices 
and use disk storage, we observe drastic increases in execution 
times due to the slow access times for disk storage. 

A CRUSTAL MODEL 

The previous section depicted the reconstruction of two some- 
what-idealized anomalies. While such tests provide useful 
insight into the performance of the inversion algorithms, it is 
also instructive to invert synthetic data from as realistic a 
situation as possible. Fig. 6(a) shows a model published by 
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Wavejield inversion of wide-angle data 333 

Figure 5.  As in Fig. 4, a graphical illustration of the imaging/inversion method employed, but in this case the anomaly is a high-velocity slab at 
the bottom of the model. (a) Forward-propagated, difference, and backpropagated fields. (b) Images of the slab anomaly using all 240 receivers, 
but only a single source and a single frequency component. The top panel is the true anomaly, the central panel is the initial iteration (gradient 
image) and the bottom panel is the reconstruction after 10 iterations. (c) Images of the slab anomaly using 12 surface sources, 240 surface receivers 
and three frequency components (0.5 Hz, 1.0 Hz and 2.0 Hz). 
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McCarthy et al. (1991), based on extensive wide-angle seismic 
data collected over the margin between the Basin and Range 
province and the Colorado Plateau in south-eastern California 
and western Arizona. In Fig. 6(b) we show a model that 
contains many of the features of the McCarthy et al. model. 
In this section we shall use the model in Fig. 6(b) as a test 
case for the inversion of wide-angle crustal data. Our model 
contains a (fictional) discontinuity on the Moho that was 
included to enable an evaluation of the resolution of the 
reconstruction at this depth to be made. We conducted a 
simulated wide-angle survey using 12 surface sources with a 
shot interval of 20 km and recorded synthetic data in 240 
surface receivers (with an interval of 1 km). Again, we con- 
sidered it sufficient to carry out the experiment in 2-D, rather 
than in 2 1/2-D. 

We computed a complete set of synthetic data for the crustal 
model in Fig. 6(b) by using the acoustic frequency-domain 
modelling algorithm described earlier, summing over all fre- 
quency components to yield time-domain data. A representa- 
tive shot record plotted in reduced time is shown in Fig. 7. 
The phases identified schematically on Fig. l(b) can be clearly 
seen. Less obvious are reflections from within the crust, which 
can be identified on alternative data displays (not shown). 
These synthetic data compare well with the real data given by 
McCarthy et al., but are clearly of lower frequency. Using our 
existing hardware, incorporating the finite-difference scheme 
of Jo et al. (1994), we will probably be able to double the 
maximum frequency from 3 Hz to 6 Hz, which would bring us 
into a realistic range. However, if we were to use the elastic 
wave equation version of the modelling software, we would be 
constrained to the lower frequencies. Further progress is only 
possible with more advanced computer hardware, which was 
not available to us at the time of computing these results. 

The inversion of the synthetic data from all 12 sources was 

straightforward. We decided to use a 1-D starting model that 
contained the approximate crustal velocity gradient and the 
appropriate velocity discontinuity at the (constant) depth of 
30 km. For these synthetic tests it was not necessary to include 
the source parameters in the inversions, but, on the basis of 
synthetic work by Song et al. (1994a), we do not anticipate 
much degradation of the images if this were done. We also 
omitted finite Q from the forward and inverse computations 
in order not to complicate the issues. We initiated the inversion 
with the 0.5 Hz component of the data, then progressed to 
1.0 Hz and finally 2.0 Hz. At each frequency 10 iterations of 
the conjugate gradient method were carried out. The resultant 
velocity reconstructions were then used as the starting model 
for the next frequency. 

The results of the velocity reconstructions are shown in Figs 
8 and 9. The inversion is very effective indeed, given the low- 
frequency nature of the input data. The results are most 
dramatic in the upper-crustal regions, where the structure and 
velocity values have been recovered almost exactly (apart from 
artefacts at the edges due to insufficient coverage). At mid- 
crustal depths the velocity values are still nearly correct and 
the structures are also faithfully recovered. The lower-crustal 
velocities are recovered with some small errors, and the 
structure (although not the velocities) of the Moho and the 
high-velocity mantle material are also recovered, at least in 
the central region. All of these results are consistent with the 
expectations derived from the simple examples of the previous 
section: crustal anomalies are recovered in a tomography-like 
fashion, whereas Moho structure is recovered in a migration- 
like fashion. These points can be further verified by an examin- 
ation of the velocities from the centre of the reconstruction, 
plotted as graphs on Fig. 9. Here, the slow degradation of the 
reconstruction with depth is clear. The oscillations on the 
reconstructions are manifestations of the limited frequency 

0 25 50 75 100 125 150 175 

Distance (km) 
Figure 7. Simulated time-domain data from the generic crustal model (Fig. 6b). 
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Velocity (km/s) 
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Figure 9. Graphs of seismic velocities from the centre of the simulated 
survey. The dashed line represents the starting model, the thin line 
represents the true model and the thick line represents the inversion 
result (taken from the image in Fig. 8). 

content of the input data; these are essentially a Gibbs phenom- 
enon-similar oscillations have been reported for other 
frequency-domain reconstruction algorithms (e.g. Devaney 
1984). The oscillations are not present in the true model, yet 
the synthetic data for this model match the data for the real 
model (i.e. the misfit has been reduced almost to zero). Thus 
these oscillations can be said to be within the ‘null space’ of 
the inverse problem. Techniques for controlling null-space 
artefact in inverse problems are known as regularization (see 
e.g. Tikhonov & Arsenin 1977). We have used no regularization 
in solving the inverse problem; we anticipate that some simple 
form of regularization, such as smoothing, would control the 
instabilities that lead to these oscillations in our solutions. 

It is important to recognize that there are certain difficulties 
which may be encountered when inverting real data, for which 
the low-frequency components used here will not exist. In 
Fig. lO(a) we show the result that is obtained from the same 
starting model, but here we used only the 2 Hz component of 

the synthetic data. We have omitted the progression from low 
frequencies to high frequencies. In this case, the reconstruction 
fails to converge to the correct answer-a local minimum has 
been encountered in the objective function due to the limited 
linear range of the Born approximation used to define the 
gradient direction in each iteration of the method. This is 
potentially the most difficult problem that will be encountered 
in the inversion of real data. To some extent this can be 
mitigated by using more accurate starting models, such as one 
derived from traveltime inversion of the picked arrivals. If 
carried out correctly, such models, while of low resolution, 
should bring the problem into the zone of influence of the 
correct global minimum of the objective function. An alterna- 
tive strategy is to begin the inversion with the near-offset traces 
only. Since these contain arrivals which have travelled a shorter 
distance, through shallower geology, the Born approximation 
will be appropriate, and accurate reconstructions of the shallow 
layers will be obtained. As the inversion proceeds, the aperture 
of the input data could be progressively increased by using 
larger and larger offsets. The effect of this strategy would be 
to produce velocity models that are progressively more accu- 
rate to greater depths. Each time the aperture was increased, 
the additional data would then be nearly correct and the Born 
approximation would be adequate to define the new descent 
direction. Such methods are common in producing velocity 
models-they are often referred to as ‘layer stripping’ methods. 
There are also alternative linearizations, based on the Rytov 
approximation, that may be appropriate (e.g. Stork 1993). The 
Rytov approximation requires that individual phases be treated 
separately, and hence would require a degree of manual 
intervention. 

The image in Fig. 10( b) is the result we obtained using the 
original strategy (i.e. with all three frequencies), but starting 
from a model that did not contain the crust-mantle velocity 
discontinuity. In this case, the crustal velocities are still reco- 
vered correctly, and the Moho itself is imaged at the correct 
depth with the correct structure. However, the magnitude of 
the velocity discontinuity is not correctly recovered. At this 
depth, as in the slab model described in the previous section, 
we recover a band-limited, migrated image of the Moho, rather 
than a tomographic reconstruction. 

CONCLUSIONS 

The primary conclusion we draw from this work is that the 
wavefield inversion of wide-angle crustal data is potentially of 
great utility. The process is computationally expensive and at 
the boundary of what is feasible on workstations today, but 
we expect that the results will show dramatically increased 
resolution when compared with traveltime inversions. Apart 
from the additional computational burdens of large-scale, 
wide-angle crustal data, the difficulties presented by real data 
will be similar to those encountered with the real crosshole 
data. We are therefore cautiously optimistic that the method 
will prove useful on real crustal data. 

There is, nevertheless, much to be done to achieve the goal 
of inverting real crustal data with the methods presented in 
this paper. Perhaps foremost is the extension of the methods 
to (visco-)elastic, and possil-ly anisotropic, wave equations. In 
principle, this is straightforward, although more expensive in 
terms of computer resources. As computer hardware continues 
to develop we anticipate that the necessary resources will 
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Sedimentary basins 

0 Off set (km) 16 

Y r 
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Frequency: 15 -> 40 Hz 

Wavelength: 40 -> 250 m 

dh L = 400 -> 2000 m 
Figure 11. An alternative wide-angle survey that could potentially be 
inverted using the techniques advocated in this paper. 

become commonly available within a few years. In the interim, 
tests can only be carried out on less widely available platforms, 
such as large, multi-processor vector machines or massively 
parallel machines. We also anticipate the need to solve several 
data-specific problems, such as those related to the limitations 
of the Born linearization discussed at the end of the previous 
section. 

There are also wider implications that may be drawn from 
the results of this paper. If we can obtain accurate and well- 
resolved velocity models from crustal refraction surveys, this 
would have important implications for exploration seismic 
surveying. We hope that the inversion of wide-angle crustal 
surveys will inspire the investigation of sedimentary basins 
using similar wide-angle survey geometries. Fig. 11 depicts 
such an application, with approximate rays, frequencies and 
wavelengths. It is unusual for the imaging of sedimentary 
basins to be carried out with anything but near-normal inci- 
dence reflection data. However, the implications are that we 
could use the methods proposed in this paper to obtain either 
more accurate migration velocities, using offsets of the order 
of 8 km, or velocities of basement rocks, using offsets of up to 
16 km. Provided data can be acquired in the range of 10-15 km, 
refracted arrivals could plausibly be inverted to provide 
additional constraints on seismic velocities down to reservoir 
depths. Such results could potentially be used to improve 
reflection imaging (i.e. migration results), or indeed to deline- 
ate sub-basement structures not normally imaged by the 
reflection method. 
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