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SUMMARY 
Although modern magnetotelluric ( MT) data are highly multivariate (multiple com- 
ponents, recorded at multiple stations), commonly used processing methods are based 
on univariate statistical procedures. Here we develop a practical robust processing 
scheme which is based on multivariate statistical methods. With this approach we use 
data from all channels to improve signal-to-noise ratios, and to diagnose possible 
biases due to coherent noise. To illustrate our approach we use data from two- and 
three-station wide-band MT arrays from an area south of San Francisco, California, 
where contamination of the MT signal by spatially coherent cultural electromagnetic 
noise is severe at some periods. To deal with such coherent noise we adopt a two-stage 
procedure. In the first stage we focus on reducing the effects of incoherent noise, and 
testing for the presence of coherent noise. To this end we have developed a robust 
multivariate errors-in-variables ( RMEV) estimator, which estimates background noise 
levels, cleans up outliers in all channels, and determines the ‘coherence dimension’ of 
the array data. In the absence of coherent noise, the coherence dimension of the data 
will be two (corresponding to two polarizations of the plane-wave MT source fields). 
In this case the RMEV estimator provides direct estimates of MT impedances and 
inter-station transfer functions. We show, with synthetic and real data examples, that 
in some cases these estimates can be significantly better than those obtained with more 
standard robust remote reference estimators. When MT data is severely contaminated 
by coherent noise (as for our example arrays for periods of 4-50s) the coherence 
dimension of the data will exceed two. The RMEV estimate thus provides a clear 
warning of coherent noise contamination. Although there appears to be no completely 
general automatic way to deal with this circumstance, useful results can be obtained 
from severely contaminated data in some cases. We show in particular how the RMEV 
estimator can be adapted to separate the MT signal from coherent noise for two special 
cases: when at least one site is unaffected by coherent noise, and when coherent noise 
sources are intermittent. We give examples of significant improvements in MT 
impedance estimates obtained with the RMEV estimate for each of these cases. 

Key words: coherent noise, magnetotellurics, multivariate statistics, robust estimation, 
transfer functions. 

1 INTRODUCTION 

The magnetotelluric (MT)  method for imaging subsurface 
electrical ‘conductivity has proved to be a useful geophysical 
tool both for fundamental studies of continental structure and 
tectonics (e.g. Wanamaker et al. 1989; Stanley et al. 1990), and 
for solving applied problems in exploration for hydrocarbon or 
geothermal resources (e.g. Orange 1989; Goldstein 1988). MT 
uses naturally occurring electromagnetic (EM)  field variations, 
and thus can offer significant cost advantages over active- 
source surface EM methods. However, the use of passive 
sources also presents a problem-signal and noise levels can 
be highly variable, and are largely beyond the control of the 

experimenter. Success with the MT method thus requires great 
care in the acquisition and initial reduction of EM time series. 
The simple single-station least-squares approach used by early 
MT practitioners (e.g. Swift 1967; Sims, Bostick & Smith 1971) 
can yield estimates of apparent resistivities and phase that are 
heavily biased or wildly oscillatory. 

Two developments have improved this situation greatly- 
the remote reference (RR)  method, in which horizontal mag- 
netic fields recorded simultaneously at a second remote site 
are correlated with the EM fields at the local site (Gamble, 
Goubau & Clarke 1979), and various sorts of robust data- 
adaptive weighting schemes (e.g. Jones & Jodicke 1984; Egbert 
& Booker 1986; Stodt 1986; Chave, Thomson & Ander 1987; 

0 1997 RAS 475 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/130/2/475/760629 by guest on 24 April 2024



476 G. D. Egbert 

Chave & Thomson 1989; Larsen 1989; Sutarno & Vozoff 1991; 
Spangolini 1994; see Jones et a/. 1989 for a general discussion 
and comparison). However, all too often there are still critical 
sites and/or frequency ranges where useful results are not 
obtained, even with some sort of robust processing of RR data. 
Typically, these difficulties are most severe for periods from 1 
to 10 s (the 'dead band), and in areas where urban cultural 
EM noise is significant. 

For example, in the EMSLAB experiment (Booker & Chave 
1989), MT data in the Willamette Valley were contaminated 
by cultural noise, leading to poor estimates for periods of 
1-10s. As a result, the conductivity structure of the valley 
basement was poorly constrained. Two very different models 
(Jiracek et a / .  1989; Wannamaker et a/. 1989)? which suggested 
very different interpretations of the physical significance of 
mid-lower crustal conductors across much of the EMSLAB 
land profile, were both allowed by the large error bars on the 
dead-band impedances. 

As a more dramatic example of the difficulties that can be 
encountered, we plot in Fig. 1 robust RR apparent resistivity 
and phase estimates from a pair of MT sites from near the 
epicentre of the 1989 Loma Prieta earthquake (Mackie & 
Madden 1992). These two simultaneously occupied sites were 
approximately 20 km apart (A and B in Fig. 2), a distance that 
would seem to be great enough for successful RR processing. 
However, apparent resistivity and phase curves [computed 
with a robust leverage-controlled remote reference procedure 
(Egbert & Booker 1986; Chave & Thomson 1989)] vary 
rapidly at periods of 1-10 s, where apparent resistivity ( p a )  
increases steeply and phases (4) become negative. 

Mackie & Madden (1992) inferred that the behaviour of pa 
and q5 evident in Fig. 1 resulted from contamination of the MT 
signal by non-uniform EM cultural-noise sources in the San 
Francisco Bay area to the north. In particular, the Bay Area 
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Rapid Transit System (BART, a DC electric rail system) had 
previously been shown to overwhelm natural sources at 
distances up to several tens of kilometres from the railway 
tracks (Fraser-Smith & Coates 1978). Due to return currents 
leaking from the tracks into the Earth, BART should look like 
a series of grounded electric dipoles, with temporally vary- 
ing geometries and currents (Fraser-Smith & Coates 1978). 
Measurements made in the near-field of this EM source would 
not be consistent with the usual MT assumption of spatially 
uniform sources, and could well lead to distortions of pa and 
q5 of the sort seen in Fig. 1. Robust RR methods (at least of 
the sort used for Fig. 1) are apparently ineffective when con- 
fronted with these sorts of difficulties. 

In this paper we report on our efforts to develop improved 
methods for processing multiple-station wide-band MT data. 
We explore two interrelated themes. First, modern MT data 
are typically highly multivariate with multiple-channel time 
series recorded at multiple stations, sometimes in the presence 
of cultural noise which may have a complex inter-component 
correlation structure. The statistical methods that have tradi- 
tionally been applied to MT processing are basically univariate 
in nature, with each noisy output channel treated separately. 
Here we take a multivariate statistical approach, extending the 
geomagnetic array processing scheme of Egbert & Booker (1989; 
hereinafter referred to as EB). A second theme is robustness. 
There is no question that the basic idea of adaptively computed 
data weights has had a major impact on the quality of MT 
impedance estimates. However, the best way to apply this 
general idea to a problem as complex as RR MT processing 
is far from obvious. Again, methods in common use (i.e. robust 
regression) were in fact developed for a comparatively simple 
univariate statistical problem-a single dependent real variable 
predicted by several real independent variables. Given the 
multivariate character of multi-station MT data, with noise 
(and possibly outliers!) in all channels, the whole question of 
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Figure 1. Apparent resistivity and phase curves for a pair of MT sites ('A' and 'B)  near the epicentre of the 1989 Loma Prieta, California 
earthquake. The two sites were occupied simultaneously, and estimates were computed using a leverage-controlled robust remote reference ( R R R )  
procedure. At both sites there is evidence of cultural-noise contamination in the period range 1-100 s. See Fig. 2 for station locations. 
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robustness in MT data processing deserves a much closer look. 
Here we explore the notion of robustness in a multivariate 
context with the goal of developing a practical robust multiple- 
station MT processing scheme. The methods we discuss are in 
particular tailored to processing data from small (two or three 
station) MT arrays in circumstances where signal-to-noise 
ratios are low and/or cultural EM noise is significant. 

In Section 2 we briefly review the multivariate model and 
outline the two-stage procedure we have developed to allow 
for the possibility of coherent noise. In the first stage, discussed 
in Section 3, the amplitude of the incoherent noise in each 
data channel is estimated, and isolated (single-channel ) outliers 
are cleaned up. With all channels scaled into the non- 
dimensional units defined by incoherent noise amplitudes, the 
‘coherence dimension’ M of the array data-i.e., the number 
of distinct soucces of coherent signal or noise ratio which can 
be resolved by the array-can be estimated. When there is no 
coherent noise, M will be two, corresponding to the two 
orthogonal plane-wave MT sources. In this case, the 2-D 
coherent part of the array signal can be used to estimate MT 
impedances and inter-station transfer functions directly. 

In contrast to the standard single-station or RR approach, 
where a pair of data channels at one site is chosen (often 
rather arbitrarily) as a reference, all available channels are 
used to define the desired signal with this approach. This can 
improve signal-to-noise ratios and enhance detection of outliers 
restricted to one (or a few) channels. In Section 4 we illustrate 
the basic ideas, and demonstrate the effectiveness of the 
proposed scheme, using data from a three-station wide-band 
MT array from the same general area as the Loma Prieta 
survey (stations 1, 4 and 5 in Fig. 2). 

If we find evidence for significant coherent noise (coherence 
dimension M > 2) we proceed to the second stage and attempt 
to separate coherent noise from the desired MT signal. This 
will perhaps often be impossible, but a careful array analysis 
can help to define the nature and extent of coherent-noise 
problems. At least in some cases this information will allow us 
to choose sites, time segments and/or period ranges for which 
contamination by coherent noise is minimal, thereby allowing 
at least an approximate separation of coherent noise and 
signal. We consider two special cases. In Section 5 we consider 
the case of a quiet reference site, relatively unaffected by 
coherent noise. In Section 6, we consider the case of intermittent 
coherent noise. We apply these specialized methods to the two- 
and three-station example arrays of Fig. 2 (A, B, and 1, 4, 5 ) .  

The proposed scheme is unquestionably more complicated 
than methods currently in use. However, the scheme provides 
a clear diagnostic for the presence of coherent noise, and 
should thus be of some value when such noise might be 
encountered. In the absence of coherent noise, the scheme 
works in a more-or-less automatic fashion, and, at least in 
some cases, yields estimates that are significantly better than 
those obtained with simpler approaches (e.g. robust RR). We 
must stress, however, that our scheme does not provide a fool- 
proof automatic way to eliminate the effects of coherent noise. 
Successful application of the second stage of the estimation 
procedure (required when coherent noise is found) will only 
be possible in some cases. Furthermore, the appropriate way 
to proceed in such cases may be highly variable, and will 
require some guidance from a user who understands both the 
multivariate approach and the nature of EM noise. 

2 THE MULTIVARIATE STATISTICAL 
MODEL 

We work in the frequency domain with Fourier coefficients 
derived from a series of short overlapping time segments 
(Egbert & Booker 1986). Estimates for each frequency band 
are computed independently, so we generally omit specific 
reference to frequency in the following. To simplify the dis- 
cussion we assume that there are five channels of data observed 
at each of J stations, so that the total number of channels 
observed in the array is K = 5 J .  Generalization to other array 
configurations is straightforward. Assuming spatially uniform 
external sources, and allowing for noise in all channels, the 
frequency-domain MT array data vectors satisfy 

B l i  + B z ;  + E; = u p ;  + E;. (1) 

Here hji and eji are the magnetic and electric field Fourier 
coefficients computed for the ith time segment at the jth site, 
the parameters Bii, 1 = 1,2, define the polarization of the source 
magnetic fields for this data segment, and the vectors E; 

represent all sources of noise, which we take to be statistically 
independent of the natural-source MT signals. 

The columns of U are K-dimensional complex vectors, which 
ideally represent the magnetic and electric fields that would be 
observed at all sites for idealized quasi-uniform magnetic 
sources, linearly polarized N-S ( 1  = 1 ) and E-W ( I  =2).  Note, 
however, that U is only determined up to multiplication on 
the right by an arbitrary invertible 2 x 2 matrix A, and is 
not uniquely identifiable for the array data (EB). Physically, 
this indeterminacy results from the impossibility of uniquely 
determining the external source polarization from observations 
of total (internal plus external) fields. It is easy to check that 
impedance tensors for each site, as well as vertical field and 
inter-station transfer functions, are simply determined from U 
(independently of the arbitrary matrix A; EB). For example, 
the impedance tensor for site j is given in terms of the elements 
of U corresponding to the x and y components of the electric 
and magnetic fields observed at station j :  

Note that because of the indeterminacy in U we may assume 
that U*U = I, where the asterisk denotes the complex conju- 
gate transpose. 

Eq. ( 1 )  defines a multivariate linear statistical model, which 
in various forms has been referred to as the structural relation- 
ship, factor analysis, linear functional equation, and (the name 
we adopt) multivariate errors-in-variables (MEV) model. These 
models for formal parameter estimation are closely related to 
more exploratory methods for data analysis known as principal 
components or empirical orthogonal functions. A general review 
from a statistical perspective is given by Anderson ( 1984), and 
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an extensive discussion of applications to geomagnetic array 
data is given by EB. 

Unbiased [and maximum-likelihood for Gaussian errors; 
see Gleser ( 1981)] estimates of U can be obtained by solving 
the generalized eigenvalue problem 

Su=IlE,u. ( 3 )  

Here S = 1/1 Z XiXT is the spectral density matrix (SDM, 
the K x K matrix of all possible component cross-product 
averages) and EN is the covariance matrix of the noise. The 
two columns of U can be estimated using the eigenvectors 
associated with the two largest eigenvalues of (3). More 
explicitly, U can be estimated as 

(4) 
Where U’ is a K x 2 matrix consisting of the two dominant 
eigenvectors of S’: 

S’=&’S&1/2. ( 5 )  
Note that in (4)  we have enforced the condition U*U = I. 
Application of this ‘eigenvector estimate’ to MT data pro- 
cessing has been proposed previously by Jupp ( 1978 ) and Park 
& Chave (1984), who suggested that this method could be 
used to overcome bias problems in single-station impedance 
estimates. This idea has not proved particularly useful in 
practice, primarily because it is essential to estimate the noise 
covariance EN accurately to eliminate bias, and this turns out 
to be difficult to accomplish with a small number of data 
channels (EB; Park & Chave 1984). 

If we were to allow for a completely general form for the 
noise covariance, the sample SDM S could obviously be 
matched exactly with a variety of possible combinations of 
noise (EN) and signal ( U )  parameters. In particular, we could 
estimate kN = S (i.e., the data is pure noise), leaving U (the 
MT parameters of interest) completely unconstrained. To make 
any progress at all, we thus must assume a restricted form for 
EN. The simplest model for the noise covariance is the diagonal 
form 

zN=diag(a: ... a;), 

which implies that all noise is incoherent between stations, 
and also between channels at a single station. Arguments given 
in Anderson & Rubin ( 1956) show that if (6)  and (1)  hold, 
signal and noise parameters will be uniquely identifiable 
provided K 2 5. Thus, in principle, incoherent-noise variances 
for each channel should be estimable from single-station 
5-component MT data. In practice, with finite data, this 
conclusion appears to be optimistic (Egbert 1987). Fortunately, 
the feasibility of reliably estimating the statistical properties of 
the noise increases with the total number of data channels K.  
With at least two MT stations, estimation of the incoherent- 
noise variances of (6)  is reasonably simple, as we shall show 
below. Furthermore, more complicated models for EN may be 
assumed. For example, Egbert (1987) shows that, with two or 
more stations, models for local noise can be arbitrary, assuming 
only that noise is uncorrelated between sites. Allowing for 
noise which is coherent between sites presents much more 
serious difficulties, even when the number of stations is very 
large. Without precise a priori knowledge of coherent noise 
geometry it is not possible to include these noise sources in a 
parametric model for EN. 

To allow for coherent noise in a general way we have thus 

found it useful to begin our analysis with a modified version 
of ( 1 ): 

where V is a K x N matrix whose columns represent coherent- 
noise sources. Now E~ represents only incoherent noise, 
guaranteeing that (6)  is a reasonable model for EN. With 
this approach we initially treat any possible coherent noise 
essentially as signal, and combine U and V into a single 
K x M matrix W of coherent signal/noise vectors ( M  = N + 2). 
As for the case of U, W is determined only up to multiplication 
on the right by an arbitrary M x M invertible matrix A. We 
may thus assume that W is a unitary matrix (satisfying 
W * W = I). Here the indeterminacy presents a serious 
difficulty, in that each of the columns of the estimated matrix 
W can be an arbitrary mixture of the columns of the signal 
and coherent-noise matrices ( U  and V, respectively). By adopt- 
ing (7) we are thus only delaying the inevitable difficulty of 
separating coherent noise from signal to a later stage of the 
analysis. However, we now start with a model that is general 
enough to include the true situation, and from which we 
can learn at least some useful things about our data. With 
this model we can estimate incoherent-noise levels in each 
channel, and clean up local isolated outliers. Most importantly, 
we can estimate the ‘coherence dimension’ M of the data 
(i.e. the number of columns in W), and thus the dimensionality 
N = M - 2 of coherent noise. 

3 ROBUST ESTIMATION FOR THE MEV 
MODEL 

For the MEV model of (7)  with the noise covariance given 
by (6), the unknown parameters are the incoherent-noise 
variances a;, k = 1, K ,  the coherence dimension M = N + 2, 
and the elements of the K x M matrix W (modulo the funda- 
mental indeterminacy noted above). In this section we present 
a practical robust scheme for the estimation of all of these 
unknowns. If we find that M = 2, W can be identified with U, 
the response of the Earth to quasi-uniform external sources. 
MT impedances (or other transfer functions) can then be 
computed using ( 2 )  (or analogues). If M > 2, we have clear 
evidence for coherent noise. We are then faced with the difficult 
task of separating this noise (i.e., V)  from the desired MT 
signal (U) .  We consider some possible strategies for dealing 
with this difficult problem in Sections 5 and 6. 

Although the details of the full multivariate robust scheme 
are somewhat involved, the basic ideas are quite simple. First 
note that if we knew (or had good estimates of) a:, k = 1, K 
estimates of M and W would be relatively straightforward to 
compute. With the data transformed as 

incoherent noise results in an isotropic scatter of unit variance 
in the transformed data space. Hence, in this space, only those 
directions corresponding to coherent parts of the data should 
have variances significantly greater than one. Thus, if we use 
the rescaled data to construct S’ = E;1/2SEN112, the number 
of eigenvalues of this Hermitian matrix significantly greater 
than one provides an estimate of M .  The corresponding 
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eigenvectors (scaled back into the original data coordinates) 
provide an estimate of W; see eqs (4)-(5). 

To proceed with this strategy we must first estimate the 
incoherent-noise variances, without knowing M or W. The 
incoherent part of the data in each channel is by definition 
not predictable from data in the remaining channels. Thus, if 
we use multiple linear regression to fit data for channel k to 
the remaining K - 1 channels, the magnitude of the residuals 
provides at least a rough estimate of the incoherent-noise 
variance for channel k. That is, we can estimate 0; as the 
residual variance obtained from fitting the linear model 

(9 )  

This simple estimate can be refined. In particular, bias in the 
estimates of 0; resulting from the presence of noise in all 
channels can be at least approximately removed (Appendix A). 
Furthermore, once we have a rough estimate of M we can 
improve the stability and accuracy of the variance estimates. 
These ideas are discussed further below, and in Appendix A. 
The key point to note is that the simple initial estimate of 
o;, k = 1, K, proposed here does not require any prior infor- 
mation about the other unknown parameters, and is thus 
suitable as a starting point for the robust iterative scheme 
defined more precisely below. 

The final key component of our estimation scheme is to use 
adaptively determined weights to clean up isolated outliers in 
individual channels, and to downweight unusual data vectors. 
In broad outline, the approach used is very similar to the 
regression M-estimate previously applied to geomagnetic trans- 
fer function estimation problems by Egbert & Booker (1986) 
and Chave et al. (1987). We begin with further details on these 
robust methods. 

3.1 

Since our estimates of M and W ultimately depend on S, it is 
useful to consider the problem of robust estimation of the 
SDM, without making specific model assumptions concerning 
signal or noise. With this approach, we focus on limiting the 
effect of a few unusual data vectors on the estimated SDM. 

Huber (1981, Chapter 8)  discusses a variety of approaches 
to robust covariance matrix estimation. Any of these methods 
could be applied to robust estimation of the SDM, since S is 
essentially just the complex sample covariance matrix for the 
frequency-domain data vectors Xi. Here we adapt the affinely 
invariant approach of Huber to allow for complex data vectors. 
This approach is similar to the M-estimate-estimates of the 
SDM are obtained as maximum-likelihood estimates for a 
heavy-tailed ‘ellipsoidal’ family of multivariate densities. Note 
that we may assume that the Fourier coefficients have zero 
mean, significantly simplifying the more general scheme dis- 
cussed by Huber. To derive the estimator, one assumes a 
family of multivariate probability densities of the form 

Robust estimation of the SDM 

f ( x ;  Y 1 = ldet Ylf( IYxl), (10) 

where f is a spherically symmetric probability density, and 
the multi-dimensional shape of the distribution is given by the 
‘pseudo-covariance matrix’ (YY* ) -  For the K-dimensional 
complex Gaussian distribution, f ( r )  = ( 4 7 ~ - ~  exp[-r2/4]. To 
make the procedure robust a heavy-tailed f is used. For 

example, we have taken 

where Co and C, are chosen to make f ( r )  a continuous density 
function. Other choices of f  are discussed in Huber ( 1981). 

Formally, the robust estimate of the SDM is given by 

s =(YY*)-’, (12) 

where Y maximizes (10). In practice, the estimate can be 
computed as a weighted cross-product matrix, 

1 

s =  1 W,X,X,*, 
i = l  

with the weights determined by the data: 

The computation thus proceeds iteratively, much as for the 
regression M-estimate used by Egbert & Booker (1986), with 
the Cholesky decomposition of the weighted SDM S from the 
previous iteration used to calculate the weights of (14) for the 
next update. 

3.2 A robust MEV estimator 

The robust SDM estimate described above is invariant under 
all rotations of the data vectors (in the full K-dimensional 
data space). This means that outliers are assumed to be equally 
likely in all directions. In fact, outliers are much more likely 
to occur in specific directions in the data space. For example, 
there may be outliers due to coherent noise which occur 
only in a relatively low-dimensional subspace (dictated by the 
geometries of noise sources and the MT array). By identifying 
this ‘coherent noise subspace’, the performance of a robust 
estimator might be enhanced. On the other hand, instrumental 
problems or localized sources of noise might be expected to 
cause outliers in individual channels. Under these circum- 
stances it would make more sense to focus on outliers in the 
coordinate directions of the measured data. We consider this 
simpler case first, putting off the problem of explicitly allowing 
for coherent noise outliers until Sections 5 and 6. 

To allow for outliers in individual channels we develop a 
robust estimate for the MEV model of (7). This means that 
initially we treat coherent noise as part of the signal. To start 
we assume that M and 02 ,  k = 1, K ,  are known. In practice, 
these parameters will of course have to be estimated, an issue 
to which we return below. By transforming the data as in ( 8 )  
we may assume that EN =I .  For the case of isotropic noise, 
the MEV estimates for W can be obtained by minimizing 
(Gleser 1981) 

I M 12 

over W and the generalized polarization parameters 
a,, i = 1, I. This minimization can be accomplished by solving 
an eigenvalue problem, or by an alternating conditional least- 
squares algorithm (Egbert 1991 ). Emulating the regression 
M-estimate (Egbert & Booker 1986; Chave et a/. 1987), we 
can replace the quadratic misfit of (15) by the more general 
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loss function 

(16) 1 M 

~ P ( X i k - ~ , a i m & m  . 

Minimizing (16) over the unknowns Wkm and aim leads to a 
series of coupled weighted least-squares normal equations: 

where rik and W i k  are the residuals and weights: 
M 

rik = - z: aim &m 3 W i k  = p ’ ( r i k ) / r i k .  (19) 
W I = 1  

Defining 
M 

i i k  = W i k X i k  + (1 - W i k )  1 a i m  K m  = W i k X i k  + ( 1 - W i k ) x i k ,  
m = l  

(20) 
a simple calculation shows that the normal equations (18)-( 19) 
can also be written 

(21) 

r*irn,Wkm. M i r n  k =  1, K m= 1, M .  (22) I* M 

z [ ’ i k -  rn’ 1 = 1 

In (21)-(22), r i i k  can be interpreted as the kth component of 
a ‘cleaned data vector’ Xi. Each component is a weighted 
average of predicted and observed data. Note that with the 
assumption that W *W = I, (21) implies that the estimates of 
a, and W satisfy 

K 

& i m =  1 @ : m 2 i k .  (23) 
k = l  

That is, the estimated generalized polarization parameters are 
just the inner product of the cleaned data vectors X i  with the 
columns of W. 

The following iterative scheme for minimizing (16) is thus 
suggested. 

(1) Estimate the SDM using the rotationally invariant 
robust approach of the previous subsection, and compute a 
preliminary estimate of W using the dominant M eigenvectors. 

(2) Use the estimate of W and the raw data vectors in (23) 
to estimate ai,  i = 1, I .  

(3) Calculate residuals, weights, and cleaned data vectors 
using (19) and (20). 

Using the cleaned data vectors from step (3), we can then 
repeat steps (1)-( 3), iterating to convergence. 

Note ‘that after step (2) is completed, the estimates of W 
and a,, i = 1, I ,  for the current iteration satisfy (21) and (22), 
but with the cleaned data vectors calculated from the previous 
iteration. To see this, note that (21) and (22) are the normal 
equations for the least-squares problem (15), but with the 
actual data vectors replaced by Xi. W is computed from the 
eigenvectors of the corresponding ‘cleaned SDM’, and thus, 
with a, defined through (23), satisfies (21) and (22) (Gleser 
1981). Thus, if the iterations converge, the resulting W and ai 
must satisfy (20)-(22) and hence (17)-(18). We do not know 

what conditions will guarantee either that this scheme will 
converge to a solution to the normal equations, or that any 
resulting solution will be a global minimum of (16). However, 
using a Huber-type penalty functional, modified for complex 
residuals, i.e. 

the procedure generally seems to be well behaved. Convergence 
to an (apparently reasonable) solution is generally rapid. We 
have tried a range of values of ro in (24); ro = 1.4 seems to 
work reasonably well. 

3.3 

An initial estimate of a;, k = 1, K ,  can be based on residual 
variances obtained from fitting each channel to the remaining 
K - 1 channels. The iterative robust MEV estimation scheme 
suggests an alternative approach. Note first that, after the first 
iteration of steps (1)-(3) above, we have estimates of the 
polarization parameters ai ,  and for subsequent iterations 
step (1) can be replaced by the following. 

(4) Using the cleaned, but unnormalized, data vectors Si, 
and the current estimates of the polarization vectors a,, i = 1, I, 
solve the normal equations (22) for W. Use Gram-Schmidt 
orthogonalization to make the columns of the new estimate 
orthonormal. With the new estimate of W return to step ( 2 ) .  

Step (4) corresponds exactly to doing a multiple linear 
regression of each (cleaned) data channel on the current 
estimates of the polarization parameters. This suggests that 
residual variances from these regressions could be used to 
provide approximate estimates of a:, k = 1, K .  We use a variant 
on this idea, which also incorporates elements of our simple 
initial estimate of incoherent-noise variances. 

Again, for channel k we restrict attention to the remaining 
K - 1 channels. Using these reduced (K - 1)-dimensional data 
vectors we execute steps (1)-(3), obtaining estimates of 
S i k ,  i = 1, I. The estimated polarization vectors (which are 
slightly different for each channel) are then used as the 
predictor variable in step (4) to compute the incoherent 
residual variance for channel k. The resulting set of K residual 
variances will in general be biased estimates of a:, because 
noisy estimates, rather than the true polarization vectors ai, 
are used as the predictor variables. However, once the residual 
variances have been computed, approximately unbiased esti- 
mates of the incoherent-noise variances can be computed by 
solving a K x K system of linear equations. Details are given 
in Appendix A. 

This variance estimation scheme can be made more robust 
in two ways. First, the regression step (4) can be accomplished 
with a robust scheme in which outliers in channel k are 
pulled towards predicted values. Second, after data vectors 
have been ‘cleaned’ for all channels, polarization parameters 
can be re-estimated by repeating (2), and the calculation of 
incoherent-noise variances can be repeated. 

Three aspects of our scheme for estimating a; deserve further 
comment. First, using the estimated polarization parameters 
tiik, i = 1, I ,  to predict each channel is significantly more stable 
than using the original data vectors Xi , , ,  k # k’, i = 1, I. Our 
approach is essentially identical to regression on principal 

Estimation of incoherent noise variances 
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components (e.g. Hawkins 1977; Seber 1984), a commonly 
used way to stabilize regression when the predictor variables 
dre highly correlated (as we should expect of the components 
uf the original data vectors). Second, until we have good 
estimates of c ~ i ,  accurate estimation of M is difficult, while to 
estimate the polarization vectors we apparently need to know 
M. F-ortunately, as we show in Appendix A, the estimates of 
incoherent-noise variances based on the estimated polarization 
veitars hik (computed by excluding channel k) ,  should be 
roughly correct provided our estimate of M is at least as large 
as the true M .  With the propose8 scheme it is thus not 
necessary to have a good estimate of M to proceed with the 
initial estimation of the incoherent-noise variances. 

Finally, it is relatively straightforward to generalize our 
incoherent noise model to allow for noise which is coherent 
within a single site, but incoherent between sites. In this model, 
EN would be block-diagonal, with all inter-station blocks 
identically zero. To estimate this more complicated covariance 
matrix we compute incoherent residual vectors for site j by 
predicting all channels at this site using the remaining 5 (  J - 1) 
channels for the other J - 1 sites for the predictor variables. 
With this alternative model we can explicitly distinguish 
between noise which is coherent between sites, and noise which 
is coherent within a single site. 

3.4 Summary of the RMEV estimation scheme 

We summarize the full procedure for estimating the unknowns 
oi,  M, and W. 

(a) Compute the robust scaled SDM S'= E;1/2SZ;1i2, using 
the current version of the cleaned data vectors Si ,  and the 
current estimate of oi, k = 1, K.  To initialize, just use the raw 
data and unit noise variances. 

(b) For each component k extract the L dominant eigen- 
vectors of the submatrix of S' formed by deleting the kth row 
and column. Initially, choose L= K - 1; subsequently, choose 
L conservatively to be at least as large as the estimated M .  
Using these eigenvectors of the reduced SDM, and the scaled 
data components Xik' = Xik'/(Tk', k' # k, do step ( 2 )  once, then 
iterate steps ( 3 )  and (4) to convergence. Save the final cleaned 
data components zik, along with estimates of residual noise 
variance for each channel. Residual noise variances are 
corrected to allow for the downweighting of large residuals as 
described in Egbert & Booker (1986, Appendix A), and for the 
bias effects discussed in Appendix A. 

(c) Return to step (a) using the updated cleaned data vectors 
and incoherent-noise variances. Steps (a) and (b) can be iterated 
to convergence. A few (three or so) steps generally seem to be 
sufficient. 

(d) Now do step (a) once more, using the cleaned data and 
estimates of c$, k = 1, K ,  from the final iteration of (b). Extract 
the eigenvectors from the full matrix S', providing initial 
estimates 0f.M and W. 

(e) Iterate steps (2)-( 4) above (with c~i fixed) to refine the 
estimates of M and W. 
We will refer to the full scheme outlined in steps (a)-(e) as the 
Robust Multivariate Errors-in-Variables (RMEV) estimator. 

3.5 Calculation of error bars 

When M = 2, the usual MT impedances and inter-station 
transfer functions can be calculated from the estimates of U 

(= W), by using (2). To calculate error bars for these estimates, 
we apply the asymptotic (large sample) results of Gleser ( 1981 ), 
as modified for complex data by EB. To be explicit, we consider 
error bars for transfer functions using the horizontal magnetic 
fields at the first site as a normal field reference. By suitable 
reordering of components, these formulae can be applied to 
compute error bars for any inter-station or inter-component 
transfer functions. Throughout this subsection, we use primes 
to denote quantities expressed in the non-dimensional units 
defined by the incoherent-noise standard deviations C T ~ .  

Results are most simply expressed in terms of the K x 7 
matrices U and U' defined in (4)  and ( 5 ) .  The estimated 
transfer functions for all channels relative to the two reference 
channels are given by the ( K  - 2 )  x 2 complex matrix 
'f = U,U;', where U1 is the 2 x 2 sub-matrix consisting of 
the first two rows of U, and U2 contains the remaining K - 2 
rows. In non-dimensional incoherent noise units, the transfer 
function estimates are of course T'=U;U;-'. Define the 
( K  - 2)  x ( K  - 7 )  matrices Zk and ZR as 

After some algebraic manipulation, the results given in EB for 
the large sample approximation to the covariance of the 
elements of? can be expressed as 

The terms in this expression have a relatively simple 
interpretation, which suggests a simple modification to allow 
at least approximately for downweighting of data by the 
robust procedure. First, it can be easily shown that ZR is 
an approximation to the covariance matrix of the predicted 
field component residuals Xi, - ZkCl qmXim, k = 3, K [the 
approximation, which comes from using the estimated transfer 
functions in ( 2 5 ) ,  improves as the sample size I increases]. The 
second term in the product (subscripted by II') thus charac- 
terizes the combined noise in the predicted and predicting 
channels. On the other hand, I - '&  provides an estimate of 
the total signal power covariance in the reference magnetic 
fields, while the non-dimensional 2 x 2 matrix E;I provides an 
estimate of the average array signal-to-noise ratio. It can thus 
be shown that as signal-to-noise ratios increase, the first term 
in the product can be approximated as (E:H1)mm,. 

For transfer functions between a single output channel and 
two noise-free input magnetic channels, the usual least-squares 
expression for error covariance is 

where c~' is the noise variance for the predicted output channel, 
and the cross-product matrix gives the total horizontal mag- 
netic field power. Clearly, (27) bears a close resemblance to 
(28); for example, (ZR)kk (variance of residuals for channel k )  
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in (27) should be identified with 0’ in (28). For the robust 
regression M-estimate, (28) should be changed to allow for 
the downweighting of data. Following Huber (1981), Egbert 
& Booker (1986) show this can be accomplished by (1) using 
the cleaned data in the calculation of the residual variance 
[i.e. the estimate of 0’ in (28)]; and ( 2 )  multiplying the right- 
hand side of (28) by a correction factor x = [EQ”]-~, where 
p” is the second derivative of the loss function used, and E is 
the expectation operator. For the Huber loss function of (24), 
Ep” can be estimated by the fraction of ‘good’ data points 
(with residuals magnitudes less than y o ) .  See Egbert & Booker 
(1986) for details. We use a similar approach to allow for 
downweighted data in the RMEV estimate. Specifically, we 
use cleaned data to calculate XR, and multiply the right-hand 
side of (27) by the appropriate estimated torrection factor x. 

These error bars are only approximately correct, for 
several reasons. First, in contrast to the mathematically 
rigorous development followed for the standard M-estimate, 
our treatment here is purely heuristic. Second, we make no 
allowance for uncertainties in the estimated incoherent noise 
variances. Third, the asymptotic error bars proposed by 
Gleser (1981) strictly require fourth moments of the error 
distribution. In (27), these are approximated by using esti- 
mated second moments to calculate fourth moments under the 
assumption of a Gaussian error distribution. Note, however, 
that the fourth moments enter the error expression through 
( X ~ - l U ~ U ~ * E ~ - l ) m m , ,  a term which we have argued will 
generally be small. Failure of the Gaussian error assumption 
may thus not be so serious. 

Further development of improved error estimates [for 
example using jackknife methods as proposed by Chave & 
Thomson ( 1989)] is clearly warranted, but is beyond the scope 
of this paper. 

4 EXAMPLES 

To illustrate the methods of the previous section we consider 
data from the three-station array 1-4-5 plotted in Fig. 2. At 
all sites, standard 5-component MT data were collected, so 
K = 15. For our examples we consider data from two sampling 
bands: 120 Hz data, collected in a series of short runs (total 
duration: = 1000 s) at a range of times during daylight hours; 
and 10 Hz data sampled continuously for approximately 12 
hours. In Fig. 3 we plot incoherent noise power spectra (i.e. 
estimates of cr:, k = 1, K ,  as a function of period) for selected 
channels ( k ) :  the three H ,  channels for the 120 Hz band, and 
the three E, channels for the 10Hz band. In both cases we 
present estimates of incoherent-noise power obtained both 
with and without the iterative cleaning used for the RMEV 
estimate. The raw data estimates (Figs 3a and b) thus give 
power spectra for the total incoherent-noise process (including 
isolated outliers), while the RMEV estimates (Figs 3c and d )  
give power spectra for the noise processes with outliers 
cleaned up. 

Differences between the raw data and RMEV spectra provide 
clear evidence for the effectiveness of the multivariate robust 
procedures. Many of the localized peaks seen in the non- 
robust noise spectra of Figs 3( b) and 4(d) are reduced or even 
eliminated by the robust scheme. In particular, the prominent 
peak near 0.05 s in the station 1 H ,  noise spectrum is reduced 
by two orders of magnitude in the RMEV spectrum. In this 
frequency band, noise at site 1 was thus dominated by an 

PACIFIC OCEAN 

mzmzm 
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Figure2. Map showing locations of sites A and B referred to in 
Fig. 1, as well as the three stations (1, 4, and 5) used for the example 
three-station array. Shading denotes urban areas; tracks for the Bay 
Area Rapid Transit (BART) DC electric railway are marked by a 
heavy line. 

intermittent source, which could be effectively filtered out using 
the RMEV scheme. As we shall show below, estimates of MT 
impedances near 0.05 s are significantly improved using the 
RMEV estimate. Other peaks in the H ,  noise spectra (at 0.7 s 
for station 5, and at 0.2 s for station 4) are also significantly 
reduced (by a factor of 2-3) with the RMEV estimator. Note 
also that there is a general tendency toward a reduction in 
overall noise levels in the RMEV curves for H,. 

For the 10 Hz sampling band, there are peaks near a period 
of 100s in the raw data E, noise spectra for all sites. These 
are eliminated by the robust scheme. This rather curious source 
of noise (incoherent between stations, but apparently present 
at all sites) is also only present sporadically. The small peak 
in noise power at a period of 1 s for E, at site 1 is also removed 
by the RMEV estimator. Of course in many cases robust and 
raw data noise spectra will be similar. Indeed, this is the case 
for some of the other (unplotted) data channels for our example 
arrays. However, at least in some cases, the robust iterative 
scheme enhances signal-to-noise ratios, and as a result can 
improve estimates of MT impedances. 

In Fig.4 we plot, as a function of period, the ordered 
eigenvalues of the non-dimensional SDM S’. The number of 
eigenvalues significantly greater than one provides an estimate 
of the true coherence dimension M .  If there is no coherent 
noise we should find M = 2. To emphasize this in Fig. 4, curves 
for the two largest eigenvalues are plotted with solid lines, 
with the remaining K - 2 smaller eigenvalue curves dashed. 
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Figure 3. Examples of estimated noise spectra (i.e., 0: as a function of period) computed for selected channels from the three-station example 
array. In all panels solid lines give the spectrum for station 1, long dashes that for station 4, and short dashes that for station 5. In (a) raw-noise 
spectra are plotted for the three H ,  channels from the 120 Hz sampling hand. (c) gives noise spectra for the three E, channels from the 10 Hz 
sampling band. For (b)  and (d) spectra for the same channels were computed using the data with outliers cleaned up by the RMEV estimate. Some 
localized peaks in the raw spectra are eliminated by the robust estimator, implying that these peaks result from intermittent noise sources, which 
are effectively filtered out by the robust scheme. 

When the number of large eigenvalues exceeds two, we have 
evidence for coherent noise of some sort. There are large 
sample hypothesis tests for the statistical significance of large 
eigenvalues in the case where signal and noise jointly have 
a multivariate Gaussian distribution (e.g. Morrison 1967; 
Giri 1977; EB). Given the strongly non-Gaussian nature of 
both signal and noise, and given that we must estimate 
o:, k = 1, K ,  these tests can only provide rough guidance at 
best. Better ways to test the coherence dimension of the data 
rigorously would be a useful development. For now we adopt 
a more qualitative exploratory approach, noting that with the 
data scaling of (8) the eigenvalues are non-dimensional, and 
can be interpreted as a signal-to-noise power ratio. Thus, quite 
aside from the question of statistical significance, we can at 
least qualitatively assess the relative magnitude of possible 
coherent noise in the MT array data. 

For the 120 Hz sampling band M x 6 at the shortest periods. 
The magnitudes of these secondary eigenvalues decrease 
steadily with period until they merge with the background 
incoherent noise levels at Tx 0.2 s. For longer periods in this 
sampling band M = 2, indicating that the uniform-source MT 
assumption is satisfied quite well. The short-period coherent 

noise turns out to have a rather mundane explanation. A bug 
in the data acquisition software caused sporadic small random 
errors in the actual sampling time for data at each site. The 
result is an apparent source of noise which is coherent between 
all components at a site, but completely incoherent between 
sites. This property of the noise can be verified by generalizing 
our model for EN to allow for locally coherent noise, as 
sketched above (and in Appendix A). When the data are 
rescaled with the resulting estimate of C,, we find that the 
coherence dimension of the array data is two for the full 
120 Hz sampling band (Fig. 4b). 

Note also that in Figs 4(a) and (b) there are three broad 
peaks in the dominant eigenvalue spectra (at periods of 0.125, 
0.07 and 0.05 s), where signal-to-noise ratios are enhanced. 
These peaks correspond to the Schuman resonances of the 
Earth-ionosphere cavity (e.g. Matsushita & Campbell 1967), 
where an enhancement of signal power should be expected. 

For the 10 Hz sampling band (Fig. 4c) the coherence dimen- 
sion M exceeds two for all periods longer than about 2s. 
Indeed, for periods of 5 to 30 s, the second and third largest 
eigenvalues are nearly equal, so that the distinction between 
the largest two eigenvalues and the remaining 13 is no longer 
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Figure 4. Eigenvalues of the scaled SDM S' for the three-station 
example array for (a)-( b) the 120 Hz sampling band, and (c) the 10 Hz 
sampling band. All channels are scaled into non-dimensional units by 
dividing by the estimated incoherent-noise standard deviations, so the 
eigenvalues are non-dimensionahzed and can be interpreted as signal- 
to-noise power ratios. The number of eigenvalues significantly greater 
than unity thus gives an estimate of the effective coherence dimension 
M of the array signal. For the case of quasi-uniform sources con- 
taminated only by incoherent noise M = 2. To emphasize this the two 
dominant eigenvalues are plotted with solid lines. In (a), where we 
have assumed a diagonal noise covariance, we have evidence for 
coherent noise at the shortest periods. However, generalizing the 
model for EN to allow for noise that is locally coherent (b) demonstrates 
that this noise is not coherent between stations. In fact, the coherent 
noise at short periods can be traced to a problem with timing 
synchronization between stations. For this sampling band M = 2 for 
all periods, and there is no real problem with coherent noise. For the 
10Hz sampling band, (c), coherent noise is significant for periods 
longer than a few seconds. From about 5 to 30s period the second 
and third largest eigenvalues are nearly equal, making the distinction 
between MT signal and coherent noise problematic. 

truly justified. Allowing for locally coherent noise has little 
effect on the appearance of Fig. 4(c), demonstrating that the 
additional significant eigenvalues indeed result from sources 
of noise which are coherent between stations. 

The M = N + 2 dominant eigenvectors of the scaled SDM 
S' provide us with an estimate of the span of the columns of 
the K x M matrix W [via the analogue of (4)]. When M = 2 
( N  = 0), W is identical to U and we can proceed to calculate 
the usual MT transfer functions. To assess the performance of 
the RMEV estimate in this simpler case where there is no 
coherent noise, we first consider a synthetic data example. 

In Fig. 5 we compare the performance of the RMEV with a 
robust RR (RRR) estimate. This estimate is based on the 
approach of Egbert & Booker (1986), with the addition of 
procedures for leverage control, and generalized to the RR 
case as suggested by Chave & Thomson (1989). For this 
example, 1 Hz data were generated for two 5-channel sites 
over a 100 C2 m half-space. Random noise from a heavy-tailed 
distribution was then added (in the frequency domain) to all 
data channels. When compared to non-robust single-station 
and RR estimates (not shown), the RRR estimate (Fig. 5a) 
performs reasonably well. However, the RMEV estimates 
(Fig. 5b) are significantly better. There are two significant 
differences between the RRR and RMEV estimation schemes, 
which probably explain most of the difference in performance. 
First, there are outliers in all channels, including the RR 
channels. In contrast to the RMEV estimate, the RRR estimate 
does not specifically allow for outliers in the remote. Second, 
the RMEV estimator uses all data channels to define an 
optimal set of reference fields. 

In Fig. 6 we compare RRR and RMEV estimates of apparent 
resistivities and phases for station 5, using actual data from 
the 120Hz sampling band. For the RRR estimate we used 
horizontal magnetic fields from station 1 as a reference, while 
the RMEV estimator was applied to the two-station array 
consisting of stations 1 and 5. Improvements are significant 
with the array approach. Note in particular the improvement 
in the estimates at a period of T ~ 0 . 0 5  s. This is, in fact, the 
period where the RMEV scheme eliminated the peak in the 
H ,  noise spectrum at site 1 (see Fig. 3, and the associated 
discussion). Clearly, outliers in the magnetic fields at site 1, 
which were used as the sole reference in the RRR estimate, are 
seriously degrading the RRR impedance estimates. Note that 
in this case similar results are obtained when all three sites are 
included in the multiple-station analysis. 

For the 120Hz sampling band there is no coherent noise, 
and we find that the RMEV impedance estimates are quite 
good. However, the eigenvalues plotted in Fig. 4(c) suggest 
that coherent noise will be a significant problem for periods 
beyond a few seconds in the 10Hz sampling band. This is 
confirmed in Fig. 7, where we plot robust single-station and 
RMEV results for site 5. The single-station curves are fairly 
smooth, but pa is locally very steep (for one mode the increase 
is more than an order of magnitude between 5 and 10 s), and 
the phase decreases suddenly (to negative values for one mode) 
at a period of 7-8 s. This apparently non-physical behaviour 
of the impedance from 4 to 40 s is consistent with the coherent 
noise implied by Fig. 4(c). 

To apply the RMEV estimates here we have a problem: how 
do we decide which 2-D slice of the M-dimensional coherent 
data space (i.e., the span of the columns of W) defines the 
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Figure 5. Apparent resistivity and phase estimates computed from very noisy synthetic M T  data using (a) RRR, and (b)  RMEV estimates. For 
this comparison synthetic data were generated for two stations over a 100 C2 m half-space, with noise from a heavy-tailed distribution added to all 
data channels (in the frequency domain). The RMEV estimate provides dramatically improved estimates by cleaning up outliers in all data 
channels, including those for the remote. 

Figure 6. Apparent resistivity and phase estimates for site 5 from the three-station example array (120 Hz sampling band). (a) RRR estimates for 
site 5 using site 1 as a reference. (b)  RMEV estimates for the two station array consisting of sites 1 and 5. Improvements are significant with the 
new approach: Note especially the improvement near T =  0.05 s, where the RMEV scheme was able to eliminate the peak in the H ,  noise spectrum 
at site 1 (see Fig. 3) .  Clearly, outliers responsible for the peak in the noise spectra are seriously degrading the RRR estimates of (a). 

response of the Earth to uniform sources? For much of the 
frequency range here, M = 4 (Fig. 4c). We plunge ahead blindly 
and assume that the signal dominates, so that the two dominant 
eigenvectors of the scaled SDM at least approximately define 
the desired uniform-source space. The results, given for site 5 
in Fig. 7( b), are disappointing but hardly surprising. The non- 
physical behaviour is similar to that obtained with single- 

station processing, but the RMEV estimates are no longer 
smooth. This erratic behaviour is worst where the second 
and third eigenvalues are nearly degenerate (4-50 s). In this 
period range, the second eigenvector used for the RMEV 
estimate of U is obviously ill-defined, allowing the mix of 
coherent noise and signal in our naive estimate to vary rapidly 
with period. 
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Figure 7. (a) Robust single station and (b)  RMEV apparent resistivity and phase estimates for site 5, for the 10 Hz sampling band. In both cases 
the curves exhibit non-physical behaviour in the period range 4-50 s. To compute the RMEV estimates here we have assumed that the eigenvectors 
associated with the largest two eigenvalues of the scaled SDM define the MT source. Clearly this is not so, as suggested already by Fig. 4(c). 

5 SEPARATION O F  MT SIGNAL AND 
COHERENT NOISE 

The RMEV estimator developed above provides an estimate 
of M ,  the coherence dimension of the array data. If M = 2 ,  
it also provides an estimate of U = W, equivalent to all 
possible inter-component and inter-station transfer functions. 
As we have shown, these estimates improve on the more 
standard robust RR transfer function estimates in some cases. 
Furthermore, if M exceeds 2, we are clearly warned of the 
presence of coherent noise. With M > 2 ,  however, W is a 
mixture of coherent noise (Vy) and the desired MT signal 
(Up), and it is unclear how (or if) we can obtain reasonable 
estimates of the MT parameters. 

The situation is illustrated in Fig. 8, where we plot the field 
components corresponding to each of the columns of W, as 
estimated for our example three-station array at a period of 
10 s, where M = 4. The horizontal magnetic fields in this plot 
exhibit large variations between the southernmost site 1 and 
sites 4 and 5 .  For MT sources, the horizontal magnetic field 
components should be approximately constant across the 
array, since internal anomalous fields are typically significantly 
smaller than the uniform primary (or normal) total fields. 
The large deviations from uniformity seen here suggest that 
coherent noise dominates the MT signal. 

Although there is no general completely fool-proof method 
for separating MT signal from coherent noise, in some circum- 
stances such a separation may be possible. We consider two 
particular cases. In the first, we make use of a quiet reference 
site to effect the separation. In the second case, considered in 
Section 6, we take advantage of intermittency in the coherent 
noise. 

5.1 

Site 1 in our three-station example array is 100 km south of 
the other two sites. Several lines of evidence suggest that this 

Use of a quiet remote 

site is relatively unaffected by the coherent noise, which clearly 
contaminates the MT data at stations closer to the San 
Francisco Bay area (Fig. 7). First, single-station estimates for 
this site (not shown) are generally well behaved. Second, 
canonical coherence analysis shows that the dimensionality 
of coherent signal between site 1 and the other two sites is 
two. 

The simplest way to use a quiet site to separate the 
MT signal from the coherent noise is to use the usual RR 
method. Here we consider some generalizations which allow 
us to make better use of all data channels. In essence, all sites 
can first be used to reduce the effects of incoherent noise, and 
then the quiet site can be used to separate the MT signal from 
the coherent noise. Consider again (7 ) ,  with the MT signal 
represented by Upi, and the coherent noise represented by 
Vy,. Recall that the MT (pi) and coherent noise (y,) polarization 
vectors are taken to be statistically independent. We also 
assume that at the first site the horizontal magnetic field 
components are unaffected by coherent noise. Finally, we 
assume that the columns of the unknown MT signal-space 
matrix U are normalized relative to the site 1 horizontal 
magnetic components, so that 

where all matrices are 5J x 2, partitioned to highlight the 2 x 2 
upper blocks, corresponding to the quiet-site magnetic com- 
ponents. Note that the normalization assumption adopted here 
for U does not represent any real restriction, since it is only 
the span of the columns of U that is well defined in practice. 
With this modified definition of U, the MT polarization 
parameters pi are also modified, so that they now correspond 
to the horizontal magnetic components of the MT signal at 
site 1. The matrix B defined in (29) will be useful in the 
following. 
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Figure 8. Coherent array mode vectors W for the example MSMT array at a period of 10 s. Here the coherence dimension of the array data is 
M = 4. Horizontal magnetic and electric components for the four columns of W are plotted in the upper and lower panels respectively, as vectors 
on a map of station locations. Real parts of vectors are solid, imaginary parts are dashed. Vertical magnetic components ( H , )  are represented by 
the symbols (real parts in upper panels, imaginary parts lower). Symbol size is proportional to magnitude, with open symbols denoting negative 
H , ,  and solid symbols positive. The phase of each 15-component vector (column of W) is chosen so that the RMS imaginary part of the horizontal 
magnetic field components is minimized, Electric field components are scaled to have the same units as the magnetic fields (nT) by dividing by the 
absolute value of the impedance for a 100 R m half-space. These plots display the spatial variation of the EM fields associated with the coherent 
signal/noise ‘array modes’. For the idealized case of quasi-uniform sources, A4 = 2 and the horizontal magnetic field components for the two 
dominant modes should be approximately uniform. Here, the horizontal magnetic fields for the two dominant modes exhibit large variations, 
particularly between the base site and sites 4 and 5 to the north. 

The RMEV estimate can be viewed as an iterated two-stage 
weighted least-squares procedure. In each iteration, we first 
use linear regression to estimate the generalized M-dimensional 
polarization vectors ui (i.e., step 2 of the RMEV estimate). 
Then, in the second stage, we regress on the estimated ui to 
determine W (step 4). When there is no coherent noise and 
M = 2 ,  the vectors a, estimated in the first stage can be 
identified with the MT source polarization vectors pi, and the 
results of the second stage can be identified with U, i.e. the 
MT transfer functions. When M > 2, the MT source (pi) and 
coherent-noise (7 , )  polarization vectors are mixed together in 
an unknown way in the estimated vectors a,.  If instead we 
could estimate pi, we could proceed to a modified step 4 in 
which we regressed X i  on these proxies for the MT source 
fields to obtain estimates of U, and hence the desired MT 
impedances. This is is just what a quiet site allows us to do. 
In particular, with the assumptions and notation of (29), the 
magnetic field components at the quiet site ( h,,) can be viewed 
as unbiased estimates of pi, since 

hli = B*Xi = pi + BE,, (30) EBE, = BEE, = 0 .  

In fact, use of these simple estimates of pi as the independent 
variable in a classical linear regression exactly reproduces the 
usual RR estimate. 

The simplest way to make use of a quiet reference within 
our robust multivariate framework is thus just to use the 
cleaned local magnetic field channels from the quiet site to 
define the MT polarization parameters pi, and then proceed 
with step 4. Although very similar to the usual RRR estimate, 
there are some advantages to even this simpke variant of the 
RMEV estimate. In particular, we still allow for outliers in all 
channels, including those at the reference site. All of the 
multivariate robust features described above are applied to 
clean up and/or downweight data. Only in the final step do 
we focus on data from a single site to define the reference signal. 

Other ways to estimate the parameters pi allow us to use 
data from additional channels. Most obviously, all five channels 
from a quiet site could be used. To do this we can compute 
the two dominant eigenvectors from the 5-D quiet-site data 
vectors. These can then be used in the analogue of ( 2 3 )  
(i.e., with cleaned data vectors restricted to the quiet-site 
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components) to estimate pi. With this approach the reference 
is effectively an optimally weighted linear combinations of all 
five data channels. Note that the weights depend on the 
estimated o:, and will thus vary with frequency. The reference 
may thus be primarily defined by electric fields over part of 
the frequency range, and by magnetic fields over the rest. 
Compared to the standard RR approach, this approach can 
reduce noise in the reference. Of course this idea could be 
generalized further in some cases, for example data from several 
quiet sites could be used to define the reference. 

There is a slightly more complicated way to use a quiet site 
to define the MT signal for the RMEV estimator, which makes 
even better use of all data channels. Assuming (as we did 
initially) that the columns of W have been orthonormalized, 
WW* is the orthogonal projection onto the combined span of 
U and V. A simple calculation thus yields 

(31) 

The 2-D complex vectors Si are thus unbiased estimates of the 
MT source polarization parameters. These have a simple 
interpretation: they are the quiet-site horizontal magnetic 
components of the predicted data vectors 

Ai = ww *xi. (32) 

With this approach, all data channels are thus used to form 
the best prediction of the coherent part of the data (MT 
signal + coherent noise). The predictions at the quiet site 
(which should still be free of coherent noise) are then used to 
define the reference signal. The advantage of this approach is 
that all data channels are averaged to reduce noise in the 
predicted reference channels. A disadvantage of this approach 
is that it can lead to a small bias in the resulting impedance 
estimates, even with an infinite number of data. The nature of 
this bias, and a simple correction are discussed in Appendix B. 
In spite of this extra complication, our experience so far 
suggests that this last scheme provides the most satisfactory 
way to make use of a quiet reference site in a MT array. Note 
that when M = 2  (no coherent noise) this estimate is exactly 
equivalent to the RMEV estimate proposed above, no matter 
which site is chosen as the reference. 

B*WW *xi = pi +B*WW * E ; =  &. 

5.2 Estimation of coherent-noise vectors 

With a quiet reference site we can estimate U as well as W. 
With a bit more effort we can also estimate the coherent-noise 
vectors V. These can then be used to derive weights which 
allow us to emphasize the cleanest data sections. We sketch 
the basic idea. Details are provided in Appendix B. Proceeding 
as above, we use the quiet site to estimate the MT polarization 
vectors pi.  These estimates are then used to predict and remove 
the MT part of the signal, leaving residuals that are a com- 
bination of coherent and incoherent noise. Using our estimates 
for incoherent-noise scales, an eigenvector analysis is used to 
estimate the incoherent-noise vectors V. 

This procedure allows us to separate the four vectors of the 
coherent data space ( W )  plotted in Fig. 8 into the MT (U)  
and coherent-noise ( V )  parts (Fig. 9). Horizontal magnetic 
fields for the two MT signal vectors are indeed approximately 
uniform across the array (Figs 9a and b). For the coherent- 
noise vectors (Figs 9c and d),  the electric and magnetic fields 
at the two northern sites ( 4  and 5 )  are of similar amplitude, 
direction, and phase. Corresponding components at the quiet 

site 1 are very small. Note that the phases of all vectors in 
Fig. 9 have been chosen to minimize the imaginary parts of 
the horizontal magnetic components. Thus the relative magni- 
tudes and directions of the imaginary and real parts of the 
electric field vectors roughly define the impedance phase for 
each mode. For the quasi-uniform MT vectors, imaginary and 
real parts are collinear, and point in the same direction, 
indicating a physically reasonable first quadrant phase for the 
impedance. For the coherent-noise vectors, the imaginary parts 
are small, but tend to be reversed. This implies a physically 
unreasonable negative phase for this mode. The effect of this 
negative phase (and of the relatively large ratio of electric to 
magnetic components) on the single-station estimates for site 5 
is clearly evident in Fig. 7. 

With the columns of W decomposed into U and V as in 
Fig. 9, we can estimate the generalized polarization vectors of 
the quasi-uniform (pi)  and coherent noise (7;) components for 
each data segment i. Taking account of the variable noise in 
each channel, an appropriate weighted estimate of the 
polarization parameters is 

[3 =[W*z;lW]-IW*x;IXi, (33) 

and the predicted quasi-uniform ( Ay), coherent-noise ( Xr ), 
and residual (R;) parts of the data vectors are given by 

2: = Ubi, Xr = Vfi ,  Ri = X i  - Xr - Xr. (34) 

A useful statistic for summarizing the relative importance of 
coherent noise for period T, time segment i is 

(35) 

C(i,  T )  gives, as a function of time and period, the ratio of the 
total coherent-noise power to the signal power averaged over 
all components observed in the array. Note that in (35) we 
use the incoherent-noise scales ( E$2) to scale the individual 
components into reasonable non-dimensional units before 
averaging the power across components in the array. 

C(i, T )  is plotted for the three-station example array (10 Hz 
sampling band) in Fig. 10. This figure shows that coherent 
noise is only significant for periods longer than ~2 s, and is 
relatively most serious in the period range 4 s < T < 50 s. 
Coherent noise virtually disappears from 1 : 30 am to 4: 00 am. 
These are, in fact, exactly the hours that the BART DC electric 
railway shuts down on weekday nights. The rapid increase of 
coherent noise at precisely 4 : 00 am when BART trains start 
moving is especially striking. The noise then increases to a 
peak during the morning rush hour. This clearly demonstrates 
that the BART system is by far the dominant source of 
coherent noise in this array. The effects of BART on electro- 
magnetic measurements in the San Francisco Bay area have 
been noted previously (e.g. Fraser-Smith & Coates 1978). This 
‘BART noise’ almost certainly results primarily from leakage 
of DC current from the rails into the ground on the return 
path from the trains to the power substations (Fraser-Smith 
& Coates 1978). The BART noise sources thus should look 
like a series of grounded electric dipoles which are varying in 
time. This is completely consistent with the low phase and 
relatively large magnitude of the electric field components of 
the coherent-noise modes of Fig. 9. 
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Figure 9. Results of separating the four coherent signal/noise vectors of Fig. 8 ( W), into quasi-uniform source (U)  and coherent-noise ( V )  parts. 
The separation is effected by using a preliminary estimate of U (derived by using site 1 as a reference) and assuming that coherent-noise sources 
are statistically independent of MT sources. Plot conventions are as in Fig. 8. The horizontal magnetic fields for the two quasi-uniform signal 
vectors (denoted N-S and E-W) are approximately uniform across the array, while the coherent-noise vectors ( V , ,  V,) are dominated by coherent 
(and locally uniform) components at the two noisy northern sites. Note also that electric and vertical magnetic components are much larger in the 
coherent-noise vectors. Also note that the phase relationship between electric and magnetic fields is significantly different for the signal and 
coherent-noise vectors. Mixing of these sources (as in Fig. 8)  causes the unphysical behaviour of the MT parameters seen in Fig. 7. 

5.3 Downweighting coherent noise 

As Fig. 10 makes clear, there is a ‘window of opportunity’ in 
the middle of the night when coherent noise is greatly reduced. 
The simplest way to take advantage of this circumstance would 
be to restrict processing to the relatively quiet interval 
1 : 30-4: 00 am. There is of course no reason why we cannot 
choose the time window used for processing as a function of 
period. Indeed, we could use C(i, T )  to determine directly 
which time segments should be included in estimates for each 
period. Since C(i, T )  can be computed as a by-product of the 
RMEV estimate, this data selection criterion can be included 
quite naturally as a (somewhat automatic) refinement to this 
estimator. This can be accomplished as follows: 

(1) Use the quiet reference to provide an estimate of the 
MT vectors U. 

( 2 )  Estimate the coherent-noise vectors V, as described in 
Appendix B. 

( 3 )  Calculate C(i, T) ,  and then use only data segments for 
which C(i, t ) < p in a refined estimate of U. 

(4 )  Using the refined estimate of U, redo steps ( 2 )  and (3). 
Iterate to convergence. 

The results of applying this scheme (with p = 0.2) to array 
1-4-5 are given for site 5 in Fig. l l (a ) .  For comparison, RRR 
estimates obtained using the quiet site as a reference are given 
in Fig. 12( b). Relative to the RRR approach, this weighted 
RMEV scheme results in a clear improvement of MT 
impedance estimates. We stress, however, that the key to 
reducing coherent-noise bias is to have a quiet remote site. 
Both estimates in Fig. 12 essentially eliminate the bias seen in 
Fig. 7. Refinements due to the multiple-station approach, while 
non-negligible, are of second order. 

Note that our proposed iterative refinement scheme can be 
usefully applied to reduce the effects of other sorts of inter- 
mittent noise, provided enough a priori information can 
be provided to get a reasonable starting estimate of the 
quasi-uniform response vectors U, or the coherent noise 
vectors V. 

6 DETECTION OF INTERMITTENT 
COHERENT NOISE 

If possible, one should obviously occupy a quiet (and distant) 
remote site for any MT survey conducted in an area likely to 
be contaminated by cultural noise. If coherent noise is present 
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Figure 10. Ratio of total coherent-noise power C( 1, T )  to total uniform source power as a function of period and time. The period range (4-50 s) 
and time periods (8  : 00 pm-12 : 00 am) and (4 :  00-8 : 00 am) where coherent noise overwhelms the MT signal are clearly evident. Coherent noise 
virtually disappears from 1 : 30 to 4:  00 am, exactly when the BART DC electric railway is shut down for the evening. It is thus clear that BART 
is by far the dominant source of coherent noise in this array. 
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Figure 11. (a) Apparent resistivities and phases for site 5 (10 Hz sampling band) computed with the modified RMEV estimate, using predicted 
magnetic fields from site 1 as a reference, with downweighting of data segments significantly contaminated by coherent noise. For these estimates 
weights were set to zero for all segments for which the statistic C(i, T )  exceeded a cut-off value of p = 0.2. In (b) RRR estimates are given for the 
same site, computed using all of the data with the quiet site 1 as the reference. For both cases the erratic and unphysical behaviour seen in Fig. 7 
is greatly reduced. However, the weighted RMEV approach results in significantly smoother estimates, with smaller error bars. 

at all sites, it may be impossible to separate MT signal from some time intervals uncontaminated by coherent noise. Here 
coherent noise. However, the multivariate methods provide we consider some refinements to this simple data-screening 
clear diagnostics for the presence of coherent noise. By applying approach which build upon the multivariate techniques 
these methods to short sections of data we might hope to find developed in the previous sections. 
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Figure 12. Plots of time-varying coherent-noise diagnostics computed for the data from the pair of Loma Prieta sites (A and B of Figs 1 and 2). 
To make this figure, the 10-D data vectors are first projected onto the coherent signal/noise space (here of dimension 3-4 depending on the 
period), and then diagnostics are computed in small local bands. The first column (a)-(c) gives the magnitude (signal-to-noise ratio in dB) of the 
three largest eigenvalues of the normalized SDMs as a function of (relative) time and period. The second column (d)-(f) gives time-varying 
estimates of apparent resistivity and phase for one MT mode, along with the tipper amplitude, all for station A. A sharp change occurs in all plots 
approximately two hours into the run. Before this change only the first two eigenvalues are significantly above background noise levels. After this 
time there are at least three significant eigenvalues at  all periods longer than a few seconds. Note also the drop in phase, and increase in apparent 
resistivity and tipper after the second hour. 

We begin by estimating W and EN using the full data set, 
and we assume that we have found M > 2 (at least for some 
periods). Analogous to (34)-( 36), we can compute the weighted 
projection onto the span of the coherent data subspace defined 
by the columns of W: 

xi = w [ w *E,'W ] -'w *E&lXi.  ( 3 6 )  

Note that 

(37) 
but now we do not have enough information about signal and 
noise to directly separate the projected data vectors Xi into 
component parts. However, by doing this projection we 
significantly reduce incoherent noise, especially if we use the 
cleaned data vectors gi on the right-hand side of (36). 

We can now group the projected, cleaned frequency- 
domain data vectors X i  into small bands, localized in both 
time and frequency, form the SDM, and do an eigenvector 
analysis. Note that the number of non-zero eigenvalues for 
each time/frequency band will never exceed M, since the data 
vectors used to form the SDMs are first projected into the 
M-dimensional subspace defined by the span of the columns 
of W. Moreover, if coherent noise ceases for some time sections, 
the number of eigenvalues significantly greater than one should 
drop to two for these sections. 

As an example application of these ideas, we return to the 
Loma Prieta data used for the RRR results plotted in Fig. 1. 
Based on the close proximity of these stations to sites 4 and 5 
in the three-station array, it is highly likely that coherent 
BART noise would contaminate impedance estimates at these 
sites also. As Fig. 10 indicates, this source of coherent noise 
should cease for at least a few hours every night. Results of 
the proposed diagnostic are plotted for this two-station array 
in Fig. 12. The three panels on the right give timefrequency 
sections of the three largest eigenvalues of the SDMs, nor- 
malized into non-dimensional units as for Fig. 4. There is a 
very clear change in the character of the signal just before the 
end of the second hour of data. After this time, the amplitudes 
of all eigenvalues increase sharply. More importantly, the 
bottom panel in this series shows that before this time there 
were only two significant eigenvalues at all periods, suggesting 
the absence of coherent noise. 

We can also compute time-varying MT parameters such as 
apparent resistivities, phases, and tippers using the two domi- 
nant eigenvectors of the SDMs estimated from the projected 
data vectors. These are plotted for our example array in the 
left-hand panels of Fig. 12. Again, just before hour 2, the data 
character changes dramatically. Over most of the period range, 
apparent resistivities suddenly increase dramatically in ampli- 
tude, while phases drop to near (or below) zero. At the same 
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time, long-period tipper amplitudes jump from near zero to 
0.75. In general, the MT parameters computed for later times 
exhibit the behaviour we have been able to associate with 
coherent BART noise in the three-station array 1-4-5. Clearly, 
the data before hour 2 are the 'good' data, with minimal 
coherent-noise contamination, while the later data are seriously 
contaminated by coherent noise. 

Note that by projecting the data onto the coherent data 
space, incoherent noise is reduced, and the time-varying 
impedance estimates (each of which has only a small number 
of degrees of freedom) are significantly stabilized. As the 
number of components in the array increases, the degree of 
noise reduction and stabilization will be enhanced. We make 
use of redundancy in the array to reduce variances, and hence 
allow for imprqved temporal resolution of parameter estimates. 
Note that if we found M = 2  (no coherent noise), the time- 
varying plots of MT parameters would in fact be independent 
of time (and equal to the RMEV estimate). 

Once we have identified sections of uncontaminated data, 
we can construct an initial estimate of U, and use this as a 
starting estimate for the coherent-noise downweighting scheme 
described in the previous section. We applied this method 
to the two Loma Prieta sites of Fig. 1. Resulting apparent 
resistivity and phase curves, combined with estimates from 
(uncontaminated) shorter-period sampling bands, are pre- 
sented Fig. 13. The results of this processing represent a 
dramatic improvement relative to the initial RRR estimates 
presented in Fig. 1. To be fair, going back to the original time 
series (after doing this analysis!) one can see quite clearly where 
the character of the data changes, and coherent noise begins. 
Furthermore, using RRR on the 'good' data, one can achieve 
results nearly as good as those plotted in Fig. 13. If we can 
identify the 'good' data (assuming there is any), a variety of 
processing schemes should work adequately. The multivariate 
approach developed here can be a significant assist in the 
search for good data sections. 

Site A 
1 

100 - 
lo-' 10' 

Period 

7 CONCLUSIONS 

We have presented a general framework for understanding 
signal and noise characteristics in multiple-station MT array 
data. This framework includes a multivariate impedance esti- 
mator (RMEV) which automatically determines incoherent- 
noise levels, and then makes full and optimal use of all data 
channels to estimate the coherent part of the signal. The 
estimator is robust to isolated outliers in all channels, and 
provides a clear diagnostic for the presence of coherent noise. 
If there is no coherent noise, the RMEV estimator often 
performs better than previously proposed robust RR esti- 
mators, which apparently can be very sensitive to outliers in 
the remote channels. 

When MT data are contaminated by coherent noise, there 
is no general way to guarantee that reasonable results will be 
obtained. However, using the approach developed here we can 
obtain a greatly enhanced understanding of signal and noise 
characteristics. Diagnostic statistics can be used to clarify the 
degree to which MT parameter estimates are likely to be 
contaminated by coherent noise, and to identify which parts 
of the data are least contaminated by incoherent noise. In the 
examples presented here it was possible to take advantage of 
this information to find a reasonable first-guess estimate of the 
quasi-uniform source signal vectors U. In this case, separation 
and optimal downweighting of coherent noise may be possible. 
Using several variants on this idea we have achieved very 
significant improvements in MT impedance estimates. We 
stress that the specific techniques which have proved useful 
here will not work in all circumstances. Nonetheless, we believe 
that the general framework and diagnostics developed here 
will prove useful in a broad range of circumstances. 
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Figure 13. Apparent resistivities and phases computed for the Loma Prieta stations A and B, using data identified by the diagnostics of Fig. 12 
as being free of coherent noise to define an initial estimate, followed by computation of a weighted RMEV estimate. Compared to the standard 
robust remote reference estimates given for the same two sites in Fig. 1, results are dramatically improved. 
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APPENDIX A: ESTIMATION OF 
INCOHERENT NOISE VARIANCES 

We consider the general case of data channels divided into 
two groups (for example the kth channel and the K - 1 others; 
or the five channels at one site and the 5( J - I )  remaining 
channels). We write (7) as 

x,i = Wlai + E l i ,  

x 2 i  = wzai + &2i.  

In general, Xli and X2i are P-  and (Q = K - P)-dimensional 
complex data vectors for the two groups of channels; W, is 
P x M and W, is Q x M .  All random vectors in ( A l )  are 
complex and assumed to have zero mean. Initially we make 
the following assumptions about covariances of signal and 
noise: 

(A14 

w;w2 =I, ,  (A2 ) 

E(a,a;)=E,=diag[A:, ..., A & ] ,  (A31 

E(Eli&j) = 0 ,  (A41 

E(EZi&,*J = ZN2 = I,, ('45) 

E(E, ,E~, )  = EN, = diag[af, ... , o;]. ('46) 

Assumptions (A2) and (A3) represent no restriction, but 
merely define our resolution of the ambiguity in the over- 
parametrization of (Alb). Eqs (A4)-( A6) reflect our assumption 
that the noise is incoherent. The assumption that ZN1 is 
diagonal may be relaxed, although we will not explicitly 
address this extension here. We adopt the restrictive form for 
ZN2 in (A5) to simplify initial derivations. This assumption 
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effectively means that we have normalized the components of 
X, by the incoherent-noise scales for the second group of data 
channels. We will ultimately relax this restriction, and allow 
for a general diagonal error covariance. 

X 1 = W l a =  W I W ~ W , a = W I W ; X , .  (A71 
so T, = WIWT is the idealized (noise-free) transfer function 
for predicting XI from X,. Now let 

ri = xli - ? 1 ~ 2 i ,  (A8)  
where T1 is the least-squares estimate of TI resulting from 
regressing XI on X,, and let 

R=(z -Q) - '  C rirf (A9) 

be the covariance matrix of the residuals ri.  If there were no 
noise added to X,, the diagonal elements R,, would be 
unbiased estimates of a;, p = 1,  P. Our first goal is to give an 
expression for the expected value of the residual covariance 
E(R) valid for conditions (A2)-(A6). Using this expression, 
we derive a refined 'method-of-moments' estimator for the 
incoherent-noise variances for this case. 

First, note that in the absence of noise 

I 

,*1 

The full data vector 

x=  (::) 
has covariance matrix 

The expectation of the residual covariance can then be given 
in terms of conditional covariances (e.g. Rao 1973): 

E ( R )  = COV( XI 1x2) = Ell-  X,2ZG1&1 

=xN1+ W,x,WT 

- W, {Em W; [ W2C, W; + IQ] -'W,Ea }wj. (A1 1 ) 
Since the K columns of W, are orthonormal we can find an 
M x (Q - M )  orthonormal matrix W,, so that W, = (W,W,,) 
is a unitary matrix. Similarly, append a matrix of zeros to Ca 
so that = (C,O) is M A Q and 

5.=( 0 ) 
0 0  

is Q x Q. Then it is readily seen that the expression in brackets 
in ( A l l )  is equal to 

e,w; [ w,gEW; + IQ] -1w2e,* 
+Ie]-'2,* = diag[J$/(i.f + l ) ,  . . . , A & / (  & + l ) ] .  

(Al? )  

Substituting back into ( A l l )  and simplifying we find 

E(R)=EN, + WlDWT, ('413) 
where 

D=diag[l:/(Jv:+l), ..., 1&/( l&+1) ]=IM if iLf, ..., A&>> 1.  

(A141 

Note that the components of X, each have unit noise variance, 
while I.:, m = 1, M ,  can be interpreted as the total signal power 
(summed over all K channels in the array) in mode m. This 
final approximation in (A14) should thus be valid provided 
signal-to-noise-ratios are at least 2 or so (or if K is large). For 
the remainder of our discussion we adopt this approximation 
and write 

E[R] e C N 1 +  W1Wf = Z N 1  +TIT? ( ~ 1 5 )  

(recall that T, = WIWT, so TIT; = WIWTWzWT = WIW:). 
The simplest plausible way to estimate a; would be to use the 
corresponding residual variance R p p .  Eq. (A15) gives an 
expression for the bias in this estimate: 

(A161 

We now relax assumptions (A5). allowing a general diagonal 
covariance 

E[E~~S;J = x N 2  = diag Lo;, . . . , a 3  . (A171 

Then X i  = E;i'2X, satisfies our original assumptions. A simple 
calculation shows that Cov( X1 1x4) = Cov( XI IX,) so (A15) 
still holds, provided Ti replaces TI (which we still take to be 
the transfer function relating X, to X,). Now Ti = T,X,$i, so 
(A15) becomes 

E[R] X C N ~  + T,EN,TT. (A181 

Let p, = E[R,,], p = 1, P, and index the components of the 
transfer function so that 

T . P + l  .'. T1.K 

T P , P + l  ... T P . K  

T , = [  i 1. (A19) 

Then (A18) implies 

This gives us P equations in K =P+Q unknowns (a!, I =  1, K). 
For definiteness, we consider the simple case, where P = 1, 

Q = K - 1. For each of the K channels we obtain one equation. 
Changing the index notation slightly we can express all of 
these equations as a system of K equations in K unknowns: 

A similar reorganization of (A20) into (A21) can be achieved 
for other possible groupings of data channels. 

The basic idea behind our estimate of incoherent-noise scales 
is to replace the expectation Pk by the actual observed residual 
variance Rkk, and the actual transfer function coefficients by 
estimates, and then solve (A21) for a;, l = 1, K .  In detail, there 
are of course some further complications. Since the Q com- 
ponents of X, are determined by only M independent signal 
components (with noise added), it would be unwise to do the 
regression of X, on X, directly. The high degree of collinearity 
among the components of X, will lead to large statistical 
errors in the estimated transfer function components, and to 
possible numerical difficulties. A better approach is to use 
regression on principal components. The basic idea is that 
T, = W,WT is known to be of deficient rank; using this 
information, we can significantly improve estimates of the 
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components of TI. To do this we (1) estimate W,, using the 
M principal components of X,; (2) estimate it = WZX, using 
the estimates of W,; ( 3 )  estimate W, by regressing XI on B; 
and (4) compute = l%71WT. 

Note that it is difficult to determine the correct number of 
principal components to use in this scheme (i.e., M )  until we 
have a good estimate of the incoherent noisier scales. However, 
as (A21) shows we can obtain approximately unbiased esti- 
mates of 0: using the full vector X,. We thus begin our 
estimation scheme by using as many principal components 
as possible (consistent only with numerical stability). After 
obtaining preliminary estimates of the noise scales, we refine 
our estimate of M ,  and use fewer principal components for the 
regression. 

There is one final issue to be addressed. Eq. (A21) (with pk 
replaced by Rkk) can be written in matrix notation as 

(A22) 
where IS’ =(a:, k = 1. K), r = ( R k k ,  k = 1. K),  Bkl = 1Tk.I2. A 
possible difficulty with the estimate 6’ = (IK + B)-’r suggested 
above is that the component variances might not be positive. 
To ensure positivity of variances we have thus modified this 
estimate to 

6’( p )  = (1.y + @- ’  p,  (A231 
where 0 < p 5 1 is chosen so that all components of 62( p) are 
‘sufficiently’ positive. Note that, as p ranges from zero to one, 
SZ( p )  varies smoothly from the ‘raw’ uncorrected residual 
variances r to the solution to (A21). Since all components of 
r are positive, there is guaranteed to be a range of values for 
p for which all components of 6( p )  are also positive. Note also 
that all elements of the matrix B are also positive, so any 
positive solution vector 6( p )  must be (component-wise) less 
than r. Thus the effect of this procedure is to adjust the raw 
residual variance estimates downwards so that they are more 
nearly unbiased. 

To determine p in practice, we start with p = 1 and solve 
(A23) with successively smaller values of p until the condition 
8 k ( p ) 2  > fmlnRkk is satisfied for k = 1, K. The parameter f,,, 
determines the maximum allowable factor that the residual 
variances will be reduced by in the incoherent-noise variance 
estimates. We have used fmin = 0.2 in our work so far. Tests 
with synthetic array data with known error variances show 
that the procedure does quite well in recovering the correct 
variances. 

r = (1, + B)&, 

APPENDIX B: SEPARATION OF SIGNAL 
A N D  COHERENT NOISE 

In this appendix we discuss separation of coherent noise from 
the desired MT signal, assuming some prior information 
about signal (or noise) processes can be provided. We adopt 
the model .of eq. ( 7 )  with the errors zi assumed to satisfy 
COV(E~)  = I. Throughout our discussion we assume that some- 
thing is known about the quasi-uniform MT part of the signal 
(represented by Upi). However, the model ( B l )  is symmetric 
in Upi and Vy,, so similar knowledge about noise processes 
could be used by switching the roles of U and V throughout. 
We consider two distinct cases, requiring different sorts of 
prior information. 

( I )  We know (or have a good estimate of) U. 
(11) We know, or have a surrogate for pi. In general, we 

assume that we have random vectors bi independent of yi 
satisfying 

bi = Api + qi, E [ ~ ; E ? ]  = C,, , C O V ( ~ ~ )  I ,  (B1)  

where the 2 x 2 matrix A is assumed to be invertible, and the 
matrix defining the covariance between q and E is assumed 
known. Two examples of this case are: (1) the b, are the 
horizontal components of the magnetic field at a quiet base 
site; and (2 )  the bi correspond to the predicted magnetic fields 
at a quiet base site, i.e. the fii defined in (31).  Note that for 
both of these examples we can readily compute EVE, using the 
fact that all incoherent-noise variances are normalized to one. 
In the notation of (29), for the first example ZVE = B*, while 
for the second EVE = B* WW *. 

Case I .  Since the span of the columns of U is contained in 
the span of the columns of W, we may write W=(UU,), 
where UI is orthonormal, and orthogonal to U. In practice, 
given U we can easily estimate UL. Let Q =I-UU* be the 
projection onto the orthogonal complement of the MT signal 
space. Then the number of significant eigenvalues of QSQ 
should be N = M - 2. The corresponding eigenvectors are 
orthogonal to U, and (except for the effects of random noise) 
they are contained in the span of W, and can be used to 
estimate UL. 

The coherent noise vectors V are not necessarily orthogonal 
to the MT signal vectors U, but in general satisfy 

v = uc + U,C’. (B2)  

As we are only really interested in the span of V we may take 
C’ in (B4)  to be the identity. To estimate V we thus need only 
estimate C. 

Substituting (B2) in ( B 1 )  and multiplying both sides of this 
equation by U* and Uf we obtain 

u*x; = p i  + c y ;  + U*Ei = [pi 4- U*EJ, (B3)  

UTX, = yi + Uf E i .  (B4)  

Note that the errors U*E, and UTE, on the right-hand side of 
(B3)  and (B4)  are still uncorrelated, and of unit variance. To 
estimate C we treat all of pi + U*q as error, ignore the errors 
on the right-hand side of (B4) ,  and regress U*Xi on UfXi. 
The resulting estimate for C can then be expressed in terms of 
the SDM computed from the vectors Xi as 

e =u*suI[(u*IsuI)-’] .  (B5)  

Because of the errors in UTX,, this estimate of C will be 
biased. This bias can be removed by replacing UTSUl by 
U*,SU, - I  in (B5),  thus estimating V by 

9 = UI + U[U*SUJ [Uf - 11 - I .  (B6)  

Case 11. This case is most simply worked out by considering 
the joint sample covariance matrix of b and X: 

which has expectation 

). (B8) 
AC,A* + I A&U* + Zqe 

UC,A* + C;E UC,U* + VX,V * + I 
E ( S )  = 
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From (B8) we see that To estimate V we form the matrix 

Of = (s21 - Z&)S,l (B9) Sv= S22 -x:E)(sii - I ) - ' ( s 1 2 x q Z ) .  (B10) 

is an asymptotically unbiased estimate of U'=UA'-', where 
A' = A + A-lZi ' .  Since U is determined only up to multi- 
plication by an arbitrary invertible 2 x 2 matrix, we can obtain 

Using (B8) and (B9) it can be verified that (asymptotically) 
the expected value of S, is VE,V * +I. An eigenvector 
decomposition of Sv can thus be used to compute estimates 
of v. an estimate of U by orthonormalizing 0'. 
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