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SUMMARY

This report summarizes a variety of issues concerning the development of statistical
versions of the so-called ‘accelerated moment release model’ (AMR model). Until such
statistical versions are developed, it is not possible to develop satisfactory procedures
for simulating, fitting or forecasting the model. We propose a hierarchy of simulation
models, in which the increase in moment is apportioned in varying degrees between
an increase in the average size of events and an increase in their frequency. To control
the size distribution, we propose a version of the Gutenberg—Richter power law with
exponential fall-off, as suggested in recent papers by Kagan. The mean size is controlled
by the location of the fall-off, which in turn may be related to the closeness to criticality
of the underlying seismic region. Other points touched on concern the logical structure of
the model, in particular the identifiability of the parameter assumed to control the size
of the main shock, and appropriate procedures to use for simulation and estimation. An
appendix summarizes properties of the Kagan distribution. The simulations highlight
the difficulty in identifying an AMR episode with only limited data.

Key words: accelerated moment release, frequency—magnitude distribution, Kagan

distribution, simulated catalogues.

1 INTRODUCTION

The accelerated moment release model (AMR model for short)
has been explored in a number of recent papers (see e.g. Bufe
& Varnes 1993; Sornette & Sammis 1995; Bowman et al. 1998;
Jaumé & Sykes 1999; Robinson 2000). It is defined in its
simplest form by the equation

e(f)=A—B(tr—1)". 6]

Here, the left-hand side, &(¢), has been variously interpreted
as the accumulated seismic moment, the energy release or the
Benioff strain release within a specified seismogenic region, from
some origin time 7y, say, up to time ¢. In what follows we shall
adopt the interpretation in terms of strain release, although
a parallel development could be carried through for the other
interpretations. Our reasons for this choice are essentially prag-
matic: it follows the majority of previous papers; it represents a
compromise between the extremes of total energy release and
pure numbers, which seems to work as well as any other choice
in practice; and it leads to some interesting but perhaps purely
coincidental identifications of parameter values. Whichever
interpretation is taken, the idea that the approach to a critical
point is associated with power-law behaviour of this general
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type is supported by deductions from a variety of physical models
(see e.g. the review in Main 1999 and further references
therein).

The remaining quantities, 4, B, t; and m, are parameters
characterizing the seismic episode under study. In empirical
studies, if we adopt the strain release interpretation,

N(1)
d()=>_ E”, 2
1

where N(¢) is the number of events in the region between ¢,
and ¢, and the {E;; i>1}, denote the successive energy releases
from earthquakes in the region. In what follows, we shall write
EM =, For most regions, the strain releases have to be roughly
estimated from the magnitudes using the relation

S; =E,'1/2 — 124+0.75M; 3)

(Kanamori & Anderson 1975), although in principle the seismic
moment might offer a better starting point for such studies.
The parameter #; is interpreted as the origin time of the
final event in the sequence, representing the next event whose
source region is commensurate with the size of the region being
studied, and the exponent m is assumed to lie in the range
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0<m<1; indeed, there are some theoretical problems if m lies
outside this range (see e.g. Main et al. 2000). The deficit

Sr=A—)_S; @)

i<ty

is sometimes interpreted as predicting the size (i.e. the Benioff
strain release) of the final event, but as we shall see there are
difficulties with this interpretation.

Clearly, eq. (1) can describe only in an approximate, average
sense the actual behaviour of a particular seismic cycle, if only
because the left side is an irregularly increasing step function,
while the right side is continuous. The main purpose of this
paper is to examine how this equation might be given a more
precise sense within a fully specified (if still approximate)
stochastic model. Such a model is needed in order to simulate,
and hence to forecast, systems exhibiting the AMR type of
behaviour, and as a guide to determining the most effective
ways of estimating the parameters of the model. At the same
time, the exercise of trying to think through the structure of a
stochastic model for eq. (1) shows up a number of logical issues
that require further clarification.

2 MODEL DEFINITION

The usual approach in developing a stochastic model for a
situation described in broad terms by a deterministic equation
(as, for example, in developing models for population growth
or the spread of epidemics) is to treat the approximating deter-
ministic equation as relating to the expected value (ensemble
average) of the random quantity it purports to represent. If we
take this point of view, then eq. (1) should be replaced by

N(1)
& [Z S;
1

where & denotes the expectation (ensemble average). However,
there are two notes of caution that should be sounded in regard
to this equation. First, it is not clear whether, in the present
context of long-tailed or fractal distributions, the expectation
necessarily exists. If it does not, then some alternative method
of describing the approximate average behaviour of the system
is needed—perhaps the median of the distribution of &(¢) might
be taken instead of the mean. The mean has special advantages,
however, and to preserve them we shall restrict the discussion
in this paper to situations where the expected strain release is
finite. In particular, we shall use a form of the frequency/strain
release distribution that has an exponential fall-off at infinity
and so has finite mean and indeed finite moments of all orders.
The second point is that, even if eq. (5) is meaningful, it is far
from sufficient in itself to specify a full stochastic model. Thus
the task remains of finding fully specified models for which
eq. (5) is valid, and of selecting between them.

As a first step in approaching the latter problem, we may
observe that the quantity &(7) in the original equation contains
two irregular components: the number of events, namely N(7),
and the sizes of the individual events, namely S;=E}>. We
can clarify the interpretation of the expectation in eq. (5) by
introducing an instantaneous rate (intensity function),

A(:):@@{d]:;(’)] :

=A—B(ty—1)", (5)

(©)

and a time-varying mean event size,
u(t)=¢&[S|S occurs at 7] . (7)

Then the expected increment over a short time interval dt can
be written as

8lde(1)] = MDp(r)di (8)
so that eq. (1) can be rewritten in differential form as
AO)pu(r)=Bm(tg—1)~ =™ )

This seems to be the most plausible way of capturing the
intention of eq. (1) within the extended framework of a
stochastic model. See also the discussions in Varnes (1989) and
Bufe & Varnes (1993) and the more extended review in Main
et al. (2000).

In the simple simulation models considered below, A(¢) will
be interpreted as the intensity of a Poisson process with time-
varying intensity function, and the successive events will be
assumed independently distributed, even though the distributions
may vary with time. However, considerably more complex
dependence structures could be envisaged without altering the
validity of eq. (9). In particular, both the rate at time ¢ and
the size of the next event in the sequence could depend on the
times and sizes of earlier events in the sequence; all that eq. (9)
describes is the average to be expected over many such sequences.

Another important point to note about eq. (9) is that the
constant 4 has dropped out of the equation entirely. This is not
a consequence of the change to a stochastic model, but of the
change to a description in terms of rates. It implies that, if
the model equation eq. (9) is accepted, then nothing about the
value of A (or about the magnitude of the final event, if that can

be related to A) can be learned from the expected increments of

&(1) between to and t;. If any information is to be gleaned about
the final magnitude, it must come from aspects of the pro-
cess not captured in that model, possibly from the conditions
in place at the start of observations, the size of the region to
which the model is applied, or other factors lying outside the
growth of the cumulative strain release. This conclusion impacts
on the interpretation that can be given to estimates of 4 obtained
from a least-squares fitting procedure applied to successive
values of (7). It implies that such estimates are basically noise
values, derived from incautiously applying an estimation tech-
nique that was not designed for fitting cumulative data curves
(see further the comments in Section 4 below).

Finally, in connection with eq. (9), the problem arises of
apportioning the increase in expected strain release between the
two factors on the right. Is the increase caused by an increase in
the frequency of events, or an increase in their average size, or
do both factors play some role? We have found little discussion
of this issue in the earlier papers on the topic. Analogies with the
approach to criticality in a phase-change context suggest that
the size of events—perhaps more accurately the potentiality for
larger events to occur—increases as criticality is approached,
and correlation radii increase. Other evidence, for example, the
increase of acoustic emissions as the failure point is reached,
point to an increase in the frequency. The balance is rarely
discussed, however. Real examples are equally hard to pin down
in terms of general tendency, as can be seen from the summary
in Jaumé & Sykes (1999); each example tends to have particular
features that dominate the appearance of the sequence and are
peculiar to that sequence.

© 2001 RAS, GJI 144, 517-531

¥202 Iudy Gz uo1senb Aq 6.2€19/L1S/S/v1 L /e1oue/[6/wod dno-ojwspeoe//:sdiy wolj papeojumoq



One possible approach, outlined in Vere-Jones (in preparation),
is to apply the maximum-entropy formalism to the problem,
much along the lines of Main & Burton (1984). In this approach,
one seeks the model giving maximum entropy to an observed
sequence of events, subject only to constraints on the mean values
such as that implied by eq. (9). As in the original statistical
mechanical problems studied by Boltzmann and Gibbs, the
detailed behaviour of successive events is not known, but if the
underlying assumptions made on the distributions via the mean
equation (9) are at all correct, observation sequences giving
empirical distributions close to the maximum entropy solution
should be overwhelmingly more common than observation
sequences following some other type of pattern.

The most important conclusions to follow from this approach
are ones that might have appeared as natural first assumptions
in any case. They can be summarized as follows:

(i) the event times should be modelled as a non-stationary
Poisson process, with time-varying intensity, say A(¢);

(ii) the event sizes should be treated as independent random
variables;

(iii) the distribution of the event sizes should follow a
distribution with density function with power-law tail and
exponential fall-off;

(iv) conditional on the time ¢ at which it occurs, the mean
u(t) of this distribution and the rate A(¢) of the Poisson process
of occurrence times should each be proportional to the square
root of their product (eq. 9).

In the absence of any other guidance, and without claiming any
great authority for them, we shall use these assumptions in the
next section as the basis for developing a series of simulation
models. The purpose is to examine the behaviour of the models
and to provide visual comparisons with real AMR sequences.
The third assumption plays a particularly important role in our
models and warrants further comment.

The need to use a distribution for the strain release somewhat
more flexible than that corresponding to the usual Gutenberg—
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Richter (G-R) form was impressed on us by considerations
quite apart from the link with maximum entropy. Initially we
assumed that the required changes in mean value could be
accomplished simply by changes in the b-value, but a number of
difficulties with this approach revealed themselves. In particular,
the empirical magnitude distribution resulting from sequences
of events with changing b-values has the form of a G-R plot
with reverse curvature to that usually seen in real G-R plots—
for large magnitudes, the slope decreases with increasing magni-
tude. The more usual appearance is a linear plot or a plot with
increasing steepness at high magnitudes or, in some cases
at least, a plot with a ‘kink’ at high magnitudes similar to that
described by Wesnousky (1994) in connection with the charac-
teristic earthquake model. Thus, if the observed changes in
mean strain release were to be accomplished by a change in the
magnitude distribution with time, then something other than
the simple G-R law seemed to be required.

The candidate that then suggested itself was a power-law
form (corresponding to the ‘pure’ G-R relation) modified by an
exponential fall-off in the far right tail. The version that we use
in this paper, and call the Kagan distribution, has the explicit
parametric form

x L
Prob(S—So>x)=1—F5(x)=(l+m) e 7 (x>0).

(10)

This corresponds to the density (obtained by differentiation)

1 x+L\ "V s L4x
fS‘SU(x)_(&]Tl‘)(SO—.—L) (¥ U {Q+T} (11)

Plots of the log survivor function and the density function for
this distribution are shown in Figs 1 and 2; see the Appendix
for further discussion and a development of basic properties.

In these expressions, Sy is the threshold strain release, corres-
ponding to the threshold magnitude M, for the catalogue in
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Figure 1. Log survivor functions for Kagan distributions. (a) with parameters «=1 and L, U corresponding to magnitudes f=3 and y=7,

respectively. (b) two-parameter model; as (a) but with f=0.

© 2001 RAS, GJI 144, 517-531

¥202 Iudy Gz uo1senb Aq 6.2€19/L1S/S/v1 L /e1oue/[6/wod dno-ojwspeoe//:sdiy wolj papeojumoq



520  D. Vere-Jones, R. Robinson and W. Yang

density
100000 150000 200000 250000
| | |

50000
|

0
|

0 2*10°6

4106 61076 81016

stress

Figure 2. Density for Kagan distribution; parameters as in the three-parameter version of the Fig. 1.

use, S=x+ S is the strain release, while o is proportional to the
b-value in the usual Gutenberg—Richter plot, and determines
the slope in the linear portion of the log-log plot. The two
parameters L and U both have the dimensions of strain (that is,
the same dimensions as the variable S itself) and control the
positions of the lower and upper extremes of the linear portion
of the log-log plot (see Fig. 1). U corresponds roughly to the
maximum moment in Kagan’s papers, or to the correlation
length in percolation studies. L corresponds roughly to a mini-
mum moment, or minimum resolvable crack length. Frequently,
we assume L =0, so that the lower turning point in the log
survivor curve is effectively absent, and the original three-
parameter model is replaced by a two-parameter model. In the
diagrams, where the strain axis is frequently replaced by a
magnitude axis, we represent L and U by their corresponding
equivalent magnitudes, § and y respectively.

It is of interest to note that mixtures of the Kagan distri-
bution, with the mixing taking place over the parameter U,
show not the reverse curvature that moved us away from the
straight G-R form, but a range of behaviours that includes
straight-line curves with slope greater than 1 (higher b-values),
and curves with a kink in the log frequency-magnitude plot
similar to that sometimes used as evidence for the characteristic
earthquake model. Examples of log survivor function plots
(analogous to the usual Gutenberg—Richter plots) for both the
basic distribution and for mixtures are shown in Figs 3 and 4
and discussed further in the Appendix. The mixture plots
suggest that variations in apparent b-value, as well as more
extreme features, could arise naturally if observations were
taken over varying stress conditions in the seismogenic zone.

3 SIMULATION MODELS

We proceed to outline a selection of simple simulation models,
all satisfying the basic requirement expressed by eq. (9), but
corresponding to different apportionments of the increase in
mean strain release between frequency and mean event size. For
the sake of definiteness we have taken all models to correspond

to AMR sequences with m=0.5 in eq. (1). The increases in
rate and mean event size are taken as being proportional to
[Bm(te— 1)~ =" and [Bm(t;— 1)~ ~"2)] respectively, where
my, my are adjustable, subject to 0 <m; <1, 0<m, <1,
my+m,=1.5.

The simulation methods outlined are all extensions of the
basic methods for simulating Poisson processes with time-varying
intensities. The suite of programmes used for this purpose is
available from the first author, and will be incorporated into
the next edition of the Statistical Seismological Library (SSLib;
see Harte 1999).

3.1 Poisson process with increasing rate function and
independent magnitudes

Probably the simplest candidate for a stochastic AMR process
is a Poisson process with mean rate following the right-hand
side of eq. (9), and magnitudes independently selected either
from a Gutenberg—Richter law with fixed b-value, or from a
Kagan distribution with fixed parameters L, « and U.

The simulation of such a process involves the following
components.

(1) In the range 0 <t <ty generate a sequence of event times
{t;} for a Poisson process with time-varying intensity,

),(t)=io+d(1 — t—’f) , (12)
where f, /g, d and k are adjustable parameters that can be
selected by the user. In terms of the previous notation, if E(S) is
the expected mean strain release for the sequence and 79=0,
then d= Bmt; ~"/E(S) and k=1 —m. The option of adding in a
constant background rate Ay represents a minor extension of
the model that seems physically sensible, and leads to a natural
comparison of fit between models with d=0 and 4>0. It
follows Gross & Rundle (1998) and Main (1999), who pointed
out that in real-data applications, the background rate may
have a greater weight than the AMR component. This stage

© 2001 RAS, GJI 144, 517-531
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Figure 3. Examples of simulated and fitted Kagan distributions: solid line = theoretical curve; dots = values from simulations (1000 replicates); dotted

line=curve fitted to simulated data.

of the simulation can take advantage of standard methods
for point processes, using variants of either the Shedler—Lewis
thinning method (Lewis & Shedler 1976; Ogata 1981) or the
inversion method.

(i) Generate an associated sequence of strain releases S;.
This can be done either for the simple G-R law or for the
Kagan distribution. Since the former is a special case of the

© 2001 RAS, GJI 144, 517-531

latter (set U= o0), it will be enough to describe a procedure for
simulating events from the Kagan distribution, assuming o,
L, U and the threshold strain release S, given. In practice, it
is usually more convenient to specify the quantities L, U and
Sp in terms of the equivalent magnitudes (converted via eq. 3
or something similar to it), which we denote by f, y and M,
respectively.
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Figure 4. Examples of mixtures of Kagan distributions. Upper graphs: pure gamma mixture showing steepened slope; lower graphs: truncated
gamma mixture showing a “Wesnousky kink’; dotted lines represent the best-fitting Kagan distribution (see Appendix for details).

A simple way of accomplishing this simulation, based on the
interpretation of the product form in the survivor function as
the distribution of a minimum, is outlined in the Appendix. The
procedures (i) and (ii) together result in a sequence of pairs
(t;, S;) with increasing frequency and strain releases S; having a
fixed distribution.

Two examples of AMR sequences simulated in this manner
are illustrated in Fig. 5. The parameters for the first pair
of graphs in Fig. 5 have been adjusted to give a rather high
occurrence rate (about 250 events over a 20 yr period with
threshold magnitude My=4; of these, about 60 per cent come
from the AMR signal, the rest from background) in order
to illustrate the nature of the relationship. Even for a more
realistic number of events (about 40, as in Fig. 5b), the increase

in frequency is close to being detectable. Moreover, with this
version of the model, the change in frequency should persist at
all magnitudes, so the effect could be confirmed by checking the
behaviour for smaller events. We discuss methods of estimating
the parameters from the data in Section 4.

3.2 Poisson process with constant occurrence rate but
increasing mean strain release

Here we assume that the mean rate is constant and the mean
strain release varies with time according to the AMR relation.
More precisely, in eq. (8) we assume

A(t)=A=const., (13)

© 2001 RAS, GJI 144, 517-531
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Figure 5. Simulations from the AMR model: AMR signal in frequency only.

and that the instantaneous value of the expected strain release
changes according to an equation of the form

u(z):u0+l1(lfi)7 . (14)

To implement this result we must find an expression for the
mean of the Kagan distribution in terms of its parameters, and
then solve for the parameters given a particular value of the
mean u(¢). Expressions for the mean (and higher moments) can
be obtained in terms of the incomplete gamma function (x> 1),
or the exponential integral if «=1. Details are given in the
Appendix.

Since the distribution involves three parameters, the problem
is indeterminate unless we incorporate some additional assump-
tions. The assumptions we shall adopt are that «=1 and that
L corresponds to an event with magnitude 0 (so f=0). The
latter effectively implies that we are using a high enough
magnitude threshold to ensure that the G-R relation shows no
lower-end curvature due to catalogue incompleteness. The mean
(expected strain release) is then a function m(U) of the upper
parameter U, and we have to solve the equation m(U) = u(¢) to
find the U-value corresponding to the value of the mean at any
given time ¢.

If we again express L and U in terms of equivalent
magnitudes f and 7y, a reasonable range of variation will be
obtained if y varies from around 5 or 6 for the background
events up to 7 or 8 as the AMR region approaches a critical
state. In principle, y approaches infinity as the failure time #; is
approached. This does not mean an infinite b-value, however,
just an approach to the pure G-R form with b-value around
b=0.75, corresponding approximately to the value a=1, for
which the mean strain release is already infinite. Of course, the
assumptions incorporated here represent only one of many
variations that may have been adopted.

© 2001 RAS, GJI 144, 517-531

The simulation steps implementing these ideas can be
summarized as follows.

(1) Simulate the time points ¢; using any standard method for
a constant-rate Poisson process.

(i1) For each i, set m(U)= u(z;) and solve for U. This creates a
sequence of values of U, that, with the assumptions a=1, =0
and threshold magnitude M,=4, uniquely specifies the distri-
bution to be used at time ¢;. The explicit relationship between U;
and the equivalent magnitude y; is here given by

t; -
N )

U; =Sy exp S
0

+1—y;. (15)

(iii) For each i, simulate a stress release S; according to the
Kagan distribution with parameters =1, f=0, y=7;, My=4
using the procedure outlined in the preceding example.

Examples of simulations from this version of the model are
shown in Fig. 6. For small to moderate data runs, the changes
are harder to pick out, and the effects are confined to magni-
tudes commensurate with the values of y occurring within the
sequence. Thus, the changes would not be any more noticeable
(perhaps even less so) if the magnitude threshold were to be
lowered.

One feature of models making use of the Kagan distributions
in this way is the very small variation in mean magnitude
(and hence in apparent b-value) caused by the approach to
criticality. Let us take the conventional value o =1, assume that
L is negligible relative to the threshold S, corresponding to the
magnitude threshold M, and examine the effects of changing
the upper parameter U on the mean strain release and the mean
magnitude. For this purpose it is convenient first to represent U
in terms of an equivalent magnitude y via the approximate
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Figure 6. Simulations from the AMR model: AMR signal in mean strain release only.

conversion formula eq. (3). For any given value of y we may then
compute the mean strain release E(S) and its equivalent magni-
tude. For example, if y=5.5, corresponding to U=3.35 x 10°,
we find the mean strain release is approximately 8.18 x 10°,
with equivalent magnitude 4.68. By the time y has increased to
7.5, the corresponding figures are 1.63 x 10° and 5.08 respectively.
This behaviour contrasts sharply with that of the mean mag-
nitudes E(M) themselves, which increase from E(M)=4.48
when y=5.5 to E(M)=4.58 when y= o0, corresponding to a
change in the equivalent b-values from 0.90 to 0.75. Moreover,
the changes in b-value will be almost imperceptible unless the
sample is large enough to contain enough data points in the far
tail to pick up the changes in the distribution—the exception
rather than the rule in practical applications of the AMR
methodology. The moral is that even if the stress field affects
the upper tail of the distribution quite markedly, the changes
will be hard to pick up from the study of short data runs.

3.3 Models in which both rate and mean strain release
change with time

At this point there is no particular difficulty in simulating from
models in which both A(¢) and u(z) are changing with time. The
only constraint implied by eq. (1) is that their products should
combine as in eq. (8). This can be done in very many ways; one
simple way of cutting the Gordian knot is to take

()= exp [C+m1 log(l— i)}

I

t
u(t) = exp {D + my log(l - t_)} ,
f
where the ratio p=m/(m;+my,) is either fixed or treated as an
additional parameter to be estimated. Once the parameters
are determined, the simulations can proceed as described in

the previous items. Fig. 7 gives examples with p=1/2. Again, the
changes are quite hard to pick up from short data runs. They
would be reinforced to some extent by lowering the threshold
magnitude.

No particular features of interest are observed if the magni-
tudes from sequences such as those in Fig. 6 are plotted in
standard Gutenberg—Richter format. Indeed, the data are often
well fitted by a regular Kagan distribution (Fig. 8).

Closer analysis shows that the values of « are larger than in
the base model (typically the observed values give o~ 1.15-1.25,
whereas the base model has o =1. The situation is similar to
that illustrated in Fig. 3, where the mixture has the effect of
altering the value of o without otherwise altering the character
of the distribution. In fact, there is more curvature in the graphs
plotted in Fig. 8 than would be expected from the Kagan
distribution itself. This is shown up in the sensitivity of the
estimates to the magnitude threshold, but is not readily evident
by visual inspection. It is also notable that the parameter esti-
mates are relatively unstable, even with the unrealistically large
numbers of events (about 700) used in these two simulations.

4 TESTING AND ESTIMATION
PROBLEMS FOR THE AMR

The underlying difficulty in approaching these issues is that
because the initial model is not fully defined, it is not possible to
state categorically whether one method of estimation is likely to
be better (produce smaller estimation errors, or provide more
sensitive tests) than another. In general, the best procedures
depend on the model. Optimal procedures for a well-defined
model are generally available through maximum likelihood
techniques, which are then to be preferred; when the underlying
model is uncertain, however, robust techniques, which give
reasonable estimates under a wider range of model assumptions,
may be preferable. In this section we outline and comment on
several approaches to estimation and detection problems, both
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Figure 7. Simulations from the AMR model: AMR signal divided between frequency and mean strain release.

for the initial model (eq. 1) and for the more explicit models
that were used in the simulations. We restrict ourselves here
to the discussion of general issues and principles; we hope to
pursue empirical studies, including in particular parameter
estimation and hypothesis testing for the various simulation
models considered earlier, in a later study.

4.1 Least-squares fitting to the cumulative moment
release curve

In the notation of eq. (1) this means choosing the parameters
A, B, ty and m to minimize the sum of squares

> (e(t) — (A= Bt — 1)) (16)

Logsurvivor function
2

40 45 50 55 60 65 70

Magnitude

The time points (¢;) here may either be equispaced or represent
the event times. Despite being the most commonly used technique
in the literature so far, it has several major disadvantages.

(1) The unweighted least-squares procedure gives equal weight
to all points along the curve, even though the later points
clearly depend (from the cumulative nature of the curve) on the
values that precede them. Even if weighted least squares were
used, the dependence between successive observations would
remain, and would invalidate the usual tests and estimates.
Fitting the incremental form by weighted least squares should
be better from this point of view.

(ii) In general, least-squares estimation procedures are known
to be optimal only when the observations are normally distri-
buted, which is not the case for the moment release data.
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Figure 8. Two examples of Gutenberg—Richter plots from the AMR model with increasing mean strain release. Dotted line: fitted Kagan
distribution; dots: empirical log survivor function. The second set had fewer large events and smaller gamma.

© 2001 RAS, GJI 144, 517-531

¥202 Iudy Gz uo1senb Aq 6.2€19/L1S/S/v1 L /e1oue/[6/wod dno-ojwspeoe//:sdiy wolj papeojumoq



526  D. Vere-Jones, R. Robinson and W. Yang

In particular, estimates based on least squares are extremely
sensitive to occasional large departures from the underlying
curve, such as occur when a large event occurs during the
sequence. The use of least absolute errors, or some method
based on fitting by medians, might produce more stable results.

(iii) The residual sum of squares in this context does not
give a meaningful basis for determining estimation errors.
In particular, a perfect fit of the cumulative curve to some
functional form would not imply that the parameters in the
curve were estimated with zero error.

(iv) Inclusion of the constant 4 in the formula is a logical
error, for it represents an initial value and should only be
included in the model if the sum of event sizes also starts from a
non-zero initial value. Non-zero values of A4 that arise in the
estimates, even when &(0)=0, represent noise values only.

Despite these criticisms, the least-squares method will usually
produce a curve that gives a reasonable visual fit to the data,
and for this reason is unlikely to be widely discrepant from
those obtained by other means. Another use for the residual
sum of squares eq. (16) is as a test for the presence of an AMR
signal. Typically, the residual sum of squares is computed as
in eq. (16) and then compared with the corresponding sum of
squares for a straight-line fit (uniform rate of increase). The
ratio provides a test statistic for which significance levels can be
computed by simulation, provided there is a well-defined null
hypothesis (¢f. Bowman et al. 1998). A general problem is the
instability of the estimates, caused by random fluctuations in
the numbers of events in the far right tails.

Although the ratio of sums of squares seems a reasonable
test statistic to use in this context, the high variability intro-
duced by occasional large events will still tend to diminish its
effectiveness. The most obvious alternative would seem to be a
likelihood ratio test based on a comparison of the likelihoods
from the null hypothesis model and a fully specified AMR
model, as outlined further below.

4.2 Least-squares techniques applied to incremental
data

Here the data are first binned into intervals along the time
axis and the total moment release Qy is calculated for each
bin. These totals are then fitted to the derivative of the AMR
form by unweighted least squares. The main disadvantages
with this procedure are the usual ones associated with binning
procedures, that the choices of the numbers and widths of the
bins are somewhat arbitrary and yet can significantly affect
the estimates obtained. On the other hand, the contributions to
each bin are likely to be close to independent (removing one of
the prime objections to the previous case), and if not constant,
at least of the same order of magnitude apart from random
fluctuations. Because of the long tails of the moment distri-
bution, the contributions to each bin are still likely to be highly
variable, and unlikely to be even roughly normally distributed.
This means that the estimates are likely to be heavily influenced
by any bins that happen to contain one or more large events.
To this extent they will be unstable and unreliable.

There are some fairly straightforward techniques that can
be used to induce normality, such as first transforming the
bin totals by taking square roots or even logarithms and then
fitting a correspondingly transformed version of the model.
Moreover, the normality assumptions are much more plausible

in this context and should allow meaningful standard estimates
to be obtained for the regression parameters and their standard
errors.

4.3 Fitting a model with changing rate by maximum
likelihood

If the assumption can be made that the sequence of time
points (z;) can be modelled as a Poisson process with varying
intensity (rate) A(f|¢), where ¢ is the parameter vector, there
are straightforward point-process techniques for estimating the
parameters in ¢. In the example considered in Section 2.1, the
parameters to be estimated are those appearing in eq. (12),
namely ¢=(Ao, d, t, k). The log likelihood for the point
process takes the form

tog L= 3 log A(ufon) - || #(lonar a7

which has then to be maximized with respect to ¢. Routines for
using maximum likelihood methods to fit a wide variety of
point-process models defined by their intensities are available
within SSLib (Harte 1999).

In this version of the model, the strain releases, s;, are
assumed to be independent of the ¢, and to have a fixed
distribution, say f(s]6). The vector @ of parameters occurring in
this distribution [@=(x, f, y) if the Kagan distribution is used]
can therefore be independently estimated by maximizing the
log likelihood

log Ly ="y log/(si(0) . (18)

4.4 Fitting a model with changing mean energy release
by maximum likelihood

Suppose that the moment releases are governed by a family of
distributions with density f(x|#). The evolution of the distri-
bution in time will then be achieved by allowing the parameter
vector @ itself to evolve with time, as in the forms for the G-R
and Kagan distributions considered earlier. One specific option
is that used in model 2 in Section 2.2, namely the Kagan
distribution with =1, =0 and y=y,, where y; is obtained
from solving the equation m(U) = u(t;) for U; and expressing U;
in terms of its equivalent magnitude y;. The parameters to be
evaluated are no longer the parameters @ arising directly in the
definition of the magnitude distribution, but rather the para-
meters arising in the expressions for the components of 8 as
functions of time. In the specific example, this would mean the
parameters appearing in eq. (14), namely ¢>=(uo, D, f7, k). In
general, ¢, could contain several sets of parameters, depending
on how the various components of § were expressed as functions
of time. The log likelihood for the event sizes, given their times,
is then given by

log Ly="Y " logf(xi|ti, ¢2) - (19)

This expression has then to be maximized with respect to the
parameters in ¢,.

Since the event times here are assumed to have a constant
rate A, then if we also assume that they follow a Poisson process,
the only additional parameter to be estimated is / itself, which
can be obtained by maximizing the corresponding special case
of log L;.
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4.5 Fitting a model in which both the rate and mean
strain release change with time

If both the rate and the magnitude distributions change with
time, the joint log likelihood can still be written in the form

logL=1logL;+ logL,, (20)

with log L; and log L, defined as in eqs (17)—(19). The
new feature is that the parameter vectors ¢, # appearing in
the two parts of the likelihood may have some components
in common. When this is the case, the two parts cannot be
maximized separately, but must be maximized jointly with
respect to the full set of parameters.

A suitable joint model for use in Section 3.3 might involve
the forms

A(z)=zo+d(1—i)m,

tr

t —K2
u(t) = wo +g<1 ——) ,

I

involving the seven parameters (Ao, d, ty, K1, Lo, & K>). Some
constraints might be introduced among these, such as k; + x>, =1,
to try and avoid redundant parametrization. In either case, the
joint likelihood has to be maximized for the parameters that
remain.

5 CONCLUSIONS

This paper has addressed some questions of model formulation,
simulation and assessment with respect to the AMR model. In
the process a number of issues have emerged that were not
treated in earlier discussions of the model, but may have some
interest in both this and wider contexts. These issues may be
summarized as follows.

(1) the non-identifiability of the constant A in eq. (1);

(ii) the difficulties of using the ordinary Gutenberg—Richter
distribution in simulation versions of the AMR model;

(iii) the use of the Kagan distribution in the form (1) and the
development of its elementary properties;

(iv) the hypothesis that changes in the parameter U (or y)
in the Kagan distribution can be related to the approach to
criticality;

(v) the related possibility that variations in observed b-values,
and other features of observed Gutenberg—Richter plots, may
in fact be interpreted in terms of variations in U, including the
occurrence of mixture distributions;

(vi) the difficulty in the AMR model of apportioning the
increase in mean strain release between frequency and mean
event size;

(vii) the problems, evident in simulations with realistically
small numbers of events, of reliably detecting an AMR signal,
particularly when it is expressed in terms of an increase in mean
moment;

(viii) the need for caution in using least-squares methods to
estimate coefficients and their standard errors in the AMR
model.

Many features require further discussion and explanation,
including the apportionment problem, the factors governing the
size of the main event, and the embedding of AMR sequences
within wider space—time patterns of earthquake occurrence.
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APPENDIX A: THE KAGAN
DISTRIBUTION

A1l Background and general properties

There are many models leading to distributions that combine a
power-law region with an exponential tail. To our knowledge,
their first appearances in the earthquake context were in the
papers by Saito et al. (1973) and Vere-Jones (1976), where they
arose in connection with the ‘Go-Game’ and branching pro-
cess models for the development of a fracture; see Vere-Jones
(1977) for a more extended discussion. The exponential fall-
off is related to the closeness of the model to criticality. In
the branching model, this corresponds to the point at which the
mean number of offspring per ancestor equals unity: the assump-
tion is that as stress increases, so does the number of ‘offspring’
cracks per ‘ancestor’ crack, until criticality is reached and the
pure power-law form is recovered. Ian Main has pointed out to
us that a similar recovery of the pure power-law form occurs
also in percolation theory as the correlation length approaches
infinity (Stauffer & Aharoney 1994; Main et al. 2000), and once
again the process approaches criticality.

In most of the derivations, the distribution that emerges has
a density that can be written as the product of a power-law term
and an exponential decay term that becomes important only in
the far tail of the distribution. This version was later derived by
Main & Burton (1984) as the maximum entropy distribution
when mean magnitude and mean moment are both fixed. It has
been used extensively in recent papers by Kagan (e.g. Kagan
1991, 1997) on the distribution of seismic moments; Kagan
calls it a gamma distribution, but its behaviour is very different
to that of a true gamma distribution, and corresponds rather to
a Pareto or power-law distribution with a modified right-hand
tail. Distributions of the same general type also arise in the
first-passage problem for simple random walks, which has lead
to further derivations based on first-passage arguments (see e.g.
Dahmen et al. 1998). The special case used as an example in
Vere-Jones (1977) has a Bessel function representation well-
known in queuing theory (see e.g. Feller 1966, Section XIV.6).

The particular version of this general class of distributions
that we propose, and have called the Kagan distribution in this
paper, differs slightly from those described above in that the
product form appears in the expression for the survivor function
(complement of the cumulative distribution function), rather
than the density function. The resulting distribution is possibly
the simplest from the point of view of analytical manipulation,
simulation and interpretation, and leads to a distribution with
a slightly thicker tail for otherwise identical parameter values.
It has the appealing interpretation that it represents a com-
petition between two mechanisms for controlling the size of the
event: one mechanism leads to the pure power-law form, perhaps
representing parts of the region where the rock is already in a
critical stress state; the other leads to the exponential tail, and
perhaps represents gross geological or structural features that
intervene and prematurely terminate the growth of the crack.
One can imagine that as the general stress level increases,
the latter are more easily overcome and the rock condition
approaches that of an infinite region in a critical state.

The basic form we take for the Kagan distribution is

Pr(X > x)=1—F(x; o, L, U)= (1—0—%)7%7%, x>0. (Al)

In the seismological context, the random variable X described
by this distribution could refer to seismic moment, energy,
Benioff strain release, fault length or fault area. As the default
option we shall assume that it is related to the magnitude by the
equation

X= 100.75M +24 , (Az)

corresponding roughly to the interpretation of X as Benioff
strain release. This corresponds to the practice in the AMR
context (see e.g. Bowman et al. 1998), whereas Kagan preferred
to work directly with the scalar seismic moment, as provided by
the Harvard catalogue.

The parameters L and U represent lower and upper turning
points, while o is the basic index in the power-law range of the
distribution. Kagan referred to the parameter corresponding to
U as the ‘corner moment’ or ‘maximum moment’. All three
parameters are constrained to be non-negative.

The role of the parameters is best illustrated by the plot of
the log survivor function against log x (see Fig. 1). For L« U
(the usual situation in seismological applications) this curve has
three portions. For small x (log x— — o0), it is asymptotically
flat, with 0 as its asymptote. There is then a linear portion, the
power-law range, with slope —o, where the power-law term
dominates. The curve then starts to decrease more rapidly. The
parameters L and U mark approximately the turning points
between these three sections. A typical example is shown in
Fig. 1, where the default parameters from the PKAGAN function
in SSLib (Harte 1999) are used, namely o=1, with L and U
corresponding approximately to magnitudes 0 and 7 respectively.

In its basic form (eq. Al), the model is assumed to apply
from x =0 (magnitude — o) onwards. This is unrealistic, since
in practice there will be a lower bound on the sizes of the events
that can be detected. It is therefore necessary to examine
the distribution only above a certain threshold value, say xo,
corresponding to a lower cut-off magnitude M. In other words,
our observations correspond to looking at the conditional
distribution of X, given X> x,. A simple calculation shows that
the conditional distribution is given by

o) = 1—F(x;0, L, U)
VT T 2 F(x0; o, L, U)

) R
= e , X>Xp-
L+Xxp 0

1—F(x;0, L, U

(A3)

As with the simpler Pareto distribution, this truncated and
renormalized version of the Kagan distribution turns out
to have the same form as the original version; it is enough to
replace x by x—xp and L by L+ Xx,. Indeed, eq. (A3) can be
interpreted as giving the distribution of the random variable
with the representation

X=(xo+L)V-L, (A4)

where the dimensionless variable V'=(X+ L)/(x0+ L) has the
‘standard” Kagan distribution,

1—F(; 0, p)=v"%e "V v>1, p=(xo+L)/U. (A5)

Note that this corresponds to the special case of eq. (A3) with
xo=0, x=v—1and L=1. We find the standard version useful
in what follows as a means of simplifying computations.
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The density functions corresponding to the distributions
(A1) and (A3) can also be written explicitly. Thus, the general
form (A3) has density function

1 (x+L\ ™Y wuf(  L+x
A 557 B Gt o E

The basic form (A1) corresponds to the choice xo =0, while the
standard version has density

fr(x)=v" e P4 po], (A7)
so that
Sriso(x) = (xo+ L)' fy (:{)T‘L) . (A8)

the initial term corresponding to the change of scale from
x to (x+L)/(xo+L). Functions to compute the distribution
and density functions of the Kagan distribution with general
choices of the parameters o, L, U, and x, are available in SSLib
(Harte 1999).

For reasons associated with catalogue completeness, the
magnitude threshold will often have to be taken quite large, so
that it may be assumed x> L. Then L can be neglected relative
to both x and xy, and the log frequency/magnitude graph
is linear from the threshold magnitude M, until magnitudes
corresponding to the upper turning point U. Taking L close to
M, produces a flattening of the frequency/magnitude plot at
low magnitudes similar to that caused by catalogue incomplete-
ness. However, modelling incompleteness in this way is not
recommended, since it can bias the estimates of « and U.
Examples of simulated data sets with fixed M, and U but
varying L are shown in Fig. 3.

A2 Expression in terms of magnitudes

If the survivor function is rephrased in terms of magnitudes, its
logarithm takes the form

logo [1—Far)(AM; B, y|x0)]

= —bAM —d(10°72M 1), AM >0, (A9)

where b=0.750, d=(xo/U) logioe and AM =0.75[log;o(x+ L) —
logo(xo+ L)]. This represents a special case of the Gompertz—
Makeham distribution, originally used in graduating actuarial
tables for human life distribution. This distribution is often
characterized in terms of the hazard function (ratio of the density
to the survivor function, or derivative of the log survivor
function), which here has the general form

h(y)=c+de” .

In the life distribution context, the parameter ¢ is inter-
preted as an age-independent background risk (corresponding
to an exponential distribution) and the additive exponential term
represents an additional, rapidly increasing, but independent
source of risk that only cuts in after a certain age but then
becomes rapidly dominant. Such a ‘competing risk’ inter-
pretation could be of interest in the seismological context also,
with the exponential decreasing term in eq. (Al) representing
an alternative mechanism causing termination of the fracture,
possibly related to the size of the seismogenic region or other
large-scale boundary features, separate from the features
normally controlling the fracture size.
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We make one other point concerning the representation of
the Kagan distribution in terms of magnitudes. As we have
mentioned, in many situations, the physical variable x is
inferred from an approximate regression relationship of the
type

x=100M+4

The natural interpretation of @ is that it determines the relation
between o and the b-value; indeed, it is not difficult to see
that b=a#, so that in the AMR context «=1 corresponds to
b=0.75, and b=1 to a=1.33.

If, however, only the magnitudes can be measured directly,
then a more subtle interpretation should in principle be con-
sidered. Suppose that it is not our original choice X, but rather
X"° that actually follows the law (A1), so that X follows the
generalized Kagan distribution

XN o
1—F(x;o, L, U)= <1+z> e 7

ax e MV x>0. (A10)
In terms of magnitudes, this takes the approximate form
log,o [l —Fy]~ —ad0AM —d(10°92Y —1), AM>0. (All)

In this situation, assuming that only observations on magni-
tudes are available, only the quantities o and 60 could be
separately estimated. In other words, if it were known which
function of magnitude followed exactly a Kagan distribution,
then the coefficient 6 could be estimated since it would then be
assumed that 6 =1; if, on the other hand, the function relating
magnitude to energy were known (or if the energies or seismic
moments were known directly), then it should be possible to
estimate which power of the energy most closely followed a
distribution of Kagan type.

A3 Quantiles and moments

The quantiles corresponding to the forms (Al) and (A3) are
readily computed by fixing a value for the probability on the
right and solving for x. In practice it is convenient to find the
quantiles of the normalized version (eq. AS) and then convert
back to moments or magnitudes. A simple Newton—Raphson
procedure is implemented in the QKAGAN function in SSLib.

Evaluating the moments requires a little more attention.
To correspond with averages of observed values, the moments
required are those of the conditional distribution eq. (A3).
From the representation (A4) we have

k
E(X)=E{[(xo+ L)V =L} =" Cl(xo+ L) (=L) "E(V"),
r=0
(A12)
where C¥is the binomial coefficient. For the standardized

variable V' we find

E(V%) = J ket e P Va4 pv]dv.
1

Integrating by parts leads to the reduction
E(VS)=14kp* ket I(k—a, p), (A13)
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where

1(B, p) = J ytevdy
P

is a form of incomplete I'-function. Essentially three cases arise.

(1) >0 (k>w). In this case the integral remains bounded as
p—0; indeed, it approaches I'(f). We can write

1 P
_ _ (k=1) .~y
160~ 1= 5 [ 54wy, (A14)

or in terms of SPlus functions, I < —gamma(beta)x
(1 —pgamma(beta,rho)). An alternative procedure is to
expand the final integral as a power series in p, namely
B p+1 B2
p p p
IB, p)=T(B)— 5 + - -
B-p) =B =5+ rim — (2

(ii) f=0 (k=uo). The integral here reduces to the exponential

integral

o0

10, p) = J v e dy=Ey(p).

P

There is no SPlus function for the exponential integral, but
since p is small, we can again expand the integral as a series:

2 3
_ I N TN
1(0, p)=|log(p)| TR TR T (A15)

where y is Euler’s constant, yx0.5772. In most situations
arising in practice, p is small enough for the first three terms to
give adequate accuracy.

(iii) f<0(k<a). In this case the integral diverges as p—0,
but a further integration by parts gives a reduction formula for
1(p, p), which can be used to reduce the integral to case (i):

1. p)= =5 {p Per +1(p+1.0)}. (A16)

leading to

E[(X + LN
= (X0+L)k{l +£ [1—p*eT(k+1—a, p)]}~

(A17)

In most applications, 1 <« <2, so that at most one iteration of
this formula should suffice.

In the applications to the AMR model, the mean is the
quantity of greatest interest, and for this we have

EX)=(xo+L)E(V)—L
=xo+ (xo+L)p* e’ I(1—a, p)
=xo+ Up*e’I(1—0, p). (A18)

An inverse formula is also needed, giving the value of U (or p in
the reduced form), when values for «, L, xy and the mean
E(X]|X> xo) are given. For this purpose we used an iteration
formula based on the series expansion for I(f3, p).

A4 Parameter estimation

Estimation is considerably simplified by making use of the
standardized form eq. (A7) for the density. We initially assume
that L, as well as xo, is fixed and known, and obtain likelihood
estimates of « and p, from which we can obtain U as a function
of L, xo and p. If it is needed, an estimate of L can be obtained
by a further stage of estimation; for example, the procedures
implemented in SSLib allow the user to scan the likelihood
over a grid of values of L. However, estimating all three para-
meters from the data often leads to significant increases in the
standard errors of the estimates. In particular, estimates of U
become quite unstable if there is the option of explaining a
slight curvature in the log survivor (G—-R) plot as due either to
L or to U or to a combination of both. Our experience is that
better estimates of U are obtained by increasing the magnitude
threshold to a point where there is no lower-end curvature from
catalogue incompleteness, despite the loss of data involved in
doing so. In fact, the data lost contains little information
concerning U, but can have a significant nuisance value if it
introduces additional curvature into the log survivor plot.

We assume, therefore, that the data have been transformed
into a vector of standardized values {v;, 1=1, 2,..., n}. Using
the density eq. (A7) (but omitting the initial factor), the log
likelihood for an i.i.d. sample is given by

log L= Z log(a+pv;) — (a+1) Z logvi—p Z (vi—1).
(A19)

For brevity write 4=(1/n) 3 log v;, B=(1/n) Y (v;—1). Then the
likelihood equations, obtained by equating the first derivatives to
zero, can be written in the form

1 dlogL 1 1
z = — A4 - =
+nz 0,

n  Ou a+pv;

1 dlogL 1 v;

Z =—B+ - =0.
n 0p +n§:o¢+pv,

These yield

1 1
A=-
n Z o+ pv;

1 2]
B=— s
n Z o+ pu;

whence

oA+ pB=1.

Substituting for o in terms of p gives us the single equation for p

1 1
P N
n Z 1—p(B—Ay;)’ (A20)

which may be solved by Newton-Raphson or similar pro-
cedures. Care is needed in selecting the right root to this equation,
since roots occur between every pair of successive zeros in the
denominator. In fact, the relevant root is that between 0 and
the smallest value of 1/(B—Av;). The procedure converges
successfully provided the initial value and all successive Newton—
Raphson approximations are constrained to remain within this
interval.
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A5 Simulation

The competing risks interpretation of the Kagan distribution,
mentioned in Section A2 above, leads to a particularly simple
algorithm for simulating observations from the distribution. It
implies that the standard variable ¥ can be written

V=min(Y, 1+2), (A21)
where the distribution of Y has the modified Pareto form
1—Fy(x)=x"%, x=>1,

and Z has an exponential distribution with parameter p. To
generate a sequence of values X; from the Kagan distribution
with parameters (o, L, U, xo), we may therefore proceed as
follows:

(i) generate a sequence of values Y; from the modified Pareto
distribution with parameter ¢, for example by setting

vi=w;

where the W, are independent, uniform (0, 1);

(i1) generate a sequence Z; from an exponential distribution
with parameter A= (L + x()/U,

(iii) set X;=(L+xo) min(Y;, 1 +Z;)—L.

The simulation algorithms will appear in the next edition of
SSLib; the output is illustrated in Figs 3 and 4.

A6 Mixtures of Kagan distributions

As mentioned in the main text, there are some reasons for
assuming that the upper turning point, or corner moment, U,
may vary in both time and space according to the stress
environment. If this is the case, then data from an extended
region or time period would be more likely to follow a mixture
of Kagan distributions than the simple distribution itself. We
briefly discuss some of the forms such mixtures can take,
limiting ourselves for simplicity to a discussion of mixtures of
the standard form eq. (AS) with respect to the parameter p. The
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survivor function for such a mixture, assuming the parameter o
remains fixed, has the form

1-Gv)=v"* J e "= VdH (p)=v"*h* (v—1), (A22)

where h*(s) is the Laplace-Stieltjes transform | e~ "dH(x) of
the mixing distribution for p.

The most important special case arises when H has a gamma
(B, 4) distribution, in which case /*(s)= (1 +s/4) *, yielding

17G(u):w<1+ E) !

A

, —B
" (1 N Ll)) sl (A23)

A v

Asymptotically, this is just another power-law distribution,
with a straight-line form for the corresponding Gutenberg—
Richter plot. A similar result will be obtained whenever the
mixing distribution satisfies dH(p) ~ p’dp for p small (U large).

Mixtures of the Kagan distribution thus can produce
power-law tails with indices higher than the original o, thereby
providing a potential explanation of variations of h-value with
stress.

Other remarkable forms can be produced either by truncating
the gamma distribution (so that the values of p used in the
mixture are either equal to a small value p, with probability
F(po), or distributed according to the original gamma distri-
bution in the region above pg), or by taking a mixture of some
values with p fixed at pg and others with p distributed according
to a gamma distribution with a mean above py. Such examples
produce G-R type plots with a variety of different kinks,
resembling for example the kinks ascribed to characteristic
earthquake patterns. This is not altogether surprising, since the
characteristic earthquake model is itself a mixture (of charac-
teristic and background events); the point here is that such
plots can be produced by models requiring much less drastic
contrasts in the generating mechanisms, perhaps merely a
response to changing stress conditions. Examples are shown
in Fig. 4.
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