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S U M M A R Y
Groundwater flow in an unconfined aquifer (a porous layer with an open top) can be driven
either by hydraulic forces, i.e. the gradient of the water table, or by differences in the density
of porewater due to thermal expansion and changes in salinity. In this study we assume that
the salinity is constant, and we investigate the spatial forms of the hydraulic and hydrothermal
flows, with emphasis on the case where both components are present. Since basic flow patterns
are under consideration, the simple case of a homogeneous (but anisotropic) layer is studied
by numerical solution of the governing equations. When the surface hydraulic gradient is zero,
free thermal convection can occur in strictly cellular forms. Just above the critical Rayleigh
number the first form of convection is 2-D rolls; later square cells become stable. These
flows exhibit asymmetrical patterns due to the different conditions prevailing at the top and
bottom boundaries. In natural circumstances no strict cellularity can be expected: instead
of regular squares, irregular polygonal cells develop and remain time-dependent. When the
hydraulic governing force is added to the thermal forces, i.e. the gradient of the water table is
no longer zero, first we have polygonal cells. When the hydraulic gradient increases gradually,
the polygons are replaced by longitudinal rolls (i.e. rolls parallel to the gradient direction).
This occurs in a regime where the hydrothermal and hydraulic governing forces are equally
important. Later, when the hydraulic gradient is even higher, the flow pattern changes abruptly
to transverse rolls. At low anisotropies, these transverse rolls drift with the main hydraulic flow
in the direction of the slope of the water table. Finally, at strong hydraulic gradients, the cells
of convection are completely suppressed by the fast hydraulic flow, which is now organized
in a ‘unicell’ form. Domain boundaries are established for all these circulation patterns as
functions of the Rayleigh number, surface hydraulic gradient and anisotropy. Characteristics
of the heat transfer are also analysed.

Key words: anisotropy, convection, groundwater flow, hydrology.

I N T RO D U C T I O N

The most common driving force for groundwater flow is the hori-
zontal pressure gradient caused by the varying height (i.e. the topo-
graphy) of the water table. This type of groundwater circulation will
be called hydraulic flow. Another important driving force derives
from the temperature difference between the lower and upper part
of the reservoir which results in variations in the density of the water
due to thermal expansion. When the water flow is caused solely by
the difference in density then it is called free convection. Free con-
vection causes thermal anomalies, which may be characterized by
very high horizontal temperature gradients. The topography-driven
hydraulic flow also disturbs the thermal field, but its effect is less
pronounced.

∗Deceased 2002.

A frequently used tool in the study of groundwater flow is numer-
ical modelling when the equations of hydraulics and heat transport
are solved numerically. In this study we have carried out three-
dimensional (3-D) model calculations to investigate the basic char-
acteristics of hydraulically and thermally driven groundwater flow,
with the main emphasis on the interaction of the two driving forces.

The flow pattern and the temperature distribution can be calcu-
lated analytically for the simplest hydraulic flow when a homoge-
neous horizontal layer is bounded at the top by a gentle 2-D topo-
graphic slope (Domenico & Palciauskas 1973). In more complex
2-D cases, when the hydraulic parameters of the reservoir vary, the
equations can be solved numerically by finite-difference (Remson
et al. 1971) or finite-element methods (Smith & Chapman 1983).
When free convection is neglected, as in the cited examples, the the-
oretical problem is simple and the real significance of the models
lies in their direct application to actual field studies. There are many
2-D models of such a kind, e.g. Willett & Chapman (1987), Clauser
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786 L. Cserepes and L. Lenkey

& Villinger (1990), Celati et al. (1991), Deming (1993) and Harris
et al. (2000). As an example of 3-D studies, the thermal effects of
topography driven groundwater flow are discussed by Woodbury &
Smith (1985).

The other end-member type of groundwater flow in an unconfined
aquifer is free convection in the absence of a hydraulic gradient
at the surface. Free convection can develop in thick layers with
high permeability, e.g. in basins filled with loose sediments, and
in areas having high heat flow, e.g. in active volcanic provinces.
Well-known examples can be found in the ocean floor at mid-ocean
ridges (e.g. Williams et al. 1974; Fisher et al. 1990; Davis et al.
1996). Near the spreading centres there is no sedimentary cover on
the porous pillow lavas and the circulating pore water originates
from and enters back into the sea, thus representing convection in
an unconfined porous reservoir. 2-D modelling of free convection
in the ocean floor was carried out by Ribando et al. (1976) and
Rosenberg & Spera (1990) for example. Certain 3-D models of free
convection in the ocean floor (Williams et al. 1986; Rabinowicz et al.
1998) can be adopted for unconfined aquifers in sediments. Bus &
Cserepes (1994) investigated 3-D free convection in rectangular
cells and found a structure which is stable over a wide range of
Rayleigh numbers. It consists of asymmetric currents with wide
downwellings in the centre of the cells and narrow upwellings along
the cell peripheries.

A third form of flow is free convection in a confined aquifer, i.e.
in a horizontal layer with impermeable boundaries. This has been
the basic model in many studies of porous convection. The layer
is assumed to be homogeneous and isotropic, having no externally
imposed hydraulic gradient (as is natural in free convection). In the
linear approximation of the theory Beck (1972) has shown that con-
vection in a layer with an isothermal top and bottom begins in the
form of 2-D rolls when the Rayleigh number R exceeds R crit = 4π 2 =
39.5, and the 3-D modes exist when R > 4.5π 2 = 44.4. Carrying
out an eigenfunction-expansion stability analysis, Steen (1983) has
proved that the so-called [111] cubic cell mode becomes stable for
R > 4.87π2 = 48.06. This mode is symmetric; the spatial forms
of the downgoing and upgoing currents are identical. Schubert &
Straus (1979) found that the steady cubic-cell flow is replaced by a
time-dependent oscillatory regime at high Rayleigh numbers. Im-
proving the numerical accuracy of the computations, Kimura et al.
(1989), Stamps et al. (1990) and Graham & Steen (1991) located
the transition of the [111] mode from the steady to the oscillatory
state at R = 580.

As a fourth class of flow, a special type of free convection occurs
in a dipping confined permeable layer. If the lower and upper im-
permeable boundaries are isothermal and the lower is warmer, then
free convection develops even in the case of very small subcritical
Rayleigh numbers, because the buoyancy force has a component
parallel to the layer. This so-called basic flow has one cell, which
occupies the whole layer. When the Rayleigh number exceeds the
critical value depending on the dip of the layer, multicell convection
begins (Bories & Combarnous 1973; Caltagirone & Bories 1985;
Bernard 1988; Ormond & Genthon 1993; Wang et al. 1997). In the
case of small dips polygonal cells are obtained, while for larger dips
quasi 2-D longitudinal rolls develop, their axis being parallel to the
slope. These flow patterns can be regarded as a superposition of the
basic flow and the cellular free convection.

In this study we deal with a combination of the first and second
type of groundwater flow, i.e. with the interaction of the topography-
driven hydraulic flow and free convection in a reservoir, which is
unconfined at the surface. As we shall see, this mixed kind of circu-
lation has a close relationship with the third and fourth type of water

flows mentioned above. We assume a layer bounded by an imper-
meable bottom and a permeable top. The boundaries are isothermal.
The condition for the onset of free convection is fulfilled. Addition-
ally, a non-zero hydraulic gradient is prescribed at the surface. The
main goal is to study the resulting 3-D circulation patterns. We shall
use numerical methods to model the groundwater flow.

The selected model can be applied to real situations. The
topography-driven hydraulic flow is the most common type of flow
in unconfined reservoirs and sometimes the condition for free con-
vection is also fulfilled. The variation of the topography in the Great
Hungarian Plain drives the groundwater flow in the upper 1 km of
the sediments (Erdélyi 1985). In the Tiszakécske area, located in the
plain, the permeability of the sediments is higher than the average
and the thickness of the permeable sediments is large enough for the
onset of free convection (Alföldi et al. 1976; Lenkey 1993). Thus, in
this area both types of groundwater flow occur simultaneously. Mod-
elling the Campiglia hydrothermal system (Tuscany, Italy), Celati
et al. (1990) conclude that the same situation is found here. In the
Campiglia hydrothermal system the high background heat flux of
the area also contributes to the development of free convection.

Our aim here is not the construction of flow models for par-
ticular areas. What we want to show here is the fundamentals of
the combined hydraulic–thermal flow. In the first part of the paper
we summarize the forms of free convection in an unconfined layer
(without hydraulic flow), which help to better understand the forms
of the combined flow. We investigate the effects of anisotropy on
the critical Rayleigh number, wavelength of convection cells and
heat transport. The main part of the paper is devoted to showing the
different forms of the combined hydraulic–thermal flow, which have
not been investigated before. We also establish the conditions for
their formation. In the next section we define the model and describe
the mathematical method employed.

D E S C R I P T I O N O F T H E M O D E L

The model consists of a rectangular box of a horizontal homoge-
neous permeable layer (Fig. 1). The lower boundary is impermeable,
the upper boundary is open, which is equivalent to the assumption
that it is a free water table. The upper boundary has a constant slope,
γ , in the x direction. The x = 0 and x = Dx sides of the box are
assumed to be symmetry planes. This implies that there is no flow
across these boundaries. Similarly, mirror symmetry is imposed on
the y = 0 and y = Dy surfaces. Due to the mirror symmetry on the
sides of the box the flow in the layer is horizontally periodic with

z

x
y

e

Dy
Dx

z=0

z=D

(L =D /D)x x(L =D /D)y y

Figure 1. Coordinate system of the computational domain.
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periods Dx and Dy in the x and y directions respectively. If there were
no other driving force than the hydraulic gradient arising from the
slope of the surface, a 2-D hydraulic flow would develop in the (x,
z) plane. The boundary condition for the temperature is T = 0 on
the surface and T = �T > 0 on the bottom. If �T is large enough,
3-D thermal convection is obtained.

The two general equations governing the flow in a permeable
medium are the equation of continuity and Darcy’s law (Marsily
1986; Bear & Verruijt 1987):

∂(nρ)

∂t
+ ∇(ρu) = 0 (1)

−ρge − ∇ p − ηk−1u = 0 (2)

where ρ is the density of water, n is the porosity of the layer, u is the
Darcy velocity (filtration flux), g is the gravitational acceleration, e
is the vertical unit vector pointing upward, p is the pressure, η is the
viscosity of the water and k is the permeability tensor. In a multilay-
ered sedimentary sequence, where silty, clayey layers are interbed-
ded between sandstone layers the average horizontal permeability
is generally much larger than the average vertical permeability. We
chose a diagonal permeability tensor composed of k 0 permeability
in x and y directions and k 0/ε permeability in the z direction. ε > 1
is the anisotropy coefficient. It is defined as the ratio of horizontal
to vertical permeabilities.

Assuming thermal equilibrium between the water and the medium
the temperature distribution is governed by the heat transport equa-
tion (e.g. Marsily 1986):

χ
∂T

∂t
+ u∇T = κ∇2T (3)

where χ = ρmcm/ρ 0c0 and κ = λm/ρ 0c0. ρm, cm and λm are the
density, specific heat and heat conductivity of the water-saturated
medium and ρ 0, c0 are the density (at T = 0) and specific heat of
the water. For simplicity we assume that χ = 1.

Applying the Boussinesq approximation, introducing the poloidal
potential, V , and using dimensionless variables the governing
eqs (1)–(3) become:

ε

(
∂2V

∂x2
+ ∂2V

∂y2

)
+ ∂2V

∂z2
= RT (4)

∂T

∂t
+ u∇T = ∇2T (5)

where R is the Rayleigh number

R = k0αρ0g�T D

ηκ
(6)

and α is the thermal expansion coefficient of water. The filtration
flux, u = (u, v, w) can be derived from V as:

u = ∂2V

∂x∂z
, v = ∂2V

∂y∂z
, w = −

(
∂2V

∂x2
+ ∂2V

∂y2

)
. (7)

Eqs (4)–(7) are derived in the Appendix. The dimensionless width
of the box is Lx = Dx/D in the x direction and Ly = Dy/D in the
y direction. The boundary conditions at the top of the model box
become:

T = 0,
∂V

∂z
= G

(
x − Lx

2

)
at z = 1 (8)

where G is the dimensionless dip of the slope

G = k0ρ0gD

ηκ
γ. (9)

On the bottom and the sides of the box the boundary conditions are
the following:

T = 1 and V = 0 at z = 0 (10)

∂T

∂x
= 0 and

∂V

∂x
= 0 at z = 0, Lx (11)

∂T

∂y
= 0 and

∂V

∂y
= 0 at y = 0, L y . (12)

The problem is defined by the eqs (4)–(12). The free (input) pa-
rameters are ε , R, G, Lx, Ly and the initial conditions in eq. (5).

The system of eqs (4)–(7) is solved on an equally spaced grid
by finite differences. In eq. (5) the advective terms are calculated
by central spatial differences. Eq. (5) is solved by the alternating
direction implicit iteration. Eq. (4) is Fourier transformed in the
horizontal directions and then solved in the spectral space. In the
vertical direction it is solved by finite differences. The iteration in
time is carried out until a steady or quasi-steady state is reached.
The numerical method is the same as described in Cserepes et al.
(1988) and Bus & Cserepes (1994).

C O N V E C T I O N I N T H E C A S E O F A
H O R I Z O N TA L WAT E R TA B L E ( G = 0 )

A starting case for our models is when the hydraulic gradient on the
surface is zero (G = 0): then the water table is horizontal. In this
case there is no groundwater motion except if the Rayleigh number
is higher than the critical value (R cr). This is free convection.

When R is only slightly higher than R cr, a stable 2-D convec-
tion pattern exists in the form of 2-D rolls. The same has been
found for hydrothermal convection in a homogeneous layer be-
low an impermeable boundary (Steen 1983) and for the convection
of a Newtonian fluid (Busse & Whitehead 1971; Bolton & Busse
1985).

Table 1 shows the critical Rayleigh numbers for a permeable upper
boundary and three cases of the anisotropy coefficient (ε = 1, 10,
100) and, as a comparison case, for an impermeable upper boundary
and ε = 1. The table also contains the wavenumbers a cr for the onset
of convection at the critical Rayleigh number. In the next row the
width of the rolls (L/2) for R = R cr can be seen. L is the wavelength
of the convection, i.e. the width of two neighbouring rolls turning in
opposite sense (L = 2π/a). The larger the anisotropy coefficient,
the larger L is, because ε > 1 means that the hydraulic conductivity is
larger horizontally than vertically. The increase of the characteristic
horizontal length with the increase of ε will be shown in examples
later.
As the Rayleigh number increases, the width of the rolls decreases.
Fig. 2 shows the half-wavelengths (L/2) for ε = 1, 10, 100 as a
function of the Rayleigh number. These are the half-wavelengths

Table 1. Upper part: critical Rayleigh numbers (Rcr), wavenumbers (acr)
and roll widths ((L/2)cr) for the onset of free convection. Lower part: critical
Rayleigh numbers (Rcr,3D) for the stability of square cells with selected width
(L). ε is the anisotropy coefficient.

Permeable top Impermeable top
ε = 1 ε = 10 ε = 100 ε = 1

Rcr 27.1 153 1169 4π2 = 39.5
acr 2.300 1.425 0.895 π

(L/2)cr 1.366 2.205 3.510 1

Rcr,3D 53.6 226 1630 48.1
at L = 2.4 at L = 4.0 at L = 6.4 at L = √2
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788 L. Cserepes and L. Lenkey

Figure 2. Width (L/2) of the 2-D rolls as a function of the Rayleigh number
R, for various anisotropies.

at which the growth rate of a 2-D cosine-type temperature distur-
bance, superimposed on the conductive steady temperature field, is
the largest. If the initial temperature disturbance is:

δT (x, y, z, t = 0) = A cos
2πx

L
sin π z (A 	 1) (13)

its increase begins as

δT = A cos
2πx

L
sin π zeσ t (14)

where σ is the growth rate.
In the following numerical examples which have been calculated

for low supercritical Rayleigh numbers, the half-wavelengths will
be fixed as 1.2, 2.0 and 3.2 for ε = 1, 10 and 100 respectively, based
on the results of Fig. 2.

Fig. 3 shows the structure of 2-D rolls at selected Rayleigh num-
bers in the case of an unconfined reservoir with a horizontal water
table. For comparison, the flow pattern in the case of an impermeable
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Figure 3. Vertical section of 2-D convective rolls beneath a permeable surface: (a) ε = 1, R = 45, L/2 = 1.2; (b) ε = 10, R = 200, L/2 = 2.0; (c) ε = 100,
R = 1500, L/2 = 3.2. Isotherms with a contour interval of 0.1 are drawn in the left-hand figures, and streamlines in the right-hand figures.
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Figure 4. Vertical section of a 2-D convective roll beneath an impermeable
surface for ε = 1, R = 45, L/2 = 1.2: (a) isotherms with a contour interval
of 0.1, (b) streamlines.

upper boundary can be seen in Fig. 4. Similar results were presented
by Ribando et al. (1976) for an isotropic layer. Comparison of the
results for the two kinds of boundary conditions at the top reveals an
important difference: beneath an impermeable boundary the cells
are symmetric, while in the case of the permeable top (Figs 3a–c)
they are asymmetric. Asymmetry means that the upwelling flow
is narrower and more intense than the downwelling one, which is
wider. The roll occurring beneath an impermeable top (Fig. 4) shows
central symmetry: the up- and downwellings are mirror images of
each other.

Increasing the Rayleigh number, an interval is found not too high
above the critical value, where 3-D convection in square cells is
stable. This form can be reached by adding the following disturbance
to the conductive steady-state temperature field:

δT = A

(
cos

2πx

L
+ cos

2πy

L

)
sin π z. (15)
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Figure 5. Structure of a square cell beneath a permeable surface R = 60,
L = 2.4: (a) isotherms in the horizontal mid-plane z = 0.5; (b) contours of
the vertical velocity in the plane z = 0.5. The area of the downwelling is
shaded. (c) Isotherms drawn with a contour interval of 0.1 in the vertical
plane y = 1.2.

The disturbance can be regarded as the superposition of two rolls
perpendicular to each other. The disturbances in eq. (15) generate
square cells with a side length of Lx = Ly = L . The structure of
the square cells is shown in Fig. 5 for ε = 1. The width of the box
equals the wavelength L selected above from Fig. 2. The Rayleigh
number is now higher than in Fig. 3(a) and the structure is stable
at this R. Fig. 5 does not show solutions for high anisotropies be-
cause the pattern would be very similar to the presented structure,
the only exception being that the cells are larger for ε = 10 or 100.
The most remarkable feature of the cells is that they are asymmetric:
upwelling is found all along the sides and a wide downwelling occu-
pies the centre, i.e. the spatial forms of the up- and downwellings are
different.

The comparison case for an impermeable top and bottom can be
seen in Fig. 6, for ε = 1. The convection cell is symmetrical: the up-
and downwellings occupy the same area in the mid-plane of the cell,
and they are mirror images of each other (chequerboard pattern).
This symmetry has already been mentioned in the introduction as
a basic property of the [111] mode convection. The cell shown in
Fig. 6 is the same as the [111] type convection cell discussed by
Holst & Aziz (1972), Straus & Schubert (1979) and Steen (1983),
except that their coordinate system is rotated by 45◦ compared with
ours.

Square cells can be established only above a certain Rayleigh
number. Below this value 2-D rolls develop even from the square-
type initial conditions of eq. (15). The square cell is unstable at low
Rayleigh numbers: round-off errors of the computation are enough
to destroy and transform it into rolls. The stability limit of the square
cells (critical Rayleigh number R cr,3D) as a function of cell size L and
for ε = 1, 10, 100 has been established by numerical experiments
(Fig. 7). The critical value strongly depends on L. The larger L is,
the smaller the Rayleigh numbers which allow stable square cells.
Naturally, above very large values of L the square cells become
unstable again and they are transformed into rolls or smaller square
cells.
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0.
3

Figure 6. Structure of a square cell beneath an impermeable surface for
ε = 1, R = 60, L = √2: (a) isotherms and (b) contours of the vertical
velocity in the mid-plane z = 0.5. (c) Isotherms in the vertical plane y =√2/2. Contours and shading as in Fig. 5.

It is interesting to compare the heat transport of the square cells
and rolls. The non-dimensional heat transport is given by the Nusselt
number:

Nu =
〈
−∂T

∂z

〉
(16)

where 〈〉 means averaging on the upper boundary of the cell.
The [111] type convection cell with impermeable upper and lower

boundaries transports less heat below R = 97 than the 2-D roll
convection (Straus & Schubert 1979). However, according to Steen
(1983), the [111] mode is already stable from R = 48.1 (see Table 1).
A similar phenomenon for convection in unconfined reservoirs can
also be observed, but only with large anisotropy. Dashed lines in
Fig. 7 show the limits of the Rayleigh number below which the rolls
produce larger Nusselt numbers than square-cell convection. In this
region of R square-cell convection can be stable, but transports less
heat than roll convection. The extent of this region depends on the
anisotropy: it is the widest for ε = 100 and narrower for ε = 10.
In the isotropic case (ε = 1), when the square cells are stable they
transfer more heat than roll convection.

We have also carried out numerical experiments in large boxes
with random (‘white noise’) initial conditions. This is probably
closer to natural conditions than the regular starting perturbations
of eq. (15). The random initial conditions result in irregular cells,
which do not usually reach a steady-state but oscillate irregularly. A
snapshot of such a convection can be seen in Fig. 8. The model was
calculated for an isotropic medium with a box size of Lx = Ly = 7.2
and R = 140. As the results of stability study for the square-cell con-
vection show (Fig. 7), 3-D convection is expected at this Rayleigh
number. The isotherms depict irregular polygonal cells with a wide
cold spot, i.e. a downwelling recharge zone in their centre, and nar-
row upwellings (discharge zones) at the cell boundaries. Thus, the
same asymmetry exists here as in the case of square cells. The struc-
ture is changing continuously. Large cells split to smaller ones and
other cells merge. Note that the final state will also be irregular and
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790 L. Cserepes and L. Lenkey

Figure 7. Stability boundary (solid lines) for the square cells as a function
of the size of the squares for three different anisotropies. (L/2 is the half
of the side of the squares.) Below the solid lines 2-D rolls are the stable
solution. Below the dashed lines in (b) and (c), the rolls produce higher heat
flux than the squares.

time-dependent if regular square cells which are too small or too
large are forced into a large box initially. Then the instability of the
cells will lead to their reshaping and a time-dependent convection
develops.

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7

y

Figure 8. Irregular polygonal cells of free convection beneath a permeable
surface: ε = 1, R = 140. Isotherms in the horizontal mid-plane z = 0.5,
drawn with a contour interval of 0.1. The cell interiors are cold.

C O N V E C T I O N B E N E AT H A D I P P I N G
WAT E R TA B L E ( G > 0 )

If the water table dips (G > 0), there is always groundwater flow,
independently of the value of the Rayleigh number R. If G > 0 and
R > R cr, then the two parameters, more exactly the interaction of the
two driving forces characterized by the two parameters, determine
the structure of groundwater flow. It is seen from eqs (6) and (9)
that the governing factor is the ratio of the dip to heat expansion
(G/R = γ /α�T ). The results of modelling will be presented as
the function of G and R. Many numerical experiments were carried
out for the anisotropy coefficients 1, 10 and 100. The width of the
model boxes was much larger than their thickness. This geometry
reflects that in natural circumstances the length of a hydraulic slope,
the distance from water divide to water divide, is usually much
larger than the depth of the reservoir. The domains of the different
flow structures found in the (G, R) space are shown in Fig. 9. The
calculations were made in rectangular boxes with widths of Lx =
Ly = 7.2, Lx = Ly = 10 and Lx = Ly = 15 for ε = 1, 10 and 100
respectively. The initial conditions were no flow in the box and a
random temperature perturbation superimposed on the conductive
equilibrium temperature field.

Three regions of the (G, R) plane can be distinguished where
the structure of the flow is significantly different (Fig. 9). As the
characteristics of the flow depend essentially on the G/R ratio, the
boundaries of the regions for larger R shift towards larger G. For
R values where 3-D convection occurs already at G = 0, the three
regions in the order of increasing G are the following: (1) time-
dependent 3-D cells (polygons), (2) longitudinal rolls, (3) 2-D flow
in the direction of the slope.

Time-dependent polygonal cells

Time-dependent polygonal flow develops when R is high enough
for stable 3-D convection, but G is low. The structure of the cells
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Forms of hydrothermal and hydraulic flow 791

Figure 9. Domain diagrams (G, R) for the different flow patterns: (a) numerical experiments made in a box with Lx = Ly = 7.2, for ε = 1; (b) Lx = Ly =
10, ε = 10; (c) Lx = Ly = 15, ε = 100. Symbols: squares, time-dependent polygonal cells; crosses, irregular time-dependent longitudinal rolls; solid circles,
regular steady-state longitudinal rolls; open circles, drifting transverse rolls; triangles, steady-state 2-D unicell flow.

is very similar to that found without a hydraulic slope (Fig. 8). The
difference is that in case of a finite dip there is a net mass flux in
the direction of the slope. The dip component of the velocity can be
calculated by averaging the velocities for many cells. This net flux
causes the cells to migrate slowly in the slope direction. If G is large
enough, new cells are born at the summit of the slope, and by more or
less keeping their shape they move toward the topographic low. They
disappear at the lower end of the slope. In summary, in this region,
where G/R is small, the structure of the flow is determined by the
forms of cellular free convection. The effect of the hydraulic slope is
secondary, and the interaction of the convection and hydraulic flow
is weak.

Longitudinal rolls

Longitudinal rolls develop at medium G/R values. In this region the
hydraulic gradient and thermal buoyancy have more or less equal
importance in determining the structure of the flow. The longitudinal
rolls are shown in Fig. 10 for the three anisotropy values ε = 1, 10,
100.

Typically in the isotropic case (ε = 1), steady-state solutions are
obtained, at least in the investigated range of R (below R = 160).
The structure of the flow consists of identical rolls (‘cells’). The
width of the rolls quickly reduces with the increase of R and G. For
instance, three longitudinal cells (six rolls) develop at R = 40 in a
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Figure 10. Examples of the longitudinal rolls. Isotherms are drawn in each panel with a contour interval of 0.1. (a) Steady-state solution for ε = 1, R = 120,
G = 20, Lx = Ly = 7.2. Upper panel: horizontal section in the mid-plane z = 0.5. Lower panel: vertical section at x = 3.6. (b) A snapshot of a time-dependent
solution for ε = 10, R = 400, G = 15, Lx = Ly = 10. Upper panel: horizontal section at z = 0.5; lower panel: vertical section at x = 5. (c) A snapshot for ε =
100, R = 5000, G = 100, Lx = Ly = 15. Upper panel: horizontal section at z = 0.5; lower panel: vertical section at x = 7.5. At the sides of each horizontal
section arrows show the position of the corresponding vertical sections. In the horizontal section (upper panels) the water table dips to the right.

box with Lx = Ly = 7.2. The cell width, equal to the wavelength is
7.2/3 = 2.4. At R = 120, eight or nine cells, and at R = 160, ten
or eleven cells are obtained in the same box, depending on G. At
a fixed R, the increase of G also increases the number of the cells,
e.g. at R = 120, eight and nine cells are found for G = 20 and 30,
respectively. In the example of Fig. 10(a), eight cells (16 counter-
rotating rolls) can be seen at R = 120 and G = 20. The tendency
of the decrease of the cell width with the increase of R is similar to
the results found for free convection (Fig. 2), but now the decrease
is faster which suggests the strong effect of the hydraulic gradient
imposed on the upper boundary.

The thermal structure of the longitudinal rolls can be seen in
Fig. 10(a) which shows the mid-plane of the box and a transverse
vertical section across the rolls. The flow has two components: a
regional flow in the direction of the slope and a convective flow
which is basically perpendicular to the former one. The net flow de-
rives from the superposition of these flow components and therefore
water filtration occurs along spiral paths.

In the studied anisotropic cases (ε = 10, 100) the longitudinal
rolls are mostly irregular and time-dependent. For ε = 10, time-
dependent structures can be found in a large part of the domain
of the longitudinal flow in the (G, R) plane (where G is smaller).
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When G is larger, the structures are steady and similar to the one in
Fig. 10(a). The time-dependent state means that the number, shape
and size of the rolls varies, new rolls are born and others disappear. A
snapshot of a time-dependent structure is shown in Fig. 10(b). Time-
dependence is more enhanced for ε = 100. Steady-state longitudinal
rolls exist only in a narrow stripe of the (G, R) plane, for small R
values (Fig. 9c). Fig. 10(c) presents a snapshot of a time-dependent
solution with rolls of different width. The two large rolls are just
squeezing out the small ones (towards the left end of the box in the
vertical cross-section). The panels of Fig. 10 prove again that the
increase in anisotropy results in an increase in cell width.

The stability domain of the longitudinal rolls in the (G, R) plane
is shown in Fig. 9 for the three cases of anisotropy studied. At high
R values, the domain boundaries are close to the lines of G/R=
constant, although they are not parallel to them: for increasing values
of R, the domain shifts towards larger values of G. For small, but
still supercritical values of R, the roll domain turns to ‘horizontal’.
In the limit G = 0, the roll domain approaches the interval in which
the 2-D rolls of free convection are stable.

The domain boundaries have been obtained by interpolation using
the results of numerical experiments made in different points of the
(G, R) plane. Towards the region of the time-dependent polygonal
cells (towards higher R values if G is fixed) it is difficult to establish
a sharp boundary, because just across the boundary the polygons
are elongated in the direction of the slope and behave as quasi-rolls.
There is in fact a narrow transitional zone between the domains of
the polygonal cells and the longitudinal rolls. The other boundary
of the roll domain (towards small values of R) is sharp, because the
structure of the flow is completely different beneath this boundary.

Two-dimensional flow

Two-dimensional circulation is obtained when the value of G/R is
large. In this case the dominating driving force of the flow is the
hydraulic slope. The flows are 2-D in the sense that in the transverse
direction (perpendicularly to the slope) all quantities are constant.
A special case is the purely hydraulic flow, when R = 0 and G is
non-zero.

There are two different types of 2-D flow. For moderate values
of G/R, time-dependent transverse rolls develop which drift in the
direction of the slope. This circulation mode has been found to exist
for ε = 1 and 10, but not for ε = 100. It is more characteristic of
the isotropic case (ε = 1). If exists, it is restricted to a closed zone
of the (G, R) plane below a certain value of R (Fig. 9). This zone is
very narrow at ε = 10.

The structure of the transverse rolls in a vertical section is shown
in Fig. 11. The parameters of the model example are the following:
isotropic medium (ε = 1), 7.2 for the box width, R = 60 and G = 6.
Figs 11(a) and (b) depict a snapshot of the temperature distribution
and the streamlines respectively. The main recharge area (top of
the slope) is at the left end of the box: here the flow is directed
downwards constantly. The transverse rolls are born at some distance
from the left side of the box. There are four upwellings in the figure
at the moment of the snapshot. The rightmost one is permanent
(this is the main discharge zone at the deepest point of the surface
slope), the other three move rightwards with a velocity which would
be approximately the velocity of the purely hydraulic flow (R =
0). When the closest one reaches the end of the box, it merges into
the fourth upwelling. The process is repeated regularly. During these
periods the mean surface heat flux oscillates according to Fig. 11(c).
The period is complicated: there are three heat flux maxima with
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Figure 11. Snapshot of the drifting transverse rolls for ε = 1, R = 60, G = 6
in a box of length Lx = 7.2: (a) vertical section of the isotherms, contoured at
intervals of 0.1; (b) vertical section of the streamlines; (c) temporal variation
of the heat flux Nu.

different amplitudes within a complete time cycle. (This can be
different in other models.) During one cycle, two new upwellings
are born on the left, generating peaks in the curve of Fig. 11(c). A
third peak is caused by the merger of a travelling warm upwelling
into the rightmost one at the box side. When the dip of the slope,
G is larger, the picture becomes simpler: fewer rolls develop in the
same box.

The second type of 2-D flow occurs at large values of G: then
there are no moving rolls, the flow evolves to a steady state. The
region of this type of 2-D circulation in the (G, R) plane is situated
in the far right side (Fig. 9). This flow shows a ‘unicell’ structure: it
has one downwelling (at the top of the slope) and one upwelling (at
the other end of the slope), just as in a purely hydraulic situation.
The pattern for ε = 1, Lx = 7.2, R = 60 and G = 20 can be seen
in Fig. 12. These parameters, except for the large value of G, are
the same as in Fig. 11. Although qualitatively the flow is the same
as the flow without thermal buoyancy (R = 0), quantitatively it is
different, because the heat expansion also contributes to the driving

0 1 2 3 4 5 6 7x
0

1
z

0 1 2 3 4 5 6 7x
0

1
z

(a)

(b)

slope

Figure 12. Steady-state unicell flow for ε = 1, R = 60, G = 20 in a box
of length Lx = 7.2. Upper panel: isotherms, lower panel: streamlines.
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force. As a result, the recharge zone is cooler and the discharge zone
is warmer than it would be with R = 0. The Nusselt number Nu,
which expresses the efficiency of the heat transfer, is also larger: at
G = 20 and R = 60 it is Nu = 1.842; at G = 20 and R = 0 it would
be Nu = 1.692. (At G = 0 and R = 0, the Nusselt number is 1.)

Characteristics of the heat transport when G > 0

If R increases at a fixed G, the surface heat flux (Nu) also increases.
The increase is not monotonic, because the structure of the ground-
water flow changes as the boundaries of the stability regions are
crossed in the (G, R) plane (Fig. 9). The variation of Nu is shown for
G = 10 in Fig. 13(a). The other parameters are ε = 1 and Lx = Ly

= 7.2 as in the models of Figs 8, 10(a), 11 and 12. The first section
of the curve in Fig. 13(a) corresponds to the 2-D unicell flow at
very small values of R: the Nusselt number increases very slowly
here. Then, in the region of the 2-D transverse rolls and later for the
3-D flows, Nu increases quickly. In a short interval at R = 76–89,
longitudinal rolls yield the stable solution and Nu falls back slightly
in this region.

The results are a little bit more complicated if Nu is plotted as a
function of G, at fixed R. For the same circumstances as in Fig. 13(a),
i.e. for ε = 1 and Lx = Ly = 7.2, Fig. 13(b) shows two curves
fixing R = 60 and R = 120. In the range where thermal buoyancy
contributes significantly to the flow (3-D cells, longitudinal rolls,
2-D transverse rolls), the general tendency is that Nu decreases with
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Figure 13. Variation of the Nusselt number (heat flux) in models with a
square box Lx = Ly = 7.2 and isotropic medium (ε = 1), (a) for fixed G,
(b) for fixed R. The curves show discontinuities because of abrupt changes
in the flow pattern. Symbols: open squares, time-dependent polygonal cells;
solid circles, steady-state longitudinal rolls; open circles, drifting transverse
rolls; triangles, 2-D unicell flow. Nu is time averaged for time-dependent
solutions. Numbers in parentheses indicate the number of longitudinal rolls
that develop in the box of size Lx = Ly = 7.2.

the increase of G. The decrease is not monotonic, because the flow
structure changes several times as G increases. As we reach the
unicell 2-D region, Nu begins to increase. The structure of the flow
does not change any more. With increasing G, the velocity of the
unicell flow increases, and it can transport more and more heat
to the surface. On the contrary, at smaller G values, where more
convective cells are present, the background hydraulic flow hinders
the heat transport of the more efficient cellular convection, and this
leads to the decrease of Nu with increasing G.

D I S C U S S I O N A N D C O N C L U S I O N S

The basic form of thermal convection in an unconfined layer is the
one where the surface hydraulic gradient is zero (G = 0). Above
the critical Rayleigh number the first stable convective form con-
sists of 2-D rolls. This is generally true in homogeneous horizontal
layers, not only in the unconfined reservoir studied here but also
in porous layers with impermeable boundaries (Steen 1983) and in
Newtonian convection (Busse & Whitehead 1971). In the uncon-
fined layer, when R increases, 3-D cells become stable very soon.
We have established by numerical experiments the critical Rayleigh
numbers for 3-D cells as the function of the cell size and anisotropy.
In the numerical experiments, where we use rectangular boxes, we
obtain square cells. It can be expected, however, that in an infinite
layer hexagonal cells are stable under the same conditions as the
squares. Since the hexagonal geometry does not fit the rectangular
model boxes, we did not carry out experiments with hexagons. Ex-
periments in porous layers (Bories & Combarnous 1973) or analo-
gies with Newtonian convection (Busse & Frick 1985) indicate that
the hexagonal cells are stable under more or less the same conditions
as square cells. The topological characteristics of these two regular
polygonal cells are basically the same. In a real experiment it is dif-
ficult to reproduce perfect regularity (Bories & Combarnous 1973).
It is achieved usually by prescribing regular initial conditions. In
ordinary circumstances, e.g. in case of irregular initial conditions
(‘noise’), the final polygons are irregular and they never reach the
steady state. Some cells disappear and new ones are born continu-
ously. At very high Rayleigh numbers, time dependence is obtained
even in case of regular initial conditions: the initial regular cells
disappear, showing that there is an upper limit for their stability on
the scale of the Rayleigh number.

A common feature of either the regular or irregular polygonal
cells in an unconfined layer at G = 0 is that a wide cold down-
welling occupies the centre of the cells and a narrower warm up-
welling belt is located all along the sides of a cell. There is therefore
an inherent asymmetry: the downwellings and upwellings have dif-
ferent geometries. The reason for the asymmetry is that different
boundary conditions prevail on the boundaries: the upper one is
permeable and lower one is impermeable. In contrast, the structure
of the convection cells in a layer confined by impermeable bound-
aries is symmetric, the downgoing and upgoing currents are mirror
images of each other.

When there is a hydraulic slope on the surface (G > 0), the con-
ditions for the appearance of cellular convection become stricter,
because the hydraulic driving force competes with the buoyancy
force in optimizing the heat transport or energy balance. As G in-
creases, the critical Rayleigh number, above which there are cellular
convective forms superimposed on the hydraulic background flow,
also increases. Below the critical value (in the lowest domain in
Fig. 9) 2-D ‘unicell’ flow occurs. It has a single downwelling below
the upper end of the slope and a single upwelling below the lower
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end of the slope. There is horizontal flow only in the direction of the
slope. In this domain of the (G, R) space, even if R > 0, the buoy-
ancy force is not strong enough to produce convective cells because
the hydraulic flow sweeps them away. The unicell flow is the same
qualitatively as the purely hydraulic flow at G > 0 and R = 0.

As R increases at a fixed value of G(>0), the first cellular form of
convection can appear in two different forms. For small anisotropy
(approximately for ε ≤ 10) and in a certain range of G, transverse
rolls develop: this is a 2-D time-dependent flow where the rolls drift
in the direction of the slope. In other cases, e.g. for large anisotropy,
the first cellular form means longitudinal rolls. This is an important
flow structure at all anisotropies. A further increase of R results in
3-D polygonal cells. These cells usually vary with time and travel
along the slope, driven by the regional flow due to the hydraulic
gradient.

The longitudinal rolls represent a transitional mode between the
hydraulic flow and the 3-D polygonal convection. When G/R is
large, the dominant mode is the hydraulic flow. When G/R is small
and R is large enough, the dominant mode is 3-D convection. When
G/R is in an intermediate range, the hydraulic gradient and the buoy-
ancy force are equally important in governing the structure of the
flow, and this results in longitudinal rolls. Buoyancy-driven convec-
tion interferes to the least extent possible with the hydraulic flow
if they act in perpendicular directions. The hydraulic flow ‘has no
choice’, it has to follow the direction of the slope, so thermal buoy-
ancy is forced to select the transverse direction in order to optimize
the energy transport. The outcome of this pattern selection prob-
lem is that convection is organized in rolls with their axes oriented
parallel to the slope.

This type of convection has many analogies from other fields
of fluid dynamics. When the atmosphere is thermally unstable and
there is a regional wind, convection develops perpendicularly to
the wind, producing spectacular cloud patterns with parallel stripes
of clouds and cloudless zones which alternate periodically (Turner
1973; Tritton 1977). Richter & Parsons’ (1975) experiments showed
that a plate moving on the top of a horizontal layer of fluid pro-
duces longitudinal convective rolls in the fluid. Numerical stud-
ies supported these observations (Cserepes & Christensen 1990).
Hart (1971) obtained longitudinal cells in a dipping fluid layer
bounded by isothermal impermeable boundaries. In this case the
‘regional wind’ is produced by the tilted isothermal boundaries: the
buoyancy force has a component in the direction of the dip even
at infinitesimally low Rayleigh numbers. At supercritical Rayleigh
numbers, local convection must act perpendicularly to the regional
flow, and this leads again to longitudinal rolls. The same phe-
nomenon has been observed in a dipping porous layer (Bories &
Combarnous 1973; Caltagirone & Bories 1985; Ormond & Genthon
1993).

In the numerical experiments we used random initial perturba-
tions. Depending on the G/R ratio a large selection occurs towards
preferential directions in the convection: parallel to the slope, per-
pendicular to the slope and both directions in the case of transverse
rolls, longitudinal rolls and 3-D polygonal cells respectively.

In this paper we investigated the structure of the water flow in an
unconfined porous layer, which is bounded on the top by a hydraulic
slope. We can conclude that the structure of the flow depends on
the interaction between the driving forces: the hydraulic gradient
and the buoyancy forces. The hydraulic gradient is determined by
the dip of the slope, G, and the buoyancy force is characterized by
the Rayleigh number R. We have established three different regions
in the (G, R) plane, where fundamentally different flow structures
exist, which depend on the G/R ratio. These basic forms are: 3-D

polygonal cells at low G values, longitudinal cells for medium G/R,
and ‘unicell’ 2-D flow for high G/R.
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A P P E N D I X

The general governing equations of thermal convection in a perme-
able medium are the equation of continuity, Darcy’s law and the heat
transport equation (Marsily 1986; Bear & Verruijt 1987):

∂(nρ)

∂t
+ ∇(ρu) = 0 (A1)

−ρge − ∇ p − ηk−1u = 0 (A2)

χ
∂T

∂t
+ u∇T = κ∇2T . (A3)

For notation see main text.
In the case of an unconfined (i.e. near-surface) reservoir the use

of the classical Boussinesq approximation can be admitted. Then
the density of water ρ is assumed to depend only on the temperature
and only in eq. (A2):

ρ = ρ0(1 − αT ) (A4)

where ρ 0 is the density of water at T = 0 and α is the thermal
expansion coefficient of water. Otherwise ρ is constant together
with the other parameters of the medium. Thus eqs (A1) and (A2)
become:

∇u = 0 (A5)

−ρ0(1 − αT )ge − ∇ p − ηk−1u = 0. (A6)

Eq. (A5) says that u is a solenoidal vector field, therefore it can be
decomposed as:

u = ∇ × ∇ × V e + ∇ × W e (A7)

where V and W are the poloidal and toroidal potentials, respectively.
From eq. (A6) u can be written as:

u = k

η
[αρ0gT e − ∇(p + ρ0gz)] = K eαT − K∇h (A8)

where K is the hydraulic conductivity defined as:

K = ρ0g

η
k (A9)

and h is the piezometric head:

h = p

ρ0g
+ z. (A10)

We assume a homogeneous but anisotropic medium, restricting
anisotropy to the simple symmetric case where the hydraulic con-
ductivity tensor appears as:

K = K0


1 0 0

0 1 0
0 0 1/ε


 . (A11)

Here K 0 and ε > 1 are constant values. This form means that the
only deviation from isotropy is that the hydraulic conductivity is
smaller vertically than horizontally. ε is the anisotropy coefficient.
It is defined as the ratio of horizontal to vertical conductivities.
Eq. (A11) is a good approximation in the case of a horizontally
layered medium where layering is so fine that the medium looks
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homogeneous macroscopically. Since the permeability differs from
the hydraulic conductivity in a constant (eq. A9), the form of the
permeability tensor is the same as eq. (A11), except that k 0 is in the
equation.

Calculating the vorticity of u from eq. (A8) as ω = rot u, its
vertical component becomes zero due to the form of the hydraulic
conductivity tensor (eq. A11):

ωz = e∇ × u = 0. (A12)

Note that if the medium were not isotropic horizontally, then ωz

would not be zero.
Taking the curl of u, it follows from eqs (A7) and (A12) that W

is constant, so there is no toroidal component of u:

u = ∇ × ∇ × V e. (A13)

u = (u, v, w) can be derived from V as, (eq. 7 in main text):

u = ∂2V

∂x∂z
, v = ∂2V

∂y∂z
, w = −

(
∂2V

∂x2
+ ∂2V

∂y2

)
. (A14)

Finally, by taking the curl of eq. (A6) and using eqs (A11) and (A14),
we arrive at a differential equation for V :

ε

(
∂2V

∂x2
+ ∂2V

∂y2

)
+ ∂2V

∂z2
= −K0αT . (A15)

The boundary conditions have been defined in the description of the
model. Let us now redefine them for V . The impermeable bottom
means that w = 0. From eq. (A14) it follows that:

V = 0 at z = 0. (A16)

The upper boundary of the reservoir is the surface of the water
table:

z = D + H (x, y)
H (x, y) = −γ (x − Dx/2) (γ ≥ 0) (A17)

where H(x, y) is the elevation of the water table with respect to its
mean position z = D. It dips in the x direction and its slope is a
constant, γ . Assuming that H 	 D, the piezometric head at the top
of the computational domain (z = D) is:

h ≈ D + H at z = D. (A18)

The upper boundary conditions will be defined for the z = D plane:

T = 0 at z = D. (A19)

From eq. (A18), using eqs (A8) and (A11):

u = −K0
∂ H

∂x
at z = D. (A20)

Applying eq. (A14) for eq. (A20), we arrive at the boundary condi-
tion for V :

∂V

∂z
= −K0 H = K0γ (x − Dx/2) at z = D. (A21)

Eqs (A3), (A14) and (A15) and the boundary conditions are used
in dimensionless form during the computations. The scaling factors
are D for the distance, D2/κ for time, κ/K 0 for the piezometric head
and �T for the temperature. The dimensionless equations (eqs 4–
7) and boundary conditions (eqs 8, 10–12) are shown in the main
text.
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