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S U M M A R Y
We present techniques for the efficient numerical computation of the electrical potential with
finite element methods in 3-D and arbitrary topography. The crucial innovation is, firstly,
the incorporation of unstructured tetrahedral meshes, which allow for efficient local mesh
refinement and most flexible description of arbitrary model geometry. Secondly, by implemen-
tation of quadratic shape functions we achieve considerably more accurate results. Exploiting
a secondary potential (SP) approach, meshes are downsized significantly in comparison with
highly refined meshes for total potential calculation. However, the latter is necessary for the
determination of the required primary potential in arbitrary model domains. To start with, we
concentrate on the simulation of homogeneous models with different geometries at the surface
and subsurface to quantify their influence. This results in a so-called geometry effect, which
is not only a side effect but may be responsible for serious misinterpretations. Moreover, it
represents the basis for treating heterogeneous conductivity models with the SP approach,
which is especially promising for the inverse problem.

We address how the resulting system of equations is solved most efficiently using modern
multifrontal direct solvers in conjunction with reordering strategies or rather traditional pre-
conditioned conjugate gradient methods depending on the size of the problem. Furthermore,
we present a reciprocity approach to estimate modelling errors and investigate to which degree
the model discretization has to be refined to yield sufficiently accurate results.

Key words: electrical resistivity, finite element method, numerical techniques, topography,
unstructured meshes.

1 I N T RO D U C T I O N

Direct current (dc) resistivity methods are widely used in geophys-

ical near-surface investigations. The field technique is rather sim-

ple in its basic application although multielectrode systems have

received a high technical standard nowadays. They are particularly

applied if we want to achieve detailed information on the spatial dis-

tribution of electrical resistivities within the subsurface. 3-D struc-

tures, subsurface voids and surface topography are challenges we

face if we want to calculate the geoelectrical response for realistic

environments. The simulation software plays a decisive role in the

data interpretation process and has to be capable of including all

these features if we strive for solving the inverse problem in the end.

This paper, therefore, focuses on the simulation or forward mod-

elling routine and is basis of an inversion technique described by

Günther et al. (2006, this issue).

The numerical calculation of the electric field started in the late

1960s using the techniques of integral equations (Dieter et al. 1969),

finite element (FE) (Coggon 1971) and finite difference (FD) meth-

ods (Mufti 1976). A special variant basing on integral equations

is the boundary element method (Okabe 1981). FD calculations in

3-D go back to Dey & Morrison (1979). They were the methods of

choice throughout the 1980s and 1990s where several refinements

were applied to them. Zhang et al. (1995), for example, presented

improved boundary conditions for a more accurate potential ap-

proximation and Spitzer (1995), for example, introduced efficient

pre-conditioned conjugate gradient solvers to decrease execution

time.

By splitting up the total potential (TP) into a known reference

potential of a background model and a secondary potential (SP) due

to conductivity deviations from the background model, accurate

numerical calculations of the SP can be carried out on moderate

grids (Coggon 1971). This technique is known as singularity removal

(Lowry et al. 1989) and was enhanced by Zhao & Yedlin (1996).

However, it is used only for flat-earth problems with analytically

known potentials.

The FD method is restricted to orthogonal grids, which limit

its ability to reproduce non-orthogonal geometries. In recent years,
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(a) (b) (c)

Figure 1. Different grid types: Orthogonal cuboid (a), non-orthogonal hexahedral (b) and unstructured tetrahedral (c) grid.

more and more FE approaches appeared, which are generally not

subject to these drawbacks. Besides the aforementioned paper by

Coggon (1971), FE formulations of the dc resistivity problem

are described in Pridmore et al. (1980), Queralt et al. (1991),

Li & Spitzer (2002), Zhou & Greenhalgh (2001) and Pain et al.
(2003). Simulations with surface topography were presented in 2-D

(Coggon 1971; Fox et al. 1980) and 3-D (Holcombe & Jiracek 1984;

Sasaki 1994; Yi et al. 2001). However, the presented algorithms

mainly work with block-oriented (structured) discretizations using

hexahedral or tetrahedral elements and, thus, do not exploit the full

power of the FE approach. Sasaki (1994) and Zhou & Greenhalgh

(2001) use tetrahedral grids but since they are derived from bricks

the approach is still block oriented.

Fig. 1 shows three possible grid types. (a) and (b) are regular types.

The orthogonal hexahedral grid (a) is the one that is furthermost

restricted with respect to geometry and local refinement. The local

refinement of (b), a non-orthogonal regular hexahedral type, is still

awkward and inefficient, but its geometrical adjustability is already

increased. (c) shows an unstructured or irregular tetrahedral type,

which is evidently the most flexible mesh in this regard. Particularly,

refinement of regular grids results in an immoderately increased

number of nodes, which consequently expands the numerical effort.

Unstructured meshes are highly superior to the structured types with

respect to these two points. They save computing resources and are,

thus, one of the main issues of this paper.

We have implemented a C++ class library for FE problems that

uses the non-commercial mesh generator TetGen (Si 2003) for the

generation of unstructured tetrahedral meshes. Firstly, any model

geometry and electrode layout can be described much more flexibly,

for example, arbitrary electrode positions can be represented by

prefixed nodes within the mesh. Secondly, the node distribution

can be controlled on demand by refining the mesh locally in the

vicinity of electrodes or at strong conductivity contrasts, that is,

where strong gradients of the simulated potential require enhanced

accuracy. In return, coarse grids are sufficient toward the boundaries

to approximate the rather smooth fields appropriately.

As a result of any discretization technique, a sparse system of

equations has to be solved for each current location. An overview on

non-stationary iterative equation solvers for dc resistivity problems

was given by Spitzer & Wurmstich (1999). They suggest conju-

gate gradient techniques with pre-conditioners. One very efficient,

albeit memory consuming technique is obtained by an incomplete

Cholesky (IC) decomposition (Kershaw 1978) as applied to dc mod-

elling by Dey & Morrison (1979) and Li & Spitzer (2002). In contrast

to these iterative methods direct equation solvers have progressed

rapidly in the recent years. Multifrontal decomposition methods go-

ing back to Duff et al. (1986) seem to suit best for problems with

many right-hand sides, since the decomposition is done only once.

The use of reordering techniques helps to limit the memory require-

ments for direct methods as well as for the IC pre-conditioner.

Accuracy in dc resistivity modelling is enhanced not only by

grid refinement strategies but also by employing higher order basis

functions in the FE approach. We show that a combination of both

mesh refinement and quadratic shape functions yields most efficient

solutions.

First we give an introduction to FE modelling, unstructured mesh

generation and refinement. The homogeneous half-space is used

to investigate how refinement strategies improve the results for the

calculation of the TP. In the sequel, the conducting half-sphere is

used to demonstrate the geometric flexibility of our approach and

to apply the SP modelling. In two examples we show how compli-

cated subsurface and surface geometry can be involved. We define

a geometry effect to appraise the influence of any topography on dc

resistivity measurements. Finally, we discuss computational aspects

for the solution of the systems of equations.

2 F I N I T E E L E M E N T F O RWA R D

M O D E L L I N G

2.1 Calculation of the total potential

The boundary value problem is given by the equation of continuity

with generalized boundary conditions:

∇ · (σ∇u) = −∇ · j in � ⊂ IR3, (1a)

σ

(
∂u

∂n
+ αu

)
= j · n on � = �S ∪ �E, (1b)

where σ (x, y, z) is a given conductivity distribution in the ground, j
the source current density and u the electrical potential, n denotes

the outward normal on the corresponding boundary. We assume the

current I being injected through point-like electrodes at the earth’s

surface �S. Note that in the formulation above this may be done at

�S as well as within the modelling domain �, for example, using

boreholes. For an electrode situated at rs = (xs, ys, zs) the source
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term reads ∇ · j = Iδ(r − rs), where δ is Dirac’s delta function. At

�S we impose Neumann conditions (α = 0) to avoid current flow

through the boundary. The other boundaries are treated with mixed

boundary conditions after Dey & Morrison (1979) yielding α = n ·
r/|r|2. Note that we use the above formulation instead of the popular

one because it is mathematically exact. Moreover it allows the node

independent electrode positioning (see Appendix A).

The use of the weighted residual method (Zienkiewicz 1977)

leads to the weak formulation of the boundary value problem (1),∫
�

σ · ∇w∇u d� +
∫

�

σαwu d� =∫
�

w I δ(r − rs) d� +
∫

�

w j · n d�, (2)

which has to be satisfied for a set of weighting functions w. The

weak formulation allows a piecewise approximation of u but does

not require the existence of a continuous second derivative.

The modelling domain is subdivided into disjunct elements. The

integration on the individual elements leads to a system of linear

equations Au = b with the positive definite, symmetric and sparse

matrix A ∈ IRN×N, where N is the number of nodes, u is a vector

containing the sought potentials and b is a vector of source terms.

For details of the implementation of the equations with linear and

quadratic shape functions see Appendix A.

2.2 Calculation of the secondary potential

The Dirac delta function δ in the source term of eq. (1a) leads to

infinite potential gradients at the source position rs. Typically, this

singularity is responsible for very poor numerical approximations of

eq. (1a), particularly close to the electrode positions. The singular-

ity can be removed according to a procedure described by Coggon

(1971) for FE and Lowry et al. (1989) for FD. The potential u is

split up into a primary and a secondary part u = up + u s.

We yield the boundary value problem for the SP

∇ · (σ∇us) = ∇ · ((σp − σ )∇up) in � (3a)

σ

(
∂us

∂n
+ αus

)
= (σp − σ )

(
∂up

∂n
+ αup

)
on �, (3b)

where the singular current density j has vanished. However, the

integral of eq. (3a) contains the gradient of the primary potential up.

It is only guaranteed to be regular if the conductivity in the direct

vicinity of the electrode equals σp. As already mentioned by Zhao &

Yedlin (1996), for σp the local conductivity at the electrodes has to be

chosen and not the mean conductivity as suggested by Lowry et al.
(1989). Secondary sources appear where the conductivity deviates

from σp.

Both left- and right-hand side differential operators are identical

to that of the TP. By approximating the operators by matrices the

system of equations can be written as

Aσ us = Aσp−σ up. (4)

In order to avoid the assembling of Aσp−σ for each source con-

ductivity σ p we use the linearity of A by

Aσp−σ up = (Aσp − Aσ )up = A1upσp − Aσ up. (5)

Thus only one matrix A1 for a homogeneous conductivity of 1 has

to be created additionally to Aσ for the whole forward calculation

with many sources.

Note that, due to singularities in up, the right-hand side may only

be approximated insufficiently using a coarse mesh. We, therefore,

suggest numerical integration in the vicinity of the electrodes.

2.3 Solving the system of equations

The boundary conditions and, thus, the corresponding matrix en-

tries depend on the source position. In order to avoid the intense

reassembling of the coefficient matrix for each individual source of

a multielectrode system we use a constant average source position

for the boundary conditions, which is sufficiently accurate since

the boundaries are generally far away from the sources. Hence, the

matrix A is constant.

Both for the total and the secondary potential, a system of equa-

tions Aul = bl has to be solved for each current source l = 1,

. . ., E , where E is the number of current sources. Thus, the system

of equations is solved E times. Since the individual electrodes are

used more than once, it is most efficient to calculate the potential

for each single electrode and superpose the results. The matrix A
is symmetric and sparse. With linear shape functions we generally

obtain between 3 and 20 non-zero entries per row, with a mean of

around 14.

For the solution of large, sparse systems of equations conjugate

gradient methods (Hestenes & Stiefel 1952) prove to be very effi-

cient (Spitzer & Wurmstich 1999). Their convergence can be sig-

nificantly improved by the use of pre-conditioners. A very efficient

pre-conditioner for many right-hand side vectors is achieved by

IC factorization of A, because the pre-conditioning process is done

only once and the number of iterations per individual right-hand side

vector is drastically reduced. There are two main variants of the in-

complete factorization (Saad 1996; Zhou & Greenhalgh 2001). One

restricts the non-zero elements to the sparsity structure of A (Dey

& Morrison 1979; Li & Spitzer 2002; Wu et al. 2003). Another

allows fill-in but neglects values smaller than a certain threshold

(Saad 1996). We will address these as IC-nofill and IC-droptol in

the following.

The conjugate gradient method using IC-droptol is somewhat a

hybrid between iterative and direct methods. An IC decomposition

with a threshold of 0 corresponds to a direct solver since the iteration

is stopped after 1 iteration step. Consequently, direct methods are

the matter of choice, if there is enough memory to save the complete

Cholesky factor. In the past years multifrontal algorithms have been

developed (Duff et al. 1986), which allow for efficient Cholesky

decomposition. We use the C library TAUCS (Toledo et al. 2001),

which provides direct and iterative solvers on the basis of multi-

frontal methods.

The fill-in produced by the (complete or incomplete) Cholesky

factorization can be significantly diminished by reordering the ma-

trix rows and columns. Historically, the oldest methods are Cuthill–

McKee (CMK) and reverse Cuthill–McKee (RCM). A detailed de-

scription of the individual methods would go beyond this paper

and can be found in mathematical literature (Saad 1996). Generally,

three classes exist:

(i) Nested dissection (ND) is based on geometrical node sepa-

ration (graph partitioning). A popular and very efficient implemen-

tation is METIS (Karypis & Kumar 1998).

(ii) Minimum degree (MD) methods try to reduce the neigh-

bouring relations (degrees) of the nodes. Popular methods are mul-

tiple minimum degree (MMD) and approximate minimum degree

(AMD) (Amestoy et al. 1996).
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(iii) Minimum deficiency (MF) is a much more extensive tech-

nique which successively eliminates the nodes with minimal fill-in

(Davis et al. 2000).

3 D I S C R E T I Z AT I O N A N D A C C U R A C Y

3.1 Mesh generation and refinement

An initial partitioning of the modelling domain often incorporates

the given electrode layout as fixed nodes. However, an additional

refinement has to be applied to obtain accurate forward calcula-

tions due to the singular potential at the electrodes. The existing

approaches use block-oriented grids for both FD and FE calcula-

tions (Loke & Barker 1996; Wu et al. 2003; Yi et al. 2001). By

introducing grid lines between electrodes the error is decreased.

Using between two and four additional nodes they all end up in

around 4 per cent relative error for a pole–pole configuration (Yi

et al. 2001).

For a successive superposition of configurations with large ge-

ometric factors (such as dipole–dipole) a further refinement is re-

quired since the relative error is amplified by the geometric fac-

tor. However, since refining block-oriented grids always works in a

global way, the number of nodes increases rapidly. One main ad-

vantage of unstructured meshes is the facilitation of refining grids

within distinct regions. Thus in regions of varying potential gradi-

ents (close to electrodes) the mesh can be chosen very fine whereas

toward the boundaries of the modelling domain the cell sizes grow.

One can distinguish between a posteriori and a priori refinement.

For the former, the discretization depends on an error estimation

procedure in the solution process, whereas for the latter, the infor-

mation is introduced in advance. Since we know the critical regions,

we choose the a priori type and enforce a locally fine mesh by intro-

ducing additional supporting nodes to the mesh generation process.

In addition to the local node density, the approximation quality de-

pends on the cell size growth (or prolongation) factor. This can

mainly be controlled by the ratio of the tetrahedral edge lengths

and the radius of the circumscribing sphere. Since sliver-shaped el-

ements yield poor approximation properties, mesh generators try

to minimize the radius-to-edge ratio. The maximum ratio through-

out the mesh can be used as a global mesh quality control. We use

TetGen (Si 2003), which tries to force all radius-to-edge ratios be-

low a certain quality constraint. We choose a radius-to-edge ratio of

1.2 for all subsequent meshes, which, to our experience, provides

sufficiently accurate results.

In order to create an unstructured mesh the domain has to be

defined by points, polygons or faces, the so-called piecewise linear

complex (PLC) (Shewchuk 1998). This includes the geometry of

the domain and the electrode locations as well as the boundary.

By introducing nodes and creating tetrahedral elements, the mesh

generator creates the mesh of desired quality.

In the following we investigate local and global refinement tech-

niques to find a trade-off between accuracy and computational effort.

In addition to the spatial mesh refinement (h-method), we take into

account the use of higher order shape functions (p-method).

3.2 Discretization for calculating the total potential

A uniform earth with a flat surface boundary offers the most sim-

ple analytical solution. We assume 21 electrodes in a straight line

with 1 m spacing. The model boundaries are placed 5 km around the

origin in order to minimize the effects of the boundary conditions.

The first mesh created by the grid generator TetGen obtains 2047
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Figure 2. Relative deviation between analytical and numerical solutions

of a pole–pole sounding for three meshes with increasing local refinement

around the source electrode (total potential calculations).

nodes. Using the simulated potentials at the electrode locations we

construct a pole–pole sounding curve for comparison with the ana-

lytical solution (upper curve in Fig. 2). In the vicinity of the source

electrode we observe quite large errors, whereas with increasing

distance the error stabilizes at around 5 per cent.

To diminish the large errors at the sources we increase the dis-

cretization density around the source node. By adding supporting

points at a fixed depth dz below the electrodes the mesh generator

is forced to apply a local refinement. In addition to the coarse unre-

fined mesh denoted by dz = 0.0 m (2047 nodes), Fig. 2 shows the

results for the locally refined meshes denoted by dz = 0.1 m (5179

nodes) and dz = 0.01 m (13 074 nodes). The error is already almost

constant for dz = 0.1 m. A further local refinement (dz = 0.01 m)

yields only a negligible improvement. Therefore, we proceed using

the mesh with the intermediate refinement (dz = 0.1 m).

Apparently, we need a global refinement to enhance the global

error level of ≈ 4%. The simplest strategy is to bisect all tetra-

hedron edges such that each tetrahedron disintegrates into eight

smaller ones. The number of nodes is increased approximately by

a factor of 8 (38 533 nodes). Alternatively, we apply second or-

der polynomials by replacing the 4-node tetrahedron by a 10-node

tetrahedron, with a new node at each edge centre. Therefore, the

resulting mesh nodes are identical to those of the h-refined mesh.

Fig. 3 shows the relative deviations for the intermediate mesh of

Fig. 2 of 5179 nodes (top), after a global refinement to 38 533 nodes

(centre), and with the use of quadratic shape functions (bottom, also

38 533 nodes). By global refinement the error is halved to less than

2%, whereas quadratic shape functions yield errors around

0.1 per cent and below. The computational effort for solving the sys-

tem of linear equations is nearly the same in both cases. However,

we obtain significantly more accurate results by using the p-method.

First investigations show that the efficiency may not be improved

any further by the use of even higher polynomial order. Therefore,

we propose the use of locally refined meshes with quadratic shape

functions for all calculations of the total potential.

3.3 Discretization for calculating the secondary potential

In order to show the flexibility of unstructured meshes we choose

a spherical anomaly, which can hardly be discretized by block-

oriented grids. The analytic solution for a conducting sphere

is known (Large 1971; Zhdanov & Keller 1994). However, in-

stead of a sphere in full-space, we consider a half-sphere at the
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Figure 3. Relative deviation between the numerical and analytical solutions

of a pole–pole sounding for different meshes and shape functions (total

potential calculations).

Figure 4. Section of the mesh used for the conducting half-sphere study.

The dots denote electrode positions.

upper boundary of a half-space, on which electrodes are placed

along a profile line. Since the half-space boundary is an axis of

symmetry, the solution can easily be obtained by doubling the cal-

culated potential values.

We expect the SP to be rather smooth so that we may start with a

quite coarse mesh. Fig. 4 shows a section of the mesh. A half-sphere

with a radius of 2.25 m is placed at the origin. We introduce a line of

21 electrodes from x = −5 m to x = 5 m with a spacing of 0.5 m as

fixed nodes. Note that the electrodes can be placed independently of

the nodes in general. We choose the model boundary to be 1000 m

away from the origin in each direction. Using a radius-to-edge ratio

of 1.2 a mesh of 1769 nodes has been generated on which the SP is

simulated.

We assume the half-sphere to have a resistivity of 1 �m, whereas

the half-space has ρ p = 10 �m. We consider the source electrode

at rs = (−4; 0; 0) with the primary potential

up = Iρp

2π |r − rs| .

Consequently, sources for the SP occur only within the half-

sphere. The calculated potentials at the remaining electrodes are

transformed into apparent resistivities using pole–pole geometric

factors. In Fig. 5, the numerical results are compared to the analyti-

cal solution. Although the number of nodes is very small, the values

agree very well. The relative deviation (right-hand side axis) stays

below 1 per cent on the whole profile.
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Figure 5. Apparent resistivity of a pole–pole configuration over a conduct-

ing half-sphere: comparison of analytical and numerical results using sec-

ondary potentials (A is the source position). The right-hand side axis denotes

the relative deviation and the reciprocity measure r.

We now derive a measure of accuracy for cases where the an-

alytical result is not available. Going back to the idea of Coggon

(1971), Günther (2004) suggests to appraise the simulation results

based on reciprocity. According to the reciprocity principle the mea-

sured potential remains constant if current and potential electrodes

are interchanged. A deviation from this inevitably corresponds to

simulation errors. As an indication for modelling errors we propose

the reciprocity measure

r = 2
ρa

forward − ρa
reverse

ρa
forward + ρa

reverse

, (6)

where ρa
forward and ρa

reverse are the two simulated apparent resistivities

with interchanged current and potential electrodes. In Fig. 5 we can

see that in regions of increased errors the reciprocity measure r
rises. To appraise a multielectrode simulation we regard the standard

deviation and the maximum values of the individual reciprocity

measures.

In order to compare the SP results with the solution for the TP,

we have constructed a mesh for calculating the latter for the half-

sphere model. The refinement factors have been chosen such that

the accuracy is just as good as the one depicted in Fig. 5. With this

proceeding we end up with 49 341 nodes, which is almost 30 times

more than for the SP (1769 nodes).

Thus, the SP may be simulated on coarse meshes and with small

computational effort. However, the primary potential can only be

computed numerically if topography is present. In the following we

concentrate on numerical simulations of a constant conductivity to

obtain the primary potential for different model geometries.

4 M O D E L L I N G G E O M E T RY E F F E C T S

4.1 The geometry effect

Usually the measured electrical impedance 
u/I is transformed into

the apparent resistivity ρ a by means of the geometric factor k. The

latter is chosen such that the apparent resistivity equals the true re-

sistivity in case of a homogeneous distribution. Clearly, the geo-

metric factor depends on both electrode layout and the surface ge-

ometry. If the topography is non-trivial, k is unknown and can only

be assessed numerically. We usually use an approximation ka based

on the half-space potentials for surface measurements and the full-

space formula for subsurface measurements.
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500 C. Rücker, T. Günther and K. Spitzer

For any measurement, we want to discriminate between effects of

the subsurface conductivity distribution and artefacts produced by

using wrong geometric factors. Therefore, we define the geometry

effect as the ratio of the voltage differences of the given geometry


u and the approximation 
ua. From the equality of the apparent

resistivities we yield

t = 
u


ua
= ka

k
. (7)

If any surface topography is present, we assign a homogeneous

resistivity of ρ = 1 �m to the model and calculate the potential

u numerically. Since ρ a has to equal ρ we obtain the numerical

geometric factor k = Iρ/
u. t can be plotted for each datum to

appraise geometry effects. With a value of t = 1 the measurement

is not affected by topography. Values of t > 1 refer to increased

apparent resistivities whereas values of t < 1 indicate a decrease.

4.2 A subsurface example

The following example originates from a dc resistivity survey inside

a mining gallery to investigate its suitability as an repository for

nuclear waste. The measurements were carried out at the side wall

of the gallery. To interpret the measurements one is interested if

half-space or full-space approximation can be used. The influence

of the cavity finds expression in the value of the geometric factor

k, which may be determined by simulating the electric potential for

the gallery geometry within a homogeneous conductivity.

The gallery is 500 m long and has a 5 × 2 m cross-section. To

minimize potential non-conformities from the outer boundary con-

ditions we choose the model boundaries at a distance of 5 km from

the gallery. A number of 50 electrodes with 1 m spacing are as-

sumed at one side wall. Fig. 6 gives a view on the mesh used for the

numerical calculations. The gallery itself is described by an inner

surface with (no-flow) Neumann boundary conditions (α = 0, see

Section 2.1).

Alternatively, the problem could be solved by the approach of

Queralt et al. (1991), since the resistivity distribution is 2-D and the

array is parallel to the strike direction. However, the calculation is

numerically instable as mentioned by the author. Furthermore, we

search for a more general solution that is enable to involve real 3-D

geometry.

In order to describe the model geometry and to approximate

the TPs accurately, a large number of mesh nodes is necessary.

With local mesh refinement at the vicinity of the electrodes and

global quadratic shape functions the resulting mesh contains 128 169

nodes.

–2.5

x [ m ]

2.0

2.5
0.0

z [ m ]

Figure 6. Surface mesh of the mining gallery model showing a part of the

cavity. The dots denote electrode positions.
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Figure 7. Full-space apparent resistivities of the dipole–dipole sounding as

a function of the dipole separation.

A resistivity of 1 �m is assigned to the model. We used the full-

space geometric factor to obtain the apparent resistivities. Fig. 7

shows the simulated ρ a values as a function of the distance be-

tween transmitter and receiver dipole. Dipole length is the electrode

spacing of 1 m.

The curve starts at values around 2 �m for small separations,

which may be considered as half-space case and corresponds to a

topography factor of t = 2. As the separation increases, the curve

is tending more and more to 1 �m which is associated with the

full-space case of t = 1. For practical applications, the geometry

effect can be neglected if it falls below 10 per cent. In the case of

the presented gallery this holds from a dipole separation of 15 m on.

However, for small separations it has to be considered.

4.3 A complicated surface topography

To show a practical example with complicated surface topography

we choose a structural investigation at Merapi volcano which was

carried out in 1998 and 1999 (Friedel et al. 2000). Direct current

measurements have been conducted at Merapi’s northern, south-

ern and western flanks which show a pronounced topography. The

northern profile comprises 16 electrodes at ≈200 m, a total length

of 2600 m, and altitude differences of up to 730 m. This profile is

affected massively by the volcano topography.

First we need a surface mesh to apply the topography. We place

the electrode positions and supporting points in 1 m distance. To

satisfy boundary conditions and to include the whole volcano into

the model, the boundary is chosen 10 km outside the electrodes. With

the Triangle algorithm (Shewchuk 2002) we create a 2-D surface

which is fine at the electrodes and coarse at the boundaries (Fig. 8a).

It has only 4000 nodes, a regular mesh with similar refinement would

obtain unlike more.

The TU Darmstadt provided the high-resolution topography data

containing 300 000 points. To every node of the 2-D mesh an altitude

is associated by interpolation. Together with the lower boundary

points we obtain a 3-D surface mesh which is used by Tetgen (Si

2003) to create the 3-D mesh. As a result, a tetrahedral mesh of

79 611 nodes is created which reflects Merapi’s surface topography

to a high degree. Fig. 8(b) shows the mesh of Merapi’s northern

slope and the position of the electrodes used (bullets). The size

of the tetrahedrons is small close to the profile (1 m) and grows

larger with distance such that the whole volcano can be simulated

at affordable cost.
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Figure 8. (a) Section of the 2-D mesh with local refinement at vicinity of electrodes, (b) 3-D surface mesh with topography at the northern slope of Merapi

volcano, the dots represent the location of electrodes.
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Figure 9. Dipole–dipole pseudo-section of the topography effect t along

the profile at the northern slope of Merapi volcano. The origin is at the foot

of the mountain. The abscissa denotes the electrode number, the ordinate

reflects the dipole separation. The individual values are plotted in the centre

between the two dipoles involved.

The use of quadratic shape function yields a mesh with 566 736

nodes. Fig. 9 shows the resulting pseudo-section of the topography

effect. On the left (electrodes 1–10), we see the expected half-space

values of around t = 1 since the topography on the lowest part of the

profile is almost plane. Close to the upper right-hand side corner an

increase of the resistivities up to 50 per cent can be observed. Since

the current lines are compressed by the valleys running parallel to

the electrode line we yield increased voltages and, thus, increased

apparent resistivities. All readings associated with the last dipole

(electrodes 15 and 16), that is, on a diagonal line from the upper

right-hand side corner of the pseudo-section to the lower central

value, are decreased by 20 per cent. This may be caused by the steep

dip of the dipole axis toward the top of the volcano, since the last

electrode is situated on top of a narrow ridge.

The potentials for a homogeneous conductivity can be used to

determine the geometric factors. Thus, the resulting apparent resis-

tivities contain only the effect of the subsurface. Having calculated

the primary potential we may now simulate the potentials for arbi-

trary conductivity distributions using the SP technique on a rela-

tively coarse grid. See Günther et al. (2006) for further examples

and its use in the inversion.

Note that the potentials at the electrodes may also be obtained by

the boundary element method (Xu 2001). This results in solving a

dense system of equations where the degree of freedoms equals the

number of nodes in the surface mesh. This may be more efficient

in some cases. However, to solve for the SP, we need the potential

in the interior, which can only be achieved by numerical integration

for each node representing a large effort.

5 C O M P U TAT I O N A L A S P E C T S

Now, we review the meshes of the previous sections with respect to

solving the system of equations. For iterative methods, a stopping
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Table 1. Mesh sizes and number of non-zeros (nnz) in the stiffness matrix

for the four meshes in the preceding examples.

Example Half-sphere Half-space Gallery Merapi

Nodes 1769 38 533 128 169 566 736

nnz 24 427 542 459 1.86 · 106 7.74 · 106

Table 2. Computation time t and number of non-zero entries (nnz) for the

Cholesky factor and different reordering strategies (half-sphere).

Reordering None RCM MMD AMD

t(Chol) 1.85 s 0.06 s 0.09 s 0.09 s

nnz(Chol) 750 238 181 299 150 454 119 843

criterion has to be defined depending on the accuracy of the solution.

In our experience a relative residual value of 10−6 is sufficient for

practical purposes and is used in all computations. Table 1 gives an

overview of the size of the models used in the last two sections. The

node numbers span a range of almost four orders in magnitude.

Proceeding in the order of the mesh size we start with the small-

scale problem of the conducting sphere with 1769 nodes and 21

right-hand side vectors. The stiffness matrix contains 24 427 non-

zero entries which is ≈14 per row. Due to the small size, a direct

equation solver is appropriate. Once the factorization is done the

back-substitutions for the individual sources are obtained almost

instantly. The Cholesky factor is computed in 1.85 s and contains

750 238 non-zero elements, which need about 11.5 MB memory if

12 bytes/entry are considered.

In order to reduce the amount of storage, reordering of the matrix

rows and columns is performed in such a way that the number of non-

zeros (nnz) in the Cholesky factor is minimized. In Table 2 different

reordering strategies are compared: RCM, MMD and AMD (see

Section 2.3).

We see that all methods can reduce the nnz drastically, also the

computing time is decreased by several decades. AMD performs

best with a reduction factor of about 6. In Fig. 10 the sparsity struc-

ture is shown for the original and reordered stiffness matrix. We
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Figure 10. Sparsity structure of the original (left) and AMD-reordered (right) stiffness matrix for the mesh of the sphere model. The non-zero entries (denoted

by dots) show a much tighter band width after reordering.

see that the neighbouring relations of the first elements are changed

such that the according entries are located near the main diagonal.

The locally refined homogeneous half-space with quadratic shape

functions (38 533 nodes) still represents a moderate mesh with a

stiffness matrix A of 542 459 non-zero elements. Without reorder-

ing, the Cholesky factor obtains 6.84 · 108 elements corresponding

to 780 MB RAM which almost exceeds the memory limits of a

current standard PC (1 GB). However, with AMD reordering the

allocation can be reduced to nnz = 1.07 · 107 or 120 MB. Due

to this great benefit we use the AMD reordering technique for all

examples.

The next largest problem is the gallery (128 169 nodes, 1.8 Mio

nnz’s in A) with 50 electrodes. The (reordered) Cholesky factor ob-

tains 6.38 · 107 nnz’s or 730 MB. On our PC’s with 1 GB memory,

200 000 nodes represent the upper limit for direct equation solvers.

The algorithm implemented in the TAUCS package (Toledo et al.
2001) needs about 3 s for the symbolic analysis and 52 s for the mul-

tifrontal factorization. The following back-substitutions are carried

out in 111 s which is about 2 s for each electrode.

The Merapi mesh with 566 736 degrees of freedom cannot be

solved with direct methods due to memory limitations. Hence, we

use conjugate gradient methods for solving the system of equations.

Nevertheless, it is worth to carefully choose the pre-conditioner

since the system is solved for each of the 16 electrodes. We choose

IC pre-conditioning as used by Li & Spitzer (2002) and regard both

variants (IC-nofill and IC-droptol, see Section 2.3) with different

thresholds. As for the complete factorization, the nnz can be drasti-

cally reduced by AMD reordering. Table 3 shows the computer re-

sources used for various threshold values. The number of iterations

and the run time can be decreased by a finer threshold. However,

the memory requirements grow. We expect an increase of run time

for even smaller values than 10−4, because the back-substitution

requires more time for a greater nnz (Günther 2004).

To summarize, the numerical computations must always find a

trade-off between the resources speed and memory. Mesh size and

available computer memory determine the speed of the solvers. Di-

rect methods should be used whenever it is affordable. Conjugate

gradient methods with IC pre-conditioners are the alternative for

most cases. The threshold value of the incomplete factorization must
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Table 3. Computing time t, memory requirements and number of iterations

of the ICCG method for different pre-conditioners (Merapi mesh with 16

source vectors).

Thresh. Time(IC) Memory Iter. t/Iter Total t

nofill 201 s 104 MB 146 1.6 s 65.1 min

10−1 140 s 89 MB 170 1.6 s 74.8 min

10−2 144 s 120 MB 94 1.8 s 47.7 min

10−3 180 s 266 MB 45 2.9 s 37.9 min

10−4 393 s 561 MB 19 5.5 s 34.8 min

be chosen carefully to meet memory limits and to minimize calcula-

tion time. For very large meshes, the SSOR pre-conditioner is advan-

tageous since it allows pre-conditioning without additional storage

(Spitzer 1995). However, convergence becomes slower.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we have addressed the simulation of dc resistivity data

with finite elements. Special attention has been paid to the incor-

poration of 3-D surface and subsurface topography. For this reason

unstructured tetrahedral meshes provide the highest flexibility for

describing arbitrary model geometries. The derived geometry ef-

fect helps to understand how the physical fields are affected by the

geometry of the modelling domain.

We have distinguished between two techniques, the simulation of

the total potential and secondary potential. By the latter, accurate

simulations can be carried out using small-scale meshes. The main

computational effort is associated with the simulation of the primary

potential. However, for all problems with more than one source, that

is, more than one forward run we gain efficiency by exploiting the

SP. This is especially advantageous for the inverse problem.

Whereas the SP can be obtained on a relatively coarse mesh, an

accurate simulation of the TP requires a distinct mesh refinement.

We suggest a local spatial refinement in the vicinity of the electrodes

(at least 1/10 electrode spacing) in combination with the global use

of quadratic shape functions. A further improvement of efficiency

may be achieved by adaptive mesh refinement using an a posteriori
error estimator (Verführt 1996). The question remains whether the

geometry effect may be calculated more efficiently with the bound-

ary element method (Xu et al. 1988).

For the solution of the arising systems of equations we propose

two ways: Small-scale problems are most efficiently solved by direct

multifrontal solvers. This is the case for all simulations of the SP.

Regarding larger systems of equations, as arising primarily from TP

simulations, conjugate gradient methods with IC pre-conditioners

are the method of choice. The trade-off depends mainly on the avail-

able computer memory to store the Cholesky factor of the matrix.

Matrix reordering techniques help to reduce memory requirements

drastically.

With the presented techniques it is possible to simulate compli-

cated geometries and conductivity distributions within short time

on standard computers. Hence, the way to 3-D inversion with arbi-

trary topography has been opened up and will be considered in a

following paper (Günther et al. 2006).
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504 C. Rücker, T. Günther and K. Spitzer

Pridmore, D.F., Hohmann, G.W., Ward, S.H. & Sill, W.R., 1980. An inves-

tigation of finite-element modelling for electrical and electromagnetical

data in three dimensions, Geophysics, 46, 1009–1024.

Queralt, P., Pous, J. & Marcuello, A., 1991. 2-d resistivity modeling: an

approach to arrays parallel to the strike direction, Geophysics, 56(7), 941–

950.

Saad, Y., 1996. Iterative Methods for Sparse Linear Systems, PWS, Boston.

Sasaki, Y., 1994. 3-d resistivity inversion using the finite-element method,

Geophysics, 59(12), 1839–1848.

Shewchuk, J.R., 1998. Tetrahedral mesh generation by delaunay refinement,

in Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, pp. 86–95, Association for Computing Machinery, available at

http://www.cs.cmu.edu/jrs/.

Shewchuk, J.R., 2002. Delaunay refinement algorithms for triangular mesh

generation, Computational Geometry: Theory and Applications, 22, 21–

74.

Si, H., 2003. TETGEN: a 3d delaunay tetrahedral mesh generator,

http://tetgen.berlios.de.

Spitzer, K., 1995. A 3-d finite-difference algorithm for dc resistivity mod-

elling using conjugate gradient methods, Geophys. J. Int., 123, 903–914.

Spitzer, K. & Wurmstich, B., 1999. Speed and accuracy in 3D resistivity

modeling, in Three-dimensional Electromagnetics, eds Oristaglio, M. &

Spies, B., no. 7 in Geophysical Developments, Society of Exploration

Geophysicists.

Toledo, S., Chen, D. & Rothkin, V., 2001. Taucs—a library of sparse linear

solvers, http://www.tau.ac.il/ stoledo/taucs/.

Verführt, R., 1996. A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques, Wiley Teubner, Stuttgart.

Wu, X., Xiao, Y., Qi, C. & Wang, T., 2003. Computations of secondary

potential for 3d dc resistivity modelling using an incomplete Choleski

conjugate-gradient method, Geophys. Prospect., 51, 567.

Xu, S.Z., 2001. The boundary element method in geophysics, Geophysical

monograph series, Society of exploration geophysics.

Xu, S.Z., Gao, Z.C. & Zhao, S.K., 1988. An integral formulation for 3-D

terrain modeling for resistivity surveys, Geophysics, 53, 564–552.

Yi, M.-J., Kim, J.-H., Song, Y., Cho, S.-J., Chung, S.-H. & Suh, J.-H., 2001.

Three-dimensional imaging of subsurface structures using resistivity data,

Geophys. Prospect., 49(4), 483–497.

Zhang, J., Mackie, R.L. & Madden, T.R., 1995. 3-d resistivity forward mod-

eling and inversion using conjugate gradients, Geophysics, 60(5), 1313–

1325.

Zhao, S. & Yedlin, M.J., 1996. Some refinements on the finite-difference

method for 3-d dc resistivity modeling, Geophysics, 61(5), 1301–1307.

Zhdanov, M.S. & Keller, G.V., 1994. The Geoelectrical Methods in Geo-
physical Exploration, Methods in Geochemistry and Geophysics, Else-

vier, Amsterdam, London, New York, Tokyo.

Zhou, B. & Greenhalgh, S.A., 2001. Finite element three-dimensional di-

rect current resistivity modelling: accuracy and efficiency considerations,

Geophys. J. Int., 145, 679–688.

Zienkiewicz, O.C., 1977. The Finite Element Method, McGraw-Hill, Lon-

don, 3rd edn.

A P P E N D I X A : E L E M E N T

I N T E G R AT I O N A N D S H A P E

F U N C T I O N S

The approximate solution uh for the continuous potential u ≈ uh(xn,

yn, zn) is represented by discrete points (nodes) (x n , yn , zn), n =
1, . . . , N. By using polynomial shape functions N n we transform the

continuous approximate solution into a discrete vector of unknown

coefficients u ∈ IIRN with

u ≈ uh =
N∑

n=1

Nn(x, y, z)un . (A1)

Domain and boundary are discretized into sub-domains �(i) and

boundary elements �(i). The application of (A1) on (2) yields with

the Galerkin method (w i = N i ) the FE formulation

N∑
k=1

( ∫
�

σ∇Nk · ∇Nl d� +
∫

�

σαNk Nl d�

)
u =

E∑
i=1

∫
�

Nk I δ(r − rs) d� +
B∑

i=1

∫
�

Nk I δ(r − rs) d�, (A2)

represented by the system of equations Au = b with A =∑E
i=1 A(i) + ∑B

i=1 B(i) and the element matrices

A(i)
k,l =

∫
�(i)

σi∇Nk · ∇Nl d� and (A3a)

B(i)
k,l =

∫
�(i)

σiαNk Nl d� for k, l = 1 . . . N. (A3b)

For a source position rs the individual entries for the right-hand side

in (A2) are determined by

bk =
E∑

i=1

∫
�(i)

Nk I δ(r − rs) d� +
B∑

i=1

∫
�(i)

Nk I δ(r − rs) d�. (A3c)

The choice of shape functions determines the quality of the ap-

proximated potential. Shape functions can easily be formed by trans-

forming the Cartesian coordinates (xi, yi, zi) into natural (or element)

coordinates (ζ i). For an edge (IIR1) defined by two nodes P1(x1) and

P2(x2) the relations are

x = x1ζ1 + x2ζ2 and ζ1 + ζ2 = 1,

such that ζ1 = x2 − x

x2 − x1

and ζ2 = x − x1

x2 − x1

. (A4)

The linear shape functions for the natural elements (edge, triangle,

tetrahedron) equal the natural coordinates (N i = ζ i). Hence the load

vector entries for an edge are

bP1
=

∫ 1

0

ζ1(x)I δ(x − xs) dx = ζ1(xs) = x2 − xs

x2 − x1

bP2
=

∫ 1

0

ζ2(x)I δ(x − xs) dx = ζ2(xs) = xs − x1

x2 − x1

. (A5)

If the source position is located on one of the nodes, the partic-

ular entry is 1. If not, both yield entries. The same procedure also

holds for a face or an element. Thus a node-independent electrode

positioning can be achieved for TP calculations.

In order to use quadratic shape functions we need an additional

node at the edge centre and the three shape functions

N1 = ζ1(2ζ1 − 1), N2 = ζ2(2ζ2 − 1), N3 = 4ζ1ζ2. (A6)

The integration of b works analogously.

For a triangle (IR2) with the nodes P1(x1, y1), P2(x2, y2) and P3(x3,

y3) the relation between Cartesian and natural coordinates is given

by

x = x1ζ1 + x2ζ2 + x3ζ3

y = y1ζ1 + y2ζ2 + y3ζ3.
(A7)

Considering ζ 1 + ζ 2 + ζ 3 = 1 we yield

ζ1 = 1

J

(
(x2 y3 − x3 y2) + x(y2 − y3) + y(x3 − x2)

)
ζ2 = 1

J

(
(x3 y1 − x1 y3) + x(y3 − y1) + y(x1 − x3)

)
ζ3 = 1

J

(
(x1 y2 − x2 y1) + x(y1 − y2) + y(x2 − x1)

)
with

J = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1).
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J is called Jacobian determinant and equals the doubled triangle

area. As for the edge the linear shape functions are Ni = ζ i . The

quadratic shape functions read

Ni = ζi (2ζi − 1) for i = 1 . . . 4

N4 = ζ1ζ2 , N5 = ζ2ζ3 , N6 = ζ3ζ1. (A8)

The natural coordinates for a tetrahedron (IIR3) are obtained sim-

ilar to eqs (A4) and (A7) by solving

⎛⎜⎜⎜⎜⎝
1

x

y

z

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ζ1

ζ2

ζ3

ζ4

⎞⎟⎟⎟⎟⎠ . (A9)

The linear shape functions are again N i = ζ i whereas the quadratic

ones read

Ni = ζi (2ζi − 1) for i = 1 . . . 4

N5 = 4ζ1ζ2, N6 = 4ζ2ζ3, N7 = 4ζ3ζ1

N8 = 4ζ1ζ4, N9 = 4ζ2ζ4, N10 = 4ζ3ζ4. (A10)

To obtain the right-hand side of (A3a) we need to integrate over

the boundary triangles by using the natural coordinates (A7) and

the corresponding shape functions. Zienkiewicz (1977) provides

integral formulas with arbitrary powers a, b, and c on triangles,∫
�(i)

ζ a
1 ζ b

2 ζ c
3 dx dy = a!b!c!

(a + b + c + 2)!
J, (A11)

and tetrahedrons,∫
�(i)

ζ a
1 ζ b

2 ζ c
3 ζ d

4 dx dy dz = a!b!c!d!

(a + b + c + d + 3)!
6V, (A12)

where V is the tetrahedral volume. For the domain integral we need

to differentiate the ζ i with respect to the natural coordinates. By

inserting the resulting powers as a/b/c into eq. (A11) the element

matrix is constructed.
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